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Chapter 1Introdu
tionThe p
f theory (possible 
o�nalities theory), developed in late 1970's bySaharon Shelah, is a powerful theory with many remarkable appli
ations inset theory. It be
ame espe
ially famous for introdu
ing a 
ompletely newway of studying the arithmeti
 of 
ardinal numbers, whi
h led to amazingresults. Before we mention these results, let us �rst present their histori
al
ontext.In 1940 Gödel showed that CH (the 
ontinuum hypothesis: 2ℵ0 = ℵ1) is
onsistent with ZFC axioms (Zermelo-Fraenkel axioms + axiom of 
hoi
e).By introdu
ing the method of for
ing, Cohen showed in 1963 that the nega-tion of CH is also 
onsistent with ZFC. Thus, Cantor's 
onje
ture that 2ℵ0is the �rst un
ountable 
ardinal was proven to be independent of ZFC, thatis, neither provable nor refutable from ZFC. This result 
ompletely 
hangedthe view on 
ardinal arithmeti
 and set o� the wave of independen
e results.In 1970's Easton showed that if f is any fun
tion on regular 
ardinals, su
hthat1. f(λ1) < f(λ2) for λ1 < λ2, and2. the 
o�nality of f(λ) is bigger than λ,then it is 
onsistent (with ZFC) to assume that 2λ = f(λ), for all regular
ardinals λ. For a long time it was believed that the same holds for singular
ardinals, and hen
e, that no deep theorems about 
ardinal arithmeti
 
an beproved within ZFC. So it 
ame as a big surprise in 1974 when Silver produ
eda new theorem of 
ardinal arithmeti
:if 2ℵα = ℵα+1 for every α < ω1, then 2ℵω1 = ℵω1+1.It be
ame 
lear that singular 
ardinals represented a new 
hallenge, whi
hwas 
alled the singular 
ardinals problem. In 1975 Galvin and Hajnal 
ameup with the following theorem:



2 Introdu
tionif ℵδ is a strong limit singular 
ardinal with cf(ℵδ) > ℵ0,then 2ℵδ < ℵ(|δ|cf(δ))+ .For example, if ℵω1 is a strong limit, i.e. 2ℵα < ℵω1 for every α < ω1, then
2ℵω1 < ℵ(2ℵ1 )+ . Although these ZFC-theorems represented a new trend, settheory was still marked by the tenden
y to produ
e independen
e results,and move on in some sense, rathen than investigate ZFC. Commenting this,Shelah said:�...when I be
ame interested in the subje
t, I saw a great deal ofa
tivity and suspe
ted I had 
ome into the game too late; shortlythereafter I seemed to be the only one still interested in gettingtheorems in ZFC.�However, he was wrong about being late. Making the following three deepobservations, he established a new theory: p
f theory.1. Instead of studying 
ardinal exponentiation, one 
ould, more generally,study (redu
ed) produ
ts of in�nite 
ardinals.2. It would be useful to shift the fo
us from 
ardinalities to 
o�nalities (ofprodu
ts of 
ardinals).3. The notion of 
o�nality 
an be generalized to the notion of possible
o�nality (
o�nality modulo some ultra�lter).We de�ne the redu
ed produ
ts and study the possible 
o�nalities in 
hapters3 and 4. [Chapter 2 is rather a brief introdu
tion to basi
 set theory andserves as an overview of the preliminaries needed for understanding later
hapters. We refer to [3℄ for a detailed introdu
tion.℄Applying the p
f theory to 
ardinal arithmeti
, in 1978 Shelah proved anew theorem in ZFC:if ℵδ is a singular 
ardinal su
h that δ < ℵδ, then ℵ

|δ|
δ < ℵ(2|δ|)+ .For example, ℵℵ0

ω < ℵ(2ℵ0 )+ . On the one hand, this theorem was spe
ial forinvolving singular 
ardinals ℵδ of 
ountable 
o�nality (unlike Galvin - Hajnaltheorem), but on the other hand, the upper bound ℵ(2|δ|)+ 
ould be arbitrarilylarge, by Easton's theorem. Nevertheless, after improving the p
f theory, in1989 Shelah 
ame up with a mu
h stronger theorem:if δ is a limit ordinal su
h that |δ|cf(δ) < ℵδ, then ℵ
cf(δ)
δ < ℵ|δ|+4.



3For example, if 2ℵ0 < ℵω, then ℵℵ0
ω < ℵω+4. Hen
e, ℵℵ0

ω ≤ 2ℵ0+ℵω4. Moreover,if ℵω is a strong limit 
ardinal, then 2ℵω = ℵℵ0
ω , and thus, 2ℵω < ℵω+4 . Theabove theorems will be proved in Chapter 5.There have been written many papers about p
f theory. Espe
ially greate�ort to explain and elaborate Shelah's original ideas and proofs was madeby Abraham, Burke, Je
h, Kojman and Magidor. However, the re
ent paper[1℄, by Abraham and Magidor, seems to be one of the best presentations ofp
f theory. It explains the substantial parts of the theory separately and very
learly. For instan
e, exa
t upper bounds are explained very well.Our aim is to make a detailed introdu
tion to p
f theory and give a 
learinsight into the proof of the theorem ℵℵ0

ω ≤ 2ℵ0 + ℵω4. What follows 
analso be 
onsidered as a 
omplement to the splendid work by Magidor andAbraham; we 
omplete some of the proofs and give examples (and use asimilar notation). We try to make the theory and its appli
ation to 
ardinalarithmeti
 as short and �uent as possible, doing a favour to those readerswho want to learn p
f theory, but neither have too mu
h time for it, norwant to see only sket
hes (for example, those who are only interested in theproof of the theorem above).Unless stated otherwise, all theorems and results in the last three 
haptersare due to Shelah.



4 Introdu
tion



Chapter 2Some basi
 set theory
2.1 Sets and numbersThe founder of set theory, Georg Cantor, de�ned sets to be 
olle
tions ofany obje
ts (that 
an be thought of). However, the words any and everyturned out to be relative. Russell's paradox1 was a 
lear sign that a formalapproa
h to set theory demands more pre
ise de�nitions. One way to avoidtroubles was to start with axioms and only 
onsider 'worlds of obje
ts'(also
alled models) in whi
h these axioms are true. The most famous system ofaxioms for set theory is 
alled ZFC2.We �x a model of ZFC whi
h be
omes our universe. By a set we under-stand any 
olle
tion of obje
ts in that universe. (If a 
olle
tion of obje
ts is(possibly) not in the universe, we use the word 
lass for it.) The set of allsubsets of a set A is 
alled the powerset of A and is denoted by P (A). A set
A is 
ountable if there exists an inje
tive fun
tion f : A → N, otherwise it isun
ountable.2.1.1 Relations on setsLet A be a set. Any subset R of A × A = {(a, b) : a ∈ A, b ∈ A} is 
alleda (binary) relation on A. We usually write a R b instead of (a, b) ∈ R. A1Consider the 
olle
tion of all obje
ts whi
h do not 
ontain themselves. Is it 
ontainedin itself?2Zermelo-Fraenkel axioms with the axiom of 
hoi
e: there exists an empty set ∅ (
anbe thought of as a unit); there exists an in�nite set; pairs, unions, powersets and 
ertainsubsets of sets exist (are sets); images of sets (under any fun
tion) are sets; two sets aresame if and only if they have the same elements; every nonempty set has a ∈-minimalelement; every family of nonempty sets has a 
hoi
e fun
tion. We refer to [3, Chapter 1℄for a 
omplete and formal des
ription of ZFC axioms.



6 Some basi
 set theoryrelation R is said to bere�exive if a R a for every a ∈ A;irre�exive if a 6R a for every a ∈ A;symmetri
 if a R b implies b R a for every a, b ∈ A;transitive if a R b ∧ b R c implies a R c; andtotal if either a R b or b R a or a = b for every a, b ∈ A.De�nition 2.1.1. A binary relation ≤P on a set P is 
alled a quasi ordering of P if it isre�exive and transitive.2. A binary relation <P on a set P is 
alled a stri
t partial ordering of Pif it is irre�exive and transitive.3. A total stri
t partial ordering on a set P is 
alled a linear ordering of
P .4. A binary relation on a set P is 
alled an equivalen
e relation on P if itis re�exive, symmetri
 and transitive.There 
an be at the same time both a quasi ordering ≤P and a stri
tpartial ordering <P on a set P ; we identify P with (P ,≤P ,<P ).De�nition 2.2. Fix a set P and let ≤P and <P be a quasi ordering and astri
t partial ordering of P , respe
tively. For nonempty sets X, Y ⊆ P , and

p ∈ P , we say that
p is a maximal element of X if p ∈ X and p ≮P x for every x ∈ X;
p is a minimal element of X if p ∈ X and there is no q ∈ X su
h that
q ≤P p and p �P q;
p is a least element of X (in the relation ≤P ) if p ∈ X and p ≤P x forevery x ∈ X;
p is an upper bound of X (or p bounds X) if x ≤P p for every x ∈ X;
p is a <P -upper bound of X (or p <P -bounds X) if x <P p for every
x ∈ X;
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X is 
o�nal in Y in the relation <P (resp. ≤P ) if for every b ∈ Y thereis some a ∈ X su
h that b <P a (resp. b ≤P a) [we also say '
o�nal in(Y, <P )' instead of 
o�nal in the relation <P ℄;
X is bounded in Y if there is an upper bound for X in Y ;So p is a minimal upper bound of X if p is an upper bound of X andthere is no upper bound q of X su
h that q ≤P p and p �P q; and p is a leastupper bound of X if p is an upper bound of X and p ≤P q for every upperbound q of X (p is then also 
alled a supremum of X (supX)).We say that p is an exa
t upper bound of X if p is a least upper boundof X and X is 
o�nal in {q ∈ P : q <P p} in the relation ≤P .Suppose that R is an equivalen
e relation on a set P . For ea
h p ∈ P , wede�ne the equivalen
e 
lass [p] := {q ∈ P : p R q} of p. Every element of Pis then in some equivalen
e 
lass (p ∈ [p]), and no element is in two di�erent
lasses. The quotient P/R of P modulo R is the 
olle
tion of all equivalen
e
lasses.2.1.2 Ordinal numbersA linearly ordered set (P, <P ) is well-ordered if every nonempty subset ofit has a least element (in the linear ordering). By a proper initial segmentof a well-ordered set P we mean a subset of the form {x ∈ P : x <P r} forsome r ∈ P . It holds3 that any two well-ordered sets are 
omparible in thefollowing sense; either they are isomorphi
 (with respe
t to the relation <P )to ea
h other, or one of them is isomorphi
 to an initial segment of the otherone. If we de�ne equivalen
e 
lasses on the 
olle
tion of all well-ordered setsby putting isomorphi
 well-ordered sets into the same 
lass, we 
an thinkof ordinal numbers as the 
olle
tion of the ni
est representatives of theseequivalen
e 
lasses.De�nition 2.3. A set A is an ordinal number (an ordinal) if it is well-ordered by the relation ∈ (is an element of), and if a ⊆ A for every a ∈ A(transitiveness).Ordinals are usually denoted by lower
ase greek letters α, β, et
., and the
lass (
olle
tion) of all ordinal numbers is denoted by Ord. A fun
tion f is
alled an ordinal fun
tion if range(f) ⊆ Ord. For ordinals α and β we alsowrite α < β instead of α ∈ β. We list some of the basi
 fa
ts about ordinalswithout proving them. The proofs 
an be found in [3℄.3See [3℄ for a proof.
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 set theoryProposition 2.4. The following hold for any ordinal number α:1. The empty set ∅ is an ordinal;2. if β ∈ α, then β is also an ordinal;3. α = {β : β ∈ α};4. α + 1 := α ∪ {α} is also an ordinal;5. If X is a nonempty set of ordinals, then ⋃

X is also an ordinal;6. < is a linear ordering of the 
lass Ord;7. ea
h well-ordering P is isomorphi
 to exa
tly one ordinal; this ordinalis then 
alled the order-type of P .Ordinals of the form α ∪ {α} are 
alled su

essor ordinals. All otherordinals are 
alled limit ordinals. Finite ordinals are also known as naturalnumbers and are written as follows:
0 = ∅,
1 = 0 + 1 = ∅ ∪ {∅} = {∅} ,
2 = 1 + 1 = {∅} ∪

{

{∅}
}

=
{

∅, {∅}
}

,et
.2.1.3 Cardinal numbersDe�nition 2.5. An ordinal number α is a 
ardinal number (a 
ardinal) ifthere is no bije
tion between α and any β < α.We usually use κ, λ, µ... to denote 
ardinals. By the 
ardinality |X| of aset X we mean the unique 
ardinal number κ for whi
h there is a bije
tion
f : κ → X. (The existen
e of su
h a bije
tion is not trivial; it relies on theaxiom of 
hoi
e.) Note that ea
h natural number is a 
ardinal number; the
ardinality of a �nite set is simply the number of its elements.The in�nite 
ardinals are 
alled alephs. Sin
e 
ardinals are linearly or-dered by <, we 
an enumerate them by ordinal numbers; ℵα denotes the α-thin�nite 
ardinal. The 0-th in�nite 
ardinal ℵ0 is the set of natural numbers.If α is a su

essor (limit) ordinal, then we say that ℵα is a su

essor (limit)
ardinal. We also write ℵ+

α for ℵα+1.The arithmeti
 operations on 
ardinals are de�ned as follows:
κ + λ := |A ∪ B|, κ · λ := |A × B|,
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κλ := |AB|= |{f : f is a fun
tion from B into A}|,where A and B are any disjoint sets with 
ardinalities |A|= κ and |B|= λ.Proposition 2.6. The following hold for any 
ardinals κ, λ:1. If κ and λ are in�nite 
ardinals, then κ + λ = κ · λ = max {κ, λ};2. + and · are asso
iative, 
ommutative and distributive;3. (κ · λ)µ = κµ · λµ, κλ+µ = κλ · κµ, (κλ)µ = κλ·µ;4. κ ≤ λ implies κµ ≤ λµ, and 0 < λ ≤ µ implies κλ ≤ κµ;5. Cantor : κ < 2κ. (If a set A has the 
ardinality κ = |A|, then 2κ =
|{f : f is a fun
tion from A into 2}|= |P (A)| is the 
ardinality of thepowerset of A.)For a proof see [3℄.We say that a set of ordinals A is 
o�nal in a set of ordinals B if forevery β ∈ B there is an α ∈ A su
h that β < α. For any ordinal α de�nethe 
o�nality of α, denoted as cf(α), to be the least 
ardinality of a subsetof α whi
h is 
o�nal in α. If α is a 
ardinal number and cf(α) = α, then αis 
alled a regular 
ardinal. Otherwise, (that is, if cf(α) < α), α is 
alled asingular 
ardinal. (We denote the 
lass of regular 
ardinals by Reg.) One 
anshow that for every α, cf(cf(α)) = cf(α). Thus, cf(α) is always a regular
ardinal.The exponentiation of 
ardinal numbers, unlike addition and multipli
a-tion, whi
h are trivial, is one of the main topi
s in set theory. In the followingproposition we state some of the basi
 properties of the 
ardinal arithmeti
.4Proposition 2.7. The following hold for any 
ardinals κ, λ:1. If λ is in�nite and 2 ≤ κ ≤ λ, then κλ = 2λ;2. if λ ≥ cf(κ), then κ < κλ;3. if I is any index set and κi < λi for every i ∈ I, then ∑

i∈I κi <
∏

i∈I λi;4. (κ+)λ = κλ · κ+ (Hausdor� formula).For a proof see [3℄.4For a proof of the proposition we refer the reader to [3, page 51℄. In 
hapter 5 thereare deeper results regarding 
ardinal arithmeti
.



