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Chapter 1

Introduction

The pcf theory (possible cofinalities theory), developed in late 1970’s by
Saharon Shelah, is a powerful theory with many remarkable applications in
set theory. It became especially famous for introducing a completely new
way of studying the arithmetic of cardinal numbers, which led to amazing
results. Before we mention these results, let us first present their historical
context.

In 1940 Godel showed that CH (the continuum hypothesis: 2% = V) is
consistent with ZFC axioms (Zermelo-Fraenkel axioms + axiom of choice).
By introducing the method of forcing, Cohen showed in 1963 that the nega-
tion of CH is also consistent with ZFC. Thus, Cantor’s conjecture that 2%
is the first uncountable cardinal was proven to be independent of ZFC, that
is, neither provable nor refutable from ZFC. This result completely changed
the view on cardinal arithmetic and set off the wave of independence results.
In 1970’s Easton showed that if f is any function on regular cardinals, such
that

1. f()\l) < f()\g) for )\1 < )\2, and

2. the cofinality of f(\) is bigger than A,

then it is consistent (with ZFC) to assume that 2* = f(\), for all regular
cardinals A. For a long time it was believed that the same holds for singular
cardinals, and hence, that no deep theorems about cardinal arithmetic can be
proved within ZFC. So it came as a big surprise in 1974 when Silver produced
a new theorem of cardinal arithmetic:

if 2% =N, for every o < wy, then 2% =R, ;.

It became clear that singular cardinals represented a new challenge, which
was called the singular cardinals problem. In 1975 Galvin and Hajnal came
up with the following theorem:
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if Vs is a strong limit singular cardinal with cf(Rs) > R,
then 2% < N(|6‘cf(6))+.

For example, if R, is a strong limit, i.e. 2% < X, for every a < wi, then
M1 < Nnpy+. Although these ZFC-theorems represented a new trend, set
theory was still marked by the tendency to produce independence results,

and move on in some sense, rathen than investigate ZFC. Commenting this,
Shelah said:

“..when I became interested in the subject, I saw a great deal of
activity and suspected I had come into the game too late; shortly
thereafter I seemed to be the only one still interested in getting
theorems in ZFC.”

However, he was wrong about being late. Making the following three deep
observations, he established a new theory: pcf theory.

1. Instead of studying cardinal exponentiation, one could, more generally,
study (reduced) products of infinite cardinals.

2. Tt would be useful to shift the focus from cardinalities to cofinalities (of
products of cardinals).

3. The notion of cofinality can be generalized to the notion of possible
cofinality (cofinality modulo some ultrafilter).

We define the reduced products and study the possible cofinalities in chapters
3 and 4. [Chapter 2 is rather a brief introduction to basic set theory and
serves as an overview of the preliminaries needed for understanding later
chapters. We refer to |3] for a detailed introduction.|

Applying the pcf theory to cardinal arithmetic, in 1978 Shelah proved a
new theorem in ZFC:

if N5 is a singular cardinal such that 6 < N4, then N?' < N(Q\a\)+.

For example, Ngo < N(2N0)+. On the one hand, this theorem was special for
involving singular cardinals Y5 of countable cofinality (unlike Galvin - Hajnal
theorem), but on the other hand, the upper bound N (91s1y+ could be arbitrarily
large, by Easton’s theorem. Nevertheless, after improving the pcf theory, in
1989 Shelah came up with a much stronger theorem:

if § is a limit ordinal such that [§]°/©) < N;, then Ngf(a) < Nyt



For example, if 2% < R, then R®0 < R _+4. Hence, XY < 2%04R . Moreover,
if N, is a strong limit cardinal, then 2% = 8% and thus, 2% < N, +4. The
above theorems will be proved in Chapter 5.

There have been written many papers about pcf theory. Especially great
effort to explain and elaborate Shelah’s original ideas and proofs was made
by Abraham, Burke, Jech, Kojman and Magidor. However, the recent paper
[1], by Abraham and Magidor, seems to be one of the best presentations of
pcf theory. It explains the substantial parts of the theory separately and very
clearly. For instance, exact upper bounds are explained very well.

Our aim is to make a detailed introduction to pcf theory and give a clear
insight into the proof of the theorem R¥o < 2% 4 R = What follows can
also be considered as a complement to the splendid work by Magidor and
Abraham; we complete some of the proofs and give examples (and use a
similar notation). We try to make the theory and its application to cardinal
arithmetic as short and fluent as possible, doing a favour to those readers
who want to learn pcf theory, but neither have too much time for it, nor
want to see only sketches (for example, those who are only interested in the
proof of the theorem above).

Unless stated otherwise, all theorems and results in the last three chapters
are due to Shelah.
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Chapter 2

Some basic set theory

2.1 Sets and numbers

The founder of set theory, Georg Cantor, defined sets to be collections of
any objects (that can be thought of). However, the words any and every
turned out to be relative. Russell’s paradox' was a clear sign that a formal
approach to set theory demands more precise definitions. One way to avoid
troubles was to start with axioms and only consider 'worlds of objects’(also
called models) in which these axioms are true. The most famous system of
axioms for set theory is called ZFC2.

We fix a model of ZFC which becomes our universe. By a set we under-
stand any collection of objects in that universe. (If a collection of objects is
(possibly) not in the universe, we use the word class for it.) The set of all
subsets of a set A is called the powerset of A and is denoted by P(A). A set
A is countable if there exists an injective function f : A — N, otherwise it is
uncountable.

2.1.1 Relations on sets

Let A be a set. Any subset R of A x A = {(a,b):a € A, be A} is called
a (binary) relation on A. We usually write a R b instead of (a,b) € R. A

!Consider the collection of all objects which do not contain themselves. Is it contained
in itself?

2Zermelo-Fraenkel axioms with the axiom of choice: there exists an empty set () (can
be thought of as a unit); there exists an infinite set; pairs, unions, powersets and certain
subsets of sets exist (are sets); images of sets (under any function) are sets; two sets are
same if and only if they have the same elements; every nonempty set has a €-minimal
element; every family of nonempty sets has a choice function. We refer to [3, Chapter 1]
for a complete and formal description of ZFC axioms.
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relation R is said to be
reflexive if a R a for every a € A,
irreflexive if a R a for every a € A;
symmetric if a R bimplies b R a for every a,b € A;
transitive if a R b A b R c implies a R ¢; and
total if either a Rbor b R a or a =>0 for every a,b € A.
Definition 2.1.

1. A binary relation <p on a set P is called a quasi ordering of P if it is
reflexive and transitive.

2. A binary relation <p on a set P is called a strict partial ordering of P
if it is irreflexive and transitive.

3. A total strict partial ordering on a set P is called a linear ordering of

P.

is reflexive, symmetric and transitive.

There can be at the same time both a quasi ordering <p and a strict
partial ordering <p on a set P; we identify P with (P,<p,<p).

Definition 2.2. Fix a set P and let <p and <p be a quasi ordering and a
strict partial ordering of P, respectively. For nonempty sets X, Y C P, and
p € P, we say that

p is a mazimal element of X if p € X and p £p x for every z € X

p is a minimal element of X if p € X and there is no ¢ € X such that
¢ <ppandp£pq

p is a least element of X (in the relation <p) if p € X and p <p x for
every ¢ € X,

p is an upper bound of X (or p bounds X) if x <p p for every z € X;

p is a <p-upper bound of X (or p <p-bounds X) if x <p p for every
reX;
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X is cofinal in Y in the relation <p (resp. <p) if for every b € Y there
is some a € X such that b <p a (resp. b <p a) |[we also say ’cofinal in
(Y, <p)’ instead of cofinal in the relation <p|;

X is bounded in Y if there is an upper bound for X in Y;

So p is a minimal upper bound of X if p is an upper bound of X and
there is no upper bound ¢ of X such that ¢ <p p and p £p ¢; and p is a least
upper bound of X if p is an upper bound of X and p <p ¢ for every upper
bound ¢ of X (p is then also called a supremum of X (supX)).

We say that p is an exact upper bound of X if p is a least upper bound
of X and X is cofinal in {g € P : g <p p} in the relation <p.

Suppose that R is an equivalence relation on a set P. For each p € P, we
define the equivalence class [p] :={q € P : p R q} of p. Every element of P
is then in some equivalence class (p € [p]), and no element is in two different
classes. The quotient P/R of P modulo R is the collection of all equivalence
classes.

2.1.2 Ordinal numbers

A linearly ordered set (P,<p) is well-ordered if every nonempty subset of
it has a least element (in the linear ordering). By a proper initial segment
of a well-ordered set P we mean a subset of the form {z € P: 2z <pr} for
some r € P. It holds® that any two well-ordered sets are comparible in the
following sense; either they are isomorphic (with respect to the relation <p)
to each other, or one of them is isomorphic to an initial segment of the other
one. If we define equivalence classes on the collection of all well-ordered sets
by putting isomorphic well-ordered sets into the same class, we can think
of ordinal numbers as the collection of the nicest representatives of these
equivalence classes.

Definition 2.3. A set A is an ordinal number (an ordinal) if it is well-
ordered by the relation € (is an element of), and if a C A for every a € A
(transitiveness).

Ordinals are usually denoted by lowercase greek letters a, 3, etc., and the
class (collection) of all ordinal numbers is denoted by Ord. A function f is
called an ordinal function if range(f) C Ord. For ordinals a and (§ we also
write a < [ instead of a € 3. We list some of the basic facts about ordinals
without proving them. The proofs can be found in [3].

3See [3] for a proof.
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Proposition 2.4. The following hold for any ordinal number o:

~N

. The empty set O is an ordinal;

2. if B € «, then (3 is also an ordinal;

3. a={p:0€al;

4. a+1:=aU{a} is also an ordinal;

5. If X is a nonempty set of ordinals, then |J X is also an ordinal;
6. < is a linear ordering of the class Ord;

7. each well-ordering P is isomorphic to exactly one ordinal; this ordinal
15 then called the order-type of P.

Ordinals of the form a U {a} are called successor ordinals. All other
ordinals are called limit ordinals. Finite ordinals are also known as natural
numbers and are written as follows:

0=0,
1=0+1=0U{0} = {0},
2=1+1={0}u{{0}}=1{0{0}},

etc.

2.1.3 Cardinal numbers

Definition 2.5. An ordinal number « is a cardinal number (a cardinal) if
there is no bijection between o and any 3 < «.

We usually use k, A, p... to denote cardinals. By the cardinality | X| of a
set X we mean the unique cardinal number x for which there is a bijection
f & — X. (The existence of such a bijection is not trivial; it relies on the
axiom of choice.) Note that each natural number is a cardinal number; the
cardinality of a finite set is simply the number of its elements.

The infinite cardinals are called alephs. Since cardinals are linearly or-
dered by <, we can enumerate them by ordinal numbers; X, denotes the a-th
infinite cardinal. The O-th infinite cardinal N is the set of natural numbers.
If « is a successor (limit) ordinal, then we say that R, is a successor (limit)
cardinal. We also write RT for N, ;.

The arithmetic operations on cardinals are defined as follows:

k+A:=|AUB|, k-A:=|AXB],
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k* = |AB|=|{f : f is a function from B into A}|,
where A and B are any disjoint sets with cardinalities |A|= x and |B|= .
Proposition 2.6. The following hold for any cardinals k, X:
1. If k and X are infinite cardinals, then kK + XA = k- X\ = max {Kr, A\};
2. + and - are associative, commutative and distributive;
8 (k- A=k, MR =gr gl (RN = RN
4. & < Ximplies k* < X, and 0 < X < p implies Kk < kH;

5. Cantor : k < 2% (If a set A has the cardinality k = |A|, then 25 =
{f: [ is a function from A into 2}|= |P(A)| is the cardinality of the
powerset of A.)

For a proof see [3].

We say that a set of ordinals A is cofinal in a set of ordinals B if for
every 3 € B there is an o € A such that § < «. For any ordinal « define
the cofinality of a, denoted as cf(«), to be the least cardinality of a subset
of o which is cofinal in a. If v is a cardinal number and ¢f (o) = «, then «
is called a regular cardinal. Otherwise, (that is, if ¢f(«a) < «), « is called a
singular cardinal. (We denote the class of regular cardinals by Reg.) One can
show that for every «, cf(cf(a)) = cf(a). Thus, cf(a) is always a regular
cardinal.

The exponentiation of cardinal numbers, unlike addition and multiplica-
tion, which are trivial, is one of the main topics in set theory. In the following
proposition we state some of the basic properties of the cardinal arithmetic.*

Proposition 2.7. The following hold for any cardinals k, X:
1. If X is infinite and 2 < k < X\, then k" = 27;
2. if X\ > cf(k), then k < K*;
3. if I is any index set and k; < A; for everyi € I, then ), ki < [L;c; Nis
4. (kD) =k k% (Hausdorff formula).

