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Chapter 1IntrodutionThe pf theory (possible o�nalities theory), developed in late 1970's bySaharon Shelah, is a powerful theory with many remarkable appliations inset theory. It beame espeially famous for introduing a ompletely newway of studying the arithmeti of ardinal numbers, whih led to amazingresults. Before we mention these results, let us �rst present their historialontext.In 1940 Gödel showed that CH (the ontinuum hypothesis: 2ℵ0 = ℵ1) isonsistent with ZFC axioms (Zermelo-Fraenkel axioms + axiom of hoie).By introduing the method of foring, Cohen showed in 1963 that the nega-tion of CH is also onsistent with ZFC. Thus, Cantor's onjeture that 2ℵ0is the �rst unountable ardinal was proven to be independent of ZFC, thatis, neither provable nor refutable from ZFC. This result ompletely hangedthe view on ardinal arithmeti and set o� the wave of independene results.In 1970's Easton showed that if f is any funtion on regular ardinals, suhthat1. f(λ1) < f(λ2) for λ1 < λ2, and2. the o�nality of f(λ) is bigger than λ,then it is onsistent (with ZFC) to assume that 2λ = f(λ), for all regularardinals λ. For a long time it was believed that the same holds for singularardinals, and hene, that no deep theorems about ardinal arithmeti an beproved within ZFC. So it ame as a big surprise in 1974 when Silver produeda new theorem of ardinal arithmeti:if 2ℵα = ℵα+1 for every α < ω1, then 2ℵω1 = ℵω1+1.It beame lear that singular ardinals represented a new hallenge, whihwas alled the singular ardinals problem. In 1975 Galvin and Hajnal ameup with the following theorem:



2 Introdutionif ℵδ is a strong limit singular ardinal with cf(ℵδ) > ℵ0,then 2ℵδ < ℵ(|δ|cf(δ))+ .For example, if ℵω1 is a strong limit, i.e. 2ℵα < ℵω1 for every α < ω1, then
2ℵω1 < ℵ(2ℵ1 )+ . Although these ZFC-theorems represented a new trend, settheory was still marked by the tendeny to produe independene results,and move on in some sense, rathen than investigate ZFC. Commenting this,Shelah said:�...when I beame interested in the subjet, I saw a great deal ofativity and suspeted I had ome into the game too late; shortlythereafter I seemed to be the only one still interested in gettingtheorems in ZFC.�However, he was wrong about being late. Making the following three deepobservations, he established a new theory: pf theory.1. Instead of studying ardinal exponentiation, one ould, more generally,study (redued) produts of in�nite ardinals.2. It would be useful to shift the fous from ardinalities to o�nalities (ofproduts of ardinals).3. The notion of o�nality an be generalized to the notion of possibleo�nality (o�nality modulo some ultra�lter).We de�ne the redued produts and study the possible o�nalities in hapters3 and 4. [Chapter 2 is rather a brief introdution to basi set theory andserves as an overview of the preliminaries needed for understanding laterhapters. We refer to [3℄ for a detailed introdution.℄Applying the pf theory to ardinal arithmeti, in 1978 Shelah proved anew theorem in ZFC:if ℵδ is a singular ardinal suh that δ < ℵδ, then ℵ

|δ|
δ < ℵ(2|δ|)+ .For example, ℵℵ0

ω < ℵ(2ℵ0 )+ . On the one hand, this theorem was speial forinvolving singular ardinals ℵδ of ountable o�nality (unlike Galvin - Hajnaltheorem), but on the other hand, the upper bound ℵ(2|δ|)+ ould be arbitrarilylarge, by Easton's theorem. Nevertheless, after improving the pf theory, in1989 Shelah ame up with a muh stronger theorem:if δ is a limit ordinal suh that |δ|cf(δ) < ℵδ, then ℵ
cf(δ)
δ < ℵ|δ|+4.



3For example, if 2ℵ0 < ℵω, then ℵℵ0
ω < ℵω+4. Hene, ℵℵ0

ω ≤ 2ℵ0+ℵω4. Moreover,if ℵω is a strong limit ardinal, then 2ℵω = ℵℵ0
ω , and thus, 2ℵω < ℵω+4 . Theabove theorems will be proved in Chapter 5.There have been written many papers about pf theory. Espeially greate�ort to explain and elaborate Shelah's original ideas and proofs was madeby Abraham, Burke, Jeh, Kojman and Magidor. However, the reent paper[1℄, by Abraham and Magidor, seems to be one of the best presentations ofpf theory. It explains the substantial parts of the theory separately and verylearly. For instane, exat upper bounds are explained very well.Our aim is to make a detailed introdution to pf theory and give a learinsight into the proof of the theorem ℵℵ0

ω ≤ 2ℵ0 + ℵω4. What follows analso be onsidered as a omplement to the splendid work by Magidor andAbraham; we omplete some of the proofs and give examples (and use asimilar notation). We try to make the theory and its appliation to ardinalarithmeti as short and �uent as possible, doing a favour to those readerswho want to learn pf theory, but neither have too muh time for it, norwant to see only skethes (for example, those who are only interested in theproof of the theorem above).Unless stated otherwise, all theorems and results in the last three haptersare due to Shelah.



4 Introdution



Chapter 2Some basi set theory
2.1 Sets and numbersThe founder of set theory, Georg Cantor, de�ned sets to be olletions ofany objets (that an be thought of). However, the words any and everyturned out to be relative. Russell's paradox1 was a lear sign that a formalapproah to set theory demands more preise de�nitions. One way to avoidtroubles was to start with axioms and only onsider 'worlds of objets'(alsoalled models) in whih these axioms are true. The most famous system ofaxioms for set theory is alled ZFC2.We �x a model of ZFC whih beomes our universe. By a set we under-stand any olletion of objets in that universe. (If a olletion of objets is(possibly) not in the universe, we use the word lass for it.) The set of allsubsets of a set A is alled the powerset of A and is denoted by P (A). A set
A is ountable if there exists an injetive funtion f : A → N, otherwise it isunountable.2.1.1 Relations on setsLet A be a set. Any subset R of A × A = {(a, b) : a ∈ A, b ∈ A} is alleda (binary) relation on A. We usually write a R b instead of (a, b) ∈ R. A1Consider the olletion of all objets whih do not ontain themselves. Is it ontainedin itself?2Zermelo-Fraenkel axioms with the axiom of hoie: there exists an empty set ∅ (anbe thought of as a unit); there exists an in�nite set; pairs, unions, powersets and ertainsubsets of sets exist (are sets); images of sets (under any funtion) are sets; two sets aresame if and only if they have the same elements; every nonempty set has a ∈-minimalelement; every family of nonempty sets has a hoie funtion. We refer to [3, Chapter 1℄for a omplete and formal desription of ZFC axioms.



6 Some basi set theoryrelation R is said to bere�exive if a R a for every a ∈ A;irre�exive if a 6R a for every a ∈ A;symmetri if a R b implies b R a for every a, b ∈ A;transitive if a R b ∧ b R c implies a R c; andtotal if either a R b or b R a or a = b for every a, b ∈ A.De�nition 2.1.1. A binary relation ≤P on a set P is alled a quasi ordering of P if it isre�exive and transitive.2. A binary relation <P on a set P is alled a strit partial ordering of Pif it is irre�exive and transitive.3. A total strit partial ordering on a set P is alled a linear ordering of
P .4. A binary relation on a set P is alled an equivalene relation on P if itis re�exive, symmetri and transitive.There an be at the same time both a quasi ordering ≤P and a stritpartial ordering <P on a set P ; we identify P with (P ,≤P ,<P ).De�nition 2.2. Fix a set P and let ≤P and <P be a quasi ordering and astrit partial ordering of P , respetively. For nonempty sets X, Y ⊆ P , and

p ∈ P , we say that
p is a maximal element of X if p ∈ X and p ≮P x for every x ∈ X;
p is a minimal element of X if p ∈ X and there is no q ∈ X suh that
q ≤P p and p �P q;
p is a least element of X (in the relation ≤P ) if p ∈ X and p ≤P x forevery x ∈ X;
p is an upper bound of X (or p bounds X) if x ≤P p for every x ∈ X;
p is a <P -upper bound of X (or p <P -bounds X) if x <P p for every
x ∈ X;



2.1 Sets and numbers 7
X is o�nal in Y in the relation <P (resp. ≤P ) if for every b ∈ Y thereis some a ∈ X suh that b <P a (resp. b ≤P a) [we also say 'o�nal in(Y, <P )' instead of o�nal in the relation <P ℄;
X is bounded in Y if there is an upper bound for X in Y ;So p is a minimal upper bound of X if p is an upper bound of X andthere is no upper bound q of X suh that q ≤P p and p �P q; and p is a leastupper bound of X if p is an upper bound of X and p ≤P q for every upperbound q of X (p is then also alled a supremum of X (supX)).We say that p is an exat upper bound of X if p is a least upper boundof X and X is o�nal in {q ∈ P : q <P p} in the relation ≤P .Suppose that R is an equivalene relation on a set P . For eah p ∈ P , wede�ne the equivalene lass [p] := {q ∈ P : p R q} of p. Every element of Pis then in some equivalene lass (p ∈ [p]), and no element is in two di�erentlasses. The quotient P/R of P modulo R is the olletion of all equivalenelasses.2.1.2 Ordinal numbersA linearly ordered set (P, <P ) is well-ordered if every nonempty subset ofit has a least element (in the linear ordering). By a proper initial segmentof a well-ordered set P we mean a subset of the form {x ∈ P : x <P r} forsome r ∈ P . It holds3 that any two well-ordered sets are omparible in thefollowing sense; either they are isomorphi (with respet to the relation <P )to eah other, or one of them is isomorphi to an initial segment of the otherone. If we de�ne equivalene lasses on the olletion of all well-ordered setsby putting isomorphi well-ordered sets into the same lass, we an thinkof ordinal numbers as the olletion of the niest representatives of theseequivalene lasses.De�nition 2.3. A set A is an ordinal number (an ordinal) if it is well-ordered by the relation ∈ (is an element of), and if a ⊆ A for every a ∈ A(transitiveness).Ordinals are usually denoted by lowerase greek letters α, β, et., and thelass (olletion) of all ordinal numbers is denoted by Ord. A funtion f isalled an ordinal funtion if range(f) ⊆ Ord. For ordinals α and β we alsowrite α < β instead of α ∈ β. We list some of the basi fats about ordinalswithout proving them. The proofs an be found in [3℄.3See [3℄ for a proof.



8 Some basi set theoryProposition 2.4. The following hold for any ordinal number α:1. The empty set ∅ is an ordinal;2. if β ∈ α, then β is also an ordinal;3. α = {β : β ∈ α};4. α + 1 := α ∪ {α} is also an ordinal;5. If X is a nonempty set of ordinals, then ⋃

X is also an ordinal;6. < is a linear ordering of the lass Ord;7. eah well-ordering P is isomorphi to exatly one ordinal; this ordinalis then alled the order-type of P .Ordinals of the form α ∪ {α} are alled suessor ordinals. All otherordinals are alled limit ordinals. Finite ordinals are also known as naturalnumbers and are written as follows:
0 = ∅,
1 = 0 + 1 = ∅ ∪ {∅} = {∅} ,
2 = 1 + 1 = {∅} ∪

{

{∅}
}

=
{

∅, {∅}
}

,et.2.1.3 Cardinal numbersDe�nition 2.5. An ordinal number α is a ardinal number (a ardinal) ifthere is no bijetion between α and any β < α.We usually use κ, λ, µ... to denote ardinals. By the ardinality |X| of aset X we mean the unique ardinal number κ for whih there is a bijetion
f : κ → X. (The existene of suh a bijetion is not trivial; it relies on theaxiom of hoie.) Note that eah natural number is a ardinal number; theardinality of a �nite set is simply the number of its elements.The in�nite ardinals are alled alephs. Sine ardinals are linearly or-dered by <, we an enumerate them by ordinal numbers; ℵα denotes the α-thin�nite ardinal. The 0-th in�nite ardinal ℵ0 is the set of natural numbers.If α is a suessor (limit) ordinal, then we say that ℵα is a suessor (limit)ardinal. We also write ℵ+

α for ℵα+1.The arithmeti operations on ardinals are de�ned as follows:
κ + λ := |A ∪ B|, κ · λ := |A × B|,



2.1 Sets and numbers 9
κλ := |AB|= |{f : f is a funtion from B into A}|,where A and B are any disjoint sets with ardinalities |A|= κ and |B|= λ.Proposition 2.6. The following hold for any ardinals κ, λ:1. If κ and λ are in�nite ardinals, then κ + λ = κ · λ = max {κ, λ};2. + and · are assoiative, ommutative and distributive;3. (κ · λ)µ = κµ · λµ, κλ+µ = κλ · κµ, (κλ)µ = κλ·µ;4. κ ≤ λ implies κµ ≤ λµ, and 0 < λ ≤ µ implies κλ ≤ κµ;5. Cantor : κ < 2κ. (If a set A has the ardinality κ = |A|, then 2κ =
|{f : f is a funtion from A into 2}|= |P (A)| is the ardinality of thepowerset of A.)For a proof see [3℄.We say that a set of ordinals A is o�nal in a set of ordinals B if forevery β ∈ B there is an α ∈ A suh that β < α. For any ordinal α de�nethe o�nality of α, denoted as cf(α), to be the least ardinality of a subsetof α whih is o�nal in α. If α is a ardinal number and cf(α) = α, then αis alled a regular ardinal. Otherwise, (that is, if cf(α) < α), α is alled asingular ardinal. (We denote the lass of regular ardinals by Reg.) One anshow that for every α, cf(cf(α)) = cf(α). Thus, cf(α) is always a regularardinal.The exponentiation of ardinal numbers, unlike addition and multiplia-tion, whih are trivial, is one of the main topis in set theory. In the followingproposition we state some of the basi properties of the ardinal arithmeti.4Proposition 2.7. The following hold for any ardinals κ, λ:1. If λ is in�nite and 2 ≤ κ ≤ λ, then κλ = 2λ;2. if λ ≥ cf(κ), then κ < κλ;3. if I is any index set and κi < λi for every i ∈ I, then ∑

i∈I κi <
∏

i∈I λi;4. (κ+)λ = κλ · κ+ (Hausdor� formula).For a proof see [3℄.4For a proof of the proposition we refer the reader to [3, page 51℄. In hapter 5 thereare deeper results regarding ardinal arithmeti.