10 Some basi
 set theory2.1.4 Closed unbounded setsLet κ > ω be a limit ordinal, and let C ⊆ κ. Any limit ordinal α < κ withsup C∩α = α is 
alled a limit point of C. We say that C is 
losed unbounded(in κ) if it 
ontains all its limit points and is 
o�nal in κ. For example, theset of all limit ordinals in κ is a 
losed unbounded set. If cf(κ) > ω, thenthe interse
tion of two 
losed unbounded sets is also 
losed unbounded.Suppose that κ is a regular un
ountable 
ardinal. A set S ⊆ κ is said tobe stationary (in κ) if S ∩C 6= ∅, for every 
losed unbounded set C in κ. Anordinal fun
tion f on S is regressive if f(α) < α, for every α ∈ S. We aregoing to use the following fa
t.Lemma 2.8 (Fodor). If f is a regressive fun
tion on a stationary set S ⊆ κ,then f is 
onstant on some stationary set T ⊆ S.For a proof see [3, Theorem 8.7℄.2.2 Ideals and �ltersIdeals and �lters are the 
entral tools in the p
f theory. Usually ideals (resp.�lters) are 
olle
tions of small (resp. large) subsets of a given set A. There-fore, elements of an ideal are 
alled null-sets, and all other subsets of A are
alled positive sets. We also de�ne the notion of a maximal ideal (�lter), andstate the important properties.De�nition 2.9. A family I ⊆ P (A) of subsets of a set A is 
alled an idealon A if it satis�es the following 
onditions:1. ∅ ∈ I;2. if X ∈ I and Y ∈ I, then X ∪ Y ∈ I;3. if X, Y ⊆ A, X ∈ I, and Y ⊆ X, then Y ∈ I.A family F ⊆ P (A) of subsets of a set A is 
alled a �lter on A if it satis�esthe following 
onditions:1. ∅ /∈ F and A ∈ F ;2. if X ∈ F and Y ∈ F , then X ∩ Y ∈ F ;3. if X, Y ⊆ A, X ∈ F , and X ⊆ Y , then Y ∈ F .



2.2 Ideals and �lters 11By a proper 5 ideal on a set A we mean an ideal satisfying A /∈ I. We saythat a proper ideal I (resp. a �lter F ) on a set A is maximal if there is noideal I ′ with I ( I ′ ( P (A) (resp. no �lter F ′ with F ( F ′ ( P (A)).A proper ideal I (resp. a �lter F ) is a prime ideal (resp. ultra�lter) if forevery X ⊆ A, either X ∈ I (resp. X ∈ F ), or A\X ∈ I (resp. A\X ∈ F ),but not both, where A\X = {a ∈ A : a /∈ X} denotes the 
omplement of Xin A.If I is a proper ideal on a set A, then the 
olle
tion F = {X ⊆ A : A\X ∈
I} is a �lter on A. It is 
alled the dual �lter of I. I is then 
alled the dualideal of F .We say that a set G ⊆ P (A) generates an ideal I, if I is the 
losureof G under subsets and �nite unions. Similarly, we say that that a set
H ⊆ P (A) generates a �lter F , if F is the 
losure of H under supersetsand �nite interse
tions.Proposition 2.10.1. An ideal (resp. �lter) is a prime ideal (resp. ultra�lter) if and only ifit is maximal.2. (Tarski) Every ideal (resp. �lter) 
an be extended to a prime ideal (resp.ultra�lter). Moreover,3. (Stone) If I is an ideal (resp. F is a �lter) on a set A and X ∈ P (A)\I

(resp. X ∈ P (A)\F ), then there is a prime ideal J (resp. ultra�lter
D) with I ⊆ J and X /∈ J (resp. F ⊆ D and X /∈ D).For a proof of (1) and (2) see [3, page 74℄.Remark 2.11. We will use the following 
onsequen
es of Proposition 2.10.(i) If I is an ideal on a set A and Y ∈ P (A)\I, then there is an ultra�lter Don A su
h that I ∩ D = ∅ and Y ∈ D. [Let D simply be the dual �lter ofa prime ideal J ⊇ I with Y /∈ J .℄ (ii) Moreover, if F is a �lter6 on A su
hthat I ∩F = ∅, then I 
an be extended to a maximal ideal J on A su
h that

J ∩ F = ∅.
5Attention: By proper we do not mean I 6= {∅}.6It su�
es that a ∩ b 6= ∅, for every a, b ∈ F .
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Chapter 3Redu
ed produ
tsIn this 
hapter we de�ne the redu
ed produ
ts of sets of ordinals and developthe 'theory' of exa
t upper bounds, whi
h is the basis of the p
f theory, aswe will see in 
hapters 4 and 5. Our main referen
e for this 
hapter is [1℄.Though, all the theorems in it are due to Shelah, unless otherwise stated.3.1 De�nitionLet A denote a set of regular 
ardinals1 in this 
hapter. For any sequen
e
S = 〈Sa : a ∈ A〉 of nonempty sets of ordinals we de�ne the produ
t of Sto be the set of all ordinal fun
tions f : A → Ord with f(a) ∈ Sa, for ea
h
a ∈ A, i.e.

∏

a∈A

Sa := {f : f ∈ OrdA, ∀a ∈ A (f(a) ∈ Sa)}.If h is an ordinal fun
tion on A (with h(a) > 0, for ea
h a ∈ A), then we justwrite ∏

h instead of ∏

a∈A h(a). Similarly, if Sa = a for every a ∈ A, thenwe just write ∏

A instead of ∏

a∈A a.We de�ne the following relations on the produ
t ∏

a∈A Sa:1. If I is an ideal on A, then for any fun
tions f, g ∈
∏

a∈A Sa:
f =I g :⇐⇒ {a ∈ A : f(a) 6= g(a)} ∈ I;
f <I g :⇐⇒ {a ∈ A : f(a) ≥ g(a)} ∈ I;
f ≤I g :⇐⇒ {a ∈ A : f(a) > g(a)} ∈ I.2. If F is a �lter on A, then for any fun
tions f, g ∈

∏

a∈A Sa:1The theory of redu
ed produ
ts 
an be developed for any index set A.
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f =F g :⇐⇒ {a ∈ A : f(a) = g(a)} ∈ F ;
f <F g :⇐⇒ {a ∈ A : f(a) < g(a)} ∈ F ;
f ≤F g :⇐⇒ {a ∈ A : f(a) ≤ g(a)} ∈ F .The relations≤I and ≤F are quasi orderings of ∏a∈A Sa, and the relations

<I (if I is a proper ideal) and <F are stri
t partial orderings of ∏

a∈A Sa.The relation =I (resp. =F ) is an equivalen
e relation on ∏

a∈A Sa. Thequotient ∏

a∈A Sa/I (resp. ∏

a∈A Sa/F ) is 
alled the redu
ed produ
t of Smodulo I (resp. modulo F ). Although ∏

a∈A Sa/I (resp. ∏

a∈A Sa/F ) 
on-sists of equivalen
e 
lasses of fun
tions in ∏

a∈A Sa, for our purposes we wantto work with single fun
tions - identifying equivalent ones. [Therefore, forsimpli
ity, when we have f <I g, by 
hanging f on a null-set we 
an assumethat f(a) < g(a), for ea
h a ∈ A, without any loss of generality. Also, if
h is an ordinal fun
tion on A su
h that {a ∈ A : h(a) /∈ Sa} ∈ I, thenwe 
onsider h as an element of ∏

a∈A Sa/I (be
ause it is equivalent to some
h′ ∈

∏

a∈A Sa/I). The same for a �lter F .℄ This means that on ∏

a∈A Sa/I(resp. ∏

a∈A Sa/F ) we 
onsider the relations <I and ≤I (resp. <F and ≤F ),whi
h are a
tually de�ned on ∏

a∈A Sa.Note that for fun
tions f and g, f ≤I g does not imply that either f <I gor f =I g. The 
onverse is 
learly true.If I and F are dual to ea
h other (see page 11), then for any fun
tions f ,
g ∈

∏

A we have: f =I g i� f =F g, f <I g i� f <F g, and f ≤I g i� f ≤F g.For this reason, whenever I is dual to F , we identify (
∏

a∈A Sa/I, <I ,≤I) with
(
∏

a∈A Sa/F, <F ,≤F ) (or say that they have the same stru
ture), and makeno di�eren
e between the I-relations and the F -relations. Further, every�lter has a dual ideal, hen
e, it su�
es to develop the theory of redu
edprodu
ts for ideals. If I = {∅} we identify ∏

a∈A Sa/{∅} with ∏

a∈A Sa, andwrite f < g instead of f <{∅} g.If J ⊇ I is another ideal on A, then f <I g implies f <J g. We say that
<J extends <I . In parti
ular, if D is an ultra�lter on A extending the dual�lter of I, that is, D ∩ I = ∅, then <D extends <I .Re
all that a set B ⊆

∏

a∈A Sa/I is 
o�nal in (
∏

a∈A Sa/I, <I) iff forevery fun
tion f ∈
∏

a∈A Sa/I there is a fun
tion g ∈ B su
h that f <I g.A sequen
e f = 〈fξ : ξ < λ〉 of fun
tions in ∏

a∈A Sa/I is said to be <I-in
reasing iff for every ξ1, ξ2 < λ we have fξ1 <I fξ2 .We say that a sequen
e f = 〈fξ : ξ < λ〉 of fun
tions in ∏

a∈A Sa/I is as
ale for ∏

a∈A Sa/I iff it is <I-in
reasing and 
o�nal in (
∏

a∈A Sa/I, <I).We need to further enri
h our terminology before we 
an say why we areinterested in working with redu
ed produ
ts. The following de�nitions 
anbe easily generalized for any partial or quasi orderings; parti
ularly for ≤I .



3.1 De�nition 15De�nition 3.1. Let I be an ideal on A and let S = 〈Sa : a ∈ A〉 be anysequen
e of nonempty sets of ordinals.1. The 
o�nality cf(
∏

a∈A Sa/I, <I) of (
∏

a∈A Sa/I, <I) is de�ned as theleast 
ardinality of a 
o�nal set in (
∏

a∈A Sa/I, <I).2. The true 
o�nality tcf(
∏

a∈A Sa/I, <I) of (
∏

a∈A Sa/I, <I) is de�nedas the least 
ardinality of a linearly ordered set whi
h is 
o�nal in
(
∏

a∈A Sa/I, <I), if it exists. [In other words, the true 
o�nality is theminimal length of a s
ale. Note that the length of a s
ale is a regular
ardinal i� it is minimal.℄Remark 3.2. (1) Suppose that ea
h Sa has no maximal element. Then a set
B ⊆

∏

a∈A Sa/I is 
o�nal in (
∏

a∈A Sa/I,≤I) iff it is 
o�nal in (
∏

a∈A Sa/I, <I

). [The 'if' dire
tion is trivial: if f ∈
∏

a∈A Sa/I and for some g ∈ B we have
f <I g, then also f ≤I g. Conversely, suppose that f ∈

∏

a∈A Sa/I, thenalso f + 1 ∈
∏

a∈A Sa/I, where f + 1(a) = f(a) + 1. By assumption, there issome g ∈ B with f + 1 ≤I g. It follows that f <I g.℄ This justi�es our newterminology - 
o�nal in ∏

a∈A Sa/I.(2) Every redu
ed produ
t has a 
o�nality: Firstly, there is always a
o�nal subset, namely the set itself; and se
ondly, there is always the least
ardinal among a 
lass of 
ardinals. Co�nality 
an be either a regular or asingular 
ardinal.(3) The true 
o�nality does not always exist (see the examples below). Ifit exists, then it is a regular 
ardinal. [Otherwise there is a shorter s
ale.℄(4) If I is a maximal ideal on A, then ∏

A/I has a true 
o�nality. Namely,
<I is a linear ordering of ∏

A/I, and thus, every 
o�nal subset is a s
ale for
∏

A/I. Similarly, if D is an ultra�lter on A, then tcf(
∏

A/D) always exists.We write cf(
∏

A/D) instead of tcf(
∏

A/D).(5) If J ⊇ I is another ideal on A, then, sin
e <J extends <I , we havethat any <I-in
reasing sequen
e of fun
tions is also <J -in
reasing. Further,any 
o�nal sequen
e in (
∏

a∈A Sa/I, <I) is also 
o�nal in (
∏

a∈A Sa/J, <J).In parti
ular, if F is a �lter on A extending the dual �lter of I, then
cf(

∏

a∈A Sa/F ) ≤ cf(
∏

a∈A Sa/I),and
tcf(

∏

a∈A Sa/F ) = tcf(
∏

a∈A Sa/I),if tcf(
∏

a∈A Sa/I) exists.(6) If h is an ordinal fun
tion on A (with h(a) > 0 is a limit ordinal,for ea
h a ∈ A), then the redu
ed produ
ts ∏

h/I =
∏

a∈A h(a)/I and
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ed produ
ts
∏

a∈A cf(h(a))/I have the same 
o�nality (and true 
o�nality, if it exists).[Choose for every a ∈ A a 
o�nal set Sa in h(a) of order type cf(h(a)). Then,on the one hand, ∏

a∈A h(a)/I and ∏

a∈A Sa/I are 
o�nally equivalent. Thatis, for every f ∈
∏

a∈A h(a)/I there is g ∈
∏

a∈A Sa/I with f ≤I g, andvi
e versa, whi
h means they have the same 
o�nality. On the other hand,
∏

a∈A Sa/I 
an be identi�ed with ∏

a∈A cf(h(a))/I be
ause for ea
h a ∈ A,
Sa has order-type cf(h(a)).℄Let h be an ordinal fun
tion on A (with h(a) > 0 is a limit ordinal,for ea
h a ∈ A). We are interested in the existen
e and value of the true
o�nality of ∏

h/I; and 
onversely, we want to represent regular 
ardinalsas true 
o�nalities of some redu
ed produ
ts.Remark 3.2(6) tells us that we 
an 
on
entrate on ordinal fun
tions h,whi
h take values in the 
lass of in�nite regular 
ardinals.Suppose that λ is a regular 
ardinal and f = 〈fξ : ξ < λ〉 is a <I-in
reasing sequen
e of fun
tions in ∏

A/I, whi
h has an exa
t upper bound
h in ∏

A/I. Then, (by De�nition 2.2) f is 
o�nal in the set {g ∈ OrdA :
g <I h}. But this is the same as to say f is 
o�nal in ∏

h/I. It follows that
f is a s
ale for ∏

h/I. Finally, sin
e λ is a regular 
ardinal, f must be as
ale of minimal length, and hen
e we have that λ is the true 
o�nality of
∏

h/I =
∏

cf(h)/I.This motivates the study of exa
t upper bounds in the next se
tion. We�rst want to 
ite some examples and state a useful lemma.Example 3.3. (1) If A (|A|> 1) is a set of regular 
ardinals and I = {∅},then f =I g means f(a) = g(a), for every a ∈ A. The produ
t ∏

A = ∏

A/Idoes not have a true 
o�nality. [We argue indire
tly. Suppose �rst that thereis a s
ale f = 〈fξ : ξ < λ〉 for ∏

A of length λ < supA. Then there is κ ∈ Awith λ < κ. Sin
e κ is a regular 
ardinal and λ < κ, the set {fξ(κ) : ξ < λ}is bounded in κ. This means that f is not 
o�nal in ∏

A, 
ontradi
ting fbeing a s
ale. Suppose now that there is a s
ale f = 〈fξ : ξ < λ〉 for ∏

Aof length λ ≥ supA. Then for any κ ∈ A with κ < supA we have that thesequen
e 〈fξ(κ) : ξ < λ〉 is an in
reasing sequen
e of ordinals of length λ in
κ. But this is impossible, sin
e κ < λ.℄Example 3.4. 2 Let κ be a strong limit 
ardinal, i.e. 2α < κ for every α < κ.Consider an in
reasing sequen
e 〈λn〉n∈N of in�nite regular 
ardinals withlimit κ. One shows by a diagonalisation argument that κ+ ≤ cf(

∏

n∈N
λn).[No set F ⊆

∏

n∈N
λn of 
ardinality ≤ κ is 
o�nal in ∏

n∈N
λn. For if |F | ≤

κ, then F =
⋃

n∈N
Fn, for some Fn ⊆

∏

n∈N
λn with |Fn|< λn. Choose a2For readers familiar with for
ing and large 
ardinals.
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tion g su
h that for ea
h n, g(λn) > f(λn), for every f ∈ Fn. Thenfor every f ∈ F , g � f . Hen
e F is not 
o�nal.℄ On the other hand,sin
e |
∏

n∈N
λn|= 2κ, we have cf(

∏

n∈N
λn) ≤ 2κ. Therefore, the problem of
o�nality of su
h a produ
t is related to the 
ontinuum fun
tion problem. Wewant to mention two types of models in whi
h 
o�nalities of produ
ts havebeen studied: Prikry's model and Magidor's model. The following resultsare taken from [6℄.- Let κ be a measurable 
ardinal with normal measure U and let 〈κn〉n∈Nbe a Prikry sequen
e for U . Then for every regular 
ardinal λ with