For a proof see [3].

“For a proof of the proposition we refer the reader to [3, page 51]. In chapter 5 there
are deeper results regarding cardinal arithmetic.
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2.1.4 Closed unbounded sets

Let k > w be a limit ordinal, and let C' C k. Any limit ordinal @ < k with
sup C'Na = «ais called a limit point of C. We say that C'is closed unbounded
(in k) if it contains all its limit points and is cofinal in k. For example, the
set of all limit ordinals in  is a closed unbounded set. If ¢f(k) > w, then
the intersection of two closed unbounded sets is also closed unbounded.

Suppose that k is a regular uncountable cardinal. A set S C & is said to
be stationary (in k) if SNC # 0, for every closed unbounded set C' in k. An
ordinal function f on S is regressive if f(a) < «, for every o € S. We are
going to use the following fact.

Lemma 2.8 (Fodor). If f is a regressive function on a stationary set S C K,
then f is constant on some stationary set T C S.

For a proof see |3, Theorem 8.7|.

2.2 Ideals and filters

Ideals and filters are the central tools in the pcf theory. Usually ideals (resp.
filters) are collections of small (resp. large) subsets of a given set A. There-
fore, elements of an ideal are called null-sets, and all other subsets of A are
called positive sets. We also define the notion of a maximal ideal (filter), and
state the important properties.

Definition 2.9. A family I C P(A) of subsets of a set A is called an ideal
on A if it satisfies the following conditions:

1. 0 el;
2.if Xeland Y €I, then XUY € I;
3.iIfX,)YCA Xel,andY C X, thenY € I.

A family F' C P(A) of subsets of a set A is called a filter on A if it satisfies
the following conditions:

1. 0 ¢ Fand A € F;
2.if X e FandY € F, then XNY € F,

3. X,YCA XeF,and X CY, thenY € F.
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By a proper® ideal on a set A we mean an ideal satisfying A ¢ I. We say
that a proper ideal I (resp. a filter F') on a set A is mazimal if there is no
ideal I with I C I’ C P(A) (resp. no filter F" with I C F' C P(A)).

A proper ideal I (resp. a filter F') is a prime ideal (resp. ultrafilter) if for
every X C A, either X € I (resp. X € F), or A\X € I (resp. A\X € F),
but not both, where A\X = {a € A:a ¢ X} denotes the complement of X
in A.

If I is a proper ideal on a set A, then the collection FF = {X C A: A\X €
I} is a filter on A. It is called the dual filter of I. I is then called the dual
ideal of F.

We say that a set G C P(A) generates an ideal I, if I is the closure
of G under subsets and finite unions. Similarly, we say that that a set
H C P(A) generates a filter F', if I is the closure of H under supersets
and finite intersections.

Proposition 2.10.

1. An ideal (resp. filter) is a prime ideal (resp. ultrafilter) if and only if
it s maximal.

2. (Tarski) Every ideal (resp. filter) can be extended to a prime ideal (resp.
ultrafilter). Moreover,

3. (Stone) If I is an ideal (resp. F is a filter) on a set A and X € P(A)\I
(resp. X € P(A)\F), then there is a prime ideal J (resp. ultrafilter
D) with I CJ and X ¢ J (resp. F C D and X ¢ D).

For a proof of (1) and (2) see |3, page 74].

Remark 2.11. We will use the following consequences of Proposition 2.10.
(i) If I is an ideal on a set A and Y € P(A)\I, then there is an ultrafilter D
on A such that IND =0 and Y € D. [Let D simply be the dual filter of
a prime ideal J 2 I with Y ¢ J.| (ii) Moreover, if F is a filter® on A such
that INF = (), then I can be extended to a maximal ideal J on A such that
JNF =19.

% Attention: By proper we do not mean I # {0}.
61t suffices that a N'b # 0, for every a,b € F.
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Chapter 3

Reduced products

In this chapter we define the reduced products of sets of ordinals and develop
the ’theory’ of exact upper bounds, which is the basis of the pcf theory, as
we will see in chapters 4 and 5. Our main reference for this chapter is [1].
Though, all the theorems in it are due to Shelah, unless otherwise stated.

3.1 Definition

Let A denote a set of regular cardinals' in this chapter. For any sequence
S = (S, : a € A) of nonempty sets of ordinals we define the product of S
to be the set of all ordinal functions f : A — Ord with f(a) € S,, for each
a€A,ie.

[[5.:=1{f: f€Ord* vaecA(f(a) €S}

acA

If h is an ordinal function on A (with h(a) > 0, for each a € A), then we just
write [] h instead of [ ., h(a). Similarly, if S, = a for every a € A, then
we just write [ A instead of [] ., a-.

We define the following relations on the product [, ., Sa

1. If I is an ideal on A, then for any functions f,g € []

aEA
f=19g <= {a€A: fla)#gla)}el,
f<rg == Ha€A:f(a) 2g(a)} €l
f<rg <= {a€A:fla)>gla)}el

2. If F is a filter on A, then for any functions f,g € [],c4 Sa

IThe theory of reduced products can be developed for any index set A.
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f=rg = f{ocA:f(@)=gla)}eP
f<rg <= {a€A: fla)<gla)}eEF;
f<rg = {a€A:f(a)<g(a)}er

The relations <; and <p are quasi orderings of HaeA S,. and the relations
<y (if I is a proper ideal) and <p are strict partial orderings of [], ., Sa-

The relation =; (resp. =p) is an equivalence relation on [] ., S,. The
quotient [[,.4 Sa/I (vesp. [[,ca Sa/F) is called the reduced product of S
modulo I (resp. modulo F'). Although [] ., S./I (resp. [],c4S./F) con-
sists of equivalence classes of functions in [, , Sa, for our purposes we want
to work with single functions - identifying equivalent ones. |[Therefore, for
simplicity, when we have f <; g, by changing f on a null-set we can assume
that f(a) < g(a), for each a € A, without any loss of generality. Also, if
h is an ordinal function on A such that {a € A : h(a) ¢ S,} € I, then
we consider h as an element of [] ., Sa/I (because it is equivalent to some
W' € [1,ea Sa/I). The same for a filter F.| This means that on [, , Sa./I
(resp. [],ea Sa/F) we consider the relations <; and <; (resp. <p and <p),
which are actually defined on ] ., S,.

Note that for functions f and g, f <; g does not imply that either f <; g
or f =; g. The converse is clearly true.

If I and F are dual to each other (see page 11), then for any functions f,
g€ [[Awehave: f=;giff f=pg, f<;giff f <pg,and f <; giff f <pg.
For this reason, whenever [ is dual to F', we identify (] .4 Sa/I, <7, <;) with
(ITaea Sa/F, <p, <) (or say that they have the same structure), and make
no difference between the I-relations and the F-relations. Further, every
filter has a dual ideal, hence, it suffices to develop the theory of reduced
products for ideals. If 7 = {@} we identify [] ., S./{0} with [],,S., and
write f < g instead of f < g.

If J D I is another ideal on A, then f <; g implies f <; g. We say that
<y extends <;. In particular, if D is an ultrafilter on A extending the dual
filter of I, that is, D NI = (), then <p extends <;.

Recall that a set B C [],.,5./1 is cofinal in (J],.,S./1, <) iff for
every function f € [[,c4 Sa/I there is a function g € B such that f <; g.
A sequence f = (fe : & < A) of functions in ] ., S./I is said to be <;-
increasing iff for every &, < A we have fe, < fe,.

We say that a sequence f = (fe : £ < A) of functions in [] _,5,/1 is a
scale for [[,c 4 Sa/I iff it is <;-increasing and cofinal in (], 4 Sa/1, <)

We need to further enrich our terminology before we can say why we are
interested in working with reduced products. The following definitions can
be easily generalized for any partial or quasi orderings; particularly for <;.
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Definition 3.1. Let / be an ideal on A and let S = (S, : a € A) be any
sequence of nonempty sets of ordinals.

1. The cofinality cf([],caSa/I,<1) of (I[,ca Sa/l,<i) is defined as the
least cardinality of a cofinal set in ([],., Sa/I,<1).

2. The true cofinality tcf([1,eq S/l <1) of (I[,ca Sa/1,<1) is defined
as the least cardinality of a linearly ordered set which is cofinal in
(ITaea Sa/I,<7), if it exists. [In other words, the true cofinality is the
minimal length of a scale. Note that the length of a scale is a regular
cardinal iff it is minimal.|

Remark 3.2. (1) Suppose that each S, has no maximal element. Then a set
B C [],c4Sa/1is cofinalin ([],c 4 Sa/I, <p) iffit is cofinalin ([],. 4 Sa/I, <1
). |The "if" direction is trivial: if f € [, 4 S./1 and for some g € B we have
f <r g, then also f <; g. Conversely, suppose that f € [],.,S./I, then
also f +1 € [[,eaSa/I, where f+1(a) = f(a) + 1. By assumption, there is
some g € B with f 4+ 1 <; g. It follows that f <; g.| This justifies our new
terminology - cofinal in J] ., S./1.

(2) Every reduced product has a cofinality: Firstly, there is always a
cofinal subset, namely the set itself; and secondly, there is always the least
cardinal among a class of cardinals. Cofinality can be either a regular or a
singular cardinal.

(3) The true cofinality does not always exist (see the examples below). If
it exists, then it is a regular cardinal. |Otherwise there is a shorter scale.|

(4) If I is a maximal ideal on A, then [] A/I has a true cofinality. Namely,
<y is a linear ordering of [[ A/I, and thus, every cofinal subset is a scale for
[TA/I. Similarly, if D is an ultrafilter on A, then tef(]][ A/D) always exists.
We write ¢f(][[ A/D) instead of tef (][ A/D).

(5) If J D I is another ideal on A, then, since <; extends <;, we have
that any <;-increasing sequence of functions is also < j-increasing. Further,
any cofinal sequence in ([],., Sa/I,<;) is also cofinal in (J],., Sa/J; <s)-
In particular, if F'is a filter on A extending the dual filter of I, then

¢f(Iaea 9o/ F) < ¢f (Taca Sa/ 1),

and

tef(Ilaea Sa/F) = tef(Ilaca Sa/ 1),

if tcf([[,eq Sa/1) exists.
(6) If h is an ordinal function on A (with h(a) > 0 is a limit ordinal,

for each a € A), then the reduced products [[h/I = [],.4h(a)/I and

acA
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[I,cacf(h(a))/I have the same cofinality (and true cofinality, if it exists).
[Choose for every a € A a cofinal set S, in h(a) of order type cf(h(a)). Then,
on the one hand, [] ., 7(a)/I and [],. 4 Sa/I are cofinally equivalent. That
is, for every f € [[,c4h(a)/I there is g € [[,c4 Sa/I with f <; g, and
vice versa, which means they have the same cofinality. On the other hand,
[I,c4Sa/I can be identified with [ _, cf(h(a))/I because for each a € A,
S, has order-type cf(h(a)).]

Let h be an ordinal function on A (with h(a) > 0 is a limit ordinal,
for each a € A). We are interested in the existence and value of the true
cofinality of [[h/I; and conversely, we want to represent regular cardinals
as true cofinalities of some reduced products.

Remark 3.2(6) tells us that we can concentrate on ordinal functions h,
which take values in the class of infinite regular cardinals.

Suppose that X is a regular cardinal and f = (fe : & < A) is a <;-
increasing sequence of functions in [[ A/I, which has an exact upper bound
hin [T A/I. Then, (by Definition 2.2) f is cofinal in the set {g € Ord* :
g <r h}. But this is the same as to say f is cofinal in [[ h/I. It follows that
f is a scale for [[h/I. Finally, since A is a regular cardinal, f must be a
scale of minimal length, and hence we have that A is the true cofinality of
[Ir/T=TIcf(h)/1.

This motivates the study of exact upper bounds in the next section. We
first want to cite some examples and state a useful lemma.

