THE TREE PROPERTY AT $\aleph_{\omega+2}$

SY-DAVID FRIEDMAN AND AJDIN HALILOVIĆ*

Abstract

Assuming the existence of a weakly compact hypermeasurable cardinal we prove that in some forcing extension \aleph_{ω} is a strong limit cardinal and $\aleph_{\omega+2}$ has the tree property. This improves a result of Matthew Foreman (see [2]).

$\S 1$. Introduction. For an infinite cardinal κ, a κ-tree is a tree T of height κ such that every level of T has size less than κ. A tree T is a κ-Aronszajn tree if T is a κ-tree which has no cofinal branches. We say that the tree property holds at κ, or $\mathrm{TP}(\kappa)$ holds, if every κ-tree has a cofinal branch, i.e. a branch of length κ through it. Thus, $\mathrm{TP}(\kappa)$ holds iff there is no κ-Aronszajn tree. $\mathrm{TP}\left(\aleph_{0}\right)$ holds in ZFC, and it is actually exactly the statement of the well-known König's lemma. Aronszajn showed also in ZFC that there is an \aleph_{1}-Aronszajn tree. Hence, $\operatorname{TP}\left(\aleph_{1}\right)$ fails in ZFC.

Large cardinals are needed once we consider trees of height greater than \aleph_{1}. Silver proved that for $\kappa>\aleph_{1} \operatorname{TP}(\kappa)$ implies κ is weakly compact in L. Mitchell proved that given a weakly compact cardinal λ above a regular cardinal κ, one can make λ into κ^{+}so that in the extension, κ^{+}has the tree property. Thus, $\operatorname{TP}\left(\aleph_{2}\right)$ is equiconsistent with the existence of a weakly compact cardinal.

For more of the relevant literature on the tree property we refer the reader to the following: Abraham [1], Cummings and Foreman [2], and Foreman, Magidor and Schindler [4] have done work on the tree property at two or more successive cardinals; Magidor and Shelah [7] have worked on the tree property at successors of singular cardinals.

Natasha Dobrinen and Sy-D. Friedman [3] used a generalization of Sacks forcing to reduce the large cardinal strength required to obtain the tree property at the double successor of a measurable cardinal from a supercompact to a weakly compact hypermeasurable cardinal (see Definition 3).

In this paper we extend the method of [3] to obtain improved upper bounds on the consistency strength of the tree property at the double successor of singular cardinals.

§2. The tree property at κ^{++}.

Definition 1. Let ρ be a strongly inaccessible cardinal. Then $\operatorname{Sacks}(\rho)$ denotes the following forcing notion. A condition p is a subset of $2^{<\rho}$ such that:

[^0]1. $s \in p, t \subseteq s \rightarrow t \in p$.
2. Each $s \in p$ has a proper extension in p.
3. For any $\alpha<\rho$, if $\left\langle s_{\beta}: \beta<\alpha\right\rangle$ is a sequence of elements of p such that $\beta<\beta^{\prime}<\alpha \rightarrow s_{\beta} \subseteq s_{\beta^{\prime}}$, then $\bigcup\left\{s_{\beta}: \beta<\alpha\right\} \in p$.
4. Let $\operatorname{Split}(p)$ denote the set of $s \in p$ such that both $s^{\wedge} 0$ and $s^{\wedge} 1$ are in p. Then for some club denoted $C(p) \subseteq \rho, \operatorname{Split}(p)=\{s \in p:$ length $(s) \in C(p)\}$.
The conditions are ordered as follows: $q \leq p$ iff $q \subseteq p$, where $q \leq p$ means that q is stronger than p.

Given $p \in \operatorname{Sacks}(\rho)$, let $\left\langle\gamma_{\alpha}: \alpha<\rho\right\rangle$ be the increasing enumeration of $C(p)$. For $\alpha<\rho$, the α-th splitting level of $p, \operatorname{Split}_{\alpha}(p)$, is the set of $s \in p$ of length γ_{α}. For $\alpha<\rho$ we write $q \leq_{\alpha} p$ iff $q \leq p$ and $\operatorname{Split}_{\beta}(q)=\operatorname{Split}_{\beta}(p)$ for all $\beta<\alpha$.

Sacks (ρ) satisfies the following ρ-fusion property: Every decraesing sequence $\left\langle p_{\alpha}: \alpha<\rho\right\rangle$ of elements in $\operatorname{Sacks}(\rho)$ such that for each $\alpha<\rho, p_{\alpha+1} \leq_{\alpha} p_{\alpha}$, has a lower bound, namely $\bigcap_{\alpha<\rho} p_{\alpha} \in \operatorname{Sacks}(\rho)$.
The forcing notion $\operatorname{Sacks}(\rho)$ is also $<\rho$-closed, satisfies the ρ^{++}-c.c., and preserves ρ^{+}. For a proof see [6] or [3].

Definition 2. Let ρ be a strongly inaccessible cardinal and let $\lambda>\rho$ be a regular cardinal. $\operatorname{Sacks}(\rho, \lambda)$ denotes the λ-length iteration of $\operatorname{Sacks}(\rho)$ with supports of size $\leq \rho$.
$\operatorname{Sacks}(\rho, \lambda)$ satisfies the generalized ρ-fusion property which we describe next: For $\alpha<\rho, X \subseteq \rho$ of size less than ρ, and $p, q \in \operatorname{Sacks}(\rho, \lambda)$, we write $q \leq_{\alpha, X} p$ iff $q \leq p$ (i.e. $q \upharpoonright i \Vdash q(i) \leq p(i)$ for each $i<\lambda)$ and in addition, for each $i \in X$, $q \upharpoonright i \Vdash q(i) \leq_{\alpha} p(i)$. Every decraesing sequence $\left\langle p_{\alpha}: \alpha<\rho\right\rangle$ of elements in $\operatorname{Sacks}(\rho, \lambda)$ such that for each $\alpha<\rho, p_{\alpha+1} \leq_{\alpha, X_{\alpha}} p_{\alpha}$, where the X_{α} 's form an increasing sequence of subsets of λ each of size less than ρ whose union is the union of the supports of the p_{α} 's, has a lower bound. [The lower bound is q where $q(0)=\bigcap_{\alpha<\rho} p_{\alpha}(0), q(1)$ is a name s.t. $q(0) \Vdash q(1)=\bigcap_{\alpha<\rho} p_{\alpha}(1)$, etc.]

Assuming $2^{\rho}=\rho^{+}, \operatorname{Sacks}(\rho, \lambda)$ is $<\rho$-closed, satisfies the λ-c.c., preserves ρ^{+}, collapses λ to ρ^{++}and blows up 2^{ρ} to ρ^{++}. For a proof see [6] or [3].