10 Some basi set theory2.1.4 Closed unbounded setsLet κ > ω be a limit ordinal, and let C ⊆ κ. Any limit ordinal α < κ withsup C∩α = α is alled a limit point of C. We say that C is losed unbounded(in κ) if it ontains all its limit points and is o�nal in κ. For example, theset of all limit ordinals in κ is a losed unbounded set. If cf(κ) > ω, thenthe intersetion of two losed unbounded sets is also losed unbounded.Suppose that κ is a regular unountable ardinal. A set S ⊆ κ is said tobe stationary (in κ) if S ∩C 6= ∅, for every losed unbounded set C in κ. Anordinal funtion f on S is regressive if f(α) < α, for every α ∈ S. We aregoing to use the following fat.Lemma 2.8 (Fodor). If f is a regressive funtion on a stationary set S ⊆ κ,then f is onstant on some stationary set T ⊆ S.For a proof see [3, Theorem 8.7℄.2.2 Ideals and �ltersIdeals and �lters are the entral tools in the pf theory. Usually ideals (resp.�lters) are olletions of small (resp. large) subsets of a given set A. There-fore, elements of an ideal are alled null-sets, and all other subsets of A arealled positive sets. We also de�ne the notion of a maximal ideal (�lter), andstate the important properties.De�nition 2.9. A family I ⊆ P (A) of subsets of a set A is alled an idealon A if it satis�es the following onditions:1. ∅ ∈ I;2. if X ∈ I and Y ∈ I, then X ∪ Y ∈ I;3. if X, Y ⊆ A, X ∈ I, and Y ⊆ X, then Y ∈ I.A family F ⊆ P (A) of subsets of a set A is alled a �lter on A if it satis�esthe following onditions:1. ∅ /∈ F and A ∈ F ;2. if X ∈ F and Y ∈ F , then X ∩ Y ∈ F ;3. if X, Y ⊆ A, X ∈ F , and X ⊆ Y , then Y ∈ F .



2.2 Ideals and �lters 11By a proper 5 ideal on a set A we mean an ideal satisfying A /∈ I. We saythat a proper ideal I (resp. a �lter F ) on a set A is maximal if there is noideal I ′ with I ( I ′ ( P (A) (resp. no �lter F ′ with F ( F ′ ( P (A)).A proper ideal I (resp. a �lter F ) is a prime ideal (resp. ultra�lter) if forevery X ⊆ A, either X ∈ I (resp. X ∈ F ), or A\X ∈ I (resp. A\X ∈ F ),but not both, where A\X = {a ∈ A : a /∈ X} denotes the omplement of Xin A.If I is a proper ideal on a set A, then the olletion F = {X ⊆ A : A\X ∈
I} is a �lter on A. It is alled the dual �lter of I. I is then alled the dualideal of F .We say that a set G ⊆ P (A) generates an ideal I, if I is the losureof G under subsets and �nite unions. Similarly, we say that that a set
H ⊆ P (A) generates a �lter F , if F is the losure of H under supersetsand �nite intersetions.Proposition 2.10.1. An ideal (resp. �lter) is a prime ideal (resp. ultra�lter) if and only ifit is maximal.2. (Tarski) Every ideal (resp. �lter) an be extended to a prime ideal (resp.ultra�lter). Moreover,3. (Stone) If I is an ideal (resp. F is a �lter) on a set A and X ∈ P (A)\I

(resp. X ∈ P (A)\F ), then there is a prime ideal J (resp. ultra�lter
D) with I ⊆ J and X /∈ J (resp. F ⊆ D and X /∈ D).For a proof of (1) and (2) see [3, page 74℄.Remark 2.11. We will use the following onsequenes of Proposition 2.10.(i) If I is an ideal on a set A and Y ∈ P (A)\I, then there is an ultra�lter Don A suh that I ∩ D = ∅ and Y ∈ D. [Let D simply be the dual �lter ofa prime ideal J ⊇ I with Y /∈ J .℄ (ii) Moreover, if F is a �lter6 on A suhthat I ∩F = ∅, then I an be extended to a maximal ideal J on A suh that

J ∩ F = ∅.
5Attention: By proper we do not mean I 6= {∅}.6It su�es that a ∩ b 6= ∅, for every a, b ∈ F .



12 Some basi set theory



Chapter 3Redued produtsIn this hapter we de�ne the redued produts of sets of ordinals and developthe 'theory' of exat upper bounds, whih is the basis of the pf theory, aswe will see in hapters 4 and 5. Our main referene for this hapter is [1℄.Though, all the theorems in it are due to Shelah, unless otherwise stated.3.1 De�nitionLet A denote a set of regular ardinals1 in this hapter. For any sequene
S = 〈Sa : a ∈ A〉 of nonempty sets of ordinals we de�ne the produt of Sto be the set of all ordinal funtions f : A → Ord with f(a) ∈ Sa, for eah
a ∈ A, i.e.

∏

a∈A

Sa := {f : f ∈ OrdA, ∀a ∈ A (f(a) ∈ Sa)}.If h is an ordinal funtion on A (with h(a) > 0, for eah a ∈ A), then we justwrite ∏

h instead of ∏

a∈A h(a). Similarly, if Sa = a for every a ∈ A, thenwe just write ∏

A instead of ∏

a∈A a.We de�ne the following relations on the produt ∏

a∈A Sa:1. If I is an ideal on A, then for any funtions f, g ∈
∏

a∈A Sa:
f =I g :⇐⇒ {a ∈ A : f(a) 6= g(a)} ∈ I;
f <I g :⇐⇒ {a ∈ A : f(a) ≥ g(a)} ∈ I;
f ≤I g :⇐⇒ {a ∈ A : f(a) > g(a)} ∈ I.2. If F is a �lter on A, then for any funtions f, g ∈

∏

a∈A Sa:1The theory of redued produts an be developed for any index set A.



14 Redued produts
f =F g :⇐⇒ {a ∈ A : f(a) = g(a)} ∈ F ;
f <F g :⇐⇒ {a ∈ A : f(a) < g(a)} ∈ F ;
f ≤F g :⇐⇒ {a ∈ A : f(a) ≤ g(a)} ∈ F .The relations≤I and ≤F are quasi orderings of ∏a∈A Sa, and the relations

<I (if I is a proper ideal) and <F are strit partial orderings of ∏

a∈A Sa.The relation =I (resp. =F ) is an equivalene relation on ∏

a∈A Sa. Thequotient ∏

a∈A Sa/I (resp. ∏

a∈A Sa/F ) is alled the redued produt of Smodulo I (resp. modulo F ). Although ∏

a∈A Sa/I (resp. ∏

a∈A Sa/F ) on-sists of equivalene lasses of funtions in ∏

a∈A Sa, for our purposes we wantto work with single funtions - identifying equivalent ones. [Therefore, forsimpliity, when we have f <I g, by hanging f on a null-set we an assumethat f(a) < g(a), for eah a ∈ A, without any loss of generality. Also, if
h is an ordinal funtion on A suh that {a ∈ A : h(a) /∈ Sa} ∈ I, thenwe onsider h as an element of ∏

a∈A Sa/I (beause it is equivalent to some
h′ ∈

∏

a∈A Sa/I). The same for a �lter F .℄ This means that on ∏

a∈A Sa/I(resp. ∏

a∈A Sa/F ) we onsider the relations <I and ≤I (resp. <F and ≤F ),whih are atually de�ned on ∏

a∈A Sa.Note that for funtions f and g, f ≤I g does not imply that either f <I gor f =I g. The onverse is learly true.If I and F are dual to eah other (see page 11), then for any funtions f ,
g ∈

∏

A we have: f =I g i� f =F g, f <I g i� f <F g, and f ≤I g i� f ≤F g.For this reason, whenever I is dual to F , we identify (
∏

a∈A Sa/I, <I ,≤I) with
(
∏

a∈A Sa/F, <F ,≤F ) (or say that they have the same struture), and makeno di�erene between the I-relations and the F -relations. Further, every�lter has a dual ideal, hene, it su�es to develop the theory of reduedproduts for ideals. If I = {∅} we identify ∏

a∈A Sa/{∅} with ∏

a∈A Sa, andwrite f < g instead of f <{∅} g.If J ⊇ I is another ideal on A, then f <I g implies f <J g. We say that
<J extends <I . In partiular, if D is an ultra�lter on A extending the dual�lter of I, that is, D ∩ I = ∅, then <D extends <I .Reall that a set B ⊆

∏

a∈A Sa/I is o�nal in (
∏

a∈A Sa/I, <I) iff forevery funtion f ∈
∏

a∈A Sa/I there is a funtion g ∈ B suh that f <I g.A sequene f = 〈fξ : ξ < λ〉 of funtions in ∏

a∈A Sa/I is said to be <I-inreasing iff for every ξ1, ξ2 < λ we have fξ1 <I fξ2 .We say that a sequene f = 〈fξ : ξ < λ〉 of funtions in ∏

a∈A Sa/I is asale for ∏

a∈A Sa/I iff it is <I-inreasing and o�nal in (
∏

a∈A Sa/I, <I).We need to further enrih our terminology before we an say why we areinterested in working with redued produts. The following de�nitions anbe easily generalized for any partial or quasi orderings; partiularly for ≤I .



3.1 De�nition 15De�nition 3.1. Let I be an ideal on A and let S = 〈Sa : a ∈ A〉 be anysequene of nonempty sets of ordinals.1. The o�nality cf(
∏

a∈A Sa/I, <I) of (
∏

a∈A Sa/I, <I) is de�ned as theleast ardinality of a o�nal set in (
∏

a∈A Sa/I, <I).2. The true o�nality tcf(
∏

a∈A Sa/I, <I) of (
∏

a∈A Sa/I, <I) is de�nedas the least ardinality of a linearly ordered set whih is o�nal in
(
∏

a∈A Sa/I, <I), if it exists. [In other words, the true o�nality is theminimal length of a sale. Note that the length of a sale is a regularardinal i� it is minimal.℄Remark 3.2. (1) Suppose that eah Sa has no maximal element. Then a set
B ⊆

∏

a∈A Sa/I is o�nal in (
∏

a∈A Sa/I,≤I) iff it is o�nal in (
∏

a∈A Sa/I, <I

). [The 'if' diretion is trivial: if f ∈
∏

a∈A Sa/I and for some g ∈ B we have
f <I g, then also f ≤I g. Conversely, suppose that f ∈

∏

a∈A Sa/I, thenalso f + 1 ∈
∏

a∈A Sa/I, where f + 1(a) = f(a) + 1. By assumption, there issome g ∈ B with f + 1 ≤I g. It follows that f <I g.℄ This justi�es our newterminology - o�nal in ∏

a∈A Sa/I.(2) Every redued produt has a o�nality: Firstly, there is always ao�nal subset, namely the set itself; and seondly, there is always the leastardinal among a lass of ardinals. Co�nality an be either a regular or asingular ardinal.(3) The true o�nality does not always exist (see the examples below). Ifit exists, then it is a regular ardinal. [Otherwise there is a shorter sale.℄(4) If I is a maximal ideal on A, then ∏

A/I has a true o�nality. Namely,
<I is a linear ordering of ∏

A/I, and thus, every o�nal subset is a sale for
∏

A/I. Similarly, if D is an ultra�lter on A, then tcf(
∏

A/D) always exists.We write cf(
∏

A/D) instead of tcf(
∏

A/D).(5) If J ⊇ I is another ideal on A, then, sine <J extends <I , we havethat any <I-inreasing sequene of funtions is also <J -inreasing. Further,any o�nal sequene in (
∏

a∈A Sa/I, <I) is also o�nal in (
∏

a∈A Sa/J, <J).In partiular, if F is a �lter on A extending the dual �lter of I, then
cf(

∏

a∈A Sa/F ) ≤ cf(
∏

a∈A Sa/I),and
tcf(

∏

a∈A Sa/F ) = tcf(
∏

a∈A Sa/I),if tcf(
∏

a∈A Sa/I) exists.(6) If h is an ordinal funtion on A (with h(a) > 0 is a limit ordinal,for eah a ∈ A), then the redued produts ∏

h/I =
∏

a∈A h(a)/I and



16 Redued produts
∏

a∈A cf(h(a))/I have the same o�nality (and true o�nality, if it exists).[Choose for every a ∈ A a o�nal set Sa in h(a) of order type cf(h(a)). Then,on the one hand, ∏

a∈A h(a)/I and ∏

a∈A Sa/I are o�nally equivalent. Thatis, for every f ∈
∏

a∈A h(a)/I there is g ∈
∏

a∈A Sa/I with f ≤I g, andvie versa, whih means they have the same o�nality. On the other hand,
∏

a∈A Sa/I an be identi�ed with ∏

a∈A cf(h(a))/I beause for eah a ∈ A,
Sa has order-type cf(h(a)).℄Let h be an ordinal funtion on A (with h(a) > 0 is a limit ordinal,for eah a ∈ A). We are interested in the existene and value of the trueo�nality of ∏

h/I; and onversely, we want to represent regular ardinalsas true o�nalities of some redued produts.Remark 3.2(6) tells us that we an onentrate on ordinal funtions h,whih take values in the lass of in�nite regular ardinals.Suppose that λ is a regular ardinal and f = 〈fξ : ξ < λ〉 is a <I-inreasing sequene of funtions in ∏

A/I, whih has an exat upper bound
h in ∏

A/I. Then, (by De�nition 2.2) f is o�nal in the set {g ∈ OrdA :
g <I h}. But this is the same as to say f is o�nal in ∏

h/I. It follows that
f is a sale for ∏

h/I. Finally, sine λ is a regular ardinal, f must be asale of minimal length, and hene we have that λ is the true o�nality of
∏

h/I =
∏

cf(h)/I.This motivates the study of exat upper bounds in the next setion. We�rst want to ite some examples and state a useful lemma.Example 3.3. (1) If A (|A|> 1) is a set of regular ardinals and I = {∅},then f =I g means f(a) = g(a), for every a ∈ A. The produt ∏

A = ∏

A/Idoes not have a true o�nality. [We argue indiretly. Suppose �rst that thereis a sale f = 〈fξ : ξ < λ〉 for ∏

A of length λ < supA. Then there is κ ∈ Awith λ < κ. Sine κ is a regular ardinal and λ < κ, the set {fξ(κ) : ξ < λ}is bounded in κ. This means that f is not o�nal in ∏

A, ontraditing fbeing a sale. Suppose now that there is a sale f = 〈fξ : ξ < λ〉 for ∏

Aof length λ ≥ supA. Then for any κ ∈ A with κ < supA we have that thesequene 〈fξ(κ) : ξ < λ〉 is an inreasing sequene of ordinals of length λ in
κ. But this is impossible, sine κ < λ.℄Example 3.4. 2 Let κ be a strong limit ardinal, i.e. 2α < κ for every α < κ.Consider an inreasing sequene 〈λn〉n∈N of in�nite regular ardinals withlimit κ. One shows by a diagonalisation argument that κ+ ≤ cf(

∏

n∈N
λn).[No set F ⊆

∏

n∈N
λn of ardinality ≤ κ is o�nal in ∏

n∈N
λn. For if |F | ≤

κ, then F =
⋃

n∈N
Fn, for some Fn ⊆

∏

n∈N
λn with |Fn|< λn. Choose a2For readers familiar with foring and large ardinals.