Example 3.3. (1) If A (JA|> 1) is a set of regular cardinals and I = {0},
then f =; g means f(a) = g(a), for every a € A. The product [[A =][A/I
does not have a true cofinality. |We argue indirectly. Suppose first that there
is a scale f = (fe : £ < A) for [] A of length A < supA. Then there is kK € A
with A < k. Since & is a regular cardinal and \ < &, the set {f¢(k) : £ < A}
is bounded in k. This means that f is not cofinal in [] A, contradicting f
being a scale. Suppose now that there is a scale f = (fe : € < \) for [TA
of length A > supA. Then for any k € A with k¥ < supA we have that the
sequence (fe(x) : & < A) is an increasing sequence of ordinals of length A in
k. But this is impossible, since k < A.|

Example 3.4. ? Let  be a strong limit cardinal, i.e. 2% < k for every o < k.
Consider an increasing sequence (A,)nen of infinite regular cardinals with
limit . One shows by a diagonalisation argument that ™ < cf(I],,cn Mn)-
[No set F' C [],cn An of cardinality < & is cofinal in [,y An. Forif |[F| <

r, then F' = J, oy Fr, for some F, C [[,cyAn with |F,|< A,. Choose a

neN

2For readers familiar with forcing and large cardinals.
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function ¢ such that for each n, g(\,) > f(\,), for every f € F,. Then
for every f € F, g £ f. Hence F is not cofinal.] On the other hand,
since |[[,en Anl= 2%, we have cf(]], oy An) < 2%, Therefore, the problem of
cofinality of such a product is related to the continuum function problem. We
want to mention two types of models in which cofinalities of products have
been studied: Prikry’s model and Magidor’s model. The following results

are taken from [6].

- Let K be a measurable cardinal with normal measure U and let (K,)nen
be a Prikry sequence for U. Then for every reqular cardinal \ with
kT < A < 25 there exists an increasing sequence (A nen € VI[G] of
reqular cardinals with limit k such that c¢f (][, . An) = A

neN 7'

- Let k be a supercompact cardinal and let N be Magidor’s extension of
V', which introduces a Prikry sequence (kn)nen together with collapsing
to obtain K, = N(gy1yn, forn €N, and 2% =R,y (2 <k <w). Then
for each m = 1,....k we have (in N) cf([],enn™) = Notm-

For proofs we refer to [6].

Lemma 3.5. Suppose that ¢ is a function from A into the class of reqular
cardinals and B = {c(a) : a € A} is its range. Then the following hold.

1. If I is an ideal on A, then its Rudin-Keisler projection on B,defined by
XelJ iff XCBandc'X el,

where ¢ ' X ={a € A: c(a) € X}, is an ideal on B.

2. The function h : [[ B/J — [],cacla)/I, defined by h([f];) = [f o clr,

1s injective and order-preserving.

3. If |A| < minB, then the image of h is cofinal in [[,. 4 c(a)/I. Thus,

tef(I1B/J) = tef (Haea cla) /1),

if one of the products has true cofinality.

For a proof see |1, Lemma 2.3].
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3.2 Exact upper bounds

In this section we determine the conditions for the existence of exact upper
bounds for <;-increasing sequences f = (f; : £ < A) of functions in Ord“.

The remarkable study of these conditions is actually a small theory on
exact upper bounds, which plays a very important role in the pcf theory.
However, we only state the most important theorems of that theory; sketching
most of the proofs, so that the reader can see the ideas behind the definitions.
For details and complete proofs we refer to [1].

Let A again be a set of regular cardinals and let I be an ideal on A.

Definition 3.6. Suppose that A is a regular cardinal and f = (fe : £ < \) is
a <-increasing sequence of functions in Ord®. Then f is said to be strongly
increasing if there are null-sets Z, € I, for £ < A, such that whenever
& < & < A, then

a € A\(Zg, U Zg,) = fe,(a) < fe,(a).

Definition 3.7. Suppose that A is a regular cardinal and f = (fe : £ < A)
is a <;-increasing sequence of functions in Ord4. For any regular cardinal
rk < A we denote the following property of f by (%),:

Whenever X C A is unbounded in A, then for some
Xo € X of order-type w, (fe : £ € Xj) is strongly increasing.

Note that if f has the (x), property for some x < A, then f also has the
(%), property for every regular k' < .

Let S = (S, : a € A) be a sequence of sets of ordinals. We denote the
function a +—supS, by sup-of-S.

Suppose that a function f € Ord* is bounded by sup-of-S. Then we define
the projection of f onto S, proj(f,S), as the function f*(a) :=min(S,\ f(a)).

Definition 3.8. Suppose that A is a regular cardinal and f = (f: : £ < A)
is a <;-increasing sequence of functions in Ord4. For any regular cardinal
k < X\ we call the following property of f the bounding projection property
for k:

Whenever S = (S, : a € A) with S, C Ord and |S,|< & is such
that the sequence f is <;-bounded by the function a — supS,,
then there exists § < X such that the projection f™ = proj(fe, S) € [1,c4 Sa
is an upper bound of f in the <; relation.

[Shortly: f <; sup-of-S = FE <A (f < f;)]
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Lemma 3.9. Suppose that A is a set of reqular cardinals, I is an ideal on
A, X > AT is a regular cardinal, and f = (fe 1 £ < \) is a <;-increasing
sequence of functions in OrdA. Then for every regqular cardinal k such that
|A|T< Kk < X the following are equivalent®:

1. (%), holds for f;
2. [ has the bounding projection property for k;
3. f has an exact upper bound h such that: {a € A: cf(h(a)) < K} € I.

Proof. 1 = 2. See [1, Theorem 2.12].

2 = 3. Sketch of the proof: One first shows that f has a minimal upper
bound A (for a proof see Theorem 2.13 in [1]). We show that A then must be
an exact upper bound of f, i.e. f is cofinal below h:

Suppose that g <; h. We shall find { < X such that g <; fe. Assume
w.l.o.g. that g(a) < h(a), for every a € A (see page 14). Define a sequence
S =(S,:a€A) by

Sa :={g(a), h(a)}

for every a € A. Since |S,|< k clearly holds and sup-of-S = h is a <;-upper
bound of f (if it were not a <;-upper bound of f, then it would not be
an upper bound at all, because f is <;-increasing), the bounding projection
property for x implies that there is £ < A such that fgr is a <;-upper bound of
f. Since h is minimal and fgL <; h, we have that h <; fgr. Thus, fgr = h.
It follows that ¢ <; fe, (because if f¢ < g holds on a positive set, then
fgL = g < h on this positive set, and that contradicts fgL =7 h). Thus, we
have shown that h is an exact upper bound of f.

This exact upper bound is determined up to =;. Since f is <;-increasing,
h(a) can be 0 or a successor ordinal only on a null-set. Thus, we can assume
that it is never 0 or a successor ordinal (see page 14).

It remains to show that {a € A : c¢f(h(a)) < k} € I holds. In order to get
a contradiction, suppose that P := {a € A : c¢f(h(a)) < k} ¢ I. For every
a € P, choose a set S, C h(a) cofinal in h(a), such that order-type(S,)< k.
For a € A\P define S, := {h(a)}. Then sup-of-S= h is a <;-upper bound of
f and |S,|< k. Like above, the bounding projection property for x implies
that there is & < X such that f" € [[,c4 Sa is a <;-upper bound of f. By
the definition of S, we have fgL <; h and fgL 1 P < h1 P. Butsince P
is a positive set, this means that fgr <; h and h £, fgr, contradicting our
assumption that h is a minimal upper bound of f (see Definition 2.2).

3 = 1. See [1, Theorem 2.15]. O

3For the later chapters we only need the 1 = 2 = 3 direction.
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The condition (x), does not seem to be easily verifiable for a sequence
of ordinal functions. However, we are only interested in the existence of
sequences which have this property*, and the following theorem gives us a
strategy for constructing them.

Lemma 3.10. Suppose that A is a set of reqular cardinals and

1. I is a proper ideal on A;
2. k and X\ are reqular cardinals such that Kkt < \; and

8. f = {fe : &€ < N is a <;-increasing sequence of functions in Ord"
which satisfies the following requirement:

for every & < X\ with c¢f(0) = k™ there is a closed unbounded set
Es C 6 such that for some § with § < 4§ <

sup{fa : o € Es} < fy.
Then (%), holds for f.
For a proof see |1, Lemma 2.19].

From the following application we see that the condition on f in Lemma
3.10 is nothing but a strategy for constructing sequences of ordinal functions
for which (x), holds (and which, thus, have exact upper bounds that are of
big interest to us).

Definition 3.11. Suppose that [ is a proper ideal on A and S = (S, : a € A)
is a sequence of sets of ordinals. We say that the product [] ., Sa/I is A-
directed (for a cardinal \) iff every set B C [] ., S./I with cardinality
|B|< A has an upper bound in [],_, S./I.

a€A

Lemma 3.12. Suppose that A is a set of reqular cardinals and I is a proper
ideal on A. Let \ be a reqular cardinal such that [ A/I is \-directed. Then
there exists a <;-increasing sequence f = (fe : & < \) of functions in [[ A/I
such that for every reqular cardinal k < A, (x), holds for f iff

kTP <Xand {a€ A:a<rk*"} el

Proof. Define f as follows. At successor stages { +1 < A, let feyq := fe + 1.
Since A is a set of limit ordinals, we have fe +1 € [[A/I.

At limit stages 0 < A we consider two cases. If ¢f(0) = kT < A, where &
is a regular cardinal such that {a € A:a < k™t} € I, then fix some closed
unbounded set Es C §, and define

4For the purposes of pcf theory; see page 16 and Theorem 4.10.
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fs— sup{f; :i € Es}.
(For every a > k™" we have that fs(a) < a, because each a € A is a regular
cardinal. Thus, fs; € [[A/I, since {a € A :a < xk™"} € 1.) If cf(9) is
not of that form, then let fs € [TA/I be any upper bound of (fs : £ < 6)
guaranteed by the A-directedness assumption.
Lemma 3.10 implies that (x), holds for f, for every « of the required form. [

The following theorem is an immediate consequence of Lemma 3.9 and
Lemma 3.12.

Theorem 3.13. Suppose that

1. Ais a set of reqular cardinals and I is a proper ideal on A;
2. X\ is a reqular cardinal such that [ A/ is \-directed;

3. there is a reqular cardinal k with |A|T< rk <A,
such that k™ < X and {a € A:a <k*T} €l

Then there exists a <;-increasing sequence f = (fe : & < \) of functions in
[TA/I with an exact upper bound h such that {a € A : cf(h(a)) < k} € I
for every regular cardinal k with |A|T< k < A, such that k*T < X\ and
{aeA:a<rTt}el

Proof. Follows immediately from Lemma 3.9 and Lemma 3.12. Note that
the existence of a regular cardinal x with |A|T< k < A, such that k™" < A
and {a € A:a < k't} € I, is needed (by Lemma 3.9) for the existence of
an exact upper bound of f. O

Remark 3.14. From the proof of Lemma 3.10 we can see that f can be
chosen to dominate any given sequence g = (g : £ < A) of functions in

[TA/I, ie. such that for each £ < A, g¢ <; fe.

In the next section and in Chapter 4 (Theorem 4.10) we will see applica-
tions of Theorem 3.13.

3.3 Representation theorems

We have seen on page 16 that if A is a regular cardinal and f = (fe : £ < \)
is a <j-increasing sequence of functions in [[ A/, which has an exact upper

bound h in [ A/I, then
A=tef(J[ef(m)/D). (3.1)

Using this fact we can get stronger results for successors u* of singular car-
dinals. We first consider p* with c¢f (1) = w.
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Theorem 3.15. Suppose that p is a singular cardinal of countable cofinal-
ity. Then there exists an unbounded set B C p (of order-type w) of reqular
cardinals such that

pt =tef([1 B/J"),
where J* is the ideal of bounded (or finite) subsets of B.

Proof. Let By C p be any unbounded set (of order-type w) of regular cardi-
nals, and let I° be the proper ideal of bounded (or finite) subsets of By. We
show that the product [] By/I* is p-directed.

Suppose that F' C ] By/I%® has cardinality v < p. We need to show
that ' has an upper bound in [] By/I"®. Define a function g € [] By/I%*
by g(a) := sup{f(a) : f € F}if a > v, and g(a) := 0 if a < ~. [It holds
that g € [[ Bo/I%, since |F|< v and each a € By is regular.] Then for every
f € F we have {a € By : f(a) > g(a)} = {a € By : a <~} € I that is,
f <pva g. Thus, we have shown that F has an upper bound in [] By/I".

But since y is a singular cardinal, [ By/I*¢ is also u*-directed: Suppose
that I C [ Bo/I" has cardinality u. There are subsets F,, C [] Bo/I*,
for n € w, of cardinality < p such that F' =], Fn. Since []Bo/I" is p-
directed and |F,,|< p (n € w), there exist upper bounds f, of F}, in [ By/I*.
Finally, there exists also an upper bound of (f, : n € w), which bounds every
F,,, and thus, the whole F.

Let x be a regular cardinal such that N, < k < p*, then k7 < p < ™
holds (since p is singular) and the set {a € By : a < k™" < u} is obviously
bounded in p.