Definition 3. We say that κ is weakly compact hypermeasurable if there is weakly compact cardinal $\lambda>\kappa$ and an elementary embedding $j: V \rightarrow M$ with $\operatorname{crit}(j)=\kappa$ such that $H(\lambda)^{V}=H(\lambda)^{M}$.

Let κ be a weakly compact hypermeasurable cardinal. Define a forcing notion P as follows. Let ρ_{0} be the first inaccessible cardinal and let λ_{0} be the least weakly compact cardinal above ρ_{0}. For $k<\kappa$, given λ_{k}, let ρ_{k+1} be the least inaccessible cardinal above λ_{k} and let λ_{k+1} be the least weakly compact cardinal above ρ_{k+1}. For limit ordinals $k<\kappa$, let ρ_{k} be the least inaccessible cardinal greater than or equal to $\sup _{l<k} \lambda_{l}$ and let λ_{k} be the least weakly compact cardinal above ρ_{k}. Note that $\rho_{\kappa}=\kappa$ and λ_{κ} is the least weakly compact cardinal above κ.

Let $P_{0}=\left\{1_{0}\right\}$. For $i<\kappa$, if $i=\rho_{k}$ for some $k<\kappa$, let \dot{Q}_{i} be a P_{i}-name for the direct sum $\bigoplus_{\eta \leq \lambda_{k}} \operatorname{Sacks}\left(\rho_{k}, \eta\right):=\left\{\left\langle\operatorname{Sacks}\left(\rho_{k}, \eta\right), p\right\rangle: \eta\right.$ is an inaccessible $\leq \lambda_{k}$ and $\left.p \in \operatorname{Sacks}\left(\rho_{k}, \eta\right)\right\}$, where $\left\langle\operatorname{Sacks}\left(\rho_{k}, \eta\right), p\right\rangle \leq\left\langle\operatorname{Sacks}\left(\rho_{k}, \eta^{\prime}\right), p^{\prime}\right\rangle$ iff $\eta=\eta^{\prime}$ and $p \leq_{\operatorname{Sacks}\left(\rho_{k}, \eta\right)} p^{\prime}$. Otherwise let \dot{Q}_{i} be a P_{i}-name for the trivial forcing. Let
$P_{i+1}=P_{i} * \dot{Q}_{i}$. Let P_{κ} be the iteration $\left\langle\left\langle P_{i}, \dot{Q}_{i}\right\rangle: i<\kappa\right\rangle$ with reverse Easton support.

Theorem 1 (N. Dobrinen, S. Friedman). Assume that V is a model of ZFC in which GCH holds and κ is a weakly compact hypermeasurable cardinal in V. Let $\lambda>\kappa$ be a weakly compact cardinal and let $j: V \rightarrow M$ be an elementary embedding with $\operatorname{crit}(j)=\kappa, j(\kappa)>\lambda$ and $H(\lambda)^{V}=H(\lambda)^{M}$, witnessing the weakly compact hypermeasurability of κ. Let $G * g$ be a generic subset of $P=P_{\kappa} * \operatorname{Sacks}(\kappa, \lambda)$ over V. Then in $V[G][g], 2^{\kappa}=\kappa^{++}, \kappa^{++}$has the tree property, and κ is still measurable, i.e. the embedding $j: V \rightarrow M$ can be lifted to an elementary embedding $j: V[G][g] \rightarrow M[G][g][H][h]$, where $G * g * H * h$ is a generic subset of $j(P)$ over M.

For a proof see [3].

§3. The tree property at the double successor of a singular cardinal.

Theorem 2. Assume that V is a model of $Z F C$ and κ is a weakly compact hypermeasurable cardinal in V. Then there exists a forcing extension of V in which $\operatorname{cof}(\kappa)=\omega$ and κ^{++}has the tree property.
Proof. Let $\lambda>\kappa$ be a weakly compact cardinal and let $j: V \rightarrow M$ be an elementary embedding with $\operatorname{crit}(j)=\kappa, j(\kappa)>\lambda$ and $H(\lambda)^{V}=H(\lambda)^{M}$. We may assume that M is of the form $M=\{j(f)(\alpha): \alpha<\lambda, f: \kappa \rightarrow V, f \in V\}$. First force as in Theorem 1 with $P=P_{\kappa} * \operatorname{Sacks}(\kappa, \lambda)$ over V to get a model $V[G][g]$ in which $2^{\kappa}=\kappa^{++}, \kappa^{++}$has the tree property, and κ is still measurable, i.e. there is an elementary embedding $j: V[G][g] \rightarrow M[G][g][H][h]$, where $G * g * H * h$ is a generic subset of $j(P)$ over M.
Now force with the usual Prikry forcing which we will denote by $R:=\{(s, A)$: $\left.s \in[\kappa]^{<\omega}, A \in U\right\}$, where U is the normal measure on κ derived from j. We say that s is the lower part of (s, A). A condition (t, B) is stronger than a condition (s, A) iff s is an initial segment of $t, B \subseteq A$, and $t-s \subset A$. The Prikry forcing preserves cardinals and introduces an ω-sequence of ordinals which is cofinal in κ. It remains to show that it also preserves the tree property on $\kappa^{++}=\lambda$.
In order to get a contradiction suppose that there is a κ^{++}-Aronszajn tree in some R-extension of $V[G][g]$. Then in $V[G]$ there is a $\operatorname{Sacks}(\kappa, \lambda) * \dot{R}$ - name \dot{T} of size λ (because $\operatorname{Sacks}(\kappa, \lambda) * \dot{R}$ satisfies λ-c.c.) and a condition $(p, \dot{r}) \in \operatorname{Sacks}(\kappa, \lambda) * \dot{R}$ which forces \dot{T} to be a κ^{++}-Aronszajn tree. Recall that λ is a weakly compact cardinal in $V[G]$. Therefore, there exist in $V[G]$ transitive $Z F^{-}$-models N_{0}, N_{1} of size λ and an elementary embedding $k: N_{0} \rightarrow N_{1}$ with critical point λ, such that $N_{0} \supseteq H(\lambda)^{V[G]}$ and $G, \dot{T} \in N_{0}$.