3.1 De�nition 17funtion g suh that for eah n, g(λn) > f(λn), for every f ∈ Fn. Thenfor every f ∈ F , g � f . Hene F is not o�nal.℄ On the other hand,sine |
∏

n∈N
λn|= 2κ, we have cf(

∏

n∈N
λn) ≤ 2κ. Therefore, the problem ofo�nality of suh a produt is related to the ontinuum funtion problem. Wewant to mention two types of models in whih o�nalities of produts havebeen studied: Prikry's model and Magidor's model. The following resultsare taken from [6℄.- Let κ be a measurable ardinal with normal measure U and let 〈κn〉n∈Nbe a Prikry sequene for U . Then for every regular ardinal λ with

κ+ ≤ λ ≤ 2κ there exists an inreasing sequene 〈λn〉n∈N ∈ V [G] ofregular ardinals with limit κ suh that cf(
∏

n∈N
λn) = λ.- Let κ be a superompat ardinal and let N be Magidor's extension of

V , whih introdues a Prikry sequene 〈κn〉n∈N together with ollapsingto obtain κn = ℵ(k+1)n, for n ∈ N, and 2ℵω = ℵω+k (2 ≤ k < ω). Thenfor eah m = 1, ..., k we have (in N) cf(
∏

n∈N
κ+m

n ) = ℵω+m.For proofs we refer to [6℄.Lemma 3.5. Suppose that c is a funtion from A into the lass of regularardinals and B = {c(a) : a ∈ A} is its range. Then the following hold.1. If I is an ideal on A, then its Rudin-Keisler projetion on B,de�ned by
X ∈ J iff X ⊆ B and c−1X ∈ I,where c−1X = {a ∈ A : c(a) ∈ X}, is an ideal on B.2. The funtion h :

∏

B/J →
∏

a∈A c(a)/I, de�ned by h([f ]J) = [f ◦ c]I ,is injetive and order-preserving.3. If |A| < minB, then the image of h is o�nal in ∏

a∈A c(a)/I. Thus,
tcf(

∏

B/J) = tcf(
∏

a∈A c(a)/I),if one of the produts has true o�nality.For a proof see [1, Lemma 2.3℄.



18 Redued produts3.2 Exat upper boundsIn this setion we determine the onditions for the existene of exat upperbounds for <I-inreasing sequenes f = 〈fξ : ξ < λ〉 of funtions in OrdA.The remarkable study of these onditions is atually a small theory onexat upper bounds, whih plays a very important role in the pf theory.However, we only state the most important theorems of that theory; skethingmost of the proofs, so that the reader an see the ideas behind the de�nitions.For details and omplete proofs we refer to [1℄.Let A again be a set of regular ardinals and let I be an ideal on A.De�nition 3.6. Suppose that λ is a regular ardinal and f = 〈fξ : ξ < λ〉 isa <I-inreasing sequene of funtions in OrdA. Then f is said to be stronglyinreasing if there are null-sets Zξ ∈ I, for ξ < λ, suh that whenever
ξ1 < ξ2 < λ, then

a ∈ A\(Zξ1 ∪ Zξ2) =⇒ fξ1(a) < fξ2(a).De�nition 3.7. Suppose that λ is a regular ardinal and f = 〈fξ : ξ < λ〉is a <I-inreasing sequene of funtions in OrdA. For any regular ardinal
κ ≤ λ we denote the following property of f by (∗)κ:Whenever X ⊆ λ is unbounded in λ, then for some

X0 ⊆ X of order-type κ, 〈fξ : ξ ∈ X0〉 is strongly inreasing.Note that if f has the (∗)κ property for some κ < λ, then f also has the
(∗)κ

′ property for every regular κ
′
< κ.Let S = 〈Sa : a ∈ A〉 be a sequene of sets of ordinals. We denote thefuntion a 7→supSa by sup-of-S.Suppose that a funtion f ∈ OrdA is bounded by sup-of-S. Then we de�nethe projetion of f onto S, proj(f, S), as the funtion f+(a) :=min(Sa\f(a)).De�nition 3.8. Suppose that λ is a regular ardinal and f = 〈fξ : ξ < λ〉is a <I-inreasing sequene of funtions in OrdA. For any regular ardinal

κ ≤ λ we all the following property of f the bounding projetion propertyfor κ: Whenever S = 〈Sa : a ∈ A〉 with Sa ⊆ Ord and |Sa|< κ is suhthat the sequene f is <I-bounded by the funtion a 7→ supSa,then there exists ξ < λ suh that the projetion f+
ξ = proj(fξ, S) ∈

∏

a∈A Sais an upper bound of f in the <I relation.
[Shortly: f <I sup-of-S ⇒ ∃ξ < λ (f <I f+

ξ ).]



3.2 Exat upper bounds 19Lemma 3.9. Suppose that A is a set of regular ardinals, I is an ideal on
A, λ > |A|+ is a regular ardinal, and f = 〈fξ : ξ < λ〉 is a <I-inreasingsequene of funtions in OrdA. Then for every regular ardinal κ suh that
|A|+≤ κ ≤ λ the following are equivalent3:1. (∗)κ holds for f ;2. f has the bounding projetion property for κ;3. f has an exat upper bound h suh that: {a ∈ A : cf(h(a)) < κ} ∈ I.Proof. 1 ⇒ 2. See [1, Theorem 2.12℄.

2 ⇒ 3. Sketh of the proof: One �rst shows that f has a minimal upperbound h (for a proof see Theorem 2.13 in [1℄). We show that h then must bean exat upper bound of f , i.e. f is o�nal below h:Suppose that g <I h. We shall �nd ξ < λ suh that g ≤I fξ. Assumew.l.o.g. that g(a) < h(a), for every a ∈ A (see page 14). De�ne a sequene
S = 〈Sa : a ∈ A〉 by

Sa := {g(a), h(a)}for every a ∈ A. Sine |Sa|< κ learly holds and sup-of-S = h is a <I-upperbound of f (if it were not a <I-upper bound of f , then it would not bean upper bound at all, beause f is <I-inreasing), the bounding projetionproperty for κ implies that there is ξ < λ suh that f+
ξ is a <I-upper bound of

f . Sine h is minimal and f+
ξ ≤I h, we have that h ≤I f+

ξ . Thus, f+
ξ =I h.It follows that g <I fξ, (beause if fξ ≤ g holds on a positive set, then

f+
ξ = g < h on this positive set, and that ontradits f+

ξ =I h). Thus, wehave shown that h is an exat upper bound of f .This exat upper bound is determined up to =I . Sine f is <I-inreasing,
h(a) an be 0 or a suessor ordinal only on a null-set. Thus, we an assumethat it is never 0 or a suessor ordinal (see page 14).It remains to show that {a ∈ A : cf(h(a)) < κ} ∈ I holds. In order to geta ontradition, suppose that P := {a ∈ A : cf(h(a)) < κ} /∈ I. For every
a ∈ P , hoose a set Sa ⊆ h(a) o�nal in h(a), suh that order-type(Sa)< κ.For a ∈ A\P de�ne Sa := {h(a)}. Then sup-of-S= h is a <I-upper bound of
f and |Sa|< κ. Like above, the bounding projetion property for κ impliesthat there is ξ < λ suh that f+

ξ ∈
∏

a∈A Sa is a <I-upper bound of f . Bythe de�nition of S, we have f+
ξ ≤I h and f+

ξ ↿ P < h ↿ P . But sine Pis a positive set, this means that f+
ξ ≤I h and h �I f+

ξ , ontraditing ourassumption that h is a minimal upper bound of f (see De�nition 2.2).
3 ⇒ 1. See [1, Theorem 2.15℄.3For the later hapters we only need the 1 ⇒ 2 ⇒ 3 diretion.



20 Redued produtsThe ondition (∗)κ does not seem to be easily veri�able for a sequeneof ordinal funtions. However, we are only interested in the existene ofsequenes whih have this property4, and the following theorem gives us astrategy for onstruting them.Lemma 3.10. Suppose that A is a set of regular ardinals and1. I is a proper ideal on A;2. κ and λ are regular ardinals suh that κ++ < λ; and3. f = 〈fξ : ξ < λ〉 is a <I-inreasing sequene of funtions in OrdAwhih satis�es the following requirement:for every δ < λ with cf(δ) = κ++ there is a losed unbounded set
Eδ ⊆ δ suh that for some δ

′ with δ ≤ δ
′
< λ

sup{fα : α ∈ Eδ} <I fδ
′ .Then (∗)κ holds for f .For a proof see [1, Lemma 2.19℄.From the following appliation we see that the ondition on f in Lemma3.10 is nothing but a strategy for onstruting sequenes of ordinal funtionsfor whih (∗)κ holds (and whih, thus, have exat upper bounds that are ofbig interest to us).De�nition 3.11. Suppose that I is a proper ideal on A and S = 〈Sa : a ∈ A〉is a sequene of sets of ordinals. We say that the produt ∏

a∈A Sa/I is λ-direted (for a ardinal λ) iff every set B ⊆
∏

a∈A Sa/I with ardinality
|B|< λ has an upper bound in ∏

a∈A Sa/I.Lemma 3.12. Suppose that A is a set of regular ardinals and I is a properideal on A. Let λ be a regular ardinal suh that ∏

A/I is λ-direted. Thenthere exists a <I-inreasing sequene f = 〈fξ : ξ < λ〉 of funtions in ∏

A/Isuh that for every regular ardinal κ < λ, (∗)κ holds for f iff
κ++ < λ and {a ∈ A : a ≤ κ++} ∈ I.Proof. De�ne f as follows. At suessor stages ξ + 1 < λ, let fξ+1 := fξ + 1.Sine A is a set of limit ordinals, we have fξ + 1 ∈

∏

A/I.At limit stages δ < λ we onsider two ases. If cf(δ) = κ++ < λ, where κis a regular ardinal suh that {a ∈ A : a ≤ κ++} ∈ I, then �x some losedunbounded set Eδ ⊆ δ, and de�ne4For the purposes of pf theory; see page 16 and Theorem 4.10.
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fδ= sup{fi : i ∈ Eδ}.(For every a > κ++ we have that fδ(a) < a, beause eah a ∈ A is a regularardinal. Thus, fδ ∈

∏

A/I, sine {a ∈ A : a ≤ κ++} ∈ I.) If cf(δ) isnot of that form, then let fδ ∈
∏

A/I be any upper bound of 〈fξ : ξ < δ〉guaranteed by the λ-diretedness assumption.Lemma 3.10 implies that (∗)κ holds for f , for every κ of the required form.The following theorem is an immediate onsequene of Lemma 3.9 andLemma 3.12.Theorem 3.13. Suppose that1. A is a set of regular ardinals and I is a proper ideal on A;2. λ is a regular ardinal suh that ∏

A/I is λ-direted;3. there is a regular ardinal κ with |A|+≤ κ ≤ λ,suh that κ++ < λ and {a ∈ A : a ≤ κ++} ∈ I.Then there exists a <I-inreasing sequene f = 〈fξ : ξ < λ〉 of funtions in
∏

A/I with an exat upper bound h suh that {a ∈ A : cf(h(a)) < κ} ∈ Ifor every regular ardinal κ with |A|+≤ κ ≤ λ, suh that κ++ < λ and
{a ∈ A : a ≤ κ++} ∈ I.Proof. Follows immediately from Lemma 3.9 and Lemma 3.12. Note thatthe existene of a regular ardinal κ with |A|+≤ κ ≤ λ, suh that κ++ < λand {a ∈ A : a ≤ κ++} ∈ I, is needed (by Lemma 3.9) for the existene ofan exat upper bound of f .Remark 3.14. From the proof of Lemma 3.10 we an see that f an behosen to dominate any given sequene g = 〈gξ : ξ < λ〉 of funtions in
∏

A/I, i.e. suh that for eah ξ < λ, gξ ≤I fξ.In the next setion and in Chapter 4 (Theorem 4.10) we will see applia-tions of Theorem 3.13.3.3 Representation theoremsWe have seen on page 16 that if λ is a regular ardinal and f = 〈fξ : ξ < λ〉is a <I-inreasing sequene of funtions in ∏

A/I, whih has an exat upperbound h in ∏

A/I, then
λ = tcf(

∏

cf(h)/I). (3.1)Using this fat we an get stronger results for suessors µ+ of singular ar-dinals. We �rst onsider µ+ with cf(µ) = ω.



22 Redued produtsTheorem 3.15. Suppose that µ is a singular ardinal of ountable o�nal-ity. Then there exists an unbounded set B ⊂ µ (of order-type ω) of regularardinals suh that
µ+ = tcf(

∏

B/Jbd),where J bd is the ideal of bounded (or �nite) subsets of B.Proof. Let B0 ⊂ µ be any unbounded set (of order-type ω) of regular ardi-nals, and let Ibd be the proper ideal of bounded (or �nite) subsets of B0. Weshow that the produt ∏

B0/I
bd is µ-direted.Suppose that F ⊆

∏

B0/I
bd has ardinality γ < µ. We need to showthat F has an upper bound in ∏

B0/I
bd. De�ne a funtion g ∈

∏

B0/I
bdby g(a) := sup{f(a) : f ∈ F} if a > γ, and g(a) := 0 if a ≤ γ. [It holdsthat g ∈

∏

B0/I
bd, sine |F |< γ and eah a ∈ B0 is regular.℄ Then for every

f ∈ F we have {a ∈ B0 : f(a) > g(a)} = {a ∈ B0 : a ≤ γ} ∈ Ibd, that is,
f ≤Ibd g. Thus, we have shown that F has an upper bound in ∏

B0/I
bd.But sine µ is a singular ardinal, ∏

B0/I
bd is also µ+-direted: Supposethat F ⊆

∏

B0/I
bd has ardinality µ. There are subsets Fn ⊆

∏

B0/I
bd,for n ∈ ω, of ardinality < µ suh that F =

⋃

n∈ω Fn. Sine ∏

B0/I
bd is µ-direted and |Fn|< µ (n ∈ ω), there exist upper bounds fn of Fn in ∏

B0/I
bd.Finally, there exists also an upper bound of 〈fn : n ∈ ω〉, whih bounds every

Fn, and thus, the whole F .Let κ be a regular ardinal suh that ℵ1 ≤ κ < µ+, then κ++ < µ < µ+holds (sine µ is singular) and the set {a ∈ B0 : a ≤ κ++ < µ} is obviouslybounded in µ.Apply Theorem 3.13 to B0, Ibd and µ+. There exists a <Ibd-inreasingsequene f = 〈fξ : ξ < µ+〉 of funtions in ∏

B0/I
bd with an exat upperbound h suh that

{a ∈ B0 : cf(h(a)) < κ} ∈ Ibd, (3.2)for every regular ardinal κ with ℵ1 ≤ κ ≤ µ+, suh that κ++ < µ+ and
{a ∈ B0 : a ≤ κ++} ∈ Ibd. [Sine the identity funtion id on B0 is a <-upperbound of f , we have h ≤I id (otherwise h is not minimal), and thus, we anassume that h(a) ≤ id(a) = a, for every a ∈ B0.℄Note that the set of suh regular ardinals κ is unbounded in µ. Therefore,it follows from (3.2) that also

B := {cf(h(a)) : a ∈ B0} ⊂ µis unbounded in µ. We an assume that B is of order-type ω and ℵ0 < minB(modify B0 if neessary).