Apply Theorem 3.13 to By, I’ and p*. There exists a <jw-increasing
sequence f = (f¢ : & < p*) of functions in [] By/I*® with an exact upper
bound A such that

{a € By : cf(h(a)) < r} € I™, (3.2)

for every regular cardinal x with X; < x < u™, such that x** < p* and
{a € By:a < k™} € I". |Since the identity function id on By is a <-upper
bound of f, we have h <; id (otherwise h is not minimal), and thus, we can
assume that h(a) < id(a) = a, for every a € By.|

Note that the set of such regular cardinals x is unbounded in p. Therefore,
it follows from (3.2) that also

B:={cf(h(a)):a € By} C p

is unbounded in p. We can assume that B is of order-type w and Xy < minB
(modify By if necessary).
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We show that ut = tef([] B/I°?). By (3.1) we have

ph=tef (] ef(h(a)/1"). (3.3)

a€ By

Define a function ¢ : By — B by c¢(a) := c¢f(h(a)). Let J be the ideal on B
defined by X € Jiff {¢7*(z) : x € X} € I"". Lemma 3.5 implies that

tef(I1B/J) = tef (Haes, cf () /1) = .

It remains to show that J is the ideal J%* of bounded subsets of B. The
inclusion J C J* follows easily. If X € J, then {¢c}(z) :z € X} € ["is a
finite set, and thus, X is a finite (and bounded) set.

In order to prove J* C J, suppose that X € J" is a bounded subset of
B = {cf(h(a)) : a € By}. Say, v < p is an upper bound of X. We need to
show that the preimage of X, under the map ¢, is bounded in u. In order
to get a contradiction, suppose that it is not bounded. That is, there is an
unbounded set Y C By such that for every a € Y, ¢(a) = c¢f(h(a)) € X.
Since X is finite, it follows that there is an unbounded set Y; C Y and some
0 <~ such that for every a € Y}, ¢(a) = cf(h(a)) = 0.

We now easily get a contradiction. Let D be an ultrafilter on Bj extending
the dual filter of I*, such that Y; € D (which exists by Remark 2.11).
Then, on the one hand, since <p extends <pa, (3.3) implies that p* =
tef(Ilaep, ¢f(h(a))/D) (by Remark 3.2(6)). But on the other hand, since
Y1 € D, any sequence (ge : & < §) with ge(a) = &, for a € Y7, is a scale for
[l.cp, ¢f(h(a))/D. This completes the proof. O

We have a similar result for successors p* of singular cardinals with
cf (n) > w.

If X is a set of cardinals, then let X(*) := {a" : o € X} denote the set
of successors of cardinals in X.

Theorem 3.16. Suppose that p is a singular cardinal of uncountable cofi-
nality. Then there ezxists a closed unbounded set (of limit cardinals) C C pu
such that |C|< minC and

pt=tef(IICW /17,
where J* is the ideal of bounded subsets of C*).

Proof. Let Cy C u be any closed unbounded set of limit cardinals bigger than
cf (i), such that |Cy|= cf(u). Tt follows that |Cp|< minCy.

All the limit points «y of Cy are singular cardinals, since |Cy|= cf (1) < 7.
So we can assume that Cj consists only of singular cardinals. |[The set of
limit points of Cj is also a closed unbounded set.|
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By the same argument like in the proof of Theorem 3.15, the product
[1CSP /g7 is pt-directed, where J* is the ideal of bounded subsets of C{™.

Apply Theorem 3.13 to Cé+), J* and pt. There exists a < ja-increasing
sequence f = (fe : & < p™) of functions in [] CSP /7% with an exact upper
bound & such that

{a e CS” s cf(h(a)) < K} € J*, (3.4)

for every regular cardinal k£ with cf(u)™ < k < pt, such that k™ < p*
and {a € C’é” ca < ktT} € J¥; this means, for every regular cardinal
Kk < p. [We can assume, like in the previous proof, that h(a) < a, for every
aeCM |

A

Claim. There is a set
CC{aeCy:h(a™)=aT},
which is closed unbounded.

Proof of the claim. In order to get a contradiction, suppose that the set
{a € Cy: h(at) = a™} does not contain a closed unbounded set. Then there
is some stationary set S C Cj such that SN{a € Cy: h(a™) =at} =10. It
follows that h(a™) < a™ for every a € S.

Since all cardinals in Cj are singular, we have that cf(h(a™)) < a, for
every a € S. Hence, by Lemma 2.8, c¢f o h is constant, and hence bounded
by some k < u, on a stationary set of o’s in S. But this is in contradiction
with (3.4).

Thus, we have proved that there exists a closed unbounded set C' C
Cy such that h(at) = at for every a € C. Tt follows easily that u* =
tef([ICH)/J%). Namely, the sequence (fe | C™) : & < u*) is a scale for
[1CH) /I = T],cc h(a™)/Jb% it is cofinal, because h | C) is an exact
upper bound of f | C™), and it is < jw-increasing. O

We will prove a stronger version of the last theorem in the next chapter.



Chapter 4

The pctf function

4.1 Definition

In Chapter 3 we have seen that some cardinals can be represented as true
cofinalities of certain (reduced) products of sets. Now we want to change
our point of view and investigate which cardinals can be realised as true
cofinalities of some fixed product of sets - of course, modulo different ideals.
This motivates the following definition.

Definition 4.1. |The pcf function| For any set A of regular (uncountable!)
cardinals define

pef(A) :={A: AX=tcf(]] A/I) for some proper ideal I on A}.

Let I be a proper ideal on A such that A\ = tef(][ A/I), and let D be
any ultrafilter on A, extending the dual filter of I. Then, as we mentioned
in Remark 3.2(6), A = c¢f([[A/D) = tcf(J[[A/I). Hence, the following
formulation is equivalent to the one in Definition 4.1:

pef(A) ={X: A=cf(J[]A/D) for some ultrafilter D on A}.

4.2 Basic properties

Let A and B be any sets of regular uncountable cardinals. We state the basic
properties of the pcf function.

1. pcf(A) N minA = (). Proof: Suppose that A\ € minA. Then for every
ultrafilter D on A, any sequence f = (fe : £ < A) of functions in

!'We will only consider uncountable cardinals, since the finite case is trivial.
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[T1A/D is <p-bounded in [[ A/D by the pointwise supremum of f¢’s.
Hence for every ultrafilter D on A, we have A < ¢f(][A/D). Thus,
A& pef(A).

2. A C pcf(A).2 Proof: Suppose that A € A. We need to find an ul-
trafilter D on A such that A = ¢f(J][ A/D). Let D be the principal
ultrafilter on A, which concentrates on A; that is, for every X C A,
X € D iff A\ € X. Then any sequence f = (fe : £ < A) of functions in
[T1A/D, with fe(X) =& for every £ < A, is a scale for [[ A/D, (because
{\} € D). Thus, A =cf (][ A/D).

3. If A C B, then pcf(A) C pcf(B). Proof: Suppose that A € pcf(A).
Then there is an ultrafilter D on A such that A = ¢f(][[ A/D). Let
f = {(fe: £ < A) beascale for [[A/D. Extend D (canonically) to an
ultrafilter D’ on B, that is, let D' := {b C B:bN A € D}; and extend
each fe (arbitrarily) to a function f{ with domain B. We claim that
fr={(f¢: &< A)isascale for [ B/D', and thus, that A € pcf(B).

We first show that it is cofinal. Let g € [[ B/D’, then, for some
€<\ gl A<p fe since f is cofinal in [[A/D. This means that
{a€ A:gla) < fe(a)} = {8 € B:g(B) < fi(B)} N Ais an element
of D. Tt follows by definition of D' that {5 € B : g(8) < f{(3)} € D',
which means that g <p: f{.

To show that f’ is <p-increasing, suppose that & < & < A. Then
faed: fo(0) < fula)} = {5 € B - f1(8) < fL(A)} N Als an
element of D. Tt follows by definition of D’ that {8 € B : f{ () <
f,(8)} € D', which means that f{ <p/ fi .

4. pcf(AU B) = pef(A) Upcf(B). Proof: The inclusion "2’ follows by
(3). We show that pcf(AU B) C pcf(A) U pef(B). Suppose that
A € pcf(AU B). Let D be an ultrafilter on A U B such that A =
cf(ITAUB/D), and let f = (fe : £ < A) be a scale for [JAU B/D.

It holds that either A € D or B € D, forif A ¢ D, then A’ € D,
and hence A" C B € D. Without any loss of generality, assume that
AeD.

We show that A € pcf(A). Let D' .= {a C A : a € D} be the
canonical restriction of D to A. D’ is an ultrafilter on A. By elementary
arguments, like in (3), one shows that f [ A= (fe [ A: { < \)is a
scale for [[A/D’, and thus, that A = cf([[A/D’).

2Moreover, one of the main theorems of this chapter says that if A is an interval of
regular cardinals, then pcf(A) is also an interval of regular cardinals, and A is an initial
segment of it (Theorem 4.10).
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Next, we define the central tool for investigating further properties of the
pcf function.

4.3 Ideal J_.),

Let A be a set of regular cardinals, and let A\ be a cardinal. We say that a
subset a C A forces [[ A to have cofinality less than A, and write a forces
cof <A, if for every ultrafilter D on A with a € D, c¢f(J[[A/D) < \.

Definition 4.2. For any cardinal A define
JoxlA] :={a C A : a forces cof <A}.

Ja[4] is an ideal on A: (i) 0 € Jo»[A]. (ii) Suppose that ' C a C A and
a € Jo,[A]. If D is any ultrafilter on A with o’ € D, then a € D, and hence
cf(ITA/D) < A. Thus, a’ € J_,[A]. (iii) Suppose that a,a’ € J[A]. If D
is any ultrafilter on A with a Ua’ € D, then either a € D or ' € D, and
hence cf([TA/D) < A. Thus, aUd" € J.,[A].

Proposition 4.3.
1. If X < min pcf(A), then Jo\[A] = {0}.
2. If X > max pcf(A), then Jo\[A] = P(A).
3. If X € pcf(A), then J,][A] is a proper ideal.

Proof. (1) We argue indirectly. Suppose that there is a € J_,[A], a # 0.
Then there exists an ultrafilter D on A with a € D. Since a € J.,[4],
cf(ITA/D) < A. It follows that min pcf(A) < .

(2) By definition, J.\[A] C P(A). To show that P(A) C J.,[A], let a C A,
a # (). Suppose that D is an ultrafilter on A with a € D. Then ¢f(J[A/D) <
max pcf(A) < A. Thus, a € J,[A].

(3) We need to show that A ¢ J_,[A]. We argue indirectly. If A € J,[A],
then, by definition, for each ultrafilter D on A with A € D, c¢f(J[[A/D) < .
But A € D for every ultrafilter D on A. Therefore, cf([[ A/D) < A for every
ultrafilter D on A. Hence A ¢ pcf(A). O

Note that A; < Ay implies Joy, [A] C Joy,[A]; and if A is a singular
cardinal, then J_\[A] = J  +[A].

If A is a limit cardinal, then Jo\[A] = U, , J<u[A]. [By the previous
line, U, J<u[A] € Joi[A]. For the converse inclusion consider some a €
JA[ANU,cp J<u[A]- 1t follows that there is an ultrafilter D on A such that
a € D and DN,y J<u[A] = 0, which means that cf([[A/D) < A and
cf(ITA/D) > p, for every p < A. Contradiction.|
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Proposition 4.4. If Ay C A, then J.\[Ao] = Joi[A] N P(Ap).?

Proof. We first show that ’C’ holds. Let a € J.)[Ag]. Clearly, a € P(Ay).
Assume that D is an ultrafilter on A such that @ € D. Then also Ay € D,
because a C Ag. Therefore, the restriction D' = {a C Ay : a € D} of D
to Ag is an ultrafilter on Ap, and we have that ¢f(J[ A/D) = cf([] Ao/D’)
(the restriction of any scale for [[ A/D is a scale for [ Ag/D’). It follows
that c¢f([TA/D) = cf(J[ Ao/D’') < A, since a € D' and a € J,[Ap]. Hence,
ac J<)\[A]

To prove that 'D’ holds, suppose that a € J,[A] N P(Ap), and let D be
an ultrafilter on Ag such that a € D. Extend D to the ultrafilter D’ := {b C
A:bNAy € D}on A. Then cf(J[[ Ao/D) = cf(J] A/D’) (see page 26). Since
a € D' and a € J.,[A], we have cf([[ Ao/D) = cf(J[ A/D’) < A. Hence,
a < J<)\[A0]. ]

We say that A is progressive if |A] < minA. Recall that a reduced product
[TA/I is M\-directed (for a cardinal \) iff every F' C [[ A/I with |F|< X has
an upper bound in [[A/I.