κ+ ≤ λ ≤ 2κ there exists an in
reasing sequen
e 〈λn〉n∈N ∈ V [G] ofregular 
ardinals with limit κ su
h that cf(
∏

n∈N
λn) = λ.- Let κ be a super
ompa
t 
ardinal and let N be Magidor's extension of

V , whi
h introdu
es a Prikry sequen
e 〈κn〉n∈N together with 
ollapsingto obtain κn = ℵ(k+1)n, for n ∈ N, and 2ℵω = ℵω+k (2 ≤ k < ω). Thenfor ea
h m = 1, ..., k we have (in N) cf(
∏

n∈N
κ+m

n ) = ℵω+m.For proofs we refer to [6℄.Lemma 3.5. Suppose that c is a fun
tion from A into the 
lass of regular
ardinals and B = {c(a) : a ∈ A} is its range. Then the following hold.1. If I is an ideal on A, then its Rudin-Keisler proje
tion on B,de�ned by
X ∈ J iff X ⊆ B and c−1X ∈ I,where c−1X = {a ∈ A : c(a) ∈ X}, is an ideal on B.2. The fun
tion h :

∏

B/J →
∏

a∈A c(a)/I, de�ned by h([f ]J) = [f ◦ c]I ,is inje
tive and order-preserving.3. If |A| < minB, then the image of h is 
o�nal in ∏

a∈A c(a)/I. Thus,
tcf(

∏

B/J) = tcf(
∏

a∈A c(a)/I),if one of the produ
ts has true 
o�nality.For a proof see [1, Lemma 2.3℄.
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ed produ
ts3.2 Exa
t upper boundsIn this se
tion we determine the 
onditions for the existen
e of exa
t upperbounds for <I-in
reasing sequen
es f = 〈fξ : ξ < λ〉 of fun
tions in OrdA.The remarkable study of these 
onditions is a
tually a small theory onexa
t upper bounds, whi
h plays a very important role in the p
f theory.However, we only state the most important theorems of that theory; sket
hingmost of the proofs, so that the reader 
an see the ideas behind the de�nitions.For details and 
omplete proofs we refer to [1℄.Let A again be a set of regular 
ardinals and let I be an ideal on A.De�nition 3.6. Suppose that λ is a regular 
ardinal and f = 〈fξ : ξ < λ〉 isa <I-in
reasing sequen
e of fun
tions in OrdA. Then f is said to be stronglyin
reasing if there are null-sets Zξ ∈ I, for ξ < λ, su
h that whenever
ξ1 < ξ2 < λ, then

a ∈ A\(Zξ1 ∪ Zξ2) =⇒ fξ1(a) < fξ2(a).De�nition 3.7. Suppose that λ is a regular 
ardinal and f = 〈fξ : ξ < λ〉is a <I-in
reasing sequen
e of fun
tions in OrdA. For any regular 
ardinal
κ ≤ λ we denote the following property of f by (∗)κ:Whenever X ⊆ λ is unbounded in λ, then for some

X0 ⊆ X of order-type κ, 〈fξ : ξ ∈ X0〉 is strongly in
reasing.Note that if f has the (∗)κ property for some κ < λ, then f also has the
(∗)κ

′ property for every regular κ
′
< κ.Let S = 〈Sa : a ∈ A〉 be a sequen
e of sets of ordinals. We denote thefun
tion a 7→supSa by sup-of-S.Suppose that a fun
tion f ∈ OrdA is bounded by sup-of-S. Then we de�nethe proje
tion of f onto S, proj(f, S), as the fun
tion f+(a) :=min(Sa\f(a)).De�nition 3.8. Suppose that λ is a regular 
ardinal and f = 〈fξ : ξ < λ〉is a <I-in
reasing sequen
e of fun
tions in OrdA. For any regular 
ardinal

κ ≤ λ we 
all the following property of f the bounding proje
tion propertyfor κ: Whenever S = 〈Sa : a ∈ A〉 with Sa ⊆ Ord and |Sa|< κ is su
hthat the sequen
e f is <I-bounded by the fun
tion a 7→ supSa,then there exists ξ < λ su
h that the proje
tion f+
ξ = proj(fξ, S) ∈

∏

a∈A Sais an upper bound of f in the <I relation.
[Shortly: f <I sup-of-S ⇒ ∃ξ < λ (f <I f+

ξ ).]
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t upper bounds 19Lemma 3.9. Suppose that A is a set of regular 
ardinals, I is an ideal on
A, λ > |A|+ is a regular 
ardinal, and f = 〈fξ : ξ < λ〉 is a <I-in
reasingsequen
e of fun
tions in OrdA. Then for every regular 
ardinal κ su
h that
|A|+≤ κ ≤ λ the following are equivalent3:1. (∗)κ holds for f ;2. f has the bounding proje
tion property for κ;3. f has an exa
t upper bound h su
h that: {a ∈ A : cf(h(a)) < κ} ∈ I.Proof. 1 ⇒ 2. See [1, Theorem 2.12℄.

2 ⇒ 3. Sket
h of the proof: One �rst shows that f has a minimal upperbound h (for a proof see Theorem 2.13 in [1℄). We show that h then must bean exa
t upper bound of f , i.e. f is 
o�nal below h:Suppose that g <I h. We shall �nd ξ < λ su
h that g ≤I fξ. Assumew.l.o.g. that g(a) < h(a), for every a ∈ A (see page 14). De�ne a sequen
e
S = 〈Sa : a ∈ A〉 by

Sa := {g(a), h(a)}for every a ∈ A. Sin
e |Sa|< κ 
learly holds and sup-of-S = h is a <I-upperbound of f (if it were not a <I-upper bound of f , then it would not bean upper bound at all, be
ause f is <I-in
reasing), the bounding proje
tionproperty for κ implies that there is ξ < λ su
h that f+
ξ is a <I-upper bound of

f . Sin
e h is minimal and f+
ξ ≤I h, we have that h ≤I f+

ξ . Thus, f+
ξ =I h.It follows that g <I fξ, (be
ause if fξ ≤ g holds on a positive set, then

f+
ξ = g < h on this positive set, and that 
ontradi
ts f+

ξ =I h). Thus, wehave shown that h is an exa
t upper bound of f .This exa
t upper bound is determined up to =I . Sin
e f is <I-in
reasing,
h(a) 
an be 0 or a su

essor ordinal only on a null-set. Thus, we 
an assumethat it is never 0 or a su

essor ordinal (see page 14).It remains to show that {a ∈ A : cf(h(a)) < κ} ∈ I holds. In order to geta 
ontradi
tion, suppose that P := {a ∈ A : cf(h(a)) < κ} /∈ I. For every
a ∈ P , 
hoose a set Sa ⊆ h(a) 
o�nal in h(a), su
h that order-type(Sa)< κ.For a ∈ A\P de�ne Sa := {h(a)}. Then sup-of-S= h is a <I-upper bound of
f and |Sa|< κ. Like above, the bounding proje
tion property for κ impliesthat there is ξ < λ su
h that f+

ξ ∈
∏

a∈A Sa is a <I-upper bound of f . Bythe de�nition of S, we have f+
ξ ≤I h and f+

ξ ↿ P < h ↿ P . But sin
e Pis a positive set, this means that f+
ξ ≤I h and h �I f+

ξ , 
ontradi
ting ourassumption that h is a minimal upper bound of f (see De�nition 2.2).
3 ⇒ 1. See [1, Theorem 2.15℄.3For the later 
hapters we only need the 1 ⇒ 2 ⇒ 3 dire
tion.



20 Redu
ed produ
tsThe 
ondition (∗)κ does not seem to be easily veri�able for a sequen
eof ordinal fun
tions. However, we are only interested in the existen
e ofsequen
es whi
h have this property4, and the following theorem gives us astrategy for 
onstru
ting them.Lemma 3.10. Suppose that A is a set of regular 
ardinals and1. I is a proper ideal on A;2. κ and λ are regular 
ardinals su
h that κ++ < λ; and3. f = 〈fξ : ξ < λ〉 is a <I-in
reasing sequen
e of fun
tions in OrdAwhi
h satis�es the following requirement:for every δ < λ with cf(δ) = κ++ there is a 
losed unbounded set
Eδ ⊆ δ su
h that for some δ

′ with δ ≤ δ
′
< λ

sup{fα : α ∈ Eδ} <I fδ
′ .Then (∗)κ holds for f .For a proof see [1, Lemma 2.19℄.From the following appli
ation we see that the 
ondition on f in Lemma3.10 is nothing but a strategy for 
onstru
ting sequen
es of ordinal fun
tionsfor whi
h (∗)κ holds (and whi
h, thus, have exa
t upper bounds that are ofbig interest to us).De�nition 3.11. Suppose that I is a proper ideal on A and S = 〈Sa : a ∈ A〉is a sequen
e of sets of ordinals. We say that the produ
t ∏

a∈A Sa/I is λ-dire
ted (for a 
ardinal λ) iff every set B ⊆
∏

a∈A Sa/I with 
ardinality
|B|< λ has an upper bound in ∏

a∈A Sa/I.Lemma 3.12. Suppose that A is a set of regular 
ardinals and I is a properideal on A. Let λ be a regular 
ardinal su
h that ∏

A/I is λ-dire
ted. Thenthere exists a <I-in
reasing sequen
e f = 〈fξ : ξ < λ〉 of fun
tions in ∏

A/Isu
h that for every regular 
ardinal κ < λ, (∗)κ holds for f iff
κ++ < λ and {a ∈ A : a ≤ κ++} ∈ I.Proof. De�ne f as follows. At su

essor stages ξ + 1 < λ, let fξ+1 := fξ + 1.Sin
e A is a set of limit ordinals, we have fξ + 1 ∈

∏

A/I.At limit stages δ < λ we 
onsider two 
ases. If cf(δ) = κ++ < λ, where κis a regular 
ardinal su
h that {a ∈ A : a ≤ κ++} ∈ I, then �x some 
losedunbounded set Eδ ⊆ δ, and de�ne4For the purposes of p
f theory; see page 16 and Theorem 4.10.
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fδ= sup{fi : i ∈ Eδ}.(For every a > κ++ we have that fδ(a) < a, be
ause ea
h a ∈ A is a regular
ardinal. Thus, fδ ∈

∏

A/I, sin
e {a ∈ A : a ≤ κ++} ∈ I.) If cf(δ) isnot of that form, then let fδ ∈
∏

A/I be any upper bound of 〈fξ : ξ < δ〉guaranteed by the λ-dire
tedness assumption.Lemma 3.10 implies that (∗)κ holds for f , for every κ of the required form.The following theorem is an immediate 
onsequen
e of Lemma 3.9 andLemma 3.12.Theorem 3.13. Suppose that1. A is a set of regular 
ardinals and I is a proper ideal on A;2. λ is a regular 
ardinal su
h that ∏

A/I is λ-dire
ted;3. there is a regular 
ardinal κ with |A|+≤ κ ≤ λ,su
h that κ++ < λ and {a ∈ A : a ≤ κ++} ∈ I.Then there exists a <I-in
reasing sequen
e f = 〈fξ : ξ < λ〉 of fun
tions in
∏

A/I with an exa
t upper bound h su
h that {a ∈ A : cf(h(a)) < κ} ∈ Ifor every regular 
ardinal κ with |A|+≤ κ ≤ λ, su
h that κ++ < λ and
{a ∈ A : a ≤ κ++} ∈ I.Proof. Follows immediately from Lemma 3.9 and Lemma 3.12. Note thatthe existen
e of a regular 
ardinal κ with |A|+≤ κ ≤ λ, su
h that κ++ < λand {a ∈ A : a ≤ κ++} ∈ I, is needed (by Lemma 3.9) for the existen
e ofan exa
t upper bound of f .Remark 3.14. From the proof of Lemma 3.10 we 
an see that f 
an be
hosen to dominate any given sequen
e g = 〈gξ : ξ < λ〉 of fun
tions in
∏

A/I, i.e. su
h that for ea
h ξ < λ, gξ ≤I fξ.In the next se
tion and in Chapter 4 (Theorem 4.10) we will see appli
a-tions of Theorem 3.13.3.3 Representation theoremsWe have seen on page 16 that if λ is a regular 
ardinal and f = 〈fξ : ξ < λ〉is a <I-in
reasing sequen
e of fun
tions in ∏

A/I, whi
h has an exa
t upperbound h in ∏

A/I, then
λ = tcf(

∏

cf(h)/I). (3.1)Using this fa
t we 
an get stronger results for su

essors µ+ of singular 
ar-dinals. We �rst 
onsider µ+ with cf(µ) = ω.
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ed produ
tsTheorem 3.15. Suppose that µ is a singular 
ardinal of 
ountable 
o�nal-ity. Then there exists an unbounded set B ⊂ µ (of order-type ω) of regular
ardinals su
h that
µ+ = tcf(

∏

B/Jbd),where J bd is the ideal of bounded (or �nite) subsets of B.Proof. Let B0 ⊂ µ be any unbounded set (of order-type ω) of regular 
ardi-nals, and let Ibd be the proper ideal of bounded (or �nite) subsets of B0. Weshow that the produ
t ∏

B0/I
bd is µ-dire
ted.Suppose that F ⊆

∏

B0/I
bd has 
ardinality γ < µ. We need to showthat F has an upper bound in ∏

B0/I
bd. De�ne a fun
tion g ∈

∏

B0/I
bdby g(a) := sup{f(a) : f ∈ F} if a > γ, and g(a) := 0 if a ≤ γ. [It holdsthat g ∈

∏

B0/I
bd, sin
e |F |< γ and ea
h a ∈ B0 is regular.℄ Then for every

f ∈ F we have {a ∈ B0 : f(a) > g(a)} = {a ∈ B0 : a ≤ γ} ∈ Ibd, that is,
f ≤Ibd g. Thus, we have shown that F has an upper bound in ∏

B0/I
bd.But sin
e µ is a singular 
ardinal, ∏

B0/I
bd is also µ+-dire
ted: Supposethat F ⊆

∏

B0/I
bd has 
ardinality µ. There are subsets Fn ⊆

∏

B0/I
bd,for n ∈ ω, of 
ardinality < µ su
h that F =

⋃

n∈ω Fn. Sin
e ∏

B0/I
bd is µ-dire
ted and |Fn|< µ (n ∈ ω), there exist upper bounds fn of Fn in ∏

B0/I
bd.Finally, there exists also an upper bound of 〈fn : n ∈ ω〉, whi
h bounds every

Fn, and thus, the whole F .Let κ be a regular 
ardinal su
h that ℵ1 ≤ κ < µ+, then κ++ < µ < µ+holds (sin
e µ is singular) and the set {a ∈ B0 : a ≤ κ++ < µ} is obviouslybounded in µ.Apply Theorem 3.13 to B0, Ibd and µ+. There exists a <Ibd-in
reasingsequen
e f = 〈fξ : ξ < µ+〉 of fun
tions in ∏

B0/I
bd with an exa
t upperbound h su
h that

{a ∈ B0 : cf(h(a)) < κ} ∈ Ibd, (3.2)for every regular 
ardinal κ with ℵ1 ≤ κ ≤ µ+, su
h that κ++ < µ+ and
{a ∈ B0 : a ≤ κ++} ∈ Ibd. [Sin
e the identity fun
tion id on B0 is a <-upperbound of f , we have h ≤I id (otherwise h is not minimal), and thus, we 
anassume that h(a) ≤ id(a) = a, for every a ∈ B0.℄Note that the set of su
h regular 
ardinals κ is unbounded in µ. Therefore,it follows from (3.2) that also

B := {cf(h(a)) : a ∈ B0} ⊂ µis unbounded in µ. We 
an assume that B is of order-type ω and ℵ0 < minB(modify B0 if ne
essary).