3.3 Representation theorems 23We show that µ+ = tcf(
∏

B/Ibd). By (3.1) we have
µ+ = tcf(

∏

a∈B0

cf(h(a))/Ibd). (3.3)De�ne a funtion c : B0 → B by c(a) := cf(h(a)). Let J be the ideal on Bde�ned by X ∈ J iff {c−1(x) : x ∈ X} ∈ Ibd. Lemma 3.5 implies that
tcf(

∏

B/J) = tcf(
∏

a∈B0
cf(h(a))/Ibd) = µ+.It remains to show that J is the ideal J bd of bounded subsets of B. Theinlusion J ⊆ J bd follows easily. If X ∈ J , then {c−1(x) : x ∈ X} ∈ Ibd is a�nite set, and thus, X is a �nite (and bounded) set.In order to prove J bd ⊆ J , suppose that X ∈ J bd is a bounded subset of

B = {cf(h(a)) : a ∈ B0}. Say, γ < µ is an upper bound of X. We need toshow that the preimage of X, under the map c, is bounded in µ. In orderto get a ontradition, suppose that it is not bounded. That is, there is anunbounded set Y ⊆ B0 suh that for every a ∈ Y , c(a) = cf(h(a)) ∈ X.Sine X is �nite, it follows that there is an unbounded set Y1 ⊆ Y and some
δ ≤ γ suh that for every a ∈ Y1, c(a) = cf(h(a)) = δ.We now easily get a ontradition. Let D be an ultra�lter on B0 extendingthe dual �lter of Ibd, suh that Y1 ∈ D (whih exists by Remark 2.11).Then, on the one hand, sine ≤D extends ≤Ibd , (3.3) implies that µ+ =
tcf(

∏

a∈B0
cf(h(a))/D) (by Remark 3.2(6)). But on the other hand, sine

Y1 ∈ D, any sequene 〈gξ : ξ < δ〉 with gξ(a) = ξ, for a ∈ Y1, is a sale for
∏

a∈B0
cf(h(a))/D. This ompletes the proof.We have a similar result for suessors µ+ of singular ardinals with

cf(µ) > ω.If X is a set of ardinals, then let X(+) := {α+ : α ∈ X} denote the setof suessors of ardinals in X.Theorem 3.16. Suppose that µ is a singular ardinal of unountable o�-nality. Then there exists a losed unbounded set (of limit ardinals) C ⊆ µsuh that |C|< minC and
µ+ = tcf(

∏

C(+)/Jbd),where J bd is the ideal of bounded subsets of C(+).Proof. Let C0 ⊆ µ be any losed unbounded set of limit ardinals bigger than
cf(µ), suh that |C0|= cf(µ). It follows that |C0|< minC0.All the limit points γ of C0 are singular ardinals, sine |C0|= cf(µ) < γ.So we an assume that C0 onsists only of singular ardinals. [The set oflimit points of C0 is also a losed unbounded set.℄



24 Redued produtsBy the same argument like in the proof of Theorem 3.15, the produt
∏

C
(+)
0 /Jbd is µ+-direted, where J bd is the ideal of bounded subsets of C

(+)
0 .Apply Theorem 3.13 to C

(+)
0 , J bd and µ+. There exists a <Jbd-inreasingsequene f = 〈fξ : ξ < µ+〉 of funtions in ∏

C
(+)
0 /Jbd with an exat upperbound h suh that

{a ∈ C
(+)
0 : cf(h(a)) < κ} ∈ J bd, (3.4)for every regular ardinal κ with cf(µ)+ ≤ κ ≤ µ+, suh that κ++ < µ+and {a ∈ C

(+)
0 : a ≤ κ++} ∈ J bd; this means, for every regular ardinal

κ < µ. [We an assume, like in the previous proof, that h(a) ≤ a, for every
a ∈ C

(+)
0 .℄Claim. There is a set

C ⊆ {α ∈ C0 : h(α+) = α+},whih is losed unbounded.Proof of the laim. In order to get a ontradition, suppose that the set
{α ∈ C0 : h(α+) = α+} does not ontain a losed unbounded set. Then thereis some stationary set S ⊆ C0 suh that S ∩ {α ∈ C0 : h(α+) = α+} = ∅. Itfollows that h(α+) < α+ for every α ∈ S.Sine all ardinals in C0 are singular, we have that cf(h(α+)) < α, forevery α ∈ S. Hene, by Lemma 2.8, cf ◦ h is onstant, and hene boundedby some κ < µ, on a stationary set of α's in S. But this is in ontraditionwith (3.4).Thus, we have proved that there exists a losed unbounded set C ⊆
C0 suh that h(α+) = α+ for every α ∈ C. It follows easily that µ+ =
tcf(

∏

C(+)/Jbd). Namely, the sequene 〈fξ ↾ C(+) : ξ < µ+〉 is a sale for
∏

C(+)/Jbd =
∏

α∈C h(α+)/Jbd; it is o�nal, beause h ↾ C(+) is an exatupper bound of f ↾ C(+), and it is <Jbd-inreasing.We will prove a stronger version of the last theorem in the next hapter.



Chapter 4The pf funtion
4.1 De�nitionIn Chapter 3 we have seen that some ardinals an be represented as trueo�nalities of ertain (redued) produts of sets. Now we want to hangeour point of view and investigate whih ardinals an be realised as trueo�nalities of some �xed produt of sets - of ourse, modulo di�erent ideals.This motivates the following de�nition.De�nition 4.1. [The pf funtion℄ For any set A of regular (unountable1)ardinals de�ne

pcf(A) := {λ : λ = tcf(
∏

A/I) for some proper ideal I on A}.Let I be a proper ideal on A suh that λ = tcf(
∏

A/I), and let D beany ultra�lter on A, extending the dual �lter of I. Then, as we mentionedin Remark 3.2(6), λ = cf(
∏

A/D) = tcf(
∏

A/I). Hene, the followingformulation is equivalent to the one in De�nition 4.1:
pcf(A) = {λ : λ = cf(

∏

A/D) for some ultra�lter D on A}.4.2 Basi propertiesLet A and B be any sets of regular unountable ardinals. We state the basiproperties of the pf funtion.1. pcf(A) ∩ minA = ∅. Proof: Suppose that λ ∈ minA. Then for everyultra�lter D on A, any sequene f = 〈fξ : ξ < λ〉 of funtions in1We will only onsider unountable ardinals, sine the �nite ase is trivial.



26 The pf funtion
∏

A/D is ≤D-bounded in ∏

A/D by the pointwise supremum of fξ's.Hene for every ultra�lter D on A, we have λ < cf(
∏

A/D). Thus,
λ /∈ pcf(A).2. A ⊆ pcf(A).2 Proof: Suppose that λ ∈ A. We need to �nd an ul-tra�lter D on A suh that λ = cf(

∏

A/D). Let D be the prinipalultra�lter on A, whih onentrates on λ; that is, for every X ⊆ A,
X ∈ D iff λ ∈ X. Then any sequene f = 〈fξ : ξ < λ〉 of funtions in
∏

A/D, with fξ(λ) = ξ for every ξ < λ, is a sale for ∏

A/D, (beause
{λ} ∈ D). Thus, λ = cf(

∏

A/D).3. If A ⊆ B, then pcf(A) ⊆ pcf(B). Proof: Suppose that λ ∈ pcf(A).Then there is an ultra�lter D on A suh that λ = cf(
∏

A/D). Let
f = 〈fξ : ξ < λ〉 be a sale for ∏

A/D. Extend D (anonially) to anultra�lter D′ on B, that is, let D′ := {b ⊆ B : b ∩ A ∈ D}; and extendeah fξ (arbitrarily) to a funtion f ′
ξ with domain B. We laim that

f ′ = 〈f ′
ξ : ξ < λ〉 is a sale for ∏

B/D′, and thus, that λ ∈ pcf(B).We �rst show that it is o�nal. Let g ∈
∏

B/D′, then, for some
ξ < λ, g ↾ A ≤D fξ, sine f is o�nal in ∏

A/D. This means that
{α ∈ A : g(α) ≤ fξ(α)} = {β ∈ B : g(β) ≤ f ′

ξ(β)} ∩ A is an elementof D. It follows by de�nition of D′ that {β ∈ B : g(β) ≤ f ′
ξ(β)} ∈ D′,whih means that g ≤D′ f ′

ξ.To show that f ′ is <D′-inreasing, suppose that ξ1 < ξ2 < λ. Then
{α ∈ A : fξ1(α) ≤ fξ2(α)} = {β ∈ B : f ′

ξ1
(β) ≤ f ′

ξ2
(β)} ∩ A is anelement of D. It follows by de�nition of D′ that {β ∈ B : f ′

ξ1
(β) ≤

f ′
ξ2

(β)} ∈ D′, whih means that f ′
ξ1
≤D′ f ′

ξ2
.4. pcf(A ∪ B) = pcf(A) ∪ pcf(B). Proof: The inlusion '⊇' follows by(3). We show that pcf(A ∪ B) ⊆ pcf(A) ∪ pcf(B). Suppose that

λ ∈ pcf(A ∪ B). Let D be an ultra�lter on A ∪ B suh that λ =
cf(

∏

A ∪ B/D), and let f = 〈fξ : ξ < λ〉 be a sale for ∏

A ∪ B/D.It holds that either A ∈ D or B ∈ D, for if A /∈ D, then A′ ∈ D,and hene A′ ⊆ B ∈ D. Without any loss of generality, assume that
A ∈ D.We show that λ ∈ pcf(A). Let D′ := {a ⊆ A : a ∈ D} be theanonial restrition of D to A. D′ is an ultra�lter on A. By elementaryarguments, like in (3), one shows that f ↾ A = 〈fξ ↾ A : ξ < λ〉 is asale for ∏

A/D′, and thus, that λ = cf(
∏

A/D′).2Moreover, one of the main theorems of this hapter says that if A is an interval ofregular ardinals, then pcf(A) is also an interval of regular ardinals, and A is an initialsegment of it (Theorem 4.10).



4.3 Ideal J<λ 27Next, we de�ne the entral tool for investigating further properties of thepf funtion.4.3 Ideal J<λLet A be a set of regular ardinals, and let λ be a ardinal. We say that asubset a ⊆ A fores ∏

A to have o�nality less than λ, and write a foresof<λ, if for every ultra�lter D on A with a ∈ D, cf(
∏

A/D) < λ.De�nition 4.2. For any ardinal λ de�ne
J<λ[A] := {a ⊆ A : a fores of<λ}.

J<λ[A] is an ideal on A: (i) ∅ ∈ J<λ[A]. (ii) Suppose that a′ ⊆ a ⊆ A and
a ∈ J<λ[A]. If D is any ultra�lter on A with a′ ∈ D, then a ∈ D, and hene
cf(

∏

A/D) < λ. Thus, a′ ∈ J<λ[A]. (iii) Suppose that a, a′ ∈ J<λ[A]. If Dis any ultra�lter on A with a ∪ a′ ∈ D, then either a ∈ D or a′ ∈ D, andhene cf(
∏

A/D) < λ. Thus, a ∪ a′ ∈ J<λ[A].Proposition 4.3.1. If λ ≤ min pcf(A), then J<λ[A] = {∅}.2. If λ > max pcf(A), then J<λ[A] = P (A).3. If λ ∈ pcf(A), then J<λ[A] is a proper ideal.Proof. (1) We argue indiretly. Suppose that there is a ∈ J<λ[A], a 6= ∅.Then there exists an ultra�lter D on A with a ∈ D. Sine a ∈ J<λ[A],
cf(

∏

A/D) < λ. It follows that min pcf(A) < λ.(2) By de�nition, J<λ[A] ⊆ P (A). To show that P (A) ⊆ J<λ[A], let a ⊆ A,
a 6= ∅. Suppose that D is an ultra�lter on A with a ∈ D. Then cf(

∏

A/D) ≤max pcf(A) < λ. Thus, a ∈ J<λ[A].(3) We need to show that A /∈ J<λ[A]. We argue indiretly. If A ∈ J<λ[A],then, by de�nition, for eah ultra�lter D on A with A ∈ D, cf(
∏

A/D) < λ.But A ∈ D for every ultra�lter D on A. Therefore, cf(
∏

A/D) < λ for everyultra�lter D on A. Hene λ /∈ pcf(A).Note that λ1 < λ2 implies J<λ1 [A] ⊆ J<λ2[A]; and if λ is a singularardinal, then J<λ[A] = J<λ+ [A].If λ is a limit ardinal, then J<λ[A] =
⋃

µ<λ J<µ[A]. [By the previousline, ⋃

µ<λ J<µ[A] ⊆ J<λ[A]. For the onverse inlusion onsider some a ∈
J<λ[A]\

⋃

µ<λ J<µ[A]. It follows that there is an ultra�lter D on A suh that
a ∈ D and D ∩

⋃

µ<λ J<µ[A] = ∅, whih means that cf(
∏

A/D) < λ and
cf(

∏

A/D) ≥ µ, for every µ < λ. Contradition.℄



28 The pf funtionProposition 4.4. If A0 ⊆ A, then J<λ[A0] = J<λ[A] ∩ P (A0).3Proof. We �rst show that '⊆' holds. Let a ∈ J<λ[A0]. Clearly, a ∈ P (A0).Assume that D is an ultra�lter on A suh that a ∈ D. Then also A0 ∈ D,beause a ⊆ A0. Therefore, the restrition D′ = {a ⊆ A0 : a ∈ D} of Dto A0 is an ultra�lter on A0, and we have that cf(
∏

A/D) = cf(
∏

A0/D
′)(the restrition of any sale for ∏

A/D is a sale for ∏

A0/D
′). It followsthat cf(

∏

A/D) = cf(
∏

A0/D
′) < λ, sine a ∈ D′ and a ∈ J<λ[A0]. Hene,

a ∈ J<λ[A].To prove that '⊇' holds, suppose that a ∈ J<λ[A] ∩ P (A0), and let D bean ultra�lter on A0 suh that a ∈ D. Extend D to the ultra�lter D′ := {b ⊆
A : b∩A0 ∈ D} on A. Then cf(

∏

A0/D) = cf(
∏

A/D′) (see page 26). Sine
a ∈ D′ and a ∈ J<λ[A], we have cf(

∏

A0/D) = cf(
∏

A/D′) < λ. Hene,
a ∈ J<λ[A0].We say that A is progressive if |A| < minA. Reall that a redued produt
∏

A/I is λ-direted (for a ardinal λ) iff every F ⊆
∏

A/I with |F |< λ hasan upper bound in ∏

A/I.The following theorem, whih has a number of onsequenes, states aruial property of the ideals J<λ.Theorem 4.5. [λ-Diretedness℄ Assume that A is a progressive set of regularardinals. Then ∏

A/J<λ is λ-direted for every ardinal λ.For a proof see [1, Theorem 3.4℄.Corollary 4.6. Suppose that A is a progressive set of regular ardinals.Then for every ultra�lter D on A

cf(
∏

A/D) < λ iff J<λ ∩ D 6= ∅,that is, iff some element of D fores of<λ.Proof. We prove the 'only if' diretion indiretly. Suppose that J<λ∩D = ∅.It means that D extends the dual �lter of I. Therefore, sine ∏

A/J<λ is
λ-direted, ∏

A/D is λ-direted as well. It follows that cf(
∏

A/D) ≥ λ(beause any sequene of length <λ of funtions in ∏

A is bounded in ∏

A).Conversely, if J<λ ∩ D 6= ∅, then, by de�nition of J<λ, cf(
∏

A/D) < λ.Corollary 4.7. Suppose that A is a progressive set of regular ardinals.Then λ ∈ pcf(A) iff J<λ ( J<λ+ .3This proposition allows us to write J<λ instead of J<λ[A0] and J<λ[A], whenever weare dealing with some �xed sets of ardinals A and A0 with A0 ⊆ A.