The following theorem, which has a number of consequences, states a
crucial property of the ideals J_,.

Theorem 4.5. |A\-Directedness| Assume that A is a progressive set of reqular
cardinals. Then [[ A/J<y is A-directed for every cardinal X.

For a proof see |1, Theorem 3.4].

Corollary 4.6. Suppose that A is a progressive set of regular cardinals.
Then for every ultrafilter D on A

cf(ITA/D) < X\ iff JoyxND #1,
that is, iff some element of D forces cof <A.

Proof. We prove the ’only if” direction indirectly. Suppose that Jo,ND = ().
It means that D extends the dual filter of I. Therefore, since [[A/J<y is
A-directed, [[ A/D is A-directed as well. Tt follows that c¢f(J[ A/D) > A
(because any sequence of length <\ of functions in [ A is bounded in [] A).
Conversely, if J., N D # ), then, by definition of J.,, ¢f([[A/D) < X. O

Corollary 4.7. Suppose that A is a progressive set of regular cardinals.
Then A\ € pcf(A) iff Jo\ C Joy+.

3This proposition allows us to write J. instead of J.x[Ao] and J.[A], whenever we
are dealing with some fixed sets of cardinals A and Ay with Ay C A.
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Proof. Tf X\ € pcf(A), then there is an ultrafilter D such that cf(][[ A/D) =
A < At. By Corollary 4.6, J.x+ N D # (). Let a € Joy+ N D. Then a ¢ J_,,
because a € D and cf(J[A/D) £ A. Hence a € Joy+\Jcn.

For the converse, suppose that a € J.y+\J<). Since a ¢ J.,, there is
an ultrafilter D with a € D such that c¢f([[A/D) > A. It follows that
cf(ITA/D) = A, because a € Joy+. Thus, A € pcf(A). O

Corollary 4.8. Suppose that A is a progressive set of regular cardinals.
Then

lpef(A)|< [P(A)].

Proof. By Corollary 4.7, whenever A € pcf(A), then Jy C Joy+. It follows
that (J<a)aepef(a) is a strictly decreasing sequence of length |pcf(A)| of sub-
sets of A. Since such a sequence can have length at most |P(A)[, it holds

that [pef(A)|< |P(A). O

Corollary 4.9. Suppose that A is a progressive set of regular cardinals.
Then the set pcf(A) has a maximal element.

Proof. Since A\ < Xy implies J.y, C Jcy,, we have that (Jox)aepes(a) is an
C-increasing sequence of ideals on A. It follows easily that the union

I:= U)\Epcf(A) Jan

is an ideal on A as well. By Proposition 4.3(3), each J_, in the sequence
is proper, that is, A ¢ J_.,. Therefore, I is proper as well. Hence, by
Proposition 2.10(3), I can be extended to a maximal proper ideal J. Let D be
the dual (ultra)filter of J, and let © = ¢f(J[ A/D). Then, since D is disjoint
from J_ for each X € pcf(A), Corollary 4.6 implies that cf([[ A/D) > A, for
each \ € pcf(A). Thus, u = cf(J[[A/D) € pcf(A) is the maximal element

of pcf(A). O

We say that a set X is an interval of reqular cardinals if for some cardinals
a< 3, X ={a € Ord: ais aregular cardinal and o < a < 3}.

Note that pcf(A) is not necessarily an interval of regular cardinals. For
instance, if A = {Ny, : 1 < n < w}, then Ng,11, n € w, can not be
realized as true cofinality of A modulo some ultrafilter D. |Proof: We argue
indirectly. Suppose that for some n € w there is an ultrafilter D such that
Nopi1 = cf([TA/D). Let f = (fe : € < A) be a scale for [[A/D. It holds
that either {No, : 1 <k <n} € D or {Rg, : n < k <w} € D. If the finite set
{Nor : 1 <k <n}isin D, then D is a principal ultrafilter concentrating on
some cardinal below RN, 11, and thus, ¢f([] A/D) < Ro,11. This contradicts
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our assumption. If {Ny, : n < k < w} € D, then f is <p-bounded by the
pointwise supremum of f¢’s. This contradicts f being a scale.|
The following theorem is an important result of the pcf theory which plays

a crucial role in the applications of the pcf theory to cardinal arithmetic. See
Chapter 5.

Theorem 4.10. Suppose that A is a progressive interval of reqular cardinals.
Then pcf(A) is also an interval of reqular cardinals.

Proof. Suppose that A is a progressive interval of regular cardinals. Recall
that pcf(A) N minA = () and A C pcf(A). Hence we need to show that
every regular cardinal A with supA < A < max pcf(A) is in pcf(A).

If supA ¢ A, then supA must be a limit point of A, and thus, a singular
cardinal, since |A|< minA < supA. Otherwise, supA € A C pcf(A).

Consider now a regular cardinal A with supA < A < max pcf(A). We
show that A € pcf(A).

Let A’ be the first initial segment of A that is not in the ideal J, (it
exists). Then all proper initial segments of A’ are in J_,.

Claim. A’ has no maximal element.

Proof of the claim. In order to get a contradiction, suppose that supA’ € A'.
Then A'\supA’ € J.,. Since A" ¢ J.,, there is an ultrafilter D on A’ such
that ¢f(J[A'/D) > A. It follows that A"\supA’ ¢ D, because A'\supA’ €
J<x. Hence {supA’} € D; that is, D is a principal ultrafilter. Thus, we have
A<cf(J[TA/D) = supA’. But this is a contradiction to A > supA.

It follows that k™ < supA’ < A and {a € A’ : a < kT"} € J.) (and
|A'|T< k <)), for every cardinal k € A’. Further, J_, is a proper ideal, and
the product [ A’/J<y is A-directed. Thus, we can apply Theorem 3.13 to
A, Joy and A: there exists a <;_,-increasing sequence f = (fe : £ < A) of
functions in [[ A’/J.\ with an exact upper bound A such that

{a€e A :cf(h(a)) < K} € Joy,
for every cardinal k € A’. In particular,
I :={a€ A :cf(h(a)) <minA'} € J_,. (4.1)

The identity function id on A’ is a <-upper bound for f. So, since h is
minimal, we have h <;_, ud, that is,

Iy:={a€ A :h(a) >id(a) =a} € Jo,. (4.2)
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It follows from (4.1) and (4.2) that
minA’ < cf(h(a)) < a (4.3)

holds for every a € A’\(I; U I5). Thus, by changing h on the null-set I; U I,
we can assume that (4.3) holds for every a € A’. But since A’ is an interval
of regular cardinals, we have

cf(h(a)) € A’ for every a € A'.

Recall that by (3.1) we have

A =tef([Laea cf(W(a))/J<x).

Let B := {cf(h(a)):a € A'}, and let ¢ : A’ — B be the function defined by
c(a) :==cf(h(a)). Then |A’|< minB. Hence, we can apply Lemma 3.5: there
is an ideal J on B such that

tef(ITB/J) = tef (Haea cf(h(a))/J<x) = A

Thus, we have proved that A € pcf(B) C pcf(A’) C pef(A). This completes
the proof. O

We have the following generalization of the last theorem.

Definition 4.11. Suppose that A is a set of regular cardinals. For every
cardinal k < minA define

pcfe(A) == U{pcf(X): X C Aand |X|=r}.

Theorem 4.12. Suppose that A is an interval of reqular cardinals. Then for
every cardinal k < minA, pcfi(A) is also an interval of reqular cardinals.

For a proof see |1, Theorem 3.11].

The pcf function has (under weak assumptions) the following closure
property.

Theorem 4.13. Suppose that A is a progressive set of reqular cardinals, and
B C pcf(A) is also progressive. Then

pcf(B) C pef(A).
In particular, if pcf(A) is progressive, then pcf (pef(A)) = pcf(A).
For a proof see |1, Theorem 3.12].
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4.4 Generators for J_)

We shall prove that for every A € pcf(A) there is a set By[A] C A, called
generating set, such that

Jox+[A] = Jon[A] + Bal4],

that is, Joy+[A] is generated by J.) U {B\[A]}. This property of ideals J_
is called normality. Moreover, if A is progressive, then for every X C A,

X C By[AJU---U By, Al
for some finite set {\y, ..., \,} C pef(X).

Definition 4.14. Suppose that A € pcf(A). A sequence f = (f¢ : £ < \) of
functions in [] A, increasing in <;_,, is a universal sequence for X if it is a
scale for [T A/D whenever D is an ultrafilter on A such that cf(J[[ A/D) = \.°

Theorem 4.15. Suppose that A is a progressive set of reqular cardinals.
Then every X € pcf(A) has a universal sequence.

For a proof see |1, Theorem 4.2|.

The universal sequences will be frequently used from now on.® Before
we use them to prove the existence of generating sets, we state two other
important consequences of Theorem 4.15.

Lemma 4.16. Suppose that A is a progressive set of reqular cardinals. The
following are equivalent for every cardinal \:

1. A= max pcf(A)
2 A=tef(I1A/J<)
9. A= cf(TTA/J=)

Proof. 1 = 2. We show that any universal sequence for A is cofinal in
[T1A/J<x. Argue indirectly. Suppose that f = (fe : £ < A) is not cofinal in
[TA/J<y, ie. there exists h € [[ A/J<y such that {a € A: fe(a) < h(a)} ¢
Joy, for every & < A. Note that, since f is <;_,-increasing, we have for

§1 <& <A,

4These nice properties of the ideals J play a key role in the applications of pcf theory
to cardinal arithmetic.

5Notice that it suffices to say cofinal, instead of scale, since such an f is <p-increasing.

6We refer the reader to [2, section 4] for another (motivating) approach to generators
and universal sequences. The idea of a universal sequence arises from the attempt to
dominate a sequence of scales.
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{CL €A f§1(a) < h(a)} 2J<,\ {CL €A f&(@) < h(a)}

Thus, we can extend the ideal J., to a maximal ideal J such that {a € A :
fe(a) < h(a)} ¢ J, for every &€ < A. Let D be the dual (ultra)filter of J. Tt
follows that c¢f(J[ A/D) = A, because D N J.y = 0 and A = max pcf(A).
But f is not a scale for [[A/D, since fe <p h for every £ < A. Hence f is
not universal for \.

2 = 3. Trivial.

3 = 1. Suppose that A = cf([[ A/J<x). We first show that A < max
pcf(A). The ideal J., is clearly a proper ideal (otherwise, if A € J.,,
then cf(J[TA/J<x) = 1). Hence, there is an ultrafilter D on A such that
DnJcy = 0. It follows that cf([TA/D) < cf(J[ A/J<x) = A (see Remark
3.2(5)). But ¢f([TA/D) < X is impossible, because D N J., = (). Thus,
cf(ITA/D) = A. So we have A\ € pcf(A), which implies A < max pcf(A).
To prove that A > max pcf(A), let D be any ultrafilter on A. We claim that
A>cf(JTA/D). If DN J.y # 0, then, by definition, A > ¢f(][[ A/D). But
if DN J.y = 0, then (like above) A = ¢f([[A/J<x) > cf([[A/D). This
completes the proof. 0O

Theorem 4.17. If A is a progressive set of reqular cardinals, then

cf(ITA, <) = max pcf(A),

where < refers to the everywhere dominance relation <¢gy. Hence cf(]] A, <)
1s a reqular cardinal.

Proof. We only give a scetch of the proof. It follows easily that ¢f (][ A, <) >
max pcf(A). Let A = max pcf(A), and let D be an ultrafilter on A such
that A = ¢f(J[ A/D). Then <p extends <, and thus (by Remark 3.2(5)),
we have cf(J[[ A, <) > cf([[ A, <p) = A

The converse, cf([] A, <) < max pcf(A), is proved by finding a cofinal
subset of (]] 4, <) of cardinality max pcf(A) = \. Fix for every u € pcf(A)
a universal sequence f* = (f!":i < p) for pu. Let F' be the set of all functions
of the form

Sup{fi’il, {;2, . i’:"},

where pu1, fto, ..., i, is any finite sequence of cardinals in pef(A), and i, < puy
are arbitrary indices. Then F'is a cofinal subset of (][ A, <) of cardinality A
(for details see the proof of Theorem 4.26). O

In order to prove the existence of generating sets B,[A], we first make
the following characterization.
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Lemma 4.18. Suppose that A is a progressive set of reqular cardinals. Then
for any set B C A,

if and only if
B e Joy+[A4] (4.5)

and

whenever D is an ultrafilter on A with cf(H A/D) =X, (4.6)
then B € D.