Since g is also $\operatorname{Sacks}(\kappa, \lambda)$-generic over N_{0} and the critical point of k is λ, k can be lifted to $k^{*}: N_{0}[g] \rightarrow N_{1}[g][K]$, where K is any $N_{1}[g]$-generic subset of $\operatorname{Sacks}(\kappa,[\lambda, k(\lambda)))$ in some larger universe (and where $\operatorname{Sacks}(\kappa,[\lambda, k(\lambda)))$ is the quotient $\operatorname{Sacks}(\kappa, k(\lambda)) / \operatorname{Sacks}(\kappa, \lambda)$, i.e. the iteration of $\operatorname{Sacks}(\kappa)$ indexed by ordinals between λ and $k(\lambda))$. Consider the forcing $R^{*}:=k^{*}\left(\dot{R}^{g}\right)$ in $N_{1}[g][K]$ and choose any generic C^{*} for it such that $k^{*}(r) \in C^{*}$, where $r=\dot{r}^{g}$. Let $C:=\left(k^{*}\right)^{-1}\left[C^{*}\right]$ be the pullback of C^{*} under k^{*}. Then C is an $N_{0}[g]$-generic subset of R, because if $\Delta \in N_{0}[g]$ is a maximal antichain of R then $k^{*}(\Delta)=k^{*}[\Delta]$ (since $\operatorname{crit}(k)=\lambda$ and R has the κ^{+}-c.c.) and by elementarity $k^{*}(\Delta)$ is maximal in $k^{*}(R)=R^{*}$, so $k^{*}[\Delta]$
meets C^{*} and hence Δ meets C. It follows that there is an elementary embedding $k^{* *}: N_{0}[g][C] \rightarrow N_{1}[g][K]\left[C^{*}\right]$ extending k^{*}.
We have $r \in C$. So it follows that the evaluation T of \dot{T} in $N_{0}[g][C]$ is a λ Aronszajn tree. By elementarity $k^{* *}(T)$ is a $k^{* *}(\lambda)$-Aronszajn tree in $N_{1}[g][K]\left[C^{*}\right]$ which coincides with T up to level λ. Hence T has a cofinal branch b in $N_{1}[g][K]\left[C^{*}\right]$. We will show that b has to belong to $N_{1}[g][C]$ (i.e. the quotient Q of the natural projection $\pi: \operatorname{Sacks}(\kappa, k(\lambda)) * \dot{R}^{*} \rightarrow R O(\operatorname{Sacks}(\kappa, \lambda) * \dot{R})$ can not add a new branch), and thereby reach the desired contradiction!

Let us first analyse the quotient Q of the projection above. In $N_{1}[g][C]$ we have $Q=\left\{\left(p^{*},\left(s^{*}, \dot{A}^{*}\right)\right) \in \operatorname{Sacks}(\kappa, k(\lambda)) * \dot{R}^{*} \mid\right.$ for all $(p,(s, \dot{A})) \in g * C,(p,(s, \dot{A}))$ does not force that $\left(p^{*},\left(s^{*}, \dot{A}^{*}\right)\right)$ is not a condition in the quotient $\}$. Observe that $(p,(s, \dot{A}))$ forces that $\left(p^{*},\left(s^{*}, \dot{A}^{*}\right)\right)$ is not a condition in Q iff the two conditions are incompatible, which is the case iff one of the following holds:

1. $p^{*} \upharpoonright \lambda$ is incompatible with p.
2. $s^{*} \varsubsetneqq s$ and $s \varsubsetneqq s^{*}$.
3. $p^{*} \upharpoonright \lambda$ is compatible with $p, s^{*} \subseteq s$, and $p^{*} \cup p$ forces that $s-s^{*} \nsubseteq \dot{A}^{*}$.
4. $p^{*} \upharpoonright \lambda$ is compatible with $p, s \subseteq s^{*}$, and $p^{*} \upharpoonright \lambda \cup p$ forces that $s^{*}-s \varsubsetneqq \dot{A}$.

It follows that $Q=\left\{\left(p^{*},\left(s^{*}, \dot{A}^{*}\right)\right) \in \operatorname{Sacks}(\kappa, k(\lambda)) * \dot{R}^{*} \mid\left(p^{*},\left(s^{*}, \dot{A}^{*}\right)\right)\right.$ is compatible with all $(p,(s, \dot{A})) \in g * C\}$, i.e. Q is the set of all $\left(p^{*},\left(s^{*}, \dot{A}^{*}\right)\right) \in$ $\operatorname{Sacks}(\kappa, k(\lambda)) * \dot{R}^{*}$ such that for all $(p,(s, \dot{A})) \in g * C$ either

1. $p^{*} \upharpoonright \lambda$ is compatible with $p, s^{*} \subseteq s$, and $p^{*} \cup p$ does not force that $s-s^{*} \varsubsetneqq \dot{A}^{*}$, or
2. $p^{*} \upharpoonright \lambda$ is compatible with $p, s \subseteq s^{*}$, and $p^{*} \upharpoonright \lambda \cup p$ does not force that $\left.s^{*}-s \varsubsetneqq \dot{A}\right\}$.
Equivalently, Q is the set of all $\left(p^{*},\left(s^{*}, \dot{A}^{*}\right)\right) \in \operatorname{Sacks}(\kappa,[\lambda, k(\lambda))) * \dot{R}^{*}$ such that
3. $p^{*} \in \operatorname{Sacks}(\kappa,[\lambda, k(\lambda)))$,
4. s^{*} is an initial segment of $S(C)$ (the Prikry ω-sequence arising from C)
5. p^{*} forces that \dot{A}^{*} is in \dot{U}^{*}, and
6. for any finite subset x of $S(C)$, some extension q of p^{*} forces x to be a subset of $s^{*} \cup \dot{A}^{*}$.
We now again argue indirectly. Assume that b is not in $N_{1}[g][C]$, and let \dot{b} in $N_{1}[g]$ be an $R * \dot{Q}$ - name for b. Identify $k(\dot{T})$ with the $R * \dot{Q}$ - name defined by interpreting the $\operatorname{Sacks}(\kappa, k(\lambda)) * \dot{R}^{*}$ - name $k(\dot{T})$ in N_{1} as an $R * \dot{Q}$ - name in $N_{1}[g]$. Let $\left(\left(s_{0}, A_{0}\right),\left(p_{0},\left(t_{0}, \dot{A}_{0}\right)\right)\right)$ be an $R * \dot{Q}$ - condition forcing that the Prikry-name \dot{T} is a λ-tree and that \dot{b} is a branch through \dot{T} not belonging to $N_{1}[g][\dot{C}]$.

Let us take a closer look at the condition $\left(\left(s_{0}, A_{0}\right),\left(p_{0},\left(t_{0}, \dot{A}_{0}\right)\right)\right)$. Note that the forcing Q lives in $N_{1}[g][C]$, but its elements are in $N_{1}[g]$, so we can assume that $\left(p_{0},\left(t_{0}, \dot{A}_{0}\right)\right)$ is a real object and not just a Prikry-name. The Prikry condition $\left(s_{0}, A_{0}\right)$ forces that p_{0} is an element of $\operatorname{Sacks}(\kappa,[\lambda, k(\lambda)))$, that t_{0} is an initial segment of $S(\dot{C})$, and that for all finite subsets x of $S(\dot{C})$, some extension of p_{0} forces x to be a subset of $t_{0} \cup \dot{A}_{0}$. This simply means that t_{0} is an initial segment of s_{0} and for every finite subset x of $s_{0} \cup A_{0}$, some extension of p_{0} forces x to be a subset of $t_{0} \cup \dot{A}_{0}$.