3.3 Representation theorems 23We show that µ+ = tcf(
∏

B/Ibd). By (3.1) we have
µ+ = tcf(

∏

a∈B0

cf(h(a))/Ibd). (3.3)De�ne a fun
tion c : B0 → B by c(a) := cf(h(a)). Let J be the ideal on Bde�ned by X ∈ J iff {c−1(x) : x ∈ X} ∈ Ibd. Lemma 3.5 implies that
tcf(

∏

B/J) = tcf(
∏

a∈B0
cf(h(a))/Ibd) = µ+.It remains to show that J is the ideal J bd of bounded subsets of B. Thein
lusion J ⊆ J bd follows easily. If X ∈ J , then {c−1(x) : x ∈ X} ∈ Ibd is a�nite set, and thus, X is a �nite (and bounded) set.In order to prove J bd ⊆ J , suppose that X ∈ J bd is a bounded subset of

B = {cf(h(a)) : a ∈ B0}. Say, γ < µ is an upper bound of X. We need toshow that the preimage of X, under the map c, is bounded in µ. In orderto get a 
ontradi
tion, suppose that it is not bounded. That is, there is anunbounded set Y ⊆ B0 su
h that for every a ∈ Y , c(a) = cf(h(a)) ∈ X.Sin
e X is �nite, it follows that there is an unbounded set Y1 ⊆ Y and some
δ ≤ γ su
h that for every a ∈ Y1, c(a) = cf(h(a)) = δ.We now easily get a 
ontradi
tion. Let D be an ultra�lter on B0 extendingthe dual �lter of Ibd, su
h that Y1 ∈ D (whi
h exists by Remark 2.11).Then, on the one hand, sin
e ≤D extends ≤Ibd , (3.3) implies that µ+ =
tcf(

∏

a∈B0
cf(h(a))/D) (by Remark 3.2(6)). But on the other hand, sin
e

Y1 ∈ D, any sequen
e 〈gξ : ξ < δ〉 with gξ(a) = ξ, for a ∈ Y1, is a s
ale for
∏

a∈B0
cf(h(a))/D. This 
ompletes the proof.We have a similar result for su

essors µ+ of singular 
ardinals with

cf(µ) > ω.If X is a set of 
ardinals, then let X(+) := {α+ : α ∈ X} denote the setof su

essors of 
ardinals in X.Theorem 3.16. Suppose that µ is a singular 
ardinal of un
ountable 
o�-nality. Then there exists a 
losed unbounded set (of limit 
ardinals) C ⊆ µsu
h that |C|< minC and
µ+ = tcf(

∏

C(+)/Jbd),where J bd is the ideal of bounded subsets of C(+).Proof. Let C0 ⊆ µ be any 
losed unbounded set of limit 
ardinals bigger than
cf(µ), su
h that |C0|= cf(µ). It follows that |C0|< minC0.All the limit points γ of C0 are singular 
ardinals, sin
e |C0|= cf(µ) < γ.So we 
an assume that C0 
onsists only of singular 
ardinals. [The set oflimit points of C0 is also a 
losed unbounded set.℄



24 Redu
ed produ
tsBy the same argument like in the proof of Theorem 3.15, the produ
t
∏

C
(+)
0 /Jbd is µ+-dire
ted, where J bd is the ideal of bounded subsets of C

(+)
0 .Apply Theorem 3.13 to C

(+)
0 , J bd and µ+. There exists a <Jbd-in
reasingsequen
e f = 〈fξ : ξ < µ+〉 of fun
tions in ∏

C
(+)
0 /Jbd with an exa
t upperbound h su
h that

{a ∈ C
(+)
0 : cf(h(a)) < κ} ∈ J bd, (3.4)for every regular 
ardinal κ with cf(µ)+ ≤ κ ≤ µ+, su
h that κ++ < µ+and {a ∈ C

(+)
0 : a ≤ κ++} ∈ J bd; this means, for every regular 
ardinal

κ < µ. [We 
an assume, like in the previous proof, that h(a) ≤ a, for every
a ∈ C

(+)
0 .℄Claim. There is a set

C ⊆ {α ∈ C0 : h(α+) = α+},whi
h is 
losed unbounded.Proof of the 
laim. In order to get a 
ontradi
tion, suppose that the set
{α ∈ C0 : h(α+) = α+} does not 
ontain a 
losed unbounded set. Then thereis some stationary set S ⊆ C0 su
h that S ∩ {α ∈ C0 : h(α+) = α+} = ∅. Itfollows that h(α+) < α+ for every α ∈ S.Sin
e all 
ardinals in C0 are singular, we have that cf(h(α+)) < α, forevery α ∈ S. Hen
e, by Lemma 2.8, cf ◦ h is 
onstant, and hen
e boundedby some κ < µ, on a stationary set of α's in S. But this is in 
ontradi
tionwith (3.4).Thus, we have proved that there exists a 
losed unbounded set C ⊆
C0 su
h that h(α+) = α+ for every α ∈ C. It follows easily that µ+ =
tcf(

∏

C(+)/Jbd). Namely, the sequen
e 〈fξ ↾ C(+) : ξ < µ+〉 is a s
ale for
∏

C(+)/Jbd =
∏

α∈C h(α+)/Jbd; it is 
o�nal, be
ause h ↾ C(+) is an exa
tupper bound of f ↾ C(+), and it is <Jbd-in
reasing.We will prove a stronger version of the last theorem in the next 
hapter.



Chapter 4The p
f fun
tion
4.1 De�nitionIn Chapter 3 we have seen that some 
ardinals 
an be represented as true
o�nalities of 
ertain (redu
ed) produ
ts of sets. Now we want to 
hangeour point of view and investigate whi
h 
ardinals 
an be realised as true
o�nalities of some �xed produ
t of sets - of 
ourse, modulo di�erent ideals.This motivates the following de�nition.De�nition 4.1. [The p
f fun
tion℄ For any set A of regular (un
ountable1)
ardinals de�ne

pcf(A) := {λ : λ = tcf(
∏

A/I) for some proper ideal I on A}.Let I be a proper ideal on A su
h that λ = tcf(
∏

A/I), and let D beany ultra�lter on A, extending the dual �lter of I. Then, as we mentionedin Remark 3.2(6), λ = cf(
∏

A/D) = tcf(
∏

A/I). Hen
e, the followingformulation is equivalent to the one in De�nition 4.1:
pcf(A) = {λ : λ = cf(

∏

A/D) for some ultra�lter D on A}.4.2 Basi
 propertiesLet A and B be any sets of regular un
ountable 
ardinals. We state the basi
properties of the p
f fun
tion.1. pcf(A) ∩ minA = ∅. Proof: Suppose that λ ∈ minA. Then for everyultra�lter D on A, any sequen
e f = 〈fξ : ξ < λ〉 of fun
tions in1We will only 
onsider un
ountable 
ardinals, sin
e the �nite 
ase is trivial.



26 The p
f fun
tion
∏

A/D is ≤D-bounded in ∏

A/D by the pointwise supremum of fξ's.Hen
e for every ultra�lter D on A, we have λ < cf(
∏

A/D). Thus,
λ /∈ pcf(A).2. A ⊆ pcf(A).2 Proof: Suppose that λ ∈ A. We need to �nd an ul-tra�lter D on A su
h that λ = cf(

∏

A/D). Let D be the prin
ipalultra�lter on A, whi
h 
on
entrates on λ; that is, for every X ⊆ A,
X ∈ D iff λ ∈ X. Then any sequen
e f = 〈fξ : ξ < λ〉 of fun
tions in
∏

A/D, with fξ(λ) = ξ for every ξ < λ, is a s
ale for ∏

A/D, (be
ause
{λ} ∈ D). Thus, λ = cf(

∏

A/D).3. If A ⊆ B, then pcf(A) ⊆ pcf(B). Proof: Suppose that λ ∈ pcf(A).Then there is an ultra�lter D on A su
h that λ = cf(
∏

A/D). Let
f = 〈fξ : ξ < λ〉 be a s
ale for ∏

A/D. Extend D (
anoni
ally) to anultra�lter D′ on B, that is, let D′ := {b ⊆ B : b ∩ A ∈ D}; and extendea
h fξ (arbitrarily) to a fun
tion f ′
ξ with domain B. We 
laim that

f ′ = 〈f ′
ξ : ξ < λ〉 is a s
ale for ∏

B/D′, and thus, that λ ∈ pcf(B).We �rst show that it is 
o�nal. Let g ∈
∏

B/D′, then, for some
ξ < λ, g ↾ A ≤D fξ, sin
e f is 
o�nal in ∏

A/D. This means that
{α ∈ A : g(α) ≤ fξ(α)} = {β ∈ B : g(β) ≤ f ′

ξ(β)} ∩ A is an elementof D. It follows by de�nition of D′ that {β ∈ B : g(β) ≤ f ′
ξ(β)} ∈ D′,whi
h means that g ≤D′ f ′

ξ.To show that f ′ is <D′-in
reasing, suppose that ξ1 < ξ2 < λ. Then
{α ∈ A : fξ1(α) ≤ fξ2(α)} = {β ∈ B : f ′

ξ1
(β) ≤ f ′

ξ2
(β)} ∩ A is anelement of D. It follows by de�nition of D′ that {β ∈ B : f ′

ξ1
(β) ≤

f ′
ξ2

(β)} ∈ D′, whi
h means that f ′
ξ1
≤D′ f ′

ξ2
.4. pcf(A ∪ B) = pcf(A) ∪ pcf(B). Proof: The in
lusion '⊇' follows by(3). We show that pcf(A ∪ B) ⊆ pcf(A) ∪ pcf(B). Suppose that

λ ∈ pcf(A ∪ B). Let D be an ultra�lter on A ∪ B su
h that λ =
cf(

∏

A ∪ B/D), and let f = 〈fξ : ξ < λ〉 be a s
ale for ∏

A ∪ B/D.It holds that either A ∈ D or B ∈ D, for if A /∈ D, then A′ ∈ D,and hen
e A′ ⊆ B ∈ D. Without any loss of generality, assume that
A ∈ D.We show that λ ∈ pcf(A). Let D′ := {a ⊆ A : a ∈ D} be the
anoni
al restri
tion of D to A. D′ is an ultra�lter on A. By elementaryarguments, like in (3), one shows that f ↾ A = 〈fξ ↾ A : ξ < λ〉 is as
ale for ∏

A/D′, and thus, that λ = cf(
∏

A/D′).2Moreover, one of the main theorems of this 
hapter says that if A is an interval ofregular 
ardinals, then pcf(A) is also an interval of regular 
ardinals, and A is an initialsegment of it (Theorem 4.10).



4.3 Ideal J<λ 27Next, we de�ne the 
entral tool for investigating further properties of thep
f fun
tion.4.3 Ideal J<λLet A be a set of regular 
ardinals, and let λ be a 
ardinal. We say that asubset a ⊆ A for
es ∏

A to have 
o�nality less than λ, and write a for
es
of<λ, if for every ultra�lter D on A with a ∈ D, cf(
∏

A/D) < λ.De�nition 4.2. For any 
ardinal λ de�ne
J<λ[A] := {a ⊆ A : a for
es 
of<λ}.

J<λ[A] is an ideal on A: (i) ∅ ∈ J<λ[A]. (ii) Suppose that a′ ⊆ a ⊆ A and
a ∈ J<λ[A]. If D is any ultra�lter on A with a′ ∈ D, then a ∈ D, and hen
e
cf(

∏

A/D) < λ. Thus, a′ ∈ J<λ[A]. (iii) Suppose that a, a′ ∈ J<λ[A]. If Dis any ultra�lter on A with a ∪ a′ ∈ D, then either a ∈ D or a′ ∈ D, andhen
e cf(
∏

A/D) < λ. Thus, a ∪ a′ ∈ J<λ[A].Proposition 4.3.1. If λ ≤ min pcf(A), then J<λ[A] = {∅}.2. If λ > max pcf(A), then J<λ[A] = P (A).3. If λ ∈ pcf(A), then J<λ[A] is a proper ideal.Proof. (1) We argue indire
tly. Suppose that there is a ∈ J<λ[A], a 6= ∅.Then there exists an ultra�lter D on A with a ∈ D. Sin
e a ∈ J<λ[A],
cf(

∏

A/D) < λ. It follows that min pcf(A) < λ.(2) By de�nition, J<λ[A] ⊆ P (A). To show that P (A) ⊆ J<λ[A], let a ⊆ A,
a 6= ∅. Suppose that D is an ultra�lter on A with a ∈ D. Then cf(

∏

A/D) ≤max pcf(A) < λ. Thus, a ∈ J<λ[A].(3) We need to show that A /∈ J<λ[A]. We argue indire
tly. If A ∈ J<λ[A],then, by de�nition, for ea
h ultra�lter D on A with A ∈ D, cf(
∏

A/D) < λ.But A ∈ D for every ultra�lter D on A. Therefore, cf(
∏

A/D) < λ for everyultra�lter D on A. Hen
e λ /∈ pcf(A).Note that λ1 < λ2 implies J<λ1 [A] ⊆ J<λ2[A]; and if λ is a singular
ardinal, then J<λ[A] = J<λ+ [A].If λ is a limit 
ardinal, then J<λ[A] =
⋃

µ<λ J<µ[A]. [By the previousline, ⋃

µ<λ J<µ[A] ⊆ J<λ[A]. For the 
onverse in
lusion 
onsider some a ∈
J<λ[A]\

⋃

µ<λ J<µ[A]. It follows that there is an ultra�lter D on A su
h that
a ∈ D and D ∩

⋃

µ<λ J<µ[A] = ∅, whi
h means that cf(
∏

A/D) < λ and
cf(

∏

A/D) ≥ µ, for every µ < λ. Contradi
tion.℄



28 The p
f fun
tionProposition 4.4. If A0 ⊆ A, then J<λ[A0] = J<λ[A] ∩ P (A0).3Proof. We �rst show that '⊆' holds. Let a ∈ J<λ[A0]. Clearly, a ∈ P (A0).Assume that D is an ultra�lter on A su
h that a ∈ D. Then also A0 ∈ D,be
ause a ⊆ A0. Therefore, the restri
tion D′ = {a ⊆ A0 : a ∈ D} of Dto A0 is an ultra�lter on A0, and we have that cf(
∏

A/D) = cf(
∏

A0/D
′)(the restri
tion of any s
ale for ∏

A/D is a s
ale for ∏

A0/D
′). It followsthat cf(

∏

A/D) = cf(
∏

A0/D
′) < λ, sin
e a ∈ D′ and a ∈ J<λ[A0]. Hen
e,

a ∈ J<λ[A].To prove that '⊇' holds, suppose that a ∈ J<λ[A] ∩ P (A0), and let D bean ultra�lter on A0 su
h that a ∈ D. Extend D to the ultra�lter D′ := {b ⊆
A : b∩A0 ∈ D} on A. Then cf(

∏

A0/D) = cf(
∏

A/D′) (see page 26). Sin
e
a ∈ D′ and a ∈ J<λ[A], we have cf(

∏

A0/D) = cf(
∏

A/D′) < λ. Hen
e,
a ∈ J<λ[A0].We say that A is progressive if |A| < minA. Re
all that a redu
ed produ
t
∏

A/I is λ-dire
ted (for a 
ardinal λ) iff every F ⊆
∏

A/I with |F |< λ hasan upper bound in ∏

A/I.The following theorem, whi
h has a number of 
onsequen
es, states a
ru
ial property of the ideals J<λ.Theorem 4.5. [λ-Dire
tedness℄ Assume that A is a progressive set of regular
ardinals. Then ∏

A/J<λ is λ-dire
ted for every 
ardinal λ.For a proof see [1, Theorem 3.4℄.Corollary 4.6. Suppose that A is a progressive set of regular 
ardinals.Then for every ultra�lter D on A

cf(
∏

A/D) < λ iff J<λ ∩ D 6= ∅,that is, iff some element of D for
es 
of<λ.Proof. We prove the 'only if' dire
tion indire
tly. Suppose that J<λ∩D = ∅.It means that D extends the dual �lter of I. Therefore, sin
e ∏

A/J<λ is
λ-dire
ted, ∏

A/D is λ-dire
ted as well. It follows that cf(
∏

A/D) ≥ λ(be
ause any sequen
e of length <λ of fun
tions in ∏

A is bounded in ∏

A).Conversely, if J<λ ∩ D 6= ∅, then, by de�nition of J<λ, cf(
∏

A/D) < λ.Corollary 4.7. Suppose that A is a progressive set of regular 
ardinals.Then λ ∈ pcf(A) iff J<λ ( J<λ+ .3This proposition allows us to write J<λ instead of J<λ[A0] and J<λ[A], whenever weare dealing with some �xed sets of 
ardinals A and A0 with A0 ⊆ A.