4.3 Ideal J<λ 29Proof. If λ ∈ pcf(A), then there is an ultra�lter D suh that cf(
∏

A/D) =
λ < λ+. By Corollary 4.6, J<λ+ ∩ D 6= ∅. Let a ∈ J<λ+ ∩ D. Then a /∈ J<λ,beause a ∈ D and cf(

∏

A/D) 6< λ. Hene a ∈ J<λ+\J<λ.For the onverse, suppose that a ∈ J<λ+\J<λ. Sine a /∈ J<λ, there isan ultra�lter D with a ∈ D suh that cf(
∏

A/D) ≥ λ. It follows that
cf(

∏

A/D) = λ, beause a ∈ J<λ+ . Thus, λ ∈ pcf(A).Corollary 4.8. Suppose that A is a progressive set of regular ardinals.Then
|pcf(A)|≤ |P (A)|.Proof. By Corollary 4.7, whenever λ ∈ pcf(A), then J<λ ( J<λ+ . It followsthat 〈J<λ〉λ∈pcf(A) is a stritly dereasing sequene of length |pcf(A)| of sub-sets of A. Sine suh a sequene an have length at most |P (A)|, it holdsthat |pcf(A)|≤ |P (A)|.Corollary 4.9. Suppose that A is a progressive set of regular ardinals.Then the set pcf(A) has a maximal element.Proof. Sine λ1 < λ2 implies J<λ1 ⊆ J<λ2, we have that 〈J<λ〉λ∈pcf(A) is an

⊆-inreasing sequene of ideals on A. It follows easily that the union
I :=

⋃

λ∈pcf(A) J<λis an ideal on A as well. By Proposition 4.3(3), eah J<λ in the sequeneis proper, that is, A /∈ J<λ. Therefore, I is proper as well. Hene, byProposition 2.10(3), I an be extended to a maximal proper ideal J . Let D bethe dual (ultra)�lter of J , and let µ = cf(
∏

A/D). Then, sine D is disjointfrom J<λ for eah λ ∈ pcf(A), Corollary 4.6 implies that cf(
∏

A/D) ≥ λ, foreah λ ∈ pcf(A). Thus, µ = cf(
∏

A/D) ∈ pcf(A) is the maximal elementof pcf(A).We say that a set X is an interval of regular ardinals if for some ardinals
α < β, X = {a ∈ Ord : a is a regular ardinal and α ≤ a < β}.Note that pcf(A) is not neessarily an interval of regular ardinals. Forinstane, if A = {ℵ2n : 1 < n < ω}, then ℵ2n+1, n ∈ ω, an not berealized as true o�nality of A modulo some ultra�lter D. [Proof: We argueindiretly. Suppose that for some n ∈ ω there is an ultra�lter D suh that
ℵ2n+1 = cf(

∏

A/D). Let f = 〈fξ : ξ < λ〉 be a sale for ∏

A/D. It holdsthat either {ℵ2k : 1 < k ≤ n} ∈ D or {ℵ2k : n < k < ω} ∈ D. If the �nite set
{ℵ2k : 1 < k ≤ n} is in D, then D is a prinipal ultra�lter onentrating onsome ardinal below ℵ2n+1, and thus, cf(

∏

A/D) < ℵ2n+1. This ontradits



30 The pf funtionour assumption. If {ℵ2k : n < k < ω} ∈ D, then f is <D-bounded by thepointwise supremum of fξ's. This ontradits f being a sale.℄The following theorem is an important result of the pf theory whih playsa ruial role in the appliations of the pf theory to ardinal arithmeti. SeeChapter 5.Theorem 4.10. Suppose that A is a progressive interval of regular ardinals.Then pcf(A) is also an interval of regular ardinals.Proof. Suppose that A is a progressive interval of regular ardinals. Reallthat pcf(A) ∩ minA = ∅ and A ⊆ pcf(A). Hene we need to show thatevery regular ardinal λ with supA ≤ λ < max pcf(A) is in pcf(A).If supA /∈ A, then supA must be a limit point of A, and thus, a singularardinal, sine |A|< minA ≤ supA. Otherwise, supA ∈ A ⊆ pcf(A).Consider now a regular ardinal λ with supA < λ < max pcf(A). Weshow that λ ∈ pcf(A).Let A′ be the �rst initial segment of A that is not in the ideal J<λ (itexists). Then all proper initial segments of A′ are in J<λ.Claim. A′ has no maximal element.Proof of the laim. In order to get a ontradition, suppose that supA′ ∈ A′.Then A′\supA′ ∈ J<λ. Sine A′ /∈ J<λ, there is an ultra�lter D on A′ suhthat cf(
∏

A′/D) ≥ λ. It follows that A′\supA′ /∈ D, beause A′\supA′ ∈
J<λ. Hene {supA′} ∈ D; that is, D is a prinipal ultra�lter. Thus, we have
λ ≤ cf(

∏

A′/D) = supA′. But this is a ontradition to λ > supA.It follows that κ++ < supA′ < λ and {a ∈ A′ : a ≤ κ++} ∈ J<λ (and
|A′|+≤ κ ≤ λ), for every ardinal κ ∈ A′. Further, J<λ is a proper ideal, andthe produt ∏

A′/J<λ is λ-direted. Thus, we an apply Theorem 3.13 to
A′, J<λ and λ: there exists a <J<λ

-inreasing sequene f = 〈fξ : ξ < λ〉 offuntions in ∏

A′/J<λ with an exat upper bound h suh that
{a ∈ A′ : cf(h(a)) < κ} ∈ J<λ,for every ardinal κ ∈ A′. In partiular,

I1 := {a ∈ A′ : cf(h(a)) < minA′} ∈ J<λ. (4.1)The identity funtion id on A′ is a <-upper bound for f . So, sine h isminimal, we have h ≤J<λ
id, that is,

I2 := {a ∈ A′ : h(a) > id(a) = a} ∈ J<λ. (4.2)



4.3 Ideal J<λ 31It follows from (4.1) and (4.2) that
minA′ ≤ cf(h(a)) ≤ a (4.3)holds for every a ∈ A′\(I1 ∪ I2). Thus, by hanging h on the null-set I1 ∪ I2,we an assume that (4.3) holds for every a ∈ A′. But sine A′ is an intervalof regular ardinals, we have

cf(h(a)) ∈ A′ for every a ∈ A′.Reall that by (3.1) we have
λ = tcf(

∏

a∈A′ cf(h(a))/J<λ).Let B := {cf(h(a)) : a ∈ A′}, and let c : A′ → B be the funtion de�ned by
c(a) := cf(h(a)). Then |A′|< minB. Hene, we an apply Lemma 3.5: thereis an ideal J on B suh that

tcf(
∏

B/J) = tcf(
∏

a∈A′ cf(h(a))/J<λ) = λ.Thus, we have proved that λ ∈ pcf(B) ⊆ pcf(A′) ⊆ pcf(A). This ompletesthe proof.We have the following generalization of the last theorem.De�nition 4.11. Suppose that A is a set of regular ardinals. For everyardinal κ < minA de�ne
pcfκ(A) :=

⋃

{pcf(X) : X ⊆ A and |X|= κ}.Theorem 4.12. Suppose that A is an interval of regular ardinals. Then forevery ardinal κ < minA, pcfκ(A) is also an interval of regular ardinals.For a proof see [1, Theorem 3.11℄.The pf funtion has (under weak assumptions) the following losureproperty.Theorem 4.13. Suppose that A is a progressive set of regular ardinals, and
B ⊆ pcf(A) is also progressive. Then

pcf(B) ⊆ pcf(A).In partiular, if pcf(A) is progressive, then pcf(pcf(A)) = pcf(A).For a proof see [1, Theorem 3.12℄.



32 The pf funtion4.4 Generators for J<λWe shall prove that for every λ ∈ pcf(A) there is a set Bλ[A] ⊆ A, alledgenerating set, suh that
J<λ+ [A] = J<λ[A] + Bλ[A],that is, J<λ+ [A] is generated by J<λ ∪ {Bλ[A]}. This property of ideals J<λis alled normality . Moreover, if A is progressive, then for every X ⊆ A,
X ⊆ Bλ1 [A] ∪ · · · ∪ Bλn [A],for some �nite set {λ1, ..., λn} ⊆ pcf(X).4De�nition 4.14. Suppose that λ ∈ pcf(A). A sequene f = 〈fξ : ξ < λ〉 offuntions in ∏

A, inreasing in <J<λ
, is a universal sequene for λ if it is asale for ∏

A/D whenever D is an ultra�lter on A suh that cf(
∏

A/D) = λ.5Theorem 4.15. Suppose that A is a progressive set of regular ardinals.Then every λ ∈ pcf(A) has a universal sequene.For a proof see [1, Theorem 4.2℄.The universal sequenes will be frequently used from now on.6 Beforewe use them to prove the existene of generating sets, we state two otherimportant onsequenes of Theorem 4.15.Lemma 4.16. Suppose that A is a progressive set of regular ardinals. Thefollowing are equivalent for every ardinal λ:1. λ = max pcf(A)2. λ = tcf(
∏

A/J<λ)3. λ = cf(
∏

A/J<λ)Proof. 1 ⇒ 2. We show that any universal sequene for λ is o�nal in
∏

A/J<λ. Argue indiretly. Suppose that f = 〈fξ : ξ < λ〉 is not o�nal in
∏

A/J<λ, i.e. there exists h ∈
∏

A/J<λ suh that {a ∈ A : fξ(a) < h(a)} /∈
J<λ, for every ξ < λ. Note that, sine f is <J<λ

-inreasing, we have for
ξ1 < ξ2 < λ,4These nie properties of the ideals J<λ play a key role in the appliations of pf theoryto ardinal arithmeti.5Notie that it su�es to say o�nal, instead of sale, sine suh an f is <D-inreasing.6We refer the reader to [2, setion 4℄ for another (motivating) approah to generatorsand universal sequenes. The idea of a universal sequene arises from the attempt todominate a sequene of sales.



4.4 Generators for J<λ 33
{a ∈ A : fξ1(a) < h(a)} ⊇J<λ

{a ∈ A : fξ2(a) < h(a)}.Thus, we an extend the ideal J<λ to a maximal ideal J suh that {a ∈ A :
fξ(a) < h(a)} /∈ J , for every ξ < λ. Let D be the dual (ultra)�lter of J . Itfollows that cf(

∏

A/D) = λ, beause D ∩ J<λ = ∅ and λ = max pcf(A).But f is not a sale for ∏

A/D, sine fξ <D h for every ξ < λ. Hene f isnot universal for λ.
2 ⇒ 3. Trivial.
3 ⇒ 1. Suppose that λ = cf(

∏

A/J<λ). We �rst show that λ ≤ max
pcf(A). The ideal J<λ is learly a proper ideal (otherwise, if A ∈ J<λ,then cf(

∏

A/J<λ) = 1). Hene, there is an ultra�lter D on A suh that
D ∩ J<λ = ∅. It follows that cf(

∏

A/D) ≤ cf(
∏

A/J<λ) = λ (see Remark3.2(5)). But cf(
∏

A/D) < λ is impossible, beause D ∩ J<λ = ∅. Thus,
cf(

∏

A/D) = λ. So we have λ ∈ pcf(A), whih implies λ ≤ max pcf(A).To prove that λ ≥ max pcf(A), let D be any ultra�lter on A. We laim that
λ ≥ cf(

∏

A/D). If D ∩ J<λ 6= ∅, then, by de�nition, λ > cf(
∏

A/D). Butif D ∩ J<λ = ∅, then (like above) λ = cf(
∏

A/J<λ) ≥ cf(
∏

A/D). Thisompletes the proof.Theorem 4.17. If A is a progressive set of regular ardinals, then
cf(

∏

A, <) = max pcf(A),where < refers to the everywhere dominane relation <{∅}. Hene cf(
∏

A, <)is a regular ardinal.Proof. We only give a seth of the proof. It follows easily that cf(
∏

A, <) ≥max pcf(A). Let λ = max pcf(A), and let D be an ultra�lter on A suhthat λ = cf(
∏

A/D). Then <D extends <, and thus (by Remark 3.2(5)),we have cf(
∏

A, <) ≥ cf(
∏

A, <D) = λ.The onverse, cf(
∏

A, <) ≤ max pcf(A), is proved by �nding a o�nalsubset of (
∏

A, <) of ardinality max pcf(A) = λ. Fix for every µ ∈ pcf(A)a universal sequene fµ = 〈fµ
i : i < µ〉 for µ. Let F be the set of all funtionsof the form sup{fµ1

i1
, fµ2

i2
, ..., fµn

in
},where µ1, µ2, ..., µn is any �nite sequene of ardinals in pcf(A), and ik < µkare arbitrary indies. Then F is a o�nal subset of (

∏

A, <) of ardinality λ(for details see the proof of Theorem 4.26).In order to prove the existene of generating sets Bλ[A], we �rst makethe following haraterization.



34 The pf funtionLemma 4.18. Suppose that A is a progressive set of regular ardinals. Thenfor any set B ⊆ A,
J<λ+[A] = J<λ[A] + B (4.4)if and only if

B ∈ J<λ+ [A] (4.5)and whenever D is an ultra�lter on A with cf(
∏

A/D) = λ, (4.6)then B ∈ D.Proof. Assume �rst that (4.4) holds. Then (4.5) is obvious. We prove (4.6).Suppose that D is an ultra�lter on A with cf(
∏

A/D) = λ. Then D∩J<λ+ 6=
∅. Let X ∈ D ∩ J<λ+ . By (4.4), X\B ∈ J<λ. Sine D ∩ J<λ = ∅, it followsthat B ∈ D. [For if A\B ∈ D, then (A\B) ∩ X = X\B ∈ D ∩ J<λ.℄Now assume that (4.5) and (4.6) hold. We prove (4.4). Sine B ∈ J<λ+,we have J<λ+ ⊇ J<λ + B. To prove J<λ+ ⊆ J<λ + B, assume that X ∈ J<λ+and show that X\B ∈ J<λ as follows. Let D be an ultra�lter on A suhthat X\B ∈ D. We laim that cf(

∏

A/D) < λ. Sine X ∈ J<λ+ ∩ D,
cf(

∏

A/D) < λ+. But cf(
∏

A/D) = λ is impossible, beause B /∈ D.Hene cf(
∏

A/D) < λ.Theorem 4.19. [Normality℄ Suppose that A is a progressive set of regularardinals. Then for every ardinal λ ∈ pcf(A) there is a set B ⊆ A suh that
J<λ+[A] = J<λ[A] + B.Proof. Let λ ∈ pcf(A). The ase λ ∈ {|A|+, |A|++, |A|+++} is rather trivial:

J<|A|+ = {∅};

J<|A|++ = {∅} + {|A|+} =
{

∅, {|A|+}
}

;

J<|A|+++ =
{

∅, {|A|+}
}

+ {|A|++} =
{

∅, {|A|+}, {|A|++}, {|A|+, |A|++}
}

.Suppose now that |A|+3< λ. Then {a ∈ A : a < |A|+3} = {|A|+, |A|++} ∈
J<|A|+3 ⊆ J<λ. Hene we an apply Theorem 3.13 to A, J<λ and λ (κ = |A|+):there exists a <J<λ

-inreasing sequene f = 〈fξ : ξ < λ〉 of funtions in
∏

A/J<λ with an exat upper bound h. Sine the identity funtion id on Ais a <-upper bound of f , we have h ≤J<λ
id. By hanging h on a null-set,we an assume that h(a) ≤ a, for every a ∈ A.Moreover, by Remark 3.14, we an assume that f dominates some uni-versal sequene for λ. It follows that f is a universal sequene for λ as well.