Moreover, we can assume that s_{0} equals t_{0}. Namely, from the next claim follows that the set of conditions of the form $((s, A),(p,(s, \dot{A})))$ is dense in $R * \dot{Q}$.

Claim. Suppose that p is an element of $\operatorname{Sacks}(\kappa,[\lambda, k(\lambda)))$ which forces that \dot{A} is in \dot{U}^{*}. Then there is $A(p) \in U$ such that whenever x is a finite subset of $A(p)$, there is $q \leq p$ forcing x to be contained in \dot{A}.

Proof of the claim. Define the function $f:[\kappa]^{<\omega} \rightarrow 2$ by

$$
f(x)= \begin{cases}1 & \text { if } \exists q \leq p q \Vdash x \subseteq \dot{A} \\ 0 & \text { otherwise }\end{cases}
$$

By normality f has a homogeneous set $A(p) \in U$. It follows that for each $n \in \omega$, $f \upharpoonright[A(p)]^{n}$ has the constant value 1: Assume on the contrary that there is some $n \in \omega$ such that $f \upharpoonright[A(p)]^{n}$ has the constant value 0 . Then $p \Vdash x \nsubseteq \dot{A}$ for every $x \in[A(p)]^{n}$, but this is in contradiction with the facts that the measure U^{*} extends $U, p \Vdash \dot{A} \in U^{*}$, and $A(p) \in U$.

It now follows easily that the set of conditions of the form $((s, A),(p,(s, \dot{A})))$ is dense in $R * \dot{Q}$. Assume that $((s, A),(p,(t, \dot{A})))$ is an arbitrary condition in $R * \dot{Q}$. We have $t \subseteq s$. There is some $q \leq p$ which forces that $x:=s-t$ is contained in \dot{A}. Now by shrinking A to $A(q)$ we get that $((s, A(q)),(q,(s, \dot{A})))$ is a condition which is below $((s, A),(p,(t, \dot{A})))$. We will from now on work with this dense subset of $R * \dot{Q}$.

Now in $N_{1}[g]$ build a κ-tree E of conditions in $\operatorname{Sacks}(\kappa,[\lambda, k(\lambda)))$, whose branches will be fusion sequences, together with a sequence of ordinals $\left\langle\lambda_{\beta}: \beta<\kappa\right\rangle$, each $\lambda_{\beta}<\lambda$, as follows:

Consider an enumeration $\left\langle s_{\beta}: \beta<\kappa\right\rangle$ of all possible lower parts of conditions in R, i.e. all finite increasing sequences of ordinals less than κ, in which every lower part appears cofinally often. Start building the tree E below the condition $p_{0}\left(p_{0}\right.$ was chosen such that $\left(\left(s_{0}, A_{0}\right),\left(p_{0},\left(s_{0}, \dot{A}_{0}\right)\right)\right)$ forces \dot{b} to be a bad branch $)$. Assume that the tree E is built up to level β. Then, at stage β of the construction of the tree, at each node v (a condition in $\operatorname{Sacks}(\kappa,[\lambda, k(\lambda)))$), is associated an $X_{v} \subset[\lambda, k(\lambda)),\left|X_{v}\right|<\kappa$; we will find stronger (incompatible) conditions v_{0} and v_{1} which on all indices in X_{v} equal v below level β (for purposes of fusion), i.e. $v_{0}, v_{1} \leq_{\beta, X_{v}} v$. (The sets X_{v} can be chosen in different ways, the only condition they have to satisfy is that at the end of the construction of the tree E for every branch through the tree the union of the supports of the conditions (nodes) on the branch is equal to the union of the corresponding X 's.) Before we start the construction of the level $\beta+1$ of the tree E we need to set some notation. Given $i \in[\lambda, k(\lambda))$, let S_{i} denote $\operatorname{Sacks}(\kappa,[\lambda, i))$. For a node v on level β, let $\delta_{v}=$ o.t. $\left(X_{v}\right)$ and $d_{v}=\left|{ }^{\delta_{v}}\left({ }^{\beta+1} 2\right)\right|$. Let $\left\langle i_{\varepsilon}^{v}: \varepsilon<\delta_{v}\right\rangle$ be the strictly increasing enumeration of X_{v} and let $i_{\delta_{v}}=\sup \left\{i_{\varepsilon}^{v}: \varepsilon<\delta_{v}\right\}$. For each $\varepsilon<\delta_{v}$ there are $S_{i_{\varepsilon}^{v}}$ names $\dot{S}_{\varepsilon, \zeta}^{v}$ $\left(\zeta \in{ }^{\beta+1} 2\right)$ such that $S_{i_{\varepsilon}^{v}} \Vdash\left(\dot{s}_{\varepsilon, \zeta}^{v}\right.$ is the ζ-th node of $\left.\operatorname{Split}_{\beta+1}\left(v\left(i_{\varepsilon}^{v}\right)\right)\right)$, where the nodes of $\left.\operatorname{Split}_{\beta+1}\left(v\left(i_{\varepsilon}^{v}\right)\right)\right)$ are ordered canonically lexicographically (by choosing an $S_{i_{\varepsilon}^{v}}$ - name for an isomorphism between $v\left(i_{\varepsilon}^{v}\right)$ and $\left.{ }^{<\kappa} 2\right)$. Let $\left\langle u_{l}^{v}: l<d_{v}\right\rangle$ enumerate ${ }^{\delta_{v}}\left({ }^{\beta+1} 2\right)$ (the δ_{v}-length sequences whose entries are elements of ${ }^{\beta+1} 2$) so that $u_{l}^{v}=\left\langle u_{l}^{v}(\varepsilon): \varepsilon<\delta_{v}\right\rangle$, where each $u_{l}^{v}(\varepsilon) \in{ }^{\beta+1} 2$. We now need the following two facts:

FACT 1. Suppose that v is a node and $l<d_{v}$. We can construct a condition $r \leq v$ called v thinned through u_{l}, denoted by $(v)^{u_{l}}$, in the following manner:
$r \upharpoonright i_{0}^{v}=v \upharpoonright i_{0}^{v}$, for each $\varepsilon<\delta_{v}, r\left(i_{\varepsilon}^{v}\right)=v\left(i_{\varepsilon}^{v}\right) \upharpoonright \dot{\varepsilon}_{\varepsilon, u_{l}^{v}(\varepsilon)}^{v}, r \upharpoonright\left(i_{\varepsilon}^{v}, i_{\varepsilon+1}^{v}\right)=v \upharpoonright\left(i_{\varepsilon}^{v}, i_{\varepsilon+1}^{v}\right)$ and $r \upharpoonright\left(i_{\delta_{v}}, k(\lambda)\right)=v \upharpoonright\left(i_{\delta_{v}}, k(\lambda)\right)$, where $v\left(i_{\varepsilon}^{v}\right) \upharpoonright \dot{s}_{\varepsilon, u_{l}^{v}(\varepsilon)}^{v}$ is the subtree of $v\left(i_{\varepsilon}^{v}\right)$ whose branches go through $\dot{s}_{\varepsilon, u_{l}^{v}(\varepsilon)}^{v}$.