4.3 Ideal J<λ 29Proof. If λ ∈ pcf(A), then there is an ultra�lter D su
h that cf(
∏

A/D) =
λ < λ+. By Corollary 4.6, J<λ+ ∩ D 6= ∅. Let a ∈ J<λ+ ∩ D. Then a /∈ J<λ,be
ause a ∈ D and cf(

∏

A/D) 6< λ. Hen
e a ∈ J<λ+\J<λ.For the 
onverse, suppose that a ∈ J<λ+\J<λ. Sin
e a /∈ J<λ, there isan ultra�lter D with a ∈ D su
h that cf(
∏

A/D) ≥ λ. It follows that
cf(

∏

A/D) = λ, be
ause a ∈ J<λ+ . Thus, λ ∈ pcf(A).Corollary 4.8. Suppose that A is a progressive set of regular 
ardinals.Then
|pcf(A)|≤ |P (A)|.Proof. By Corollary 4.7, whenever λ ∈ pcf(A), then J<λ ( J<λ+ . It followsthat 〈J<λ〉λ∈pcf(A) is a stri
tly de
reasing sequen
e of length |pcf(A)| of sub-sets of A. Sin
e su
h a sequen
e 
an have length at most |P (A)|, it holdsthat |pcf(A)|≤ |P (A)|.Corollary 4.9. Suppose that A is a progressive set of regular 
ardinals.Then the set pcf(A) has a maximal element.Proof. Sin
e λ1 < λ2 implies J<λ1 ⊆ J<λ2, we have that 〈J<λ〉λ∈pcf(A) is an

⊆-in
reasing sequen
e of ideals on A. It follows easily that the union
I :=

⋃

λ∈pcf(A) J<λis an ideal on A as well. By Proposition 4.3(3), ea
h J<λ in the sequen
eis proper, that is, A /∈ J<λ. Therefore, I is proper as well. Hen
e, byProposition 2.10(3), I 
an be extended to a maximal proper ideal J . Let D bethe dual (ultra)�lter of J , and let µ = cf(
∏

A/D). Then, sin
e D is disjointfrom J<λ for ea
h λ ∈ pcf(A), Corollary 4.6 implies that cf(
∏

A/D) ≥ λ, forea
h λ ∈ pcf(A). Thus, µ = cf(
∏

A/D) ∈ pcf(A) is the maximal elementof pcf(A).We say that a set X is an interval of regular 
ardinals if for some 
ardinals
α < β, X = {a ∈ Ord : a is a regular 
ardinal and α ≤ a < β}.Note that pcf(A) is not ne
essarily an interval of regular 
ardinals. Forinstan
e, if A = {ℵ2n : 1 < n < ω}, then ℵ2n+1, n ∈ ω, 
an not berealized as true 
o�nality of A modulo some ultra�lter D. [Proof: We argueindire
tly. Suppose that for some n ∈ ω there is an ultra�lter D su
h that
ℵ2n+1 = cf(

∏

A/D). Let f = 〈fξ : ξ < λ〉 be a s
ale for ∏

A/D. It holdsthat either {ℵ2k : 1 < k ≤ n} ∈ D or {ℵ2k : n < k < ω} ∈ D. If the �nite set
{ℵ2k : 1 < k ≤ n} is in D, then D is a prin
ipal ultra�lter 
on
entrating onsome 
ardinal below ℵ2n+1, and thus, cf(

∏

A/D) < ℵ2n+1. This 
ontradi
ts



30 The p
f fun
tionour assumption. If {ℵ2k : n < k < ω} ∈ D, then f is <D-bounded by thepointwise supremum of fξ's. This 
ontradi
ts f being a s
ale.℄The following theorem is an important result of the p
f theory whi
h playsa 
ru
ial role in the appli
ations of the p
f theory to 
ardinal arithmeti
. SeeChapter 5.Theorem 4.10. Suppose that A is a progressive interval of regular 
ardinals.Then pcf(A) is also an interval of regular 
ardinals.Proof. Suppose that A is a progressive interval of regular 
ardinals. Re
allthat pcf(A) ∩ minA = ∅ and A ⊆ pcf(A). Hen
e we need to show thatevery regular 
ardinal λ with supA ≤ λ < max pcf(A) is in pcf(A).If supA /∈ A, then supA must be a limit point of A, and thus, a singular
ardinal, sin
e |A|< minA ≤ supA. Otherwise, supA ∈ A ⊆ pcf(A).Consider now a regular 
ardinal λ with supA < λ < max pcf(A). Weshow that λ ∈ pcf(A).Let A′ be the �rst initial segment of A that is not in the ideal J<λ (itexists). Then all proper initial segments of A′ are in J<λ.Claim. A′ has no maximal element.Proof of the 
laim. In order to get a 
ontradi
tion, suppose that supA′ ∈ A′.Then A′\supA′ ∈ J<λ. Sin
e A′ /∈ J<λ, there is an ultra�lter D on A′ su
hthat cf(
∏

A′/D) ≥ λ. It follows that A′\supA′ /∈ D, be
ause A′\supA′ ∈
J<λ. Hen
e {supA′} ∈ D; that is, D is a prin
ipal ultra�lter. Thus, we have
λ ≤ cf(

∏

A′/D) = supA′. But this is a 
ontradi
tion to λ > supA.It follows that κ++ < supA′ < λ and {a ∈ A′ : a ≤ κ++} ∈ J<λ (and
|A′|+≤ κ ≤ λ), for every 
ardinal κ ∈ A′. Further, J<λ is a proper ideal, andthe produ
t ∏

A′/J<λ is λ-dire
ted. Thus, we 
an apply Theorem 3.13 to
A′, J<λ and λ: there exists a <J<λ

-in
reasing sequen
e f = 〈fξ : ξ < λ〉 offun
tions in ∏

A′/J<λ with an exa
t upper bound h su
h that
{a ∈ A′ : cf(h(a)) < κ} ∈ J<λ,for every 
ardinal κ ∈ A′. In parti
ular,

I1 := {a ∈ A′ : cf(h(a)) < minA′} ∈ J<λ. (4.1)The identity fun
tion id on A′ is a <-upper bound for f . So, sin
e h isminimal, we have h ≤J<λ
id, that is,

I2 := {a ∈ A′ : h(a) > id(a) = a} ∈ J<λ. (4.2)



4.3 Ideal J<λ 31It follows from (4.1) and (4.2) that
minA′ ≤ cf(h(a)) ≤ a (4.3)holds for every a ∈ A′\(I1 ∪ I2). Thus, by 
hanging h on the null-set I1 ∪ I2,we 
an assume that (4.3) holds for every a ∈ A′. But sin
e A′ is an intervalof regular 
ardinals, we have

cf(h(a)) ∈ A′ for every a ∈ A′.Re
all that by (3.1) we have
λ = tcf(

∏

a∈A′ cf(h(a))/J<λ).Let B := {cf(h(a)) : a ∈ A′}, and let c : A′ → B be the fun
tion de�ned by
c(a) := cf(h(a)). Then |A′|< minB. Hen
e, we 
an apply Lemma 3.5: thereis an ideal J on B su
h that

tcf(
∏

B/J) = tcf(
∏

a∈A′ cf(h(a))/J<λ) = λ.Thus, we have proved that λ ∈ pcf(B) ⊆ pcf(A′) ⊆ pcf(A). This 
ompletesthe proof.We have the following generalization of the last theorem.De�nition 4.11. Suppose that A is a set of regular 
ardinals. For every
ardinal κ < minA de�ne
pcfκ(A) :=

⋃

{pcf(X) : X ⊆ A and |X|= κ}.Theorem 4.12. Suppose that A is an interval of regular 
ardinals. Then forevery 
ardinal κ < minA, pcfκ(A) is also an interval of regular 
ardinals.For a proof see [1, Theorem 3.11℄.The p
f fun
tion has (under weak assumptions) the following 
losureproperty.Theorem 4.13. Suppose that A is a progressive set of regular 
ardinals, and
B ⊆ pcf(A) is also progressive. Then

pcf(B) ⊆ pcf(A).In parti
ular, if pcf(A) is progressive, then pcf(pcf(A)) = pcf(A).For a proof see [1, Theorem 3.12℄.
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f fun
tion4.4 Generators for J<λWe shall prove that for every λ ∈ pcf(A) there is a set Bλ[A] ⊆ A, 
alledgenerating set, su
h that
J<λ+ [A] = J<λ[A] + Bλ[A],that is, J<λ+ [A] is generated by J<λ ∪ {Bλ[A]}. This property of ideals J<λis 
alled normality . Moreover, if A is progressive, then for every X ⊆ A,
X ⊆ Bλ1 [A] ∪ · · · ∪ Bλn [A],for some �nite set {λ1, ..., λn} ⊆ pcf(X).4De�nition 4.14. Suppose that λ ∈ pcf(A). A sequen
e f = 〈fξ : ξ < λ〉 offun
tions in ∏

A, in
reasing in <J<λ
, is a universal sequen
e for λ if it is as
ale for ∏

A/D whenever D is an ultra�lter on A su
h that cf(
∏

A/D) = λ.5Theorem 4.15. Suppose that A is a progressive set of regular 
ardinals.Then every λ ∈ pcf(A) has a universal sequen
e.For a proof see [1, Theorem 4.2℄.The universal sequen
es will be frequently used from now on.6 Beforewe use them to prove the existen
e of generating sets, we state two otherimportant 
onsequen
es of Theorem 4.15.Lemma 4.16. Suppose that A is a progressive set of regular 
ardinals. Thefollowing are equivalent for every 
ardinal λ:1. λ = max pcf(A)2. λ = tcf(
∏

A/J<λ)3. λ = cf(
∏

A/J<λ)Proof. 1 ⇒ 2. We show that any universal sequen
e for λ is 
o�nal in
∏

A/J<λ. Argue indire
tly. Suppose that f = 〈fξ : ξ < λ〉 is not 
o�nal in
∏

A/J<λ, i.e. there exists h ∈
∏

A/J<λ su
h that {a ∈ A : fξ(a) < h(a)} /∈
J<λ, for every ξ < λ. Note that, sin
e f is <J<λ

-in
reasing, we have for
ξ1 < ξ2 < λ,4These ni
e properties of the ideals J<λ play a key role in the appli
ations of p
f theoryto 
ardinal arithmeti
.5Noti
e that it su�
es to say 
o�nal, instead of s
ale, sin
e su
h an f is <D-in
reasing.6We refer the reader to [2, se
tion 4℄ for another (motivating) approa
h to generatorsand universal sequen
es. The idea of a universal sequen
e arises from the attempt todominate a sequen
e of s
ales.
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{a ∈ A : fξ1(a) < h(a)} ⊇J<λ

{a ∈ A : fξ2(a) < h(a)}.Thus, we 
an extend the ideal J<λ to a maximal ideal J su
h that {a ∈ A :
fξ(a) < h(a)} /∈ J , for every ξ < λ. Let D be the dual (ultra)�lter of J . Itfollows that cf(

∏

A/D) = λ, be
ause D ∩ J<λ = ∅ and λ = max pcf(A).But f is not a s
ale for ∏

A/D, sin
e fξ <D h for every ξ < λ. Hen
e f isnot universal for λ.
2 ⇒ 3. Trivial.
3 ⇒ 1. Suppose that λ = cf(

∏

A/J<λ). We �rst show that λ ≤ max
pcf(A). The ideal J<λ is 
learly a proper ideal (otherwise, if A ∈ J<λ,then cf(

∏

A/J<λ) = 1). Hen
e, there is an ultra�lter D on A su
h that
D ∩ J<λ = ∅. It follows that cf(

∏

A/D) ≤ cf(
∏

A/J<λ) = λ (see Remark3.2(5)). But cf(
∏

A/D) < λ is impossible, be
ause D ∩ J<λ = ∅. Thus,
cf(

∏

A/D) = λ. So we have λ ∈ pcf(A), whi
h implies λ ≤ max pcf(A).To prove that λ ≥ max pcf(A), let D be any ultra�lter on A. We 
laim that
λ ≥ cf(

∏

A/D). If D ∩ J<λ 6= ∅, then, by de�nition, λ > cf(
∏

A/D). Butif D ∩ J<λ = ∅, then (like above) λ = cf(
∏

A/J<λ) ≥ cf(
∏

A/D). This
ompletes the proof.Theorem 4.17. If A is a progressive set of regular 
ardinals, then
cf(

∏

A, <) = max pcf(A),where < refers to the everywhere dominan
e relation <{∅}. Hen
e cf(
∏

A, <)is a regular 
ardinal.Proof. We only give a s
et
h of the proof. It follows easily that cf(
∏

A, <) ≥max pcf(A). Let λ = max pcf(A), and let D be an ultra�lter on A su
hthat λ = cf(
∏

A/D). Then <D extends <, and thus (by Remark 3.2(5)),we have cf(
∏

A, <) ≥ cf(
∏

A, <D) = λ.The 
onverse, cf(
∏

A, <) ≤ max pcf(A), is proved by �nding a 
o�nalsubset of (
∏

A, <) of 
ardinality max pcf(A) = λ. Fix for every µ ∈ pcf(A)a universal sequen
e fµ = 〈fµ
i : i < µ〉 for µ. Let F be the set of all fun
tionsof the form sup{fµ1

i1
, fµ2

i2
, ..., fµn

in
},where µ1, µ2, ..., µn is any �nite sequen
e of 
ardinals in pcf(A), and ik < µkare arbitrary indi
es. Then F is a 
o�nal subset of (

∏

A, <) of 
ardinality λ(for details see the proof of Theorem 4.26).In order to prove the existen
e of generating sets Bλ[A], we �rst makethe following 
hara
terization.
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f fun
tionLemma 4.18. Suppose that A is a progressive set of regular 
ardinals. Thenfor any set B ⊆ A,
J<λ+[A] = J<λ[A] + B (4.4)if and only if

B ∈ J<λ+ [A] (4.5)and whenever D is an ultra�lter on A with cf(
∏

A/D) = λ, (4.6)then B ∈ D.Proof. Assume �rst that (4.4) holds. Then (4.5) is obvious. We prove (4.6).Suppose that D is an ultra�lter on A with cf(
∏

A/D) = λ. Then D∩J<λ+ 6=
∅. Let X ∈ D ∩ J<λ+ . By (4.4), X\B ∈ J<λ. Sin
e D ∩ J<λ = ∅, it followsthat B ∈ D. [For if A\B ∈ D, then (A\B) ∩ X = X\B ∈ D ∩ J<λ.℄Now assume that (4.5) and (4.6) hold. We prove (4.4). Sin
e B ∈ J<λ+,we have J<λ+ ⊇ J<λ + B. To prove J<λ+ ⊆ J<λ + B, assume that X ∈ J<λ+and show that X\B ∈ J<λ as follows. Let D be an ultra�lter on A su
hthat X\B ∈ D. We 
laim that cf(

∏

A/D) < λ. Sin
e X ∈ J<λ+ ∩ D,
cf(

∏

A/D) < λ+. But cf(
∏

A/D) = λ is impossible, be
ause B /∈ D.Hen
e cf(
∏

A/D) < λ.Theorem 4.19. [Normality℄ Suppose that A is a progressive set of regular
ardinals. Then for every 
ardinal λ ∈ pcf(A) there is a set B ⊆ A su
h that
J<λ+[A] = J<λ[A] + B.Proof. Let λ ∈ pcf(A). The 
ase λ ∈ {|A|+, |A|++, |A|+++} is rather trivial:

J<|A|+ = {∅};

J<|A|++ = {∅} + {|A|+} =
{

∅, {|A|+}
}

;

J<|A|+++ =
{

∅, {|A|+}
}

+ {|A|++} =
{

∅, {|A|+}, {|A|++}, {|A|+, |A|++}
}

.Suppose now that |A|+3< λ. Then {a ∈ A : a < |A|+3} = {|A|+, |A|++} ∈
J<|A|+3 ⊆ J<λ. Hen
e we 
an apply Theorem 3.13 to A, J<λ and λ (κ = |A|+):there exists a <J<λ

-in
reasing sequen
e f = 〈fξ : ξ < λ〉 of fun
tions in
∏

A/J<λ with an exa
t upper bound h. Sin
e the identity fun
tion id on Ais a <-upper bound of f , we have h ≤J<λ
id. By 
hanging h on a null-set,we 
an assume that h(a) ≤ a, for every a ∈ A.Moreover, by Remark 3.14, we 
an assume that f dominates some uni-versal sequen
e for λ. It follows that f is a universal sequen
e for λ as well.