4.4 Generators for J<λ 35By verifying (4.5) and (4.6), we show that
B := {a ∈ A : h(a) = a}generates J<λ+ over J<λ. In order to prove that B ∈ J<λ+ , let D be anyultra�lter on A suh that B ∈ D. We need to show that cf(

∏

A/D) < λ+.First, if D ∩ J<λ 6= ∅, then by de�nition cf(
∏

A/D) < λ. Suppose now that
D ∩ J<λ = ∅. Then <D extends <J<λ

. It follows that f is a sale for ∏

h/D(beause it is a sale for ∏

h/J<λ). But, sine B ∈ D, ∏

h/D is equivalentto ∏

A/D (modulo D). Thus, cf(
∏

A/D) = cf(
∏

h/D) = λ.We prove (4.6) indiretly. Suppose that B /∈ D. Then {a ∈ A : h(a) <
a} ∈ D, and thus, h ∈

∏

A/D. Assume that D ∩ J<λ = ∅. [If D ∩ J<λ 6= ∅,then cf(
∏

A/D) < λ, and we are done.℄ It follows that <D extends <J<λ
,thus, fξ <D h for every ξ < λ (beause fξ <J<λ

h). This means that f hasan upper bound in ∏

A/D. Sine f is a universal sequene for λ, we have
cf(

∏

A/D) 6= λ (otherwise, f would be o�nal in ∏

A/D).Generating sets are not uniquely determined. But if B1 and B2 are bothgenerators for J<λ+ , then they both satisfy (4.4), hene B1 =J<λ
B2. Thus, bya generating set Bλ[A] (or Bλ[A] set) we mean any set B satisfying (4.4). Inpartiular, for λ = max pcf(A) we an hoose Bλ[A] = A, sine A obviouslysatis�es (4.5) and (4.6).We have the following analogue of Proposition 4.4, whih will be usefullater on.Proposition 4.20. If A0 ⊆ A and λ ∈ pcf(A0), then the restrition to A0of a generator for J<λ+ [A] is a generator for J<λ+ [A0], i.e.

Bλ[A0] =J<λ[A0] A0 ∩ Bλ[A].
(Hene we an write Bλ instead of Bλ[A0] and Bλ[A].)Proof. We need to verify (4.5) and (4.6) for A0 ∩ Bλ[A]. Sine Bλ[A] ∈
J<λ+ [A], also A0∩Bλ[A] ∈ J<λ+ [A]. Proposition 4.4 implies that A0∩Bλ[A] ∈
J<λ+ [A0].To verify (4.6), let D0 be any ultra�lter on A0 suh that cf(

∏

A0/D0) =
λ. We need to show that A0 ∩ Bλ[A] ∈ D0. We argue indiretly. Supposethat A0 ∩ Bλ[A] /∈ D0. Then A0\Bλ[A] ∈ D0. Extend D0 anonially to anultra�lter D′

0 on A. Then cf(
∏

A/D′
0) = cf(

∏

A0/D0) = λ (see the proofof Proposition 4.4), and Bλ[A] /∈ D′
0 (beause A0\Bλ[A] ∈ D′

0). This is inontradition with (4.6) (for Bλ[A]).We have the following fundamental relation between generators and uni-versal sequenes.



36 The pf funtionTheorem 4.21. Suppose that A is a progressive set of regular ardinals. Let
λ ∈ pcf(A), and let f = 〈fξ : ξ < λ〉 be a <J<λ

-inreasing sequene offuntions in ∏

A. Then
f is universal for λ iff f ↾ Bλ is o�nal in ∏

Bλ/J<λ.Proof. The ase λ ∈ {|A|+, |A|++, |A|+3} is trivial (see the proof of Theorem4.19). So suppose that λ > |A|+3.We �rst show, by an indiret argument, that if f is universal for λ, then
f ↾ Bλ is o�nal in ∏

Bλ/J<λ.7 So, suppose that f ↾ Bλ is not o�nal, i.e.there is some h ∈
∏

Bλ/J<λ suh that h �J<λ
fξ ↾ Bλ, for every ξ < λ. Thenwe have {a ∈ Bλ : fξ(a) < h(a)} /∈ J<λ, for every ξ < λ. Moreover, sine fis <J<λ

-inreasing, we have for ξ1 < ξ2 < λ,
{a ∈ Bλ : fξ1(a) < h(a)} ⊇J<λ

{a ∈ Bλ : fξ2(a) < h(a)}.Hene there is a �lter on Bλ extending the dual �lter of J<λ and ontainingthe set {a ∈ Bλ : fξ(a) < h(a)}, for every ξ < λ. Extend this �lter to anultra�lter D on A. Then cf(
∏

A/D) = λ, beause Bλ ∈ D and D∩J<λ = ∅.But f is not a sale for ∏

A/D, sine fξ <D h for every ξ < λ. Hene f isnot universal for λ.Conversely, suppose that f ↾ Bλ is o�nal in ∏

Bλ/J<λ. We laim that fis universal for λ. Let D be any ultra�lter on A suh that cf(
∏

A/D) = λ.By (4.6), Bλ ∈ D. It follows that D′ := {a ⊆ Bλ : a ∈ D} is an ultra�lteron Bλ. We have D′ ∩ J<λ = D ∩ J<λ = ∅. It means that <D′ extends <J<λ
,thus, f ↾ Bλ is also o�nal in ∏

Bλ/D
′. Now, sine Bλ ∈ D, [g] 7→ [g ↾ Bλ]is an isomorphism between ∏

A/D and ∏

Bλ/D
′ (i.e a bijetion preservingthe ordering relation). Hene f is o�nal in ∏

A/D.Corollary 4.22. Sine there is always a universal sequene for λ, Theorem4.21 implies that
λ = tcf(

∏

Bλ/J<λ).Corollary 4.23. By the previous orollary and Lemma 4.16, we have that
λ = max pcf(Bλ).Now we prove the overing property whih we mentioned at the beginningof the setion.Theorem 4.24. Suppose that A is a progressive set of regular ardinals and

〈Bλ : λ ∈ pcf(A)〉 is a generating sequene for A. Then for every X ⊆ A,7This is a generalization of the proof of the impliation 1 ⇒ 2, on page 32. For thenwe onsidered only λ = max pcf(A) and Bλ = A.



4.4 Generators for J<λ 37
X ⊆ Bλ1 ∪ · · · ∪ Bλn,for some �nite set {λ1, ..., λn} ⊆ pcf(X).Proof. By indution on λ = max pcf(X). If λ = minA = max pcf(X),then X = {minA} = Bλ. Suppose that the theorem is true for all γ < λ,

γ ∈ pcf(A), and let X ⊆ A suh that λ = max pcf(X). Then X\Bλ ∈ J<λ.[If D is any ultra�lter on X suh that X\Bλ ∈ D, then cf(
∏

X/D) 6= λ,beause Bλ /∈ D. Thus, cf(
∏

X/D) < λ = max pcf(X).℄ It follows thatmax pcf(X\Bλ) < λ.By indution hypothesis, X\Bλ ⊆ Bλ1 ∪ · · · ∪ Bλn , for some �nite set
{λ1, ..., λn} ⊆ pcf(X\Bλ). Hene X ⊆ Bλ1 ∪ · · · ∪ Bλn ∪ Bλ.Towards the end of this hapter we state a few useful fats in terms of�lters.Lemma 4.25. Suppose that A is a progressive set of regular ardinals and
F is a �lter on A. Then the following are equivalent for every ardinal λ:1. tcf(

∏

A/F ) = λ2. cf(
∏

A/D) = λ for every ultra�lter D on A with F ⊆ D3. Bλ ∈ F and F extends the dual �lter of J<λProof. 1 ⇒ 2. See Remark 3.2(5).
2 ⇒ 3. We argue indiretly. Suppose �rst that Bλ /∈ F . Then, byProposition 2.10(3), there exists an ultra�lter D ⊇ F on A suh that Bλ /∈ D.It follows by (4.6) that cf(

∏

A/D) 6= λ.Similarly, if F does not extend the dual �lter of J<λ, then there is anultra�lter D ⊇ F on A whih does not extend the dual �lter of J<λ. Itfollows that D ∩ J<λ 6= ∅. Hene cf(
∏

A/D) < λ.
3 ⇒ 1. By Corollary 4.22, we have λ = tcf(

∏

Bλ/J<λ). Note thatthe restrtition F ′ := {a ⊆ Bλ : a ∈ F} of F is a �lter on Bλ. Sine Fextends the dual �lter of J<λ, F ′ extends the dual �lter of J<λ[Bλ]. Thus,
tcf(

∏

Bλ/F
′) = tcf(

∏

Bλ/J<λ) = λ. It follows that tcf(
∏

A/F ) = λ,beause ∏

A/F and ∏

Bλ/F
′ are isomorphi (sine Bλ ∈ F ).Theorem 4.26. Suppose that A is a progressive set of regular ardinals and

F is a �lter on A. Then cf(
∏

A/F ) is a regular ardinal.Proof. We argue as follows. De�ne pcfF (A) := {cf(
∏

A/D) : D ⊇ F}.We �rst prove that pcfF (A) has a maximal element, and then dedue that
cf(

∏

A/F ) = max pcfF (A).



38 The pf funtionLet λ be the minimal ardinal for whih F ∩ J≤λ 6= ∅. We show that λ =max pcfF (A). For any ultra�lter D ⊇ F we have F ∩ J≤λ ⊆ D ∩ J≤λ 6= ∅,and hene cf(
∏

A/D) ≤ λ. Thus, sup pcfF (A) ≤ λ.Conversely, we �nd an ultra�lter D ⊇ F suh that cf(
∏

A/D) = λ.[Then it follows that λ = max pcfF (A).℄ We have that I :=
⋃

γ<λ J≤γ isan ideal on A (sine J≤γ's are ⊆-inreasing). It follows that F ∩ I = ∅,beause F ∩ J≤γ = ∅, for every γ < λ. Extend F to an ultra�lter D suhthat D ∩ I = ∅. Then cf(
∏

A/D) ≥ λ, sine D ∩ J≤γ = ∅, for every γ < λ.Hene cf(
∏

A/D) = λ.Now we show that cf(
∏

A/F ) = λ. Sine D extends F , it follows that
cf(

∏

A/F ) ≥ cf(
∏

A/D) = λ.To prove the onverse inequality, we �nd a o�nal subset of ∏

A/F ofardinality λ. Fix for every ardinal µ ∈ pcfF (A) a universal sequene fµ =
〈fµ

i : i < µ〉 for µ, and let E be the set of all funtions of the formsup{fµ1

i1
, ..., fµn

in
},where µ1, µ2, ..., µn is any �nite sequene of ardinals in pcfF (A), and ik < µkare arbitrary indies. Clearly |E| = λ. It remains to prove the followinglaim.Claim. E is o�nal in ∏

A/F .Proof of the laim. Let g ∈
∏

A be any funtion. Consider the olletion
I := {(f > g) : f ∈ E}of subsets of A, where (f > g) = {a ∈ A : f(a) > g(a)}.If F ∩ I 6= ∅, then (f > g) ∈ F for some f ∈ E, i.e. f >F g for some

f ∈ E, as desired.Otherwise we get the following ontradition. Suppose that F ∩ I = ∅.We an extend I to an ideal, sine it is losed under unions, namely,
(f1 > g) ∪ (f2 > g) = (sup{f1, f2} > g).Moreover, we an extend I to a maximal ideal J on A suh that F ∩ J = ∅.Then µ := cf(

∏

A/J) ∈ pcfF (A) (beause the dual �lter of J is an ultra�lterextending F ). It follows that the universal sequene fµ for µ is o�nal in
∏

A/J . But we have (fµ
i > g) ∈ I ⊆ J , that is, fµ

i ≤J g, for every i < µ.Contradition.We �nish this hapter by proving another representation theorem.88Compare it with Theorem 3.16. Reall that if I and J are ideals suh that I ⊂ J and
tcf(

∏

A/I) exists, then tcf(
∏

A/J) = tcf(
∏

A/I) exists as well. But the onverse is false.Hene, the following theorem is stronger than Theorem 3.16, sine J<µ = J<µ+ ⊆ Jbd.



4.4 Generators for J<λ 39Theorem 4.27. Suppose that µ is a singular ardinal of unountable o�-nality. Then there exists a losed unbounded set (of limit ardinals) C ⊆ µsuh that |C|< minC and
µ+ = tcf(

∏

C(+)/J<µ+).Proof. By Theorem 3.16 there is a losed unbounded set of limit ardinals
C0 ⊆ µ suh that |C0|< minC0 and

µ+ = tcf(
∏

C
(+)
0 /Jbd),where J bd is the ideal of bounded subsets of C

(+)
0 .We laim that the set C

(+)
0 \Bµ+ is bounded in C

(+)
0 . Let F cbd be the �lterof obounded subsets of C

(+)
0 , i.e. the dual �lter of J bd. Then, learly,

µ+ = tcf(
∏

C
(+)
0 /Jbd) = tcf(

∏

C
(+)
0 /F cbd).By Lemma 4.25, we have Bµ+ ∈ F cbd. Thus, C

(+)
0 \Bµ+ is bounded in C

(+)
0 .De�ne

C := C0\sup{α ∈ C0 : α+ ∈ C
(+)
0 \Bµ+}.Note that C is also a losed unbounded set with |C|< minC. It follows that

tcf(
∏

C(+)/Jbd) = tcf(
∏

C
(+)
0 /Jbd) = µ+,sine C

(+)
0 \C(+) ∈ J bd is a null-set. So µ+ ∈ pcf(C(+)). By Corollary 4.22,

µ+ = tcf(
∏

Bµ+ [C(+)]/J<µ+).We omplete the proof by showing that Bµ+ [C(+)] =J<µ+ C(+), but thisfollows immediately by Proposition 4.20, applied to C(+) ⊆ C
(+)
0 and µ+ ∈

pcf(Bµ+ [C(+)]):
Bµ+ [C(+)] =J<µ+ [C(+)] C(+) ∩ Bµ+ [C

(+)
0 ] = C(+).Corollary 4.28. By Lemma 4.16, we have µ+ = max pcf(C(+)).
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Chapter 5Cardinal arithmetiIn this hapter we apply pf theory to ardinal arithmeti. Our aim is to givea lear insight into the (somewhat long) proof of Shelah's famous theorem
ℵℵ0

ω ≤ 2ℵ0 + ℵω4 .5.1 Co�nality of ([µ]κ,⊆)Let κ and µ be any ardinals with κ ≤ µ. The olletion {X ⊆ µ : |X| = κ}of all subsets of µ of ardinality κ is denoted by [µ]κ. One an show by ashort argument that |[µ]κ| = µκ (for a proof see [3, Lemma 5.7℄). Note thatthe inlusion relation ⊆ is a quasi ordering of [µ]κ.There is the following relationship between the ardinality and the o�-nality of [µ]κ:
|[µ]κ| = cf([µ]κ,⊆) · 2κ. (5.1)The proof is quite simple. Clearly |[µ]κ| ≥ cf([µ]κ,⊆) · 2κ. We show that