FACT 2. Suppose that v and r are conditions in $\operatorname{Sacks}(\kappa,[\lambda, k(\lambda)))$ with $r \leq(v)^{u_{l}}$. Then there is a condition v^{\prime} such that $v^{\prime} \leq_{\beta, X_{v}} v$ and $\left(v^{\prime}\right)^{u_{l}} \sim r$ (i.e. $\left(v^{\prime}\right)^{u_{l}} \leq r$ and $\left.r \leq\left(v^{\prime}\right)^{u_{l}}\right)$. We say that v^{\prime} is v refined through u_{l} to r.

Let $\left\langle v_{j}: j<2^{\beta+1}\right\rangle$ be an enumeration of level β of the tree E and let $\left\langle u_{m}\right\rangle_{m<\sum_{j<2 \beta+1} d_{v_{j}}}$ be an enumeration of $Y:=\bigcup_{j<2^{\beta+1}}\left\{u_{l}^{v_{j}}: l<d_{v_{j}}\right\}$. In order to construct the next level of the tree we will first thin out all the nodes on level β (by considering all the pairs in Y) and then split each of them into two incompatible nodes. The thinning out is done as follows: Consider u_{0} and u_{1}. If they belong to the same node, i.e. if there is $j<2^{\beta+1}$ and $l_{0}, l_{1}<d_{v_{j}}$ s.t. $u_{0}=u_{l_{0}}^{v_{j}}$ and $u_{1}=u_{l_{1}}^{v_{j}}$, then no thinning takes place. So assume that u_{0} and u_{1} belong to different nodes, say $v_{j_{0}}$ and $v_{j_{1}}$, respectively. Use Fact 1 to construct conditions $r_{01}=\left(v_{j_{0}}\right)^{u_{0}}$ and $r_{10}=\left(v_{j_{1}}\right)^{u_{1}}$, i.e. thin $v_{j_{0}}$ and $v_{j_{1}}$ through u_{0} and u_{1} to r_{01} and r_{10}, respectively. Now ask whether there exist extensions r_{01}^{\prime} and r_{10}^{\prime} of r_{01} and r_{10}, respectively, such that for some $\gamma_{01}<\lambda$ and some $A_{01}, A_{10}, \dot{A}_{01}, \dot{A}_{10},\left(\left(s_{\beta}, A_{01}\right),\left(r_{01}^{\prime},\left(s_{\beta}, \dot{A}_{01}\right)\right)\right)$ and $\left(\left(s_{\beta}, A_{10}\right),\left(r_{10}^{\prime},\left(s_{\beta}, \dot{A}_{10}\right)\right)\right)$ force different nodes on level γ_{01} of \dot{T} to lie on \dot{b}. If the answer is 'yes', use Fact 2 to refine $v_{j_{0}}$ and $v_{j_{1}}$ through r_{01}^{\prime} and r_{10}^{\prime}, respectively, and continue with the next pair: u_{0}, u_{2}. And if the answer is 'no', go to the pair u_{0}, u_{2} without refining $v_{j_{0}}$ and $v_{j_{1}}$. The next pairs are $u_{1}, u_{2} ; u_{0}, u_{3}$ and so on, i.e. all pairs of the form u_{δ}, u_{η}, for $\eta<\sum_{j<2^{\beta+1}} d_{v_{j}}$ and $\delta<\eta$. At the limit stages take lower bounds, they exist since the forcing is κ-closed. Let λ_{β} be the supremum of (the increasing sequence of) $\gamma_{\delta \eta}$'s. Now extend each node v on level β (after thinning out the whole level) to two incompatible conditions v_{o} and v_{1}, such that $v_{0}, v_{1} \leq_{\beta, X_{v}} v$.

Let α be the supremum of λ_{β} 's. Note that $\alpha<\lambda$, because $\lambda=\left(\kappa^{++}\right)^{N_{1}[g]}$. Let p be the result of a fusion along a branch through E. By the claim we can choose $A_{0}(p) \subseteq A_{0}$ in U such that $\left(\left(s_{0}, A_{0}(p)\right),\left(p,\left(s_{0}, \dot{A}_{0}\right)\right)\right)$ is a condition. Extend this condition to some $\left(\left(s_{1}(p), A_{1}(p)\right),\left(p^{*},\left(s_{1}(p), \dot{A}_{1}(p)\right)\right)\right)$ which decides $\dot{b}(\alpha)$, say it forces $\dot{b}(\alpha)=x_{p}$.

As level α of \dot{T} has size $<\lambda$, there exist limits p, q of κ-fusion sequences arising from distinct κ-branches through E for which x_{p} equals x_{q} and $s_{1}(p)$ equals $s_{1}(q)$. Moreover, we can intersect $A_{1}(p)$ and $A_{1}(q)$ to get a common A_{1}. Say, $\left(\left(s_{1}, A_{1}\right),\left(p^{*},\left(s_{1}, \dot{A}_{1}(p)\right)\right)\right)$ and $\left(\left(s_{1}, A_{1}\right),\left(q^{*},\left(s_{1}, \dot{A}_{1}(q)\right)\right)\right)$ force $\dot{b}(\alpha)=x$.

Now choose a Prikry generic C containing $\left(s_{1}, A_{1}\right)$ (and therefore containing $\left.\left(s_{0}, A_{0}\right)\right)$. As \dot{b} is forced by $\left(\left(s_{0}, A_{0}\right),\left(p_{0},\left(s_{0}, \dot{A}_{0}\right)\right)\right)$ to not belong to $N_{1}[g][\dot{C}]$ and $\left(\left(s_{1}, A_{1}\right),\left(p^{*},\left(s_{1}, \dot{A}_{1}(p)\right)\right)\right)$ extends $\left(\left(s_{0}, A_{0}\right),\left(p_{0},\left(s_{0}, \dot{A}_{0}\right)\right)\right)$, we can extend $\left(\left(s_{1}, A_{1}\right),\left(p^{*},\left(s_{1}, \dot{A_{1}}(p)\right)\right)\right)$ to incompat. conditions $\left(\left(s_{2_{0}}, A_{2_{0}}\right),\left(p_{0}^{* *},\left(s_{2_{0}}, \dot{A_{20}}\right)\right)\right)$, $\left(\left(s_{2_{1}}, A_{2_{1}}\right),\left(p_{1}^{* *},\left(s_{2_{1}}, \dot{A_{2_{1}}}\right)\right)\right)$, with $\left(s_{2_{0}}, A_{2_{0}}\right),\left(s_{2_{1}}, A_{2_{1}}\right) \in C$ and $p_{0}^{* *}, p_{1}^{* *} \leq p^{*}$, which force a disagreement about \dot{b} at some level γ above α.