4.4 Generators for J<λ 35By verifying (4.5) and (4.6), we show that
B := {a ∈ A : h(a) = a}generates J<λ+ over J<λ. In order to prove that B ∈ J<λ+ , let D be anyultra�lter on A su
h that B ∈ D. We need to show that cf(

∏

A/D) < λ+.First, if D ∩ J<λ 6= ∅, then by de�nition cf(
∏

A/D) < λ. Suppose now that
D ∩ J<λ = ∅. Then <D extends <J<λ

. It follows that f is a s
ale for ∏

h/D(be
ause it is a s
ale for ∏

h/J<λ). But, sin
e B ∈ D, ∏

h/D is equivalentto ∏

A/D (modulo D). Thus, cf(
∏

A/D) = cf(
∏

h/D) = λ.We prove (4.6) indire
tly. Suppose that B /∈ D. Then {a ∈ A : h(a) <
a} ∈ D, and thus, h ∈

∏

A/D. Assume that D ∩ J<λ = ∅. [If D ∩ J<λ 6= ∅,then cf(
∏

A/D) < λ, and we are done.℄ It follows that <D extends <J<λ
,thus, fξ <D h for every ξ < λ (be
ause fξ <J<λ

h). This means that f hasan upper bound in ∏

A/D. Sin
e f is a universal sequen
e for λ, we have
cf(

∏

A/D) 6= λ (otherwise, f would be 
o�nal in ∏

A/D).Generating sets are not uniquely determined. But if B1 and B2 are bothgenerators for J<λ+ , then they both satisfy (4.4), hen
e B1 =J<λ
B2. Thus, bya generating set Bλ[A] (or Bλ[A] set) we mean any set B satisfying (4.4). Inparti
ular, for λ = max pcf(A) we 
an 
hoose Bλ[A] = A, sin
e A obviouslysatis�es (4.5) and (4.6).We have the following analogue of Proposition 4.4, whi
h will be usefullater on.Proposition 4.20. If A0 ⊆ A and λ ∈ pcf(A0), then the restri
tion to A0of a generator for J<λ+ [A] is a generator for J<λ+ [A0], i.e.

Bλ[A0] =J<λ[A0] A0 ∩ Bλ[A].
(Hen
e we 
an write Bλ instead of Bλ[A0] and Bλ[A].)Proof. We need to verify (4.5) and (4.6) for A0 ∩ Bλ[A]. Sin
e Bλ[A] ∈
J<λ+ [A], also A0∩Bλ[A] ∈ J<λ+ [A]. Proposition 4.4 implies that A0∩Bλ[A] ∈
J<λ+ [A0].To verify (4.6), let D0 be any ultra�lter on A0 su
h that cf(

∏

A0/D0) =
λ. We need to show that A0 ∩ Bλ[A] ∈ D0. We argue indire
tly. Supposethat A0 ∩ Bλ[A] /∈ D0. Then A0\Bλ[A] ∈ D0. Extend D0 
anoni
ally to anultra�lter D′

0 on A. Then cf(
∏

A/D′
0) = cf(

∏

A0/D0) = λ (see the proofof Proposition 4.4), and Bλ[A] /∈ D′
0 (be
ause A0\Bλ[A] ∈ D′

0). This is in
ontradi
tion with (4.6) (for Bλ[A]).We have the following fundamental relation between generators and uni-versal sequen
es.
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f fun
tionTheorem 4.21. Suppose that A is a progressive set of regular 
ardinals. Let
λ ∈ pcf(A), and let f = 〈fξ : ξ < λ〉 be a <J<λ

-in
reasing sequen
e offun
tions in ∏

A. Then
f is universal for λ iff f ↾ Bλ is 
o�nal in ∏

Bλ/J<λ.Proof. The 
ase λ ∈ {|A|+, |A|++, |A|+3} is trivial (see the proof of Theorem4.19). So suppose that λ > |A|+3.We �rst show, by an indire
t argument, that if f is universal for λ, then
f ↾ Bλ is 
o�nal in ∏

Bλ/J<λ.7 So, suppose that f ↾ Bλ is not 
o�nal, i.e.there is some h ∈
∏

Bλ/J<λ su
h that h �J<λ
fξ ↾ Bλ, for every ξ < λ. Thenwe have {a ∈ Bλ : fξ(a) < h(a)} /∈ J<λ, for every ξ < λ. Moreover, sin
e fis <J<λ

-in
reasing, we have for ξ1 < ξ2 < λ,
{a ∈ Bλ : fξ1(a) < h(a)} ⊇J<λ

{a ∈ Bλ : fξ2(a) < h(a)}.Hen
e there is a �lter on Bλ extending the dual �lter of J<λ and 
ontainingthe set {a ∈ Bλ : fξ(a) < h(a)}, for every ξ < λ. Extend this �lter to anultra�lter D on A. Then cf(
∏

A/D) = λ, be
ause Bλ ∈ D and D∩J<λ = ∅.But f is not a s
ale for ∏

A/D, sin
e fξ <D h for every ξ < λ. Hen
e f isnot universal for λ.Conversely, suppose that f ↾ Bλ is 
o�nal in ∏

Bλ/J<λ. We 
laim that fis universal for λ. Let D be any ultra�lter on A su
h that cf(
∏

A/D) = λ.By (4.6), Bλ ∈ D. It follows that D′ := {a ⊆ Bλ : a ∈ D} is an ultra�lteron Bλ. We have D′ ∩ J<λ = D ∩ J<λ = ∅. It means that <D′ extends <J<λ
,thus, f ↾ Bλ is also 
o�nal in ∏

Bλ/D
′. Now, sin
e Bλ ∈ D, [g] 7→ [g ↾ Bλ]is an isomorphism between ∏

A/D and ∏

Bλ/D
′ (i.e a bije
tion preservingthe ordering relation). Hen
e f is 
o�nal in ∏

A/D.Corollary 4.22. Sin
e there is always a universal sequen
e for λ, Theorem4.21 implies that
λ = tcf(

∏

Bλ/J<λ).Corollary 4.23. By the previous 
orollary and Lemma 4.16, we have that
λ = max pcf(Bλ).Now we prove the 
overing property whi
h we mentioned at the beginningof the se
tion.Theorem 4.24. Suppose that A is a progressive set of regular 
ardinals and

〈Bλ : λ ∈ pcf(A)〉 is a generating sequen
e for A. Then for every X ⊆ A,7This is a generalization of the proof of the impli
ation 1 ⇒ 2, on page 32. For thenwe 
onsidered only λ = max pcf(A) and Bλ = A.
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X ⊆ Bλ1 ∪ · · · ∪ Bλn,for some �nite set {λ1, ..., λn} ⊆ pcf(X).Proof. By indu
tion on λ = max pcf(X). If λ = minA = max pcf(X),then X = {minA} = Bλ. Suppose that the theorem is true for all γ < λ,

γ ∈ pcf(A), and let X ⊆ A su
h that λ = max pcf(X). Then X\Bλ ∈ J<λ.[If D is any ultra�lter on X su
h that X\Bλ ∈ D, then cf(
∏

X/D) 6= λ,be
ause Bλ /∈ D. Thus, cf(
∏

X/D) < λ = max pcf(X).℄ It follows thatmax pcf(X\Bλ) < λ.By indu
tion hypothesis, X\Bλ ⊆ Bλ1 ∪ · · · ∪ Bλn , for some �nite set
{λ1, ..., λn} ⊆ pcf(X\Bλ). Hen
e X ⊆ Bλ1 ∪ · · · ∪ Bλn ∪ Bλ.Towards the end of this 
hapter we state a few useful fa
ts in terms of�lters.Lemma 4.25. Suppose that A is a progressive set of regular 
ardinals and
F is a �lter on A. Then the following are equivalent for every 
ardinal λ:1. tcf(

∏

A/F ) = λ2. cf(
∏

A/D) = λ for every ultra�lter D on A with F ⊆ D3. Bλ ∈ F and F extends the dual �lter of J<λProof. 1 ⇒ 2. See Remark 3.2(5).
2 ⇒ 3. We argue indire
tly. Suppose �rst that Bλ /∈ F . Then, byProposition 2.10(3), there exists an ultra�lter D ⊇ F on A su
h that Bλ /∈ D.It follows by (4.6) that cf(

∏

A/D) 6= λ.Similarly, if F does not extend the dual �lter of J<λ, then there is anultra�lter D ⊇ F on A whi
h does not extend the dual �lter of J<λ. Itfollows that D ∩ J<λ 6= ∅. Hen
e cf(
∏

A/D) < λ.
3 ⇒ 1. By Corollary 4.22, we have λ = tcf(

∏

Bλ/J<λ). Note thatthe restrti
tion F ′ := {a ⊆ Bλ : a ∈ F} of F is a �lter on Bλ. Sin
e Fextends the dual �lter of J<λ, F ′ extends the dual �lter of J<λ[Bλ]. Thus,
tcf(

∏

Bλ/F
′) = tcf(

∏

Bλ/J<λ) = λ. It follows that tcf(
∏

A/F ) = λ,be
ause ∏

A/F and ∏

Bλ/F
′ are isomorphi
 (sin
e Bλ ∈ F ).Theorem 4.26. Suppose that A is a progressive set of regular 
ardinals and

F is a �lter on A. Then cf(
∏

A/F ) is a regular 
ardinal.Proof. We argue as follows. De�ne pcfF (A) := {cf(
∏

A/D) : D ⊇ F}.We �rst prove that pcfF (A) has a maximal element, and then dedu
e that
cf(

∏

A/F ) = max pcfF (A).
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f fun
tionLet λ be the minimal 
ardinal for whi
h F ∩ J≤λ 6= ∅. We show that λ =max pcfF (A). For any ultra�lter D ⊇ F we have F ∩ J≤λ ⊆ D ∩ J≤λ 6= ∅,and hen
e cf(
∏

A/D) ≤ λ. Thus, sup pcfF (A) ≤ λ.Conversely, we �nd an ultra�lter D ⊇ F su
h that cf(
∏

A/D) = λ.[Then it follows that λ = max pcfF (A).℄ We have that I :=
⋃

γ<λ J≤γ isan ideal on A (sin
e J≤γ's are ⊆-in
reasing). It follows that F ∩ I = ∅,be
ause F ∩ J≤γ = ∅, for every γ < λ. Extend F to an ultra�lter D su
hthat D ∩ I = ∅. Then cf(
∏

A/D) ≥ λ, sin
e D ∩ J≤γ = ∅, for every γ < λ.Hen
e cf(
∏

A/D) = λ.Now we show that cf(
∏

A/F ) = λ. Sin
e D extends F , it follows that
cf(

∏

A/F ) ≥ cf(
∏

A/D) = λ.To prove the 
onverse inequality, we �nd a 
o�nal subset of ∏

A/F of
ardinality λ. Fix for every 
ardinal µ ∈ pcfF (A) a universal sequen
e fµ =
〈fµ

i : i < µ〉 for µ, and let E be the set of all fun
tions of the formsup{fµ1

i1
, ..., fµn

in
},where µ1, µ2, ..., µn is any �nite sequen
e of 
ardinals in pcfF (A), and ik < µkare arbitrary indi
es. Clearly |E| = λ. It remains to prove the following
laim.Claim. E is 
o�nal in ∏

A/F .Proof of the 
laim. Let g ∈
∏

A be any fun
tion. Consider the 
olle
tion
I := {(f > g) : f ∈ E}of subsets of A, where (f > g) = {a ∈ A : f(a) > g(a)}.If F ∩ I 6= ∅, then (f > g) ∈ F for some f ∈ E, i.e. f >F g for some

f ∈ E, as desired.Otherwise we get the following 
ontradi
tion. Suppose that F ∩ I = ∅.We 
an extend I to an ideal, sin
e it is 
losed under unions, namely,
(f1 > g) ∪ (f2 > g) = (sup{f1, f2} > g).Moreover, we 
an extend I to a maximal ideal J on A su
h that F ∩ J = ∅.Then µ := cf(

∏

A/J) ∈ pcfF (A) (be
ause the dual �lter of J is an ultra�lterextending F ). It follows that the universal sequen
e fµ for µ is 
o�nal in
∏

A/J . But we have (fµ
i > g) ∈ I ⊆ J , that is, fµ

i ≤J g, for every i < µ.Contradi
tion.We �nish this 
hapter by proving another representation theorem.88Compare it with Theorem 3.16. Re
all that if I and J are ideals su
h that I ⊂ J and
tcf(

∏

A/I) exists, then tcf(
∏

A/J) = tcf(
∏

A/I) exists as well. But the 
onverse is false.Hen
e, the following theorem is stronger than Theorem 3.16, sin
e J<µ = J<µ+ ⊆ Jbd.



4.4 Generators for J<λ 39Theorem 4.27. Suppose that µ is a singular 
ardinal of un
ountable 
o�-nality. Then there exists a 
losed unbounded set (of limit 
ardinals) C ⊆ µsu
h that |C|< minC and
µ+ = tcf(

∏

C(+)/J<µ+).Proof. By Theorem 3.16 there is a 
losed unbounded set of limit 
ardinals
C0 ⊆ µ su
h that |C0|< minC0 and

µ+ = tcf(
∏

C
(+)
0 /Jbd),where J bd is the ideal of bounded subsets of C

(+)
0 .We 
laim that the set C

(+)
0 \Bµ+ is bounded in C

(+)
0 . Let F cbd be the �lterof 
obounded subsets of C

(+)
0 , i.e. the dual �lter of J bd. Then, 
learly,

µ+ = tcf(
∏

C
(+)
0 /Jbd) = tcf(

∏

C
(+)
0 /F cbd).By Lemma 4.25, we have Bµ+ ∈ F cbd. Thus, C

(+)
0 \Bµ+ is bounded in C

(+)
0 .De�ne

C := C0\sup{α ∈ C0 : α+ ∈ C
(+)
0 \Bµ+}.Note that C is also a 
losed unbounded set with |C|< minC. It follows that

tcf(
∏

C(+)/Jbd) = tcf(
∏

C
(+)
0 /Jbd) = µ+,sin
e C

(+)
0 \C(+) ∈ J bd is a null-set. So µ+ ∈ pcf(C(+)). By Corollary 4.22,

µ+ = tcf(
∏

Bµ+ [C(+)]/J<µ+).We 
omplete the proof by showing that Bµ+ [C(+)] =J<µ+ C(+), but thisfollows immediately by Proposition 4.20, applied to C(+) ⊆ C
(+)
0 and µ+ ∈

pcf(Bµ+ [C(+)]):
Bµ+ [C(+)] =J<µ+ [C(+)] C(+) ∩ Bµ+ [C

(+)
0 ] = C(+).Corollary 4.28. By Lemma 4.16, we have µ+ = max pcf(C(+)).
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Chapter 5Cardinal arithmeti
In this 
hapter we apply p
f theory to 
ardinal arithmeti
. Our aim is to givea 
lear insight into the (somewhat long) proof of Shelah's famous theorem
ℵℵ0

ω ≤ 2ℵ0 + ℵω4 .5.1 Co�nality of ([µ]κ,⊆)Let κ and µ be any 
ardinals with κ ≤ µ. The 
olle
tion {X ⊆ µ : |X| = κ}of all subsets of µ of 
ardinality κ is denoted by [µ]κ. One 
an show by ashort argument that |[µ]κ| = µκ (for a proof see [3, Lemma 5.7℄). Note thatthe in
lusion relation ⊆ is a quasi ordering of [µ]κ.There is the following relationship between the 
ardinality and the 
o�-nality of [µ]κ:
|[µ]κ| = cf([µ]κ,⊆) · 2κ. (5.1)The proof is quite simple. Clearly |[µ]κ| ≥ cf([µ]κ,⊆) · 2κ. We show that