≤ holds as well. Suppose that cf([µ]κ,⊆) = λ and let Y = {Yi : i < λ}be a o�nal subset of [µ]κ. De�ne a one-to-one map from [µ]κ to Y × 2κ asfollows. For every E ∈ [µ]κ �nd some Yi ∈ Y suh that E ⊆ Yi. Sine Yi isisomorphi to κ, E is isomorphi to some subset S of κ. Map E to (Yi, S).One an prove by indution that for every n ∈ ω, cf([ℵn]ℵ0 ,⊆) = ℵn, butit is hard to determine cf([µ]κ,⊆) in general. However, by the means of pftheory we are going to prove the following ruial theorem.Theorem 5.1. Suppose that µ is a singular ardinal, and κ < µ is an in�niteregular ardinal suh that the interval A of regular ardinals in (κ, µ) has size
≤ κ. Then

cf([µ]κ,⊆) = max pcf(A). (5.2)



42 Cardinal arithmetiUsing Theorem 5.1, and some results from Chapter 4, we an prove thefollowing:Theorem 5.2. ℵℵ0
ω < ℵ(2ℵ0 )+.Proof. Consider the interval A = {ℵn : 0 < n < ω} of regular ardinals. ByTheorem 4.10, pcf(A) is also an interval of regular ardinals, ontaining allregular ardinals from ℵ1 to max pcf(A). Moreover, by Corollary 4.8,

|pcf(A)| ≤ |P (A)| = 2ℵ0 .It follows that
max pcf(A) < ℵ(2ℵ0 )+ .Applying (5.1) and Theorem 5.1 (for κ = ℵ0 and µ = ℵω), we get

|[ℵω]ℵ0 | = cf([ℵω]ℵ0 ,⊆) · 2ℵ0 = max pcf(A) · 2ℵ0 < ℵ(2ℵ0 )+ .Remark 5.3. (1) If ℵω is a strong limit ardinal, i.e. 2ℵn < ℵω for every
n < ω, then 2ℵω = ℵℵ0

ω , and hene, 2ℵω < ℵ(2ℵ0 )+ .(2) It follows from the proof of Theorem 5.2 that we an get a smallerupper bound of ℵℵ0
ω by limiting the size of pcf(A). Indeed, one an show that

|pcf(A)| ≤ |A|+3 (whenever A is a progressive interval of regular ardinals),and hene get ℵℵ0
ω ≤ 2ℵ0 + ℵω4 (see the next setion). 1The proof of Theorem 5.1.We �rst prove the easier inequality cf([µ]κ,⊆) ≥ max pcf(A). Note that

A is a progresive set of regular ardinals, sine |A| ≤ κ. Let λ = cf([µ]κ,⊆),and let {Xi : i < λ} be o�nal in ([µ]κ,⊆). De�ne for eah i < λ a funtion
hi ∈

∏

A by hi(a) := sup a∩Xi. Then {hi : i < λ} is o�nal in (
∏

A, <). [If
f ∈

∏

A, then the range of f is an element of [µ]<κ, and hene, it is overedby some Xi. Thus, f ≤ hi.℄ So λ ≥ cf(
∏

A, <) = max pcf(A) (the lastequality by Theorem 4.17).The proof of the other inequality, cf([µ]κ,⊆) ≤ max pcf(A), is moreompliated. We �rst assume that |A| < κ. The ase |A| = κ is thenobtained by applying the �rst ase to |A| = κ+ and using
cf([µ]κ,⊆) ≤ cf([µ]κ

+

,⊆) · κ+. (5.3)For a ardinal γ, let Hγ be the ∈-struture whose universe is the olletion ofall sets whih have transitive losure of size < γ. Fix some large θ suh that
Hθ ontains all sets that were disussed so far. We also add to the struture
Hθ a well-ordering <∗ of its universe. It allows us to assume that the objetswe talk about are uniquely determined.1It is still an open question if atually |pcf(A)| = |A| holds.



5.1 Co�nality of ([µ]κ,⊆) 43De�nition 5.4. An elementary substruture M ≺ Hθ is κ-presentable ifthere is a sequene 〈Mi : i < κ〉 of elementary substrutures of Hθ suh that1. if i < κ, then Mi ⊂ Mi+1 and Mi ∈ Mi+1,2. for limit ordinals δ < κ, Mδ =
⋃

i<δ Mi, and M =
⋃

i<κ Mi,3. M has ardinality κ and κ + 1 ⊂ M .Let M be the olletion of all κ-presentable substrutures M ≺ Hθ suhthat A ∈ M . De�ne
F = {M ∩ µ : M ∈ M}.We are going to show that F is o�nal in ([µ]κ,⊆) and of ardinality at mostmax pcf(A). This will omplete our proof.It follows easily that F is o�nal, beause if X ∈ [µ]κ, then there is a

κ-presentable substruture M suh that A ∈ M and X ⊂ M . [To onstrutsuh an M use Löwenheim-Skolem theorem. De�ne the approahing sub-strutures as follows. Start with an arbitrary M0 ≺ Hθ of ardinality κ suhthat A ∈ M0, X ⊂ M and κ + 1 ⊂ M . For eah i < κ, Mi is an element of
Hθ, and thus, an be inorporated in Mi+1 ≺ Hθ.℄It remains to show that F has ardinality at most max pcf(A). For anystruture N , de�ne the 'harateristi funtion' ChN of N by

ChN(γ) = sup N ∩ γ, for regular ardinals γ > |N |.Note that if M is a κ-presentable substruture, then ChM ↾ A is an elementof ∏

A, beause |M | < minA.We argue as follows. We �rst show (in the next lemma) that for M ∈ M,
ChM ↾ A determines M∩µ, i.e. ChM ↾ A = ChM ′ ↾ A impliesM∩µ = M ′∩µ,and then prove that |{ChM ↾ A : M ∈ M}| ≤ max pcf(A).Note that whenever X ∈ M (M ∈ M) suh that |X| ≤ κ, then X ⊂ M .In partiular, A ⊂ M . [Sine |X| ≤ κ, there is a funtion in Hθ (and henein M) from κ onto X. It follows that X ⊂ M , beause κ ⊂ M .℄Lemma 5.5. Suppose that M is κ-presentable. Then ChM ↾ A determines
M ∩ µ.Proof. Suppose that M and M ′ are two κ-presentable substrutures of Hθsuh that ChM ↾ A = ChM ′ ↾ A. We show by indution that M ∩γ = M ′∩γfor every ardinal γ ≤ µ.Clearly, M ∩γ = M ′∩γ = γ, for every ardinal γ ≤ κ. If γ ≤ µ is a limitardinal, then M ∩ γ =

⋃

γ′<γ M ∩ γ′, and hene M ∩ γ = M ′ ∩ γ follows bythe indution hypothesis.



44 Cardinal arithmetiAssume now that M ∩γ = M ′∩γ for some γ with κ < γ < µ. We need toshow that also M ∩γ+ = M ′∩γ+. Observe that there is a losed unboundedsubset E of ChM(γ+) = sup M ∩ γ+ of order-type κ suh that E ⊆ M .[Proof. For eah i < k, we have Mi, γ
+ ∈ M , and thus, sup Mi ∩ γ+ ∈ Mand E = {sup Mi ∩ γ+ : i < k} ⊆ M . E is losed, sine for limit ordinals

δ < κ, Mδ =
⋃

i<δ Mi, and it is o�nal in M ∩ γ+, beause M =
⋃

i<κ Mi.℄Similarly, there is a losed unbounded subset E ′ of ChM ′(γ+) = sup M ′∩γ+of order-type κ suh that E ′ ⊆ M ′.Sine κ is unountable, E∩E ′ ⊆ M ∩M ′ is a losed unbounded subset of
ChM(γ+) = ChM ′(γ+). In partiular, M ∩M ′ ∩γ+ is o�nal in both M ∩γ+and M ′ ∩ γ+.Let α ∈ M ∩ M ′ ∩ γ+\γ be any ordinal. There is a bijetion f : γ → α(in Hθ). Sine M, M ′ ≺ Hθ, the <∗-least suh f is in both M and M ′.Hene, we have M ∩ α = f ′′(M ∩ γ) = f ′′(M ′ ∩ γ) = M ′ ∩ α. It follows that
M ∩ γ+ = M ′ ∩ γ+.To prove |{ChM ↾ A : M ∈ M}| ≤ max pcf(A), we de�ne a speial typeof universal sequene.Suppose that λ ∈ pcf(A) and f = 〈fξ : ξ < λ〉 is a sequene of funtionsin ∏

A. Let δ < λ be a limit ardinal with cf(δ) = κ. For every losedunbounded set E ⊆ δ of order-type cf(δ) let
hE := sup{fξ : ξ ∈ E}.There is a losed unbounded set C ⊆ δ suh that hC ≤ hE , for every losedunbounded set E ⊆ δ. [Proof. Otherwise, we an ontrut a dereasingsequene 〈Eα : α < |A|+〉 of losed unbounded sets of δ suh that for every

α < |A|+, hEα � hEα+1 (sine |A| < cf(δ), at limit stages we an takeintersetions of the sets so far onstruted). It follows that there is a single
a ∈ A suh that hEα(a) > hEα+1(a) for in�nitely many α's. Contradition.℄The funtion hC is alled a minimal lub-obedient bound of f = 〈fξ : ξ < δ〉.The sequene f = 〈fξ : ξ < λ〉 is said to be minimally obedient (at o�nality
κ) if for every δ < λ with cf(δ) = κ, fδ is a minimal lub-obedient bound of
〈fξ : ξ < δ〉.We an onstrut a universal sequene 〈fξ : ξ < λ〉 for λ, whih is mini-mally obedient, as follows. Let 〈f 0

ξ : ξ < λ〉 be any universal sequene for λ.De�ne 〈fξ : ξ < λ〉 by indution on ξ < λ suh that1. f0 = f 0
0 , and fξ+1 > max{fξ, f

0
ξ },2. at limit stages δ < λ with cf(δ) = κ, fδ is a minimal lub-obedientbound of 〈fξ : ξ < δ〉,



5.1 Co�nality of ([µ]κ,⊆) 453. at limit stages δ < λ with cf(δ) 6= κ, fδ is any J<λ-upper bound of
〈fξ : ξ < δ〉, guaranteed by the λ-diretedness of ∏

A/J<λ.Note that the sequene 〈fξ : ξ < λ〉 is J<λ-inreasing. It is by onstrutionminimally obedient, and it is universal, sine fξ+1 > f 0
ξ for every ξ < λ.Fix for every ardinal λ ∈ pcf(A) a minimally obedient universal sequene

fλ = 〈fλ
ξ : ξ < λ〉 for λ, whih is least in the well-ordering <∗ of Hθ (andhene, by elementarity, ontained in eah M ∈ M with λ ∈ M).De�nition 5.6. A sequene f = 〈fξ : ξ < λ〉 of funtions in ∏

A is said tobe persistently o�nal for λ if for every h ∈
∏

A there exists ξ0 < λ suhthat for every ξ, with ξ0 ≤ ξ < λ,
h ↾ Bλ <J<λ

fξ ↾ Bλ.The minimally obedient universal sequenes fλ are persistently o�nalfor λ, beause they are J<λ-inreasing, and hene o�nal in Bλ/J<λ (seeTheorem 4.21).The following lemma is the ruial observation, whih will also be usedin the next setion.For any struture N , let N̄ denote the ordinal losure of N , that is, γ ∈ N̄iff γ ∈ N ∩ Ord or γ is a limit of ordinals in N .Lemma 5.7. Suppose that A is a progressive set of regular ardinals, λ ∈
pcf(A), and f = 〈fξ : ξ < λ〉 is a sequene of funtions in ∏

A. Let κ be aregular ardinal with |A| < κ < minA, and let M ≺ Hθ be a κ-presentablesubstruture suh that f, A ∈ M (and hene λ ∈ M). Let γ = ChM(λ). Thenthe following hold.1. If f is persistently o�nal for λ, then
{a ∈ A : ChM (a) ≤ fγ(a)} is a Bλ[A] set. (5.4)2. If f is a minimally obedient universal sequene for λ, then for everylimit ordinal γ′ ∈ (M̄∩λ)\M there is a losed unbounded set C ⊆ γ′∩M

(of order-type κ) suh that fγ′ = sup{fξ : ξ ∈ C}, and thus
fγ′(a) ∈ M̄ ∩ a, for every a ∈ A.In partiular, fγ(a) ∈ M̄ ∩ a, for every a ∈ A, and hene

fγ ≤ ChM (5.5)and for every h ∈ M ∩
∏

A, there is some d ∈ M ∩
∏

Asuh that h ↾ Bλ <J<λ
d ↾ Bλ and d ≤ fγ. (5.6)



46 Cardinal arithmetiFor a proof of (1) and (2) see [1, Lemma 5.4℄ and [1, Lemma 5.7℄, respe-tively.Corollary 5.8. Suppose that A is a progressive set of regular ardinals,
λ ∈ pcf(A), and f = 〈fξ : ξ < λ〉 is a sequene of funtions in ∏

A. Let κ bea regular ardinal with |A| < κ < minA, and let M ≺ Hθ be a κ-presentablesubstruture suh that f, A ∈ M (and hene λ ∈ M). Let γ = ChM(λ).Suppose that (5.4), (5.5) and (5.6) hold2. Then
bλ := {a ∈ A : ChM (a) = fγ(a)}is a Bλ[A] set. Moreover, there is a subset b′λ of bλ whih is a generating set,as well, and whih is in M .Proof. 3 It follows immediately from (5.4) and (5.5) that bλ is a Bλ[A] set.In order to de�ne a subset of bλ whih is a generating set, and whih isin M , we modify the de�nition of bλ, substituting M and γ by parametersfrom M .If a ∈ A and fγ(a) < ChM(a), then there exists some i < κ suh that

fγ(a) < ChMi
(a), beause M =

⋃

i<κ Mi. Sine |A| < κ, there is a single
i < κ suh that

fγ(a) < ChM (a) iff fγ(a) < ChMi
(a),for every a ∈ A. By negating both sides, we get

a ∈ bλ iff ChMi
(a) ≤ fγ(a).Hene, we have replaed the parameter M by Mi in the de�nition of bλ. Tosubstitute γ, we use the property (5.6) of f (for h = ChMi

): there exists afuntion d ∈ M ∩
∏

A suh that1. ChMi
↾ Bλ <J<λ

d ↾ Bλ, and2. d ≤ fγ .We replae fγ in the de�nition of bλ by the funtion d, and de�ne
b′λ := {a ∈ A : ChMi

(a) ≤ d(a)}.Sine all parameters in the de�nition of b′λ are in M , we have b′λ ∈ M .Properties 1 and 2 above imply that
Bλ ⊆J<λ

{a ∈ A : ChMi
(a) < d(a)} ⊆ b′λ ⊆ bλ.Thus, b′λ ⊆ bλ is also a Bλ[A] set.2In the next setion we will apply this orollary to sequenes whih are not neessarilyuniversal and minimally obedient, but satisfy (5.4), (5.5) and (5.6).3This proof is taken from [1, page 53℄.