Now extend $\left(\left(s_{1}, A_{1}\right),\left(q^{*},\left(s_{1}, \dot{A}_{1}(q)\right)\right)\right)$ to some $\left(\left(s_{3}, A_{3}\right),\left(q^{* *},\left(s_{3}, \dot{A}_{3}\right)\right)\right)$ deciding $\dot{b}(\gamma)$ with $\left(s_{3}, A_{3}\right)$ in C. Suppose w.l.o.g. that $\left(\left(s_{3}, A_{3}\right),\left(q^{* *},\left(s_{3}, \dot{A}_{3}\right)\right)\right)$ and $\left(\left(s_{2_{0}}, A_{2_{0}}\right),\left(p_{0}^{* *},\left(s_{2_{0}}, \dot{A_{2_{0}}}\right)\right)\right)$ disagree about $\dot{b}(\gamma)$. Also w.l.o.g. we can assume that $s_{3} \supseteq s_{2_{0}}$.

Using the claim extend $\left(\left(s_{2_{0}}, A_{2_{0}}\right),\left(p_{0}^{* *},\left(s_{2_{0}}, \dot{A_{2_{0}}}\right)\right)\right)$ to some $\left(\left(s_{3}, A_{3}^{\prime}\right),\left(p^{* * *}\right.\right.$, $\left.\left(s_{3}, \dot{A_{20}}\right)\right)$) with $A_{3}^{\prime} \in U$ and $p^{* * *} \leq p_{0}^{* *}$.
Now, for some $\beta<\kappa$ we have $s_{3}=s_{\beta}$ where s_{β} is the β th element of the enumeration of the lower parts (s_{3} is not the third element!). Since s_{β} appears cofinally often in the construction of the tree E, we can assume that the branches which fuse to p and q split in E at some node below level β and go through some nodes $v_{j_{0}}$ and $v_{j_{1}}$ at level β. It follows that for some $l<d_{v_{j_{0}}}$ and $k<d_{v_{j_{1}}}$,

$$
r_{1}:=\left(\left(s_{3}, A_{3}^{\prime}\left(\left(p^{* * *}\right)^{u_{l}^{v_{j 0}}}\right)\right),\left(\left(p^{* * *}\right)^{u_{l}^{v_{j}}},\left(s_{3}, \dot{A_{20}}\right)\right)\right)
$$

and

$$
r_{2}:=\left(\left(s_{3}, A_{3}\left(\left(q^{* *}\right)^{u_{k}^{v_{j_{1}}}}\right)\right),\left(\left(q^{* *}\right)^{u_{k}^{u_{j_{1}}}},\left(s_{3}, \dot{A}_{3}\right)\right)\right)
$$

force different nodes to lie on \dot{b} at level $\gamma>\alpha$. By construction, this means that for some $\eta<\sum_{j<2^{\beta+1}} d_{v_{j}}$ and $\delta<\eta$,

$$
r_{3}:=\left(\left(s_{\beta}, A_{\delta \eta}\right),\left(r_{\delta \eta}^{\prime},\left(s_{\beta}, \dot{A}_{\delta \eta}\right)\right)\right)
$$

and

$$
r_{4}:=\left(\left(s_{\beta}, A_{\eta \delta}\right),\left(r_{\eta \delta}^{\prime},\left(s_{\beta}, \dot{A}_{\eta \delta}\right)\right)\right)
$$

force different nodes on level $\gamma_{\delta \eta}(<\alpha)$ of \dot{T} to lie on \dot{b}. Say, $\dot{b}\left(\gamma_{\delta \eta}\right)=y_{0}$ and $\dot{b}\left(\gamma_{\delta \eta}\right)=y_{1}$, respectively.

On the other side, r_{1} and r_{2} extend $\left(\left(s_{1}, A_{1}\right),\left(p^{*},\left(s_{1}, \dot{A}_{1}(p)\right)\right)\right)$ and $\left(\left(s_{1}, A_{1}\right)\right.$, $\left.\left(q^{*},\left(s_{1}, \dot{A}_{1}(q)\right)\right)\right)$, respectively. Therefore we have that r_{1} and r_{2} also force $\dot{b}(\alpha)=x$.

Note that $\left(p^{* * *}\right)^{u_{l} j_{0}} \leq r_{\delta \eta}^{\prime}$ and $\left(q^{* *}\right)^{u_{k}^{v_{j}}} \leq r_{\eta \delta}^{\prime}$. Since any two $R * \dot{Q}$ conditions with the same lower part and compatible Sacks conditions are compatible, we have that $r_{1} \| r_{3}$ and $r_{2} \| r_{4}$. Let $\left(\left(s_{3}, B^{\prime}\right),\left(\bar{p},\left(s_{3}, \dot{B}^{\prime}\right)\right)\right)$ be a common lower bound of r_{1} and r_{3}, and let $\left(\left(s_{3}, B^{\prime \prime}\right),\left(\bar{q},\left(s_{3}, \dot{B}^{\prime \prime}\right)\right)\right)$ be a common lower bound of r_{2} and r_{4}. The first condition forces $\dot{b}\left(\gamma_{\delta \eta}\right)=y_{0}$ and $\dot{b}(\alpha)=x$, and the second condition forces $\dot{b}\left(\gamma_{\delta_{\eta}}\right)=y_{1}$ and $\dot{b}(\alpha)=x$.

Finally, let $\bar{B}:=B^{\prime} \cap B^{\prime \prime}$. Then $\left(s_{3}, \bar{B}\right)$ forces that $y_{0}, y_{1}<_{\dot{T}} x$ in the ordering of the tree \dot{T}, because \dot{T} is a Prikry-name, i.e. all the relations between the nodes of \dot{T} are determined by the Prikry parts of the conditions above. Contradiction.
$\S 4$. The tree property at $\aleph_{\omega+2}$. Using a forcing notion which makes κ into \aleph_{ω} instead of Prikry forcing in the proof of Theorem 2 one can get from the same assumptions the tree property at $\aleph_{\omega+2}$, \aleph_{ω} strong limit.

Theorem 3. Assume that V is a model of $Z F C$ and κ is a weakly compact hypermeasurable cardinal in V. Then there exists a forcing extension of V in which $\aleph_{\omega+2}$ has the tree property.