Proof. Assume first that (4.4) holds. Then (4.5) is obvious. We prove (4.6).
Suppose that D is an ultrafilter on A with ¢f(J[[ A/D) = A. Then DNJ_ )+ #
(. Let X € DN J_y+. By (4.4), X\B € J_). Since DN J., = 0, it follows
that B € D. [For if A\B € D, then (A\B)N X = X\B € DN J-y.|

Now assume that (4.5) and (4.6) hold. We prove (4.4). Since B € J_y+,
we have J_y+ O J.\+ B. To prove J_y+ C J.)\ + B, assume that X € J_,+
and show that X\B € J., as follows. Let D be an ultrafilter on A such
that X\B € D. We claim that cf(J[[A/D) < A. Since X € J,+ N D,
cf(ITA/D) < A*. But ¢f(J[][A/D) = X is impossible, because B ¢ D.
Hence c¢f(J[[A/D) < . 0O

Theorem 4.19. |[Normality| Suppose that A is a progressive set of regular
cardinals. Then for every cardinal X € pcf(A) there is a set B C A such that

J<)\+[A] = J<)\[A] + B.

Proof. Let X € pcf(A). The case A € {|A|*,|A|"F,|A|TT1} is rather trivial:

Jopap = {0}
Joapr = {0+ {IA[*} = {0,{]AI"} };
Japapes = {0, {IAT}} + (AT} = {0, {JAIT} {JAITF 3 1Al JAFH} )

Suppose now that |A|™< X\. Then {a € A :a < |A|"3} = {JA|,|A|TF} €
J<japrs € Jox. Hence we can apply Theorem 3.13 to A, Joy and A (k = |A|*):
there exists a <;_,-increasing sequence f = (fe : & < A) of functions in
[T A/J<x with an exact upper bound h. Since the identity function id on A
is a <-upper bound of f, we have h <;_, id. By changing h on a null-set,
we can assume that h(a) < a, for every a € A.

Moreover, by Remark 3.14, we can assume that f dominates some uni-
versal sequence for \. It follows that f is a universal sequence for A as well.
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By verifying (4.5) and (4.6), we show that
B:={a€ A:h(a) =a}

generates J_y+ over J_,. In order to prove that B € J_,+, let D be any
ultrafilter on A such that B € D. We need to show that cf([]A/D) < A*.
First, if DN J.y # 0, then by definition ¢f (][ A/D) < A. Suppose now that
DnJcy=0. Then <p extends <;_,. It follows that f is a scale for [[h/D
(because it is a scale for [[h/J-y). But, since B € D, [[h/D is equivalent
to [[ A/D (modulo D). Thus, cf(J[[A/D)=cf([[h/D) = A.

We prove (4.6) indirectly. Suppose that B ¢ D. Then {a € A : h(a) <
a} € D, and thus, h € [[A/D. Assume that DN Joy = 0. [If DN J.y # 0,
then c¢f([TA/D) < A, and we are done.| It follows that <p extends <;_,,
thus, fe <p h for every £ < A (because fe <;_, h). This means that f has
an upper bound in [[A/D. Since f is a universal sequence for A, we have
cf(JTA/D) # X (otherwise, f would be cofinal in [[ A/D). O

Generating sets are not uniquely determined. But if By and B, are both
generators for J_,+, then they both satisfy (4.4), hence By =;_, B,. Thus, by
a generating set By[A] (or By[A] set) we mean any set B satisfying (4.4). In
particular, for A = max pcf(A) we can choose By[A] = A, since A obviously
satisfies (4.5) and (4.6).

We have the following analogue of Proposition 4.4, which will be useful
later on.

Proposition 4.20. If Ay C A and X € pcf(Ayp), then the restriction to Ay
of a generator for J_y+[A] is a generator for Jo +[Ao], i.e.

BA[AO] =J-[Ao] AO N B)\[A]
(Hence we can write By instead of By[Ao| and By[A].)

Proof. We need to verify (4.5) and (4.6) for Ay N By[A]. Since B,[A4]
Jox+[A], also AgNBy[A] € J_\+[A]. Proposition 4.4 implies that AN B, [A]
J<)\+ [A()]

To verify (4.6), let Do be any ultrafilter on Ag such that c¢f (][] Ao/ Do) =
A. We need to show that Ag N By[A] € Dy. We argue indirectly. Suppose
that Ag N Ba[A] ¢ Dy. Then Ag\Bx|[A] € Dy. Extend Dy canonically to an
ultrafilter D{j on A. Then cf([[A/Dj) = c¢f(I1Ao/Do) = A (see the proof
of Proposition 4.4), and By[A] ¢ Dj (because Ag\Bx[A] € D{). This is in
contradiction with (4.6) (for By[A4]). O

S
S

We have the following fundamental relation between generators and uni-
versal sequences.
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Theorem 4.21. Suppose that A is a progressive set of reqular cardinals. Let
A€ pef(A), and let f = (fe : € < A) be a <,_,-increasing sequence of
functions in [[A. Then

fis universal for X iff f | By is cofinal in [ Bx/J<x.

Proof. The case X € {|A|™, |A[TT, |A|™3} is trivial (see the proof of Theorem
4.19). So suppose that A > |A|*3.

We first show, by an indirect argument, that if f is universal for A\, then
f I By is cofinal in [] By/J<x." So, suppose that f | By is not cofinal, i.e.
there is some h € [] By/J<y such that h £;_ fe | By, for every &€ < A. Then
we have {a € By : fe(a) < h(a)} ¢ Joy, for every & < A\. Moreover, since f
is <j_,-increasing, we have for § < & < A,

{a € By: fe(a) < h(a)} 25, {a € Bx: feo(a) < h(a)}-

Hence there is a filter on B) extending the dual filter of J_.) and containing
the set {a € By : fe(a) < h(a)}, for every & < A. Extend this filter to an
ultrafilter D on A. Then cf([[ A/D) = A, because By € D and DNJ.y = 0.
But f is not a scale for [[ A/D, since fe <p h for every £ < A\. Hence f is
not universal for A.

Conversely, suppose that f [ By is cofinal in [[ By/J<x. We claim that f
is universal for A\. Let D be any ultrafilter on A such that ¢f([[A/D) = \.
By (4.6), By € D. It follows that D' := {a C B, : a € D} is an ultrafilter
on By. We have D'NJ_y = DN J.y = 0. It means that <p/ extends <Joxs
thus, f | B, is also cofinal in [[ By/D’. Now, since By € D, [g] — [g | B,|
is an isomorphism between [[ A/D and [][ B,/D’ (i.e a bijection preserving
the ordering relation). Hence f is cofinal in [[A/D. O

Corollary 4.22. Since there is always a universal sequence for A\, Theorem
4.21 implies that

A=tef(I1Ba/J<n)-
Corollary 4.23. By the previous corollary and LLemma 4.16, we have that
A = max pcf(B,).

Now we prove the covering property which we mentioned at the beginning
of the section.

Theorem 4.24. Suppose that A is a progressive set of reqular cardinals and
(Bx: A €pcf(A)) is a generating sequence for A. Then for every X C A,

"This is a generalization of the proof of the implication 1 = 2, on page 32. For then
we considered only A = max pef(A) and By = A.
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X CBy\U---UB,,,
for some finite set {1, ..., \n} C pef(X).

Proof. By induction on A = max pcf(X). If A = minA = max pcf(X),
then X = {minA} = B,. Suppose that the theorem is true for all v < A,
v € pcf(A), and let X C A such that A = max pcf(X). Then X\B, € J.,.
[If D is any ultrafilter on X such that X\B, € D, then cf(][ X/D) # A,
because By ¢ D. Thus, ¢f(J[[X/D) < A = max pcf(X).] Tt follows that
max pcf (X\B)) < A.

By induction hypothesis, X\B), C B,, U---U B,,, for some finite set
{1, s An} Cpef(X\B)y). Hence X C By, U---U B,, U B,. O

Towards the end of this chapter we state a few useful facts in terms of
filters.

Lemma 4.25. Suppose that A is a progressive set of regular cardinals and
F is a filter on A. Then the following are equivalent for every cardinal \:

1. tef(JTA/F) = A
2. ¢cf(JITA/D) = X for every ultrafilter D on A with FF C D
3. By € F and F extends the dual filter of J-

Proof. 1 = 2. See Remark 3.2(5).

2 = 3. We argue indirectly. Suppose first that By ¢ F. Then, by
Proposition 2.10(3), there exists an ultrafilter D O F on A such that B, ¢ D.
It follows by (4.6) that c¢f(][A/D) # .

Similarly, if F' does not extend the dual filter of J_y, then there is an
ultrafilter D O F on A which does not extend the dual filter of J.,. It
follows that D N J_-y # (0. Hence c¢f(J[ A/D) < .

3 = 1. By Corollary 4.22, we have A = tcf(]] Bn/J<r)- Note that
the restrtiction I’ := {a C By : a € F'} of F is a filter on B,. Since F
extends the dual filter of J.,, F’ extends the dual filter of J.,[B,]. Thus,
tef(I1 Br/F') = tef(I] Ba/J<x) = A It follows that tcf([[A/F) = A,
because [[ A/F and [] By/F’ are isomorphic (since By € F). O

Theorem 4.26. Suppose that A is a progressive set of reqular cardinals and
F is a filter on A. Then cf([[ A/F) is a reqular cardinal.

Proof. We argue as follows. Define pcfr(A) := {cf(][[A/D) : D O F}.
We first, prove that pcfr(A) has a maximal element, and then deduce that

cf(JTA/F) = max pcfr(A).
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Let A be the minimal cardinal for which F'N J<, # 0. We show that A =
max pcfr(A). For any ultrafilter D O F we have F N J<y € DN J<y # 0,
and hence cf([[A/D) < A. Thus, sup pcfr(A) < A

Conversely, we find an ultrafilter D O F such that c¢f(J[[A/D) = A
[Then it follows that A = max pcfrp(A).] We have that I := (J _, J<, is
an ideal on A (since J<,’s are C-increasing). It follows that F NI = 0,
because F' N J<, = 0, for every v < A. Extend F to an ultrafilter D such
that DN I = 0. Then cf(J[A/D) > A, since D N J<, = 0, for every v < A.
Hence c¢f([[A/D) = .

Now we show that cf([[A/F) = A. Since D extends F, it follows that
cf(ITA/F) = cf(ITA/D) = A

To prove the converse inequality, we find a cofinal subset of [[ A/F of
cardinality A. Fix for every cardinal u € pcfr(A) a universal sequence f* =
(fF'-i < p) for u, and let E be the set of all functions of the form

sup{ f/', ... fi"},
where i1, 12, ..., ft, is any finite sequence of cardinals in pcfr(A), and i, < py,
are arbitrary indices. Clearly |E| = A. Tt remains to prove the following
claim.

Claim. FE is cofinal in [[A/F.

Proof of the claim. Let g € [] A be any function. Consider the collection

I=A(f>9): fe€E}

of subsets of A, where (f > g)={a€ A: f(a) > g(a)}.

If FNT #(, then (f > g) € F for some f € E, i.e. f >p g for some
f € E, as desired.

Otherwise we get the following contradiction. Suppose that F NI = ().
We can extend [ to an ideal, since it is closed under unions, namely,

(fi > g9)U(fa>g) = (sup{fi, f2} > 9).

Moreover, we can extend I to a maximal ideal J on A such that F' N J = ().
Then p:=cf([[A/J) € pcfr(A) (because the dual filter of J is an ultrafilter
extending F'). It follows that the universal sequence f* for u is cofinal in
[TA/J. But we have (f/' > g) € I C J, that is, fI' <; g, for every i < p.
Contradiction. O

We finish this chapter by proving another representation theorem.®

8Compare it with Theorem 3.16. Recall that if I and J are ideals such that I C J and
tef ([T A/I) exists, then tef([[A/J) = tef ([ A/I) exists as well. But the converse is false.
Hence, the following theorem is stronger than Theorem 3.16, since J<, = J.,+ C Jbe,
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Theorem 4.27. Suppose that p is a singular cardinal of uncountable cofi-
nality. Then there ezxists a closed unbounded set (of limit cardinals) C C pu
such that |C|< minC" and

pt = 1ef([LCW /Ty).

Proof. By Theorem 3.16 there is a closed unbounded set of limit cardinals
Co C p such that |Cy|< minCj and

pt = tef(IIC5™ /7).
where J* is the ideal of bounded subsets of C’éﬂ.
We claim that the set C'(ng)\BMJr is bounded in CéJr). Let F be the filter
of cobounded subsets of C(()Jr), i.e. the dual filter of J%*. Then, clearly,
pt = tef(IICy7 /I = tef (T CG7 /F).