5.1 Co�nality of ([µ]κ,⊆) 47If we (�rst) �x a κ-presentable substruture M ≺ Hθ with A ∈ M (i.e.
M ∈ M), and then onsider all ardinals λ ∈ pcf(A) ∩ M , we getCorollary 5.9. Suppose that A is a progressive set of regular ardinals, κ is aregular ardinal suh that |A| < κ < minA, and M ≺ Hθ with A ∈ M is a κ-presentable substruture. Suppose that M ontains for every λ ∈ pcf(A)∩Ma sequene fλ = 〈fλ

ξ : ξ < λ〉 that satis�es properties (5.4), (5.5) and (5.6).Then there are ardinals λ0 > λ1 · · · > λn in pcf(A) ∩ M suh that
ChM ↾ A = sup{fλ0

γ0
, . . . , fλn

γn
}, (5.7)where γi = ChM(λi).Proof. By Corollary 5.8, for every λ ∈ pcf(A) ∩ M there is a Bλ[A] set

b′λ ∈ M , suh that
b′λ ⊆ {a ∈ A : ChM(a) = fλ

ChM (λ)(a)}. (5.8)We laim that there exist ardinals λ0 > · · · > λn in pcf(A) ∩ M suh that
A = b

′

λ0
∪ · · · ∪ b

′

λn
, (5.9)i.e. the 'overing ardinals' an be found in M (ompare with Theorem 4.24).To prove this, we indutively onstrut a desending sequene λ0 > · · · > λiof ardinals in pcf(A) ∩ M as follows:1. let λ0 = max pcf(A),2. if Ai+1 := A\(b

′

λ0
∪ · · · ∪ b

′

λi
) 6= ∅, then let λi+1 = max pcf(Ai+1).Sine b

′

λ0
, . . . , b

′

λi
∈ M , we have Ai+1 ∈ M (Ai+1 6= ∅), and hene λi+1 ∈ M .Obviously, λi ≥ λi+1, beause Ai ⊇ Ai+1. But λi = λi+1 is impossible, sine

b
′

λi
∩Ai+1 = ∅ (and thus λi /∈ pcf(Ai+1)). Hene λi > λi+1. It follows that thesequene terminates. That is, for some i, Ai+1 = ∅. Then A = b

′

λ0
∪ · · · ∪ b

′

λi
.By (5.5), fλ

ChM (λ) ≤ ChM holds for every λ ∈ pcf(A) ∩ M . Therefore,
(5.8) and (5.9) imply that (5.7) holds.It follows from Corollary 5.9 that |{ChM ↾ A : M ∈ M}| ≤ max pcf(A).Namely, there are only max pcf(A) many sequenes fλ0

ChM (λ0), . . . , f
λn

ChM (λn),where M ∈ M and λ0, . . . , λn ∈ pcf(A) ∩ M . Thus, we have ompleted theproof of Theorem 5.1.Remark 5.10. Sine (5.1) holds and its proof is quite short, one ould ask:why is it not simply inorporated in Theorem 5.1, suh that (5.2) beomes
|µκ| = max pcf(A) · 2κ. The answer is - we want to stress the importaneof studying o�nalities; aording to Shelah, this approah is the key tonew results. Another reason for working with o�nalities is the fat thato�nalities are more immune to foring methods then ardinalities.



48 Cardinal arithmetiRemark 5.11. (1)If we additionally assume (in Theorem 5.1) that 2|A| ≤ κ,then we have pcf(A) ≤ 2|A| ≤ κ, and hene pcf(A) ⊆ M , sine κ + 1 ⊆ M .In this ase, the proof of Corollary 5.9 is very short, baause we an applyTheorem 4.24. Atually, Theorem 5.1, as it is, follows easily from this speialase (where 2|A| ≤ κ); for a proof see [2, 5.4℄.We have the following straightforward generalization of Theorem 5.2.Theorem 5.12. Suppose that ℵδ is a singular ardinal suh that δ < ℵδ.Then
ℵ
|δ|
δ < ℵ(2|δ|)+ . (5.10)Proof. Consider the progressive interval A of regular ardinals in (|δ|+,ℵδ).By Theorem 4.10, pcf(A) is also an interval of regular ardinals, ontainingall regular ardinals from |δ|++ to max pcf(A), and by Corollary 4.8,

|pcf(A)| ≤ |P (A)| ≤ 2|δ|.It follows that
max pcf(A) < ℵ(2|δ|)+ .Therefore, applying (5.1), (5.3) and Theorem 5.1 to |δ|+,ℵδ, we get

|[ℵδ]
|δ|| = cf([ℵδ]

|δ|,⊆)·2|δ| ≤ cf([ℵδ]
|δ|+ ,⊆)·2|δ| = max pcf(A)·2|δ| < ℵ(2|δ|)+ .We now mention a tighter bound then (5.10). Let µ and τ ≤ µ beardinals. A over for [µ]<τ is a olletion C of subsets of µ suh that forevery X ∈ [µ]<τ there exists Y ∈ C with X ⊆ Y . If θ is a ardinal suh that

µ ≥ θ ≥ τ , then cov(µ, θ, τ) denotes the least ardinality of a over for [µ]<τonsisting of sets taken from [µ]<θ. [Note that cf([µ]κ,⊆) = cov(µ, κ+, κ+).℄Theorem 5.13. Suppose that µ is a singular ardinal, and κ < µ is a regularardinal suh that the interval A of regular ardinals in (κ+, µ) has size ≤ κ.Then
cov(µ, κ+, cf(µ)+) = sup pcfcf(µ)(A). 4Corollary 5.14. Suppose that δ is a limit ordinal suh that δ < ℵδ. Then

ℵ
cf(δ)
δ < ℵ(|δ|cf(δ))+ .For proofs see [1, page 57℄. Here we only prove the following.4See De�nition 4.11 for pcfcf(µ)(A).



5.1 Co�nality of ([µ]κ,⊆) 49Theorem 5.15. Suppose that µ is a singular ardinal, and κ < µ is a regularardinal suh that the interval A of regular ardinals in (κ+, µ) has size ≤ κ.Then
cov(µ, κ+,ℵ1) = sup pcfℵ0(A). (5.11)Proof. By indution on µ, i.e. for a �xed regular ardinal κ we show byindution on µ that whenever µ > κ is a singular ardinal suh that theinterval A of regular ardinals in (κ+, µ) has size ≤ κ, then (5.11) holds.Let κ = ℵα. If µ = ℵα+ω, then cf(µ) = ℵ0, and hene (5.11) follows fromTheorem 5.13.Assume now that µ > ℵα+ω and cov(ν, κ+,ℵ1) = sup pcfℵ0(A) holds forevery singular ardinal ν suh that ℵα+ω < ν < µ.If cf(µ) = ℵ0, then we an use Theorem 5.13 again. So assume that

cf(µ) > ℵ0. It follows that there is a o�nal subset {νi > κ++ : i < cf(µ)}of µ onsisting of singular ardinals.Let Ai be the interval of regular ardinals in (κ+, νi). Then, by indutionhypothesis, cov(νi, κ
+,ℵ1) = sup pcfℵ0(Ai), for every i < cf(µ). Hene,

cov(µ, κ+,ℵ1) = supi<cf(µ)

(

cov(νi, κ
+,ℵ1)

)

= supi<cf(µ)

(sup pcfℵ0(Ai)
)

.We omplete the proof by showing thatsupi<cf(µ)

(sup pcfℵ0(Ai)
)

= sup pcfℵ0(A).The ≤ inequality is obvious, sine sup pcfℵ0(Ai) ≤ sup pcfℵ0(A), for every i <
cf(µ). Conversely, if λ ∈ pcfℵ0(A), then for some i < cf(µ), λ ∈ pcfℵ0(Ai),beause cf(µ) > ℵ0. Thus, supi<cf(µ)

(sup pcfℵ0(Ai)
)

≥ sup pcfℵ0(A).Corollary 5.16. Suppose that δ is a limit ordinal suh that δ < ℵδ. Then
ℵℵ0

δ < ℵ(|δ|ℵ0 )+ .Proof. Consider the interval A of regular ardinals in (|δ|+,ℵδ). By Corollary4.8, we have
|pcfℵ0(A)| ≤ |[A]ℵ0 | · 2ℵ0 ≤ |δ|ℵ0 . (5.12)Sine pcfℵ0(A) is also an interval of regular ardinals (see Theorem 4.12),(5.12) means that

|
(

|δ|+, sup pcfℵ0(A)
)

∩ Reg| ≤ |δ|ℵ0. (5.13)It follows now from (5.13) thatsup pcfℵ0(A) < ℵ(|δ|ℵ0 )+ ,



50 Cardinal arithmetibeause
|
(

|δ|+,ℵ(|δ|ℵ0 )+

)

∩ Reg| = (|δ|ℵ0)+.By Theorem 5.15, cov(ℵδ, |δ|
+,ℵ1) = sup pcfℵ0(A), therefore, we have

cov(ℵδ, |δ|
+,ℵ1) < ℵ(|δ|ℵ0 )+ ,whih implies

ℵℵ0
δ = |[ℵδ]

ℵ0 | ≤ |δ|ℵ0 · cov(ℵδ, |δ|
+,ℵ1) < ℵ(|δ|ℵ0 )+ .Corollary 5.17. Suppose that δ is a ardinal suh that for every ardinal

µ < δ, µℵ0 < δ. Then ℵδ has the same property, namely, for every µ < ℵδ,
µℵ0 < ℵδ.Proof. By indution on µ. If µ < δ, then, by assumption, µℵ0 < δ, and hene
µℵ0 < ℵδ.Assume now that δ ≤ µ < ℵδ, and for every ardinal γ < µ, γℵ0 < ℵδ.If µ is a suessor ardinal, i.e. µ = ℵα+1, for some ordinal α, then, byindution hypothesis (and Proposition 2.7),

ℵℵ0
α+1 = ℵℵ0

α · ℵα+1 < ℵδ.If µ = ℵα is a limit ardinal, then α < ℵα, and thus, by the previous orollary,
ℵℵ0

α < ℵ(|α|ℵ0 )+ ≤ ℵδ.The last inequality holds beause α < δ, and thus (|α|ℵ0)+ ≤ δ.5.2 Improving the upper bound on |pcf(A)|As we mentioned in Remark 5.3, one an show that |pcf(A)| < |A|+4, for aprogressive set A of regular unountable ardinals. It follows then easily bythe proof of Theorem 5.12 that for limit ordinals δ with |δ|cf(δ) < ℵδ, we have
ℵ

cf(δ)
δ < ℵ|δ|+4 (see Theorem 5.22). In partiular, ℵℵ0

ω ≤ 2ℵ0 + ℵω4.We give an outline of the proof of |pcf(A)| < |A|+4. Reall �rst somefats from the previous setion. We showed that there is a κ-presentable ele-mentary substruture M ≺ Hθ (|A| < κ < minA), and proved the existeneof minimally obedient universal sequenes fλ for λ ∈ pcf(A). In Lemma5.7 we proved that for eah λ ∈ pcf(A) ∩ M , fλ satis�es onditions (5.4),



5.2 Improving the upper bound on |pcf(A)| 51(5.5) and (5.6). It followed then by Corollary 5.8 that there exists a speialgenerating sequene 〈bλ : λ ∈ pcf(A) ∩ M〉. 5Modifying the minimally obedient universal sequenes fλ, we de�ne theelevated sequenes of funtions in ∏

A, whih also satisfy onditions (5.4),(5.5) and (5.6), but moreover, the orresponding generating sequene 〈bλ :
λ ∈ pcf(A) ∩ M〉 is transitive (de�nitions follow).De�nition 5.18. A generating sequene 〈Bλ : λ ∈ pcf(A)∩M〉 is said to betransitive (or smooth) if for every λ ∈ pcf(A)∩M , θ ∈ Bλ implies Bθ ⊆ Bλ.For λ0 ∈ pcf(A), we de�ne the elevated sequene F λ0 = 〈F λ0

γ : γ < λ0〉of funtions in ∏

A as follows.For every sequene λ1, . . . , λn ∈ A, suh that λ0 > λ1 > · · · > λn, and forevery ordinal γ0 ∈ λ0, indutively de�ne a sequene γ1 ∈ λ1, . . . , γn ∈ λn by
γi+1 := fλi

γi
(λi+1). (5.14)So γ1 = fλ0

γ0
(λ1), γ2 = fλ1

γ1
(λ2), . . . , γn = fλn−1

γn−1
(λn). The elevation funtion

Elλ0,...,λn on λ0 is given by
Elλ0,...,λn(γ0) := γn.We �rst de�ne F λ0 on A∩λ0. Given λ ∈ A∩λ0, let Fλ0,λ be the set of allsequenes λ1, λ2, . . . , λn ∈ A, suh that λ0 > λ1 > · · · > λn = λ. For every

γ0 ∈ λ0 we ask whether there is a maximal value in
{Elλ0,...,λn(γ0) : 〈λ0, λ1, . . . , λn〉 ∈ Fλ0,λ}.If this set ontains a maximum, let F λ0

γ0
(λ) be that maximum, and otherwiselet F λ0

γ0
(λ) := fλ0

γ0
(λ). For λ ∈ A\λ0, let F λ0

γ0
(λ) := γ0, for eah γ0 ∈ λ0.Lemma 5.19. For eah λ ∈ pcf(A) ∩ M , the elevated sequene F λ satis�esonditions (5.4), (5.5) and (5.6), and the generating sequene 〈bλ : λ ∈

pcf(A) ∩ M〉, where bλ := {a ∈ A : ChM(a) = F λ
ChM (λ)(a)}, is transitive.For a proof see [1, pages 61,62℄.The transitive generators an be used to prove the following loalizationproperty of A.Theorem 5.20. If B ⊆ pcf(A) is progressive, then pcf(B) = pcf|A|(B).That is, if B ⊆ pcf(A) is progressive, then for every λ ∈ pcf(B) there exists

B0 ⊆ B with |B0| ≤ |A|, suh that λ ∈ pcf(B0).5In this setion we assume in addition that M also ontains the array 〈fλ : λ ∈ pcf(A)〉.



52 Cardinal arithmetiFor a proof see [1, Theorem 6.6℄.The simplest ase of loalization (in whih |B| = |A|+) implies that
|pcf(A)| < |A|+4:Theorem 5.21. Suppose that A is a progressive interval of regular ardinals.Then

|pcf(A)| < |A|+4.For a proof see [1, Theorem 7.1℄.Theorem 5.22. Suppose that δ is a limit ordinal suh that |δ|cf(δ) < ℵδ.Then
ℵ

cf(δ)
δ < ℵ|δ|+4.Proof. Consider the progressive interval A of regular ardinals in (|δ|+,ℵδ).We basially repeat the proof of Theorem 5.12. Sine pcf(A) is also aninterval of regular ardinals, ontaining all regular ardinals from |δ|++ tomax pcf(A), and sine, by Theorem 5.21,

|pcf(A)| < |A|+4 = |δ|+4,it follows that
max pcf(A) < ℵ|δ|+4 .Therefore,

|[ℵδ]
cf(δ)| = cf([ℵδ]

|δ|,⊆) · |δ|cf(δ) =
(

cf([ℵδ]
|δ|+ ,⊆) · |δ|+

)

· |δ|cf(δ) =

cf([ℵδ]
|δ|+ ,⊆) · |δ|cf(δ) ≤ max pcf(A) · ℵδ < ℵ|δ|+4.
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