Proof. Let $\lambda>\kappa$ be a weakly compact cardinal and let $j: V \rightarrow M$ be an elementary embedding with $\operatorname{crit}(j)=\kappa, j(\kappa)>\lambda$ and $H(\lambda)^{V}=H(\lambda)^{M}$. We may assume that M is of the form $M=\{j(f)(\alpha): \alpha<\lambda, f: \kappa \rightarrow V, f \in V\}$. First force as in Theorem 1 with $P=P_{\kappa} * \operatorname{Sacks}(\kappa, \lambda)$ over V to get a model $V[G][g]$ in which $2^{\kappa}=\kappa^{++}, \kappa^{++}$has the tree property, and κ is still measurable, i.e. there is an elementary embedding $j: V[G][g] \rightarrow M[G][g][H][h]$, where $G * g * H * h$ is a generic subset of $j(P)$ over M. Let $M^{*}:=M[G][g][H][h]$. Note that M^{*} is the ultrapower of $V[G][g]$ (by the normal measure U induced by j), i.e. every
element in M^{*} is of the form $j(f)(\kappa)$ for some $f: \kappa \rightarrow V[G][g], f \in V[G][g]$. This is because every element in M^{*} is of the form $j(f)(\alpha)$ for some $\alpha<\lambda$, $f: \kappa \rightarrow V[G][g], f \in V[G][g]$, and every $\alpha<\lambda$ is of the form $j(g)(\kappa)$ for some $g: \kappa \rightarrow V[G][g], g \in V[G][g]$.

Claim. Define $Q^{\prime}:=\operatorname{Coll}\left(\left(\kappa^{+++}\right)^{M^{*}}, j(\kappa)\right)^{M^{*}}$, the forcing that collapses each ordinal less than $j(\kappa)$ to $\left(\kappa^{+++}\right)^{M^{*}}$ using conditions of size $\leq\left(\kappa^{++}\right)^{M^{*}}$. There exists G^{\prime} in $V[G][g]$, a generic subset of Q^{\prime} over M^{*}.

Proof of the claim. Every maximal antichain $\Delta \subset Q^{\prime}$ in M^{*} is actually in $M[G][g][H]$, and thus of the form $\sigma^{G * g * H}$ for some $j\left(P_{\kappa}\right)$-name σ in M. It follows that Δ is of the form $j(f)(\alpha)^{G * g * H}$ for some $\alpha<\lambda=\left(\kappa^{++}\right)^{M^{*}}$, and some $f: \kappa \rightarrow V, f \in V$. Since we can assume that $\sigma=j(f)(\alpha)$ is in $V_{j(\kappa)}$ (because $\left|j\left(P_{\kappa}\right)\right|=j(\kappa)$ and $j\left(P_{\kappa}\right)$ has $j(\kappa)$-c.c.), it follows that we can assume that $f: \kappa \rightarrow V_{\kappa}$.

For a fixed $f: \kappa \rightarrow V_{\kappa}$ we have that $F_{f}:=\left\{\Delta \subset Q^{\prime}-\Delta\right.$ maximal antichain, $\Delta \in M[G][g][H]$, and $j(f)(\alpha)^{G * g * H}=\Delta$ for some $\left.\alpha<\left(\kappa^{++}\right)^{M^{*}}\right\}$ is an element of $M[G][g][H]$. Therefore, since Q^{\prime} is $\left(\kappa^{+++}\right)^{M^{*}}$-distributive in $M[G][g][H]$, there exists a single condition $p_{f} \in Q^{\prime}$ which lies below every antichain in F_{f}.

Now, there are $2^{\kappa}=\kappa^{+}$functions $f: \kappa \rightarrow V_{\kappa}$ in V. Enumerate them as $f_{1}, f_{2}, f_{3} \ldots$ We can find conditions $q_{\gamma} \in Q^{\prime}$ for $\gamma<\kappa^{+}$such that q_{γ} is a lower bound of $\left(p_{f_{\beta}}\right)_{\beta<\gamma}$, because $M[G][g][H]^{\kappa} \cap V[G][g] \subseteq M[G][g][H]$ and Q^{\prime} is $\left(\kappa^{+}\right)^{V}$-closed in $M[G][g][H]$. The sequence $\left\{q_{\gamma}-\gamma<\kappa^{+}\right\}$generates a filter G^{\prime} for Q^{\prime} in $V[G][g]$, which is generic over $M[G][g][H]$. Here ends the proof of the claim.

We now define in $V[G][g]$ a κ^{+}-c.c. forcing notion $R\left(G^{\prime}, U\right)$, or just R, called Collapse Prikry, which makes κ into \aleph_{ω} and preserves the tree property on κ^{++} as follows: An element p of R is of the form $\left(\aleph_{0}, f_{0}, \alpha_{1}, f_{1}, \ldots, \alpha_{n-1}, f_{n-1}, A, F\right)$ where

1. $\aleph_{0}<\alpha_{1}<\cdots<\alpha_{n-1}<\kappa$ are inaccessibles
2. $f_{i} \in \operatorname{Coll}\left(\alpha_{i}^{+++}, \alpha_{i+1}\right)$ for $i<n-1$ and $f_{n-1} \in \operatorname{Coll}\left(\alpha_{n-1}^{+++}, \kappa\right)$
3. $A \in U, \min A>\alpha_{n-1}$
4. F is a function on A such that $F(\alpha) \in \operatorname{Coll}\left(\alpha^{+++}, \kappa\right)$
5. $[F]_{U}$, which is an element of $\operatorname{Coll}\left(\left(\kappa^{+++}\right)^{M^{*}}, j(\kappa)\right)^{M^{*}}$, belongs to G^{\prime}.

The conditions in R are ordered as follows:
$\left(\aleph_{0}, g_{0}, \beta_{1}, g_{1}, \ldots, \beta_{m-1}, g_{m-1}, B, H\right) \leq\left(\aleph_{0}, f_{0}, \alpha_{1}, f_{1}, \ldots, \alpha_{n-1}, f_{n-1}, A, F\right)$ iff

1. $m \geq n$
2. $\forall i<n \beta_{i}=\alpha_{i}, g_{i} \supseteq f_{i}$
3. $B \subseteq A$
4. $\forall i \geq n \beta_{i} \in A, g_{i} \supseteq F\left(\beta_{i}\right)$
5. $\forall \alpha \in B H(\alpha) \supseteq F(\alpha)$.

We often abbreviate the lower part of a condition by a single letter and write (s, A, F) instead of $\left(\aleph_{0}, f_{0}, \alpha_{1}, f_{1}, \ldots, \alpha_{n-1}, f_{n-1}, A, F\right)$ where $|s|=n$ denotes the length of the lower part. Let S denote the 'generic sequence', i.e. the Prikry sequence together with the generic collapsing functions.