By Lemma 4.25, we have B,+ € F. Thus, C{”\ B, is bounded in C{".
Define

C = Cy\sup{a € Cp : ot € CSN\B,+ ).
Note that C' is also a closed unbounded set with |C|< minC'. It follows that
tef ([TOW/1) = tef (T1C57 /™) = .
since C(§+)\C(+) € J" is a null-set. So u* € pcf(CH). By Corollary 4.22,
pt = tef([1 B [CH]/ Tpir).
We complete the proof by showing that B,+[C™)] =J_ C™), but this

follows immediately by Proposition 4.20, applied to C*) C C’(()+) and ut €
pef (B [CH)):

B”Jr [O(+)] [C()] oiSala BM* [C(g+)] =),

_J<u+

Corollary 4.28. By Lemma 4.16, we have u* = max pcf(C).
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The pcf function




Chapter 5

Cardinal arithmetic

In this chapter we apply pcf theory to cardinal arithmetic. Our aim is to give
a clear insight into the (somewhat long) proof of Shelah’s famous theorem
NN < 9% 1N .

5.1 Cofinality of ([u|", C)

Let k and p be any cardinals with £ < p. The collection {X C p: |X| =k}
of all subsets of p of cardinality x is denoted by [u]®. One can show by a
short argument that |[u)*| = p* (for a proof see [3, Lemma 5.7]). Note that
the inclusion relation C is a quasi ordering of [u]”.

There is the following relationship between the cardinality and the cofi-
nality of [u]”:

[ = ef ([u]", <) - 2%, (5.1)

The proof is quite simple. Clearly |[u]*] > cf([u]", ) - 2%. We show that
< holds as well. Suppose that cf([p]®,C) = A and let Y = {Y; : i < A}
be a cofinal subset of [u]*. Define a one-to-one map from [u]® to Y x 2 as
follows. For every E € [u]” find some Y; € Y such that £ C Y. Since Y] is
isomorphic to k, E is isomorphic to some subset S of k. Map E to (Y;,.5).

One can prove by induction that for every n € w, cf([X,]*,C) = N, but
it is hard to determine ¢f([u]®, C) in general. However, by the means of pcf
theory we are going to prove the following crucial theorem.

Theorem 5.1. Suppose that 1 is a singular cardinal, and Kk < p is an infinite
regular cardinal such that the interval A of reqular cardinals in (k, 1) has size
< k. Then

ef ()", ) = maz pef(A). (5.2)
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Using Theorem 5.1, and some results from Chapter 4, we can prove the
following:

Theorem 5.2. Nﬁo < N(2x0)+.

Proof. Consider the interval A = {X,, : 0 < n < w} of regular cardinals. By
Theorem 4.10, pcf(A) is also an interval of regular cardinals, containing all
regular cardinals from X; to max pcf(A). Moreover, by Corollary 4.8,

pef(A)] < |P(A)] = 2%,

It follows that
max pef(A) < Rgngyt.

Applying (5.1) and Theorem 5.1 (for K = Rg and u = N,), we get
IR = cef ([R]¥, C) - 2% = max pef(A) - 2% < R g+ -
U

Remark 5.3. (1) If X, is a strong limit cardinal, i.e. 2% < R, for every
n < w, then 2% =\ and hence, 2% < R yup)+.

(2) It follows from the proof of Theorem 5.2 that we can get a smaller
upper bound of XX by limiting the size of pcf(A). Indeed, one can show that
Ipcf(A)] < |A|*® (whenever A is a progressive interval of regular cardinals),
and hence get R < 2% 4 R = (see the next section). '

The proof of Theorem 5.1.

We first prove the easier inequality cf([u]", C) > max pcf(A). Note that
A is a progresive set of regular cardinals, since |A| < k. Let A = ¢f([u]", ©),
and let {X; : i < A} be cofinal in ([u]*, C). Define for each ¢ < A a function
hi € [TAby hi(a) :=sup anNX;. Then {h; : i < A} is cofinal in (J] A4, <). |If
f € [T A, then the range of f is an element of [¢]<", and hence, it is covered
by some X;. Thus, f < h;.] So A > ¢f([]A, <) = max pcf(A) (the last
equality by Theorem 4.17).

The proof of the other inequality, ¢f([u]", <) < max pcf(A), is more
complicated. We first assume that |A| < k. The case |A] = & is then
obtained by applying the first case to |A| = kT and using

cf ()", C) < ef ((u)*", Q) - w7 (5.3)

For a cardinal v, let [, be the &-structure whose universe is the collection of
all sets which have transitive closure of size < . Fix some large 6 such that
Hy contains all sets that were discussed so far. We also add to the structure
Hy a well-ordering <* of its universe. It allows us to assume that the objects
we talk about are uniquely determined.

It is still an open question if actually [pcf(A)| = |A| holds.
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Definition 5.4. An elementary substructure M < Hy is k-presentable if
there is a sequence (M; : i < k) of elementary substructures of Hy such that

1. ifi < K, then M, C Mi+1 and M,; € Mi-‘,—l;

2. for limit ordinals 6 < x, My = J,_s M;, and M = J,_,. M;,

=)
3. M has cardinality x and Kk +1 C M.

Let M be the collection of all k-presentable substructures M < Hy such
that A € M. Define
F={Mnu:Me M}.

We are going to show that F'is cofinal in ([u]*, C) and of cardinality at most
max pcf(A). This will complete our proof.

It follows easily that F' is cofinal, because if X € [u]", then there is a
r-presentable substructure M such that A € M and X C M. [To construct
such an M use Lowenheim-Skolem theorem. Define the approaching sub-
structures as follows. Start with an arbitrary My < Hy of cardinality x such
that A € My, X C M and k+ 1 C M. For each i < k, M; is an element of
Hy, and thus, can be incorporated in M;,; < Hy.|

It remains to show that F' has cardinality at most max pcf(A). For any
structure N, define the 'characteristic function’ Chy of N by

Chy(v) =sup N N+, for regular cardinals v > |N|.

Note that if M is a k-presentable substructure, then Chy; [ A is an element
of [T A4, because | M| < minA.

We argue as follows. We first show (in the next lemma) that for M € M,
Chys | Adetermines MNp,i.e. Chy [ A= Chyy | Aimplies M = M'Np,
and then prove that [{Chy [ A: M € M}| < max pef(A).

Note that whenever X € M (M € M) such that |X| < k, then X C M.
In particular, A C M. |Since |X| < &, there is a function in Hy (and hence
in M) from x onto X. It follows that X C M, because k C M ]

Lemma 5.5. Suppose that M is k-presentable. Then Chyy [ A determines
M N p.

Proof. Suppose that M and M’ are two k-presentable substructures of Hy
such that Chy; | A = Chyp | A. We show by induction that M N~y = M' N~y
for every cardinal v < p.

Clearly, M N~y = M'N~ =, for every cardinal v < k. If v < p is a limit
cardinal, then M N~y =J.,_, M N+, and hence M N~ = M' N~ follows by
the induction hypothesis.

<y



44 Cardinal arithmetic

Assume now that M N~y = M’ N~ for some v with kK < v < . We need to
show that also M N~y* = M’'N~*. Observe that there is a closed unbounded
subset E of Chy(yT) = sup M N~T of order-type x such that £ C M.
[Proof. For each i < k, we have M;, vt € M, and thus, sup M; N~yT € M
and E = {sup M; N~y" :i <k} C M. E is closed, since for limit ordinals
§ < K, Ms = J,.s M;, and it is cofinal in M N~*, because M = {J,_,. M, |
Similarly, there is a closed unbounded subset E’ of Chyy(y1) = sup M'N~*
of order-type x such that £/ C M’.

Since k is uncountable, ENE" C M N M’ is a closed unbounded subset of
Chpy(v") = Chpp ("), In particular, M N M’ N+t is cofinal in both M N~*
and M’ N~*.

Let « € M N M’ N~*\y be any ordinal. There is a bijection f : v — «
(in Hp). Since M,M' < Hy, the <*-least such f is in both M and M'.
Hence, we have M Na = f"(M N~vy) = f"(M'N~vy) =M Nna. It follows that
Mn~t =M n~T. O

To prove [{Chy [ A: M € M}| < max pef(A), we define a special type
of universal sequence.

Suppose that A € pcf(A) and f = (fe : £ < \) is a sequence of functions
in [TA. Let § < A be a limit cardinal with c¢f(d) = k. For every closed
unbounded set E C ¢ of order-type cf(9) let

hg = sup{fe: { € E}.

There is a closed unbounded set C' C § such that he < hg, for every closed
unbounded set £ C 4. [Proof. Otherwise, we can contruct a decreasing
sequence (E, : a < |A|") of closed unbounded sets of 4 such that for every
a < |Al*, hg, £ hg,,, (since |[A] < cf(d), at limit stages we can take
intersections of the sets so far constructed). It follows that there is a single
a € A such that hg, (a) > hg,,,(a) for infinitely many «o’s. Contradiction.]
The function h¢ is called a minimal club-obedient bound of f = (fe: & < 0).
The sequence f = (fe : £ < A) is said to be minimally obedient (at cofinality
k) if for every § < X with ¢f(d) = &, fs is a minimal club-obedient bound of
(fe: €<9).

We can construct a universal sequence (fe : & < A) for A, which is mini-
mally obedient, as follows. Let (fg : £ < A\) be any universal sequence for A.
Define (fe : £ < A) by induction on £ < X such that

L fo=f, and feyq > max{fg,fg},

2. at limit stages 6 < X with ¢f(d) = &, fs is a minimal club-obedient
bound of (fe : £ < 9),
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3. at limit stages § < X with ¢f(0) # kK, fs is any J.,-upper bound of
(fe : € <), guaranteed by the \-directedness of [[ A/ J<.

Note that the sequence (fe : £ < \) is Joy-increasing. It is by construction
minimally obedient, and it is universal, since f¢; > fg for every £ < .

Fix for every cardinal A € pcf(A) a minimally obedient universal sequence
A= (fé\ : & < A) for A\, which is least in the well-ordering <* of Hy (and
hence, by elementarity, contained in each M € M with X\ € M).

Definition 5.6. A sequence f = (f¢ : £ < \) of functions in [ A is said to
be persistently cofinal for X if for every h € [] A there exists £ < A such
that for every &, with § < & < A,

h | Bx<j_, fe | Ba.

The minimally obedient universal sequences f» are persistently cofinal
for A, because they are J_,-increasing, and hence cofinal in By/J., (see
Theorem 4.21).

The following lemma is the crucial observation, which will also be used
in the next section.

For any structure N, let N denote the ordinal closure of N, that is, v € N
iff v € NN Ord or v is a limit of ordinals in V.

Lemma 5.7. Suppose that A is a progressive set of reqular cardinals, A €
pef(A), and f = (fe : £ < A) is a sequence of functions in [[ A. Let k be a
reqular cardinal with |A| < k < minA, and let M < Hy be a k-presentable
substructure such that f, A € M (and hence \ € M). Let y = Chp(\). Then
the following hold.

1. If f is persistently cofinal for X\, then
{a € A: Chy(a) < fy(a)} is a By[A] set. (5.4)

2. If [ is a minimally obedient universal sequence for A, then for every
limit ordinal v € (MNOX)\M there is a closed unbounded set C C v'NM
(of order-type k) such that f, = sup{fe: £ € C}, and thus

fy(a) € M Na, for every a € A.
In particular, f,(a) € M Na, for every a € A, and hence
f, < Chyy (5.5)
and

for every h € M N HA, there is some d € M N HA
such that h | By <;_, d | By and d < f,,. (5.6)
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For a proof of (1) and (2) see [1, Lemma 5.4] and [1, Lemma 5.7], respec-
tively.

Corollary 5.8. Suppose that A is a progressive set of regular cardinals,
A€ pcf(A), and f = (fe : £ < ) is a sequence of functions in [[ A. Let  be
a regular cardinal with |A| < K < minA, and let M < Hy be a r-presentable
substructure such that f, A € M (and hence A € M). Let v = Chy(N).
Suppose that (5.4), (5.5) and (5.6) hold®. Then

br:={a € A:Chy(a) = f,(a)}

is a B)[A] set. Moreover, there is a subset b of by which is a generating set,
as well, and which is in M.

Proof. * Tt follows immediately from (5.4) and (5.5) that by is a B,[A] set.
In order to define a subset of by which is a generating set, and which is
in M, we modify the definition of by, substituting M and v by parameters
from M.
If a € A and f,(a) < Chy(a), then there exists some ¢ < & such that
fy(a) < Chyg(a), because M = J,_, M;. Since |A| < &, there is a single
t < K such that

1<K

fy(a) < Chy(a) iff fo(a) < Cha,(a),
for every a € A. By negating both sides, we get
a € by iff Chy(a) < fy(a).