≤ holds as well. Suppose that cf([µ]κ,⊆) = λ and let Y = {Yi : i < λ}be a 
o�nal subset of [µ]κ. De�ne a one-to-one map from [µ]κ to Y × 2κ asfollows. For every E ∈ [µ]κ �nd some Yi ∈ Y su
h that E ⊆ Yi. Sin
e Yi isisomorphi
 to κ, E is isomorphi
 to some subset S of κ. Map E to (Yi, S).One 
an prove by indu
tion that for every n ∈ ω, cf([ℵn]ℵ0 ,⊆) = ℵn, butit is hard to determine cf([µ]κ,⊆) in general. However, by the means of p
ftheory we are going to prove the following 
ru
ial theorem.Theorem 5.1. Suppose that µ is a singular 
ardinal, and κ < µ is an in�niteregular 
ardinal su
h that the interval A of regular 
ardinals in (κ, µ) has size
≤ κ. Then

cf([µ]κ,⊆) = max pcf(A). (5.2)
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Using Theorem 5.1, and some results from Chapter 4, we 
an prove thefollowing:Theorem 5.2. ℵℵ0
ω < ℵ(2ℵ0 )+.Proof. Consider the interval A = {ℵn : 0 < n < ω} of regular 
ardinals. ByTheorem 4.10, pcf(A) is also an interval of regular 
ardinals, 
ontaining allregular 
ardinals from ℵ1 to max pcf(A). Moreover, by Corollary 4.8,

|pcf(A)| ≤ |P (A)| = 2ℵ0 .It follows that
max pcf(A) < ℵ(2ℵ0 )+ .Applying (5.1) and Theorem 5.1 (for κ = ℵ0 and µ = ℵω), we get

|[ℵω]ℵ0 | = cf([ℵω]ℵ0 ,⊆) · 2ℵ0 = max pcf(A) · 2ℵ0 < ℵ(2ℵ0 )+ .Remark 5.3. (1) If ℵω is a strong limit 
ardinal, i.e. 2ℵn < ℵω for every
n < ω, then 2ℵω = ℵℵ0

ω , and hen
e, 2ℵω < ℵ(2ℵ0 )+ .(2) It follows from the proof of Theorem 5.2 that we 
an get a smallerupper bound of ℵℵ0
ω by limiting the size of pcf(A). Indeed, one 
an show that

|pcf(A)| ≤ |A|+3 (whenever A is a progressive interval of regular 
ardinals),and hen
e get ℵℵ0
ω ≤ 2ℵ0 + ℵω4 (see the next se
tion). 1The proof of Theorem 5.1.We �rst prove the easier inequality cf([µ]κ,⊆) ≥ max pcf(A). Note that

A is a progresive set of regular 
ardinals, sin
e |A| ≤ κ. Let λ = cf([µ]κ,⊆),and let {Xi : i < λ} be 
o�nal in ([µ]κ,⊆). De�ne for ea
h i < λ a fun
tion
hi ∈

∏

A by hi(a) := sup a∩Xi. Then {hi : i < λ} is 
o�nal in (
∏

A, <). [If
f ∈

∏

A, then the range of f is an element of [µ]<κ, and hen
e, it is 
overedby some Xi. Thus, f ≤ hi.℄ So λ ≥ cf(
∏

A, <) = max pcf(A) (the lastequality by Theorem 4.17).The proof of the other inequality, cf([µ]κ,⊆) ≤ max pcf(A), is more
ompli
ated. We �rst assume that |A| < κ. The 
ase |A| = κ is thenobtained by applying the �rst 
ase to |A| = κ+ and using
cf([µ]κ,⊆) ≤ cf([µ]κ

+

,⊆) · κ+. (5.3)For a 
ardinal γ, let Hγ be the ∈-stru
ture whose universe is the 
olle
tion ofall sets whi
h have transitive 
losure of size < γ. Fix some large θ su
h that
Hθ 
ontains all sets that were dis
ussed so far. We also add to the stru
ture
Hθ a well-ordering <∗ of its universe. It allows us to assume that the obje
tswe talk about are uniquely determined.1It is still an open question if a
tually |pcf(A)| = |A| holds.



5.1 Co�nality of ([µ]κ,⊆) 43De�nition 5.4. An elementary substru
ture M ≺ Hθ is κ-presentable ifthere is a sequen
e 〈Mi : i < κ〉 of elementary substru
tures of Hθ su
h that1. if i < κ, then Mi ⊂ Mi+1 and Mi ∈ Mi+1,2. for limit ordinals δ < κ, Mδ =
⋃

i<δ Mi, and M =
⋃

i<κ Mi,3. M has 
ardinality κ and κ + 1 ⊂ M .Let M be the 
olle
tion of all κ-presentable substru
tures M ≺ Hθ su
hthat A ∈ M . De�ne
F = {M ∩ µ : M ∈ M}.We are going to show that F is 
o�nal in ([µ]κ,⊆) and of 
ardinality at mostmax pcf(A). This will 
omplete our proof.It follows easily that F is 
o�nal, be
ause if X ∈ [µ]κ, then there is a

κ-presentable substru
ture M su
h that A ∈ M and X ⊂ M . [To 
onstru
tsu
h an M use Löwenheim-Skolem theorem. De�ne the approa
hing sub-stru
tures as follows. Start with an arbitrary M0 ≺ Hθ of 
ardinality κ su
hthat A ∈ M0, X ⊂ M and κ + 1 ⊂ M . For ea
h i < κ, Mi is an element of
Hθ, and thus, 
an be in
orporated in Mi+1 ≺ Hθ.℄It remains to show that F has 
ardinality at most max pcf(A). For anystru
ture N , de�ne the '
hara
teristi
 fun
tion' ChN of N by

ChN(γ) = sup N ∩ γ, for regular 
ardinals γ > |N |.Note that if M is a κ-presentable substru
ture, then ChM ↾ A is an elementof ∏

A, be
ause |M | < minA.We argue as follows. We �rst show (in the next lemma) that for M ∈ M,
ChM ↾ A determines M∩µ, i.e. ChM ↾ A = ChM ′ ↾ A impliesM∩µ = M ′∩µ,and then prove that |{ChM ↾ A : M ∈ M}| ≤ max pcf(A).Note that whenever X ∈ M (M ∈ M) su
h that |X| ≤ κ, then X ⊂ M .In parti
ular, A ⊂ M . [Sin
e |X| ≤ κ, there is a fun
tion in Hθ (and hen
ein M) from κ onto X. It follows that X ⊂ M , be
ause κ ⊂ M .℄Lemma 5.5. Suppose that M is κ-presentable. Then ChM ↾ A determines
M ∩ µ.Proof. Suppose that M and M ′ are two κ-presentable substru
tures of Hθsu
h that ChM ↾ A = ChM ′ ↾ A. We show by indu
tion that M ∩γ = M ′∩γfor every 
ardinal γ ≤ µ.Clearly, M ∩γ = M ′∩γ = γ, for every 
ardinal γ ≤ κ. If γ ≤ µ is a limit
ardinal, then M ∩ γ =

⋃

γ′<γ M ∩ γ′, and hen
e M ∩ γ = M ′ ∩ γ follows bythe indu
tion hypothesis.
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Assume now that M ∩γ = M ′∩γ for some γ with κ < γ < µ. We need toshow that also M ∩γ+ = M ′∩γ+. Observe that there is a 
losed unboundedsubset E of ChM(γ+) = sup M ∩ γ+ of order-type κ su
h that E ⊆ M .[Proof. For ea
h i < k, we have Mi, γ
+ ∈ M , and thus, sup Mi ∩ γ+ ∈ Mand E = {sup Mi ∩ γ+ : i < k} ⊆ M . E is 
losed, sin
e for limit ordinals

δ < κ, Mδ =
⋃

i<δ Mi, and it is 
o�nal in M ∩ γ+, be
ause M =
⋃

i<κ Mi.℄Similarly, there is a 
losed unbounded subset E ′ of ChM ′(γ+) = sup M ′∩γ+of order-type κ su
h that E ′ ⊆ M ′.Sin
e κ is un
ountable, E∩E ′ ⊆ M ∩M ′ is a 
losed unbounded subset of
ChM(γ+) = ChM ′(γ+). In parti
ular, M ∩M ′ ∩γ+ is 
o�nal in both M ∩γ+and M ′ ∩ γ+.Let α ∈ M ∩ M ′ ∩ γ+\γ be any ordinal. There is a bije
tion f : γ → α(in Hθ). Sin
e M, M ′ ≺ Hθ, the <∗-least su
h f is in both M and M ′.Hen
e, we have M ∩ α = f ′′(M ∩ γ) = f ′′(M ′ ∩ γ) = M ′ ∩ α. It follows that
M ∩ γ+ = M ′ ∩ γ+.To prove |{ChM ↾ A : M ∈ M}| ≤ max pcf(A), we de�ne a spe
ial typeof universal sequen
e.Suppose that λ ∈ pcf(A) and f = 〈fξ : ξ < λ〉 is a sequen
e of fun
tionsin ∏

A. Let δ < λ be a limit 
ardinal with cf(δ) = κ. For every 
losedunbounded set E ⊆ δ of order-type cf(δ) let
hE := sup{fξ : ξ ∈ E}.There is a 
losed unbounded set C ⊆ δ su
h that hC ≤ hE , for every 
losedunbounded set E ⊆ δ. [Proof. Otherwise, we 
an 
ontru
t a de
reasingsequen
e 〈Eα : α < |A|+〉 of 
losed unbounded sets of δ su
h that for every

α < |A|+, hEα � hEα+1 (sin
e |A| < cf(δ), at limit stages we 
an takeinterse
tions of the sets so far 
onstru
ted). It follows that there is a single
a ∈ A su
h that hEα(a) > hEα+1(a) for in�nitely many α's. Contradi
tion.℄The fun
tion hC is 
alled a minimal 
lub-obedient bound of f = 〈fξ : ξ < δ〉.The sequen
e f = 〈fξ : ξ < λ〉 is said to be minimally obedient (at 
o�nality
κ) if for every δ < λ with cf(δ) = κ, fδ is a minimal 
lub-obedient bound of
〈fξ : ξ < δ〉.We 
an 
onstru
t a universal sequen
e 〈fξ : ξ < λ〉 for λ, whi
h is mini-mally obedient, as follows. Let 〈f 0

ξ : ξ < λ〉 be any universal sequen
e for λ.De�ne 〈fξ : ξ < λ〉 by indu
tion on ξ < λ su
h that1. f0 = f 0
0 , and fξ+1 > max{fξ, f

0
ξ },2. at limit stages δ < λ with cf(δ) = κ, fδ is a minimal 
lub-obedientbound of 〈fξ : ξ < δ〉,



5.1 Co�nality of ([µ]κ,⊆) 453. at limit stages δ < λ with cf(δ) 6= κ, fδ is any J<λ-upper bound of
〈fξ : ξ < δ〉, guaranteed by the λ-dire
tedness of ∏

A/J<λ.Note that the sequen
e 〈fξ : ξ < λ〉 is J<λ-in
reasing. It is by 
onstru
tionminimally obedient, and it is universal, sin
e fξ+1 > f 0
ξ for every ξ < λ.Fix for every 
ardinal λ ∈ pcf(A) a minimally obedient universal sequen
e

fλ = 〈fλ
ξ : ξ < λ〉 for λ, whi
h is least in the well-ordering <∗ of Hθ (andhen
e, by elementarity, 
ontained in ea
h M ∈ M with λ ∈ M).De�nition 5.6. A sequen
e f = 〈fξ : ξ < λ〉 of fun
tions in ∏

A is said tobe persistently 
o�nal for λ if for every h ∈
∏

A there exists ξ0 < λ su
hthat for every ξ, with ξ0 ≤ ξ < λ,
h ↾ Bλ <J<λ

fξ ↾ Bλ.The minimally obedient universal sequen
es fλ are persistently 
o�nalfor λ, be
ause they are J<λ-in
reasing, and hen
e 
o�nal in Bλ/J<λ (seeTheorem 4.21).The following lemma is the 
ru
ial observation, whi
h will also be usedin the next se
tion.For any stru
ture N , let N̄ denote the ordinal 
losure of N , that is, γ ∈ N̄iff γ ∈ N ∩ Ord or γ is a limit of ordinals in N .Lemma 5.7. Suppose that A is a progressive set of regular 
ardinals, λ ∈
pcf(A), and f = 〈fξ : ξ < λ〉 is a sequen
e of fun
tions in ∏

A. Let κ be aregular 
ardinal with |A| < κ < minA, and let M ≺ Hθ be a κ-presentablesubstru
ture su
h that f, A ∈ M (and hen
e λ ∈ M). Let γ = ChM(λ). Thenthe following hold.1. If f is persistently 
o�nal for λ, then
{a ∈ A : ChM (a) ≤ fγ(a)} is a Bλ[A] set. (5.4)2. If f is a minimally obedient universal sequen
e for λ, then for everylimit ordinal γ′ ∈ (M̄∩λ)\M there is a 
losed unbounded set C ⊆ γ′∩M

(of order-type κ) su
h that fγ′ = sup{fξ : ξ ∈ C}, and thus
fγ′(a) ∈ M̄ ∩ a, for every a ∈ A.In parti
ular, fγ(a) ∈ M̄ ∩ a, for every a ∈ A, and hen
e

fγ ≤ ChM (5.5)and for every h ∈ M ∩
∏

A, there is some d ∈ M ∩
∏

Asu
h that h ↾ Bλ <J<λ
d ↾ Bλ and d ≤ fγ. (5.6)
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For a proof of (1) and (2) see [1, Lemma 5.4℄ and [1, Lemma 5.7℄, respe
-tively.Corollary 5.8. Suppose that A is a progressive set of regular 
ardinals,
λ ∈ pcf(A), and f = 〈fξ : ξ < λ〉 is a sequen
e of fun
tions in ∏

A. Let κ bea regular 
ardinal with |A| < κ < minA, and let M ≺ Hθ be a κ-presentablesubstru
ture su
h that f, A ∈ M (and hen
e λ ∈ M). Let γ = ChM(λ).Suppose that (5.4), (5.5) and (5.6) hold2. Then
bλ := {a ∈ A : ChM (a) = fγ(a)}is a Bλ[A] set. Moreover, there is a subset b′λ of bλ whi
h is a generating set,as well, and whi
h is in M .Proof. 3 It follows immediately from (5.4) and (5.5) that bλ is a Bλ[A] set.In order to de�ne a subset of bλ whi
h is a generating set, and whi
h isin M , we modify the de�nition of bλ, substituting M and γ by parametersfrom M .If a ∈ A and fγ(a) < ChM(a), then there exists some i < κ su
h that

fγ(a) < ChMi
(a), be
ause M =

⋃

i<κ Mi. Sin
e |A| < κ, there is a single
i < κ su
h that

fγ(a) < ChM (a) iff fγ(a) < ChMi
(a),for every a ∈ A. By negating both sides, we get

a ∈ bλ iff ChMi
(a) ≤ fγ(a).Hen
e, we have repla
ed the parameter M by Mi in the de�nition of bλ. Tosubstitute γ, we use the property (5.6) of f (for h = ChMi

): there exists afun
tion d ∈ M ∩
∏

A su
h that1. ChMi
↾ Bλ <J<λ

d ↾ Bλ, and2. d ≤ fγ .We repla
e fγ in the de�nition of bλ by the fun
tion d, and de�ne
b′λ := {a ∈ A : ChMi

(a) ≤ d(a)}.Sin
e all parameters in the de�nition of b′λ are in M , we have b′λ ∈ M .Properties 1 and 2 above imply that
Bλ ⊆J<λ

{a ∈ A : ChMi
(a) < d(a)} ⊆ b′λ ⊆ bλ.Thus, b′λ ⊆ bλ is also a Bλ[A] set.2In the next se
tion we will apply this 
orollary to sequen
es whi
h are not ne

essarilyuniversal and minimally obedient, but satisfy (5.4), (5.5) and (5.6).3This proof is taken from [1, page 53℄.



5.1 Co�nality of ([µ]κ,⊆) 47If we (�rst) �x a κ-presentable substru
ture M ≺ Hθ with A ∈ M (i.e.
M ∈ M), and then 
onsider all 
ardinals λ ∈ pcf(A) ∩ M , we getCorollary 5.9. Suppose that A is a progressive set of regular 
ardinals, κ is aregular 
ardinal su
h that |A| < κ < minA, and M ≺ Hθ with A ∈ M is a κ-presentable substru
ture. Suppose that M 
ontains for every λ ∈ pcf(A)∩Ma sequen
e fλ = 〈fλ

ξ : ξ < λ〉 that satis�es properties (5.4), (5.5) and (5.6).Then there are 
ardinals λ0 > λ1 · · · > λn in pcf(A) ∩ M su
h that
ChM ↾ A = sup{fλ0

γ0
, . . . , fλn

γn
}, (5.7)where γi = ChM(λi).Proof. By Corollary 5.8, for every λ ∈ pcf(A) ∩ M there is a Bλ[A] set

b′λ ∈ M , su
h that
b′λ ⊆ {a ∈ A : ChM(a) = fλ

ChM (λ)(a)}. (5.8)We 
laim that there exist 
ardinals λ0 > · · · > λn in pcf(A) ∩ M su
h that
A = b

′

λ0
∪ · · · ∪ b

′

λn
, (5.9)i.e. the '
overing 
ardinals' 
an be found in M (
ompare with Theorem 4.24).To prove this, we indu
tively 
onstru
t a des
ending sequen
e λ0 > · · · > λiof 
ardinals in pcf(A) ∩ M as follows:1. let λ0 = max pcf(A),2. if Ai+1 := A\(b

′

λ0
∪ · · · ∪ b

′

λi
) 6= ∅, then let λi+1 = max pcf(Ai+1).Sin
e b

′

λ0
, . . . , b

′

λi
∈ M , we have Ai+1 ∈ M (Ai+1 6= ∅), and hen
e λi+1 ∈ M .Obviously, λi ≥ λi+1, be
ause Ai ⊇ Ai+1. But λi = λi+1 is impossible, sin
e

b
′

λi
∩Ai+1 = ∅ (and thus λi /∈ pcf(Ai+1)). Hen
e λi > λi+1. It follows that thesequen
e terminates. That is, for some i, Ai+1 = ∅. Then A = b

′

λ0
∪ · · · ∪ b

′

λi
.By (5.5), fλ

ChM (λ) ≤ ChM holds for every λ ∈ pcf(A) ∩ M . Therefore,
(5.8) and (5.9) imply that (5.7) holds.It follows from Corollary 5.9 that |{ChM ↾ A : M ∈ M}| ≤ max pcf(A).Namely, there are only max pcf(A) many sequen
es fλ0

ChM (λ0), . . . , f
λn

ChM (λn),where M ∈ M and λ0, . . . , λn ∈ pcf(A) ∩ M . Thus, we have 
ompleted theproof of Theorem 5.1.Remark 5.10. Sin
e (5.1) holds and its proof is quite short, one 
ould ask:why is it not simply in
orporated in Theorem 5.1, su
h that (5.2) be
omes
|µκ| = max pcf(A) · 2κ. The answer is - we want to stress the importan
eof studying 
o�nalities; a

ording to Shelah, this approa
h is the key tonew results. Another reason for working with 
o�nalities is the fa
t that
o�nalities are more immune to for
ing methods then 
ardinalities.
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Remark 5.11. (1)If we additionally assume (in Theorem 5.1) that 2|A| ≤ κ,then we have pcf(A) ≤ 2|A| ≤ κ, and hen
e pcf(A) ⊆ M , sin
e κ + 1 ⊆ M .In this 
ase, the proof of Corollary 5.9 is very short, ba
ause we 
an applyTheorem 4.24. A
tually, Theorem 5.1, as it is, follows easily from this spe
ial
ase (where 2|A| ≤ κ); for a proof see [2, 5.4℄.We have the following straightforward generalization of Theorem 5.2.Theorem 5.12. Suppose that ℵδ is a singular 
ardinal su
h that δ < ℵδ.Then
ℵ
|δ|
δ < ℵ(2|δ|)+ . (5.10)Proof. Consider the progressive interval A of regular 
ardinals in (|δ|+,ℵδ).By Theorem 4.10, pcf(A) is also an interval of regular 
ardinals, 
ontainingall regular 
ardinals from |δ|++ to max pcf(A), and by Corollary 4.8,

|pcf(A)| ≤ |P (A)| ≤ 2|δ|.It follows that
max pcf(A) < ℵ(2|δ|)+ .Therefore, applying (5.1), (5.3) and Theorem 5.1 to |δ|+,ℵδ, we get

|[ℵδ]
|δ|| = cf([ℵδ]

|δ|,⊆)·2|δ| ≤ cf([ℵδ]
|δ|+ ,⊆)·2|δ| = max pcf(A)·2|δ| < ℵ(2|δ|)+ .We now mention a tighter bound then (5.10). Let µ and τ ≤ µ be
ardinals. A 
over for [µ]<τ is a 
olle
tion C of subsets of µ su
h that forevery X ∈ [µ]<τ there exists Y ∈ C with X ⊆ Y . If θ is a 
ardinal su
h that

µ ≥ θ ≥ τ , then cov(µ, θ, τ) denotes the least 
ardinality of a 
over for [µ]<τ
onsisting of sets taken from [µ]<θ. [Note that cf([µ]κ,⊆) = cov(µ, κ+, κ+).℄Theorem 5.13. Suppose that µ is a singular 
ardinal, and κ < µ is a regular
ardinal su
h that the interval A of regular 
ardinals in (κ+, µ) has size ≤ κ.Then
cov(µ, κ+, cf(µ)+) = sup pcfcf(µ)(A). 4Corollary 5.14. Suppose that δ is a limit ordinal su
h that δ < ℵδ. Then

ℵ
cf(δ)
δ < ℵ(|δ|cf(δ))+ .For proofs see [1, page 57℄. Here we only prove the following.4See De�nition 4.11 for pcfcf(µ)(A).



5.1 Co�nality of ([µ]κ,⊆) 49Theorem 5.15. Suppose that µ is a singular 
ardinal, and κ < µ is a regular
ardinal su
h that the interval A of regular 
ardinals in (κ+, µ) has size ≤ κ.Then
cov(µ, κ+,ℵ1) = sup pcfℵ0(A). (5.11)Proof. By indu
tion on µ, i.e. for a �xed regular 
ardinal κ we show byindu
tion on µ that whenever µ > κ is a singular 
ardinal su
h that theinterval A of regular 
ardinals in (κ+, µ) has size ≤ κ, then (5.11) holds.Let κ = ℵα. If µ = ℵα+ω, then cf(µ) = ℵ0, and hen
e (5.11) follows fromTheorem 5.13.Assume now that µ > ℵα+ω and cov(ν, κ+,ℵ1) = sup pcfℵ0(A) holds forevery singular 
ardinal ν su
h that ℵα+ω < ν < µ.If cf(µ) = ℵ0, then we 
an use Theorem 5.13 again. So assume that

cf(µ) > ℵ0. It follows that there is a 
o�nal subset {νi > κ++ : i < cf(µ)}of µ 
onsisting of singular 
ardinals.Let Ai be the interval of regular 
ardinals in (κ+, νi). Then, by indu
tionhypothesis, cov(νi, κ
+,ℵ1) = sup pcfℵ0(Ai), for every i < cf(µ). Hen
e,

cov(µ, κ+,ℵ1) = supi<cf(µ)

(

cov(νi, κ
+,ℵ1)

)

= supi<cf(µ)

(sup pcfℵ0(Ai)
)

.We 
omplete the proof by showing thatsupi<cf(µ)

(sup pcfℵ0(Ai)
)

= sup pcfℵ0(A).The ≤ inequality is obvious, sin
e sup pcfℵ0(Ai) ≤ sup pcfℵ0(A), for every i <
cf(µ). Conversely, if λ ∈ pcfℵ0(A), then for some i < cf(µ), λ ∈ pcfℵ0(Ai),be
ause cf(µ) > ℵ0. Thus, supi<cf(µ)

(sup pcfℵ0(Ai)
)

≥ sup pcfℵ0(A).Corollary 5.16. Suppose that δ is a limit ordinal su
h that δ < ℵδ. Then
ℵℵ0

δ < ℵ(|δ|ℵ0 )+ .Proof. Consider the interval A of regular 
ardinals in (|δ|+,ℵδ). By Corollary4.8, we have
|pcfℵ0(A)| ≤ |[A]ℵ0 | · 2ℵ0 ≤ |δ|ℵ0 . (5.12)Sin
e pcfℵ0(A) is also an interval of regular 
ardinals (see Theorem 4.12),(5.12) means that

|
(

|δ|+, sup pcfℵ0(A)
)

∩ Reg| ≤ |δ|ℵ0. (5.13)It follows now from (5.13) thatsup pcfℵ0(A) < ℵ(|δ|ℵ0 )+ ,
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be
ause
|
(

|δ|+,ℵ(|δ|ℵ0 )+

)

∩ Reg| = (|δ|ℵ0)+.By Theorem 5.15, cov(ℵδ, |δ|
+,ℵ1) = sup pcfℵ0(A), therefore, we have

cov(ℵδ, |δ|
+,ℵ1) < ℵ(|δ|ℵ0 )+ ,whi
h implies

ℵℵ0
δ = |[ℵδ]

ℵ0 | ≤ |δ|ℵ0 · cov(ℵδ, |δ|
+,ℵ1) < ℵ(|δ|ℵ0 )+ .Corollary 5.17. Suppose that δ is a 
ardinal su
h that for every 
ardinal

µ < δ, µℵ0 < δ. Then ℵδ has the same property, namely, for every µ < ℵδ,
µℵ0 < ℵδ.Proof. By indu
tion on µ. If µ < δ, then, by assumption, µℵ0 < δ, and hen
e
µℵ0 < ℵδ.Assume now that δ ≤ µ < ℵδ, and for every 
ardinal γ < µ, γℵ0 < ℵδ.If µ is a su

essor 
ardinal, i.e. µ = ℵα+1, for some ordinal α, then, byindu
tion hypothesis (and Proposition 2.7),

ℵℵ0
α+1 = ℵℵ0

α · ℵα+1 < ℵδ.If µ = ℵα is a limit 
ardinal, then α < ℵα, and thus, by the previous 
orollary,
ℵℵ0

α < ℵ(|α|ℵ0 )+ ≤ ℵδ.The last inequality holds be
ause α < δ, and thus (|α|ℵ0)+ ≤ δ.5.2 Improving the upper bound on |pcf(A)|As we mentioned in Remark 5.3, one 
an show that |pcf(A)| < |A|+4, for aprogressive set A of regular un
ountable 
ardinals. It follows then easily bythe proof of Theorem 5.12 that for limit ordinals δ with |δ|cf(δ) < ℵδ, we have
ℵ

cf(δ)
δ < ℵ|δ|+4 (see Theorem 5.22). In partiular, ℵℵ0

ω ≤ 2ℵ0 + ℵω4.We give an outline of the proof of |pcf(A)| < |A|+4. Re
all �rst somefa
ts from the previous se
tion. We showed that there is a κ-presentable ele-mentary substru
ture M ≺ Hθ (|A| < κ < minA), and proved the existen
eof minimally obedient universal sequen
es fλ for λ ∈ pcf(A). In Lemma5.7 we proved that for ea
h λ ∈ pcf(A) ∩ M , fλ satis�es 
onditions (5.4),



5.2 Improving the upper bound on |pcf(A)| 51(5.5) and (5.6). It followed then by Corollary 5.8 that there exists a spe
ialgenerating sequen
e 〈bλ : λ ∈ pcf(A) ∩ M〉. 5Modifying the minimally obedient universal sequen
es fλ, we de�ne theelevated sequen
es of fun
tions in ∏

A, whi
h also satisfy 
onditions (5.4),(5.5) and (5.6), but moreover, the 
orresponding generating sequen
e 〈bλ :
λ ∈ pcf(A) ∩ M〉 is transitive (de�nitions follow).De�nition 5.18. A generating sequen
e 〈Bλ : λ ∈ pcf(A)∩M〉 is said to betransitive (or smooth) if for every λ ∈ pcf(A)∩M , θ ∈ Bλ implies Bθ ⊆ Bλ.For λ0 ∈ pcf(A), we de�ne the elevated sequen
e F λ0 = 〈F λ0

γ : γ < λ0〉of fun
tions in ∏

A as follows.For every sequen
e λ1, . . . , λn ∈ A, su
h that λ0 > λ1 > · · · > λn, and forevery ordinal γ0 ∈ λ0, indu
tively de�ne a sequen
e γ1 ∈ λ1, . . . , γn ∈ λn by
γi+1 := fλi

γi
(λi+1). (5.14)So γ1 = fλ0

γ0
(λ1), γ2 = fλ1

γ1
(λ2), . . . , γn = fλn−1

γn−1
(λn). The elevation fun
tion

Elλ0,...,λn on λ0 is given by
Elλ0,...,λn(γ0) := γn.We �rst de�ne F λ0 on A∩λ0. Given λ ∈ A∩λ0, let Fλ0,λ be the set of allsequen
es λ1, λ2, . . . , λn ∈ A, su
h that λ0 > λ1 > · · · > λn = λ. For every

γ0 ∈ λ0 we ask whether there is a maximal value in
{Elλ0,...,λn(γ0) : 〈λ0, λ1, . . . , λn〉 ∈ Fλ0,λ}.If this set 
ontains a maximum, let F λ0

γ0
(λ) be that maximum, and otherwiselet F λ0

γ0
(λ) := fλ0

γ0
(λ). For λ ∈ A\λ0, let F λ0

γ0
(λ) := γ0, for ea
h γ0 ∈ λ0.Lemma 5.19. For ea
h λ ∈ pcf(A) ∩ M , the elevated sequen
e F λ satis�es
onditions (5.4), (5.5) and (5.6), and the generating sequen
e 〈bλ : λ ∈

pcf(A) ∩ M〉, where bλ := {a ∈ A : ChM(a) = F λ
ChM (λ)(a)}, is transitive.For a proof see [1, pages 61,62℄.The transitive generators 
an be used to prove the following lo
alizationproperty of A.Theorem 5.20. If B ⊆ pcf(A) is progressive, then pcf(B) = pcf|A|(B).That is, if B ⊆ pcf(A) is progressive, then for every λ ∈ pcf(B) there exists

B0 ⊆ B with |B0| ≤ |A|, su
h that λ ∈ pcf(B0).5In this se
tion we assume in addition that M also 
ontains the array 〈fλ : λ ∈ pcf(A)〉.



52 Cardinal arithmeti
For a proof see [1, Theorem 6.6℄.The simplest 
ase of lo
alization (in whi
h |B| = |A|+) implies that
|pcf(A)| < |A|+4:Theorem 5.21. Suppose that A is a progressive interval of regular 
ardinals.Then

|pcf(A)| < |A|+4.For a proof see [1, Theorem 7.1℄.Theorem 5.22. Suppose that δ is a limit ordinal su
h that |δ|cf(δ) < ℵδ.Then
ℵ

cf(δ)
δ < ℵ|δ|+4.Proof. Consider the progressive interval A of regular 
ardinals in (|δ|+,ℵδ).We basi
ally repeat the proof of Theorem 5.12. Sin
e pcf(A) is also aninterval of regular 
ardinals, 
ontaining all regular 
ardinals from |δ|++ tomax pcf(A), and sin
e, by Theorem 5.21,

|pcf(A)| < |A|+4 = |δ|+4,it follows that
max pcf(A) < ℵ|δ|+4 .Therefore,

|[ℵδ]
cf(δ)| = cf([ℵδ]

|δ|,⊆) · |δ|cf(δ) =
(

cf([ℵδ]
|δ|+ ,⊆) · |δ|+

)

· |δ|cf(δ) =

cf([ℵδ]
|δ|+ ,⊆) · |δ|cf(δ) ≤ max pcf(A) · ℵδ < ℵ|δ|+4.
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