Hence, we have replaced the parameter M by M; in the definition of b,. To
substitute v, we use the property (5.6) of f (for h = Chyy,): there exists a
function d € M N[ A such that

L. Chy, | By <y, d ] By, and
2. d < f,.
We replace f, in the definition of by by the function d, and define
by :={a € A:Chy,(a) <d(a)}.

Since all parameters in the definition of o) are in M, we have b, € M.
Properties 1 and 2 above imply that

By Cy., {a € A: Chyy(a) < d(a)} B, C by,
Thus, by C by is also a By[A] set. O

2In the next section we will apply this corollary to sequences which are not neccessarily
universal and minimally obedient, but satisfy (5.4), (5.5) and (5.6).
3This proof is taken from [1, page 53].
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If we (first) fix a x-presentable substructure M < Hy with A € M (i.e.
M € M), and then consider all cardinals A € pcf(A) N M, we get

Corollary 5.9. Suppose that A is a progressive set of regular cardinals, k is a
regular cardinal such that |A| < Kk < minA, and M < Hy with A € M is a k-
presentable substructure. Suppose that M contains for every A € pcf(A)NM
a sequence f* = (f2 : £ < A) that satisfies properties (5.4), (5.5) and (5.6).
Then there are cardinals A\g > Ay --+ > A, in pcf(A) N M such that

Chy [Azsup{fv)‘oo,...,f,i‘:}, (5.7)
where v; = Chy(\).

Proof. By Corollary 5.8, for every A € pcf(A) N M there is a By[A] set
b\, € M, such that

B C {a € A: Chu(a) = (@) (53)
We claim that there exist cardinals A\g > --- > A, in pcf(A) N M such that
A=0b, U---Uby (5.9)

i.e. the 'covering cardinals’ can be found in M (compare with Theorem 4.24).
To prove this, we inductively construct a descending sequence \g > --- > \;
of cardinals in pef(A) N M as follows:

1. let A\g = max pcf(A),
2. if Ay = A\(bi\o u---U b;\z) # (0, then let \;y 1 = max pcf(Aiyq).

Since b//\o, e b:\i € M, we have A; ;1 € M (A;11 # (), and hence N\ € M.
Obviously, \; > A1, because A; O A;1. But \; = \;;1 is impossible, since
b:\iﬂAiH = () (and thus \; € pcf(A;11)). Hence A; > A\;41. It follows that the

sequence terminates. That is, for some i, A;;1 = (. Then A = b//\o U--- Ubl)\i.
By (5.5), féhM(A) < Chyy holds for every A € pcf(A) N M. Therefore,

(5.8) and (5.9) imply that (5.7) holds. O
It follows from Corollary 5.9 that [{Chy [ A: M € M}| < max pcf(A).
Namely, there are only max pcf(A) many sequences fé(;lM(/\o), ceey é‘!};M(/\n),

where M € M and Ag,..., A\, € pef(A) N M. Thus, we have completed the
proof of Theorem 5.1.

Remark 5.10. Since (5.1) holds and its proof is quite short, one could ask:
why is it not simply incorporated in Theorem 5.1, such that (5.2) becomes
|| = max pcf(A) - 2. The answer is - we want to stress the importance
of studying cofinalities; according to Shelah, this approach is the key to
new results. Another reason for working with cofinalities is the fact that
cofinalities are more immune to forcing methods then cardinalities.
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Remark 5.11. (1)If we additionally assume (in Theorem 5.1) that 214 < &,
then we have pcf(A) < 241 < &, and hence pcf(A) C M, since k +1 C M.
In this case, the proof of Corollary 5.9 is very short, bacause we can apply
Theorem 4.24. Actually, Theorem 5.1, as it is, follows easily from this special
case (where 214! < k); for a proof see |2, 5.4].

We have the following straightforward generalization of Theorem 5.2.

Theorem 5.12. Suppose that N5 is a singular cardinal such that 0 < Ng.
Then
R < R oy (5.10)

Proof. Consider the progressive interval A of regular cardinals in (]0|*, Ns).
By Theorem 4.10, pcf(A) is also an interval of regular cardinals, containing
all regular cardinals from |67 to max pcf(A), and by Corollary 4.8,

Ipef(A)| < |P(A)] < 2.

It follows that
max pcf(A) < Vigsiy+

Therefore, applying (5.1), (5.3) and Theorem 5.1 to 0|1, N5, we get
[[R5]°1] = ef ([R]1%, ©)-29 < ef (8] 1", ©)-21 = max pef(A)-21 < Riganys.

O

We now mention a tighter bound then (5.10). Let p and 7 < p be
cardinals. A cover for [u]<7 is a collection C of subsets of p such that for
every X € [u|<" there exists Y € C with X C Y. If # is a cardinal such that
>0 > 71, then cov(u, 0, 7) denotes the least cardinality of a cover for [u]<"
consisting of sets taken from [u]<?. [Note that cf([u]*, C) = cov(u, ™, k1).|

Theorem 5.13. Suppose that p is a singular cardinal, and k < p is a reqular

cardinal such that the interval A of reqular cardinals in (KT, p) has size < k.
Then

cov(p, &7, cf (1) ") = sup pefern(A). *
Corollary 5.14. Suppose that ¢ is a limit ordinal such that § < Xs. Then

Ngf(é) < N(‘5|cf(6))+ .

For proofs see |1, page 57|. Here we only prove the following.

1See Definition 4.11 for pcf s, (A).
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Theorem 5.15. Suppose that i is a singular cardinal, and k < p 1s a reqular

cardinal such that the interval A of reqular cardinals in (KT, ) has size < k.
Then

COU(M? K'Jr7 Nl) = sup pcho(A) (511)

Proof. By induction on u, i.e. for a fixed regular cardinal x we show by
induction on g that whenever p > k is a singular cardinal such that the
interval A of regular cardinals in (k% i) has size < x, then (5.11) holds.

Let k = W,. If p =N,y then ¢f(u) = R, and hence (5.11) follows from
Theorem 5.13.

Assume now that p > R4, and cov(v, kT, Ry) = sup pefy,(A) holds for
every singular cardinal v such that R, < v < pu.

If ¢f() = Ny, then we can use Theorem 5.13 again. So assume that
cf(p) > No. It follows that there is a cofinal subset {v; > k™" i < cf(u)}
of p consisting of singular cardinals.

Let A; be the interval of regular cardinals in (k,1;). Then, by induction
hypothesis, cov(v;, kT, Ry) = sup pcfy, (A;), for every i < ¢f(u). Hence,

cov(p, k1 V) = SUD; < £(y0) (cov(ui, KT, Nl)) = SUP; et () (sup pchO(Ai)).
We complete the proof by showing that

SUD; < cf () (Sup pCfr, (AZ)) = sup pcfy,(A).

The < inequality is obvious, since sup pefy, (A4;) < sup pefy, (A), for every i <
cf(p). Conversely, if A € pcfy,(A), then for some i < cf(u), A € pefy,(4s),
because cf (1) > Ro. Thus, sup; ) (sup pefi,(Ai)) > sup pefy,(A). O

Corollary 5.16. Suppose that ¢ is a limit ordinal such that § < Ns5. Then
RO < N gm0+ -

Proof. Consider the interval A of regular cardinals in (||, N5). By Corollary
4.8, we have
[pefi, (A)] < [[A]] - 2% < |3 (5.12)

Since pcfy,(A) is also an interval of regular cardinals (see Theorem 4.12),
(5.12) means that

(18], 5up pef(4)) N Reg] <[] (5.13)
It follows now from (5.13) that

sup pCfNO (A) < N(|5‘NO)+,
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because
11617, R5p0y+ ) N Reg| = (16]™)F.

By Theorem 5.15, cov(Rs, |67, Ry) = sup pcfy,(A), therefore, we have
cov(Ng, [6]7,Ry) < R0+,
which implies
RO = |[Rs]%0] < [6]% - cov(Rg, [0]F,Ry) < R j5/%0)+ -
U

Corollary 5.17. Suppose that § is a cardinal such that for every cardinal

i< 6, pto < §. Then R; has the same property, namely, for every u < Ng,
No

U0 < Ny

Proof. By induction on p. If i < 4, then, by assumption, u™° < §, and hence
No
U0 < Ny
Assume now that § < pu < Ng, and for every cardinal v < pu, YN < Ns.
If v is a successor cardinal, i.e. u = N,,q, for some ordinal «, then, by
induction hypothesis (and Proposition 2.7),

RN, = RNR, < R
If 4 = N, is a limit cardinal, then o < X, and thus, by the previous corollary,
RO < Rjynop+ < Ry

The last inequality holds because a < §, and thus (|a|R)T < 4. O

5.2 Improving the upper bound on [pcf(A)|

As we mentioned in Remark 5.3, one can show that |pcf(A)| < |A|™, for a
progressive set A of regular uncountable cardinals. It follows then easily by
the proof of Theorem 5.12 that for limit ordinals § with |§|*/®) < N;, we have
Ngf(a) < Njsi+4 (see Theorem 5.22). In partiular, R0 < 2% 4N, .

We give an outline of the proof of |pcf(A)| < |A|™. Recall first some
facts from the previous section. We showed that there is a x-presentable ele-
mentary substructure M < Hy (JA| < k < minA), and proved the existence
of minimally obedient universal sequences f* for A € pcf(A). In Lemma
5.7 we proved that for each A € pcf(A) N M, f* satisfies conditions (5.4),
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(5.5) and (5.6). It followed then by Corollary 5.8 that there exists a special
generating sequence (by : A € pcf(A) N M). °

Modifying the minimally obedient universal sequences f*, we define the
elevated sequences of functions in [ A, which also satisfy conditions (5.4),
(5.5) and (5.6), but moreover, the corresponding generating sequence (b, :
A € pef(A) N M) is transitive (definitions follow).

Definition 5.18. A generating sequence (B) : A € pcf(A)N M) is said to be
transitive (or smooth) if for every X\ € pcf(A)N M, 6 € B, implies By C B,.

For Ay € pcf(A), we define the elevated sequence F* = (F0 : y < Ao)
of functions in [] A as follows.

For every sequence Aq,...,\, € A, such that \g > A\; > --- > \,, and for
every ordinal 7y € \g, inductively define a sequence v; € A,..., 7, € A\, by
Yirr = f (Aiga). (5.14)

So 11 = f20(M), 72 = 21 (A2), - = f2r ) (An). The elevation function

0 1
Ely,....n, on Ag is given by

Elko,---,kn (70) = Tn-

We first define F* on AN X\y. Given A € AN Ao, let Fy,» be the set of all
sequences A, Ag, ..., \, € A, such that \y > A\{ > --- > X\, = A. For every
Yo € A\g we ask whether there is a maximal value in

{El,\o,...,,\n (70) = ( Aoy A1y .o, An) € F,\O,,\}-

If this set contains a maximum, let F°()) be that maximum, and otherwise
let F20(X) := f20(X). For X € A\, let F2°(X) := 7o, for each v € Ao.

Lemma 5.19. For each \ € pcf(A) N M, the elevated sequence F* satisfies
conditions (5.4), (5.5) and (5.6), and the generating sequence (by : X\ €
pef(A) N M), where by :={a € A: Chyla) = Fé\hM()\)(a)}, is transitive.

For a proof see [1, pages 61,62].

The transitive generators can be used to prove the following localization
property of A.

Theorem 5.20. If B C pcf(A) is progressive, then pcf(B) = pcfia(B).
That is, if B C pcf(A) is progressive, then for every A € pcf(B) there exists
By C B with |By| < |A|, such that X\ € pcf(By).

°In this section we assume in addition that M also contains the array (f* : X € pcf(A)).
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For a proof see [1, Theorem 6.6].

The simplest case of localization (in which |B| = |A|*) implies that
[pef (A)] < [A[*:

Theorem 5.21. Suppose that A is a progressive interval of reqular cardinals.
Then
[pef(A)] < [A[F

For a proof see [1, Theorem 7.1].

Theorem 5.22. Suppose that § is a limit ordinal such that |57 < N;.
Then
N(C;f(cs) < N‘5|+4.

Proof. Consider the progressive interval A of regular cardinals in (]0|1, Ny).
We basically repeat the proof of Theorem 5.12. Since pcf(A) is also an
interval of regular cardinals, containing all regular cardinals from |§|*" to
max pcf(A), and since, by Theorem 5.21,

[pef(A)] < JA[* = Jo]*,

it follows that
max pcf(A) < Wjs+4.

Therefore,
I[Rs]7 | = cf ([Re]?), ©) - 8] = (ef (Rs]PT, ) - [8]F) - 6]/ =

cf([Rs]P1, C) - [6]®) < max pef(A) - Rs < Rigea.
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