Claim. R satisfies κ^{+}-c.c.

Proof of the claim. There are only κ lower parts and any two conditions with the same lower part are compatible, so no antichain has size bigger than κ.

Claim. Let $(s, A, F) \in R$ and let σ be a statement of the forcing language. There exists a stronger condition $\left(s^{\prime}, A^{*}, F^{*}\right)$ with $|s|=\left|s^{\prime}\right|$ which decides σ.

For a proof see [5].
Claim. Let C be a $V[G][g]$-generic subset of R and let $\left\langle\aleph_{0}, \alpha_{1}, \ldots, \alpha_{n}, \ldots\right\rangle$ be the Prikry sequence in κ introduced by R. For $j \in \omega$, define $R \upharpoonright j:=\operatorname{Coll}\left(\aleph_{0}^{+++}, \alpha_{1}\right) \times$ $\operatorname{Coll}\left(\alpha_{1}^{+++}, \alpha_{2}\right) \times \ldots \times \operatorname{Coll}\left(\alpha_{j-1}^{+++}, \alpha_{j}\right)$. Then $V[G][g][C]$ and $V[G][g][C \upharpoonright j]$ have the same cardinal structure below $\alpha_{j}+1$, namely $\aleph_{1}, \aleph_{2}, \aleph_{3}, \alpha_{1}, \alpha_{1}^{+}, \alpha_{1}^{++}, \alpha_{1}^{+++}, \ldots$, $\alpha_{j-1}, \alpha_{j-1}^{+}, \alpha_{j-1}^{++}, \alpha_{j-1}^{+++}, \alpha_{j}$, where $C \upharpoonright j$ is the restriction of C to $R \upharpoonright j$.

Proof of the claim. Write R as $R \upharpoonright j * R /(\dot{R} \upharpoonright j)$, where the quotient $R /(\dot{R} \upharpoonright j)$ is defined in the same way as R (using only inaccessibles between α_{j} and κ). We need to show that $R /(R \upharpoonright j)$ does not add bounded subsets of α_{j}, but this follows immediately from the last claim.

So we proved that R makes κ into \aleph_{ω}. It remains to show that it also preserves the tree property on $\kappa^{++}=\lambda$.

In order to get a contradiction suppose that there is a κ^{++}-Aronszajn tree in some R-extension of $V[G][g]$. Then in $V[G]$ there is a $\operatorname{Sacks}(\kappa, \lambda) * \dot{R}$ - name \dot{T} of size λ (because $\operatorname{Sacks}(\kappa, \lambda) * \dot{R}$ satisfies λ-c.c.) and a condition $(p, \dot{r}) \in \operatorname{Sacks}(\kappa, \lambda) * \dot{R}$ which forces \dot{T} to be a κ^{++}-Aronszajn tree. Let \dot{G}^{\prime} be a $\operatorname{Sacks}(\kappa, \lambda)$-name in $V[G]$ for G^{\prime} of size λ (there is such a name because $\operatorname{Sacks}(\kappa, \lambda)$ has the λ-c.c. and $\left|Q^{\prime}\right|=\lambda$). We can assume w.l.o.g. that p forces \dot{G}^{\prime} to be generic over Q^{\prime}. Recall that λ is a weakly compact cardinal in $V[G]$. Therefore, there exist in $V[G]$ transitive $Z F^{-}$-models N_{0}, N_{1} of size λ and an elementary embedding $k: N_{0} \rightarrow N_{1}$ with critical point λ, such that $N_{0} \supseteq H(\lambda)^{V[G]}$ and $G, \dot{T}, \dot{G}^{\prime} \in N_{0}$.

Since g is also $\operatorname{Sacks}(\kappa, \lambda)$-generic over N_{0} and the critical point of k is λ, k can be lifted to $k^{*}: N_{0}[g] \rightarrow N_{1}[g][K]$, where K is any $N_{1}[g]$-generic subset of $\operatorname{Sacks}(\kappa,[\lambda, k(\lambda)))$ in some larger universe (and where $\operatorname{Sacks}(\kappa,[\lambda, k(\lambda)))$ is the quotient $\operatorname{Sacks}(\kappa, k(\lambda)) / \operatorname{Sacks}(\kappa, \lambda)$, i.e. the iteration of $\operatorname{Sacks}(\kappa)$ indexed by ordinals between λ and $k(\lambda))$. Consider the forcing $R^{*}:=k^{*}(R)=R\left(k\left(G^{\prime}\right), k(U)\right)$ in $N_{1}[g][K]$ and choose any generic C^{*} for it such that $k^{*}(r) \in C^{*}$, where $r=\dot{r}^{g}, R=\dot{R}^{g}, G^{\prime}=\dot{G}^{g}$. Let $C:=\left(k^{*}\right)^{-1}\left[C^{*}\right]$ be the pullback of C^{*} under k^{*}. Then C is an $N_{0}[g]$-generic subset of R because $\operatorname{crit}(k)=\lambda$ and R has the κ^{+}-c.c. It follows that there is an elementary embedding $k^{* *}: N_{0}[g][C] \rightarrow N_{1}[g][K]\left[C^{*}\right]$ extending k^{*}.

We have $r \in C$. So it follows that the evaluation T of \dot{T} in $N_{0}[g][C]$ is a λ Aronszajn tree. By elementarity $k^{* *}(T)$ is a $k^{* *}(\lambda)$-Aronszajn tree in $N_{1}[g][K]\left[C^{*}\right]$ which coincides with T up to level λ. Hence T has a cofinal branch b in $N_{1}[g][K]\left[C^{*}\right]$. We will show that b has to belong to $N_{1}[g][C]$ and thereby reach the desired contradiction!

Let us first analyse the quotient Q arising from the natural projection π : $\operatorname{Sacks}(\kappa, k(\lambda)) * \dot{R}^{*} \rightarrow R O(\operatorname{Sacks}(\kappa, \lambda) * \dot{R})$. As in the previous section, Q is the set of all $\left(p^{*},\left(\aleph_{0}, f_{0}, \alpha_{1}, f_{1}, \ldots, \alpha_{n-1}, f_{n-1}, \dot{A}^{*}, \dot{F}^{*}\right)\right) \in \operatorname{Sacks}(\kappa, k(\lambda)) * \dot{R}^{*}$ which are compatible with each $\left(p,\left(\aleph_{0}, g_{0}, \beta_{1}, g_{1}, \ldots, \beta_{m-1}, g_{m-1}, \dot{A}, \dot{F}\right)\right) \in g * C$, that is, either

1. $p^{*} \upharpoonright \lambda$ is compatible with p,
2. $n<m$,
3. for all $i<n \alpha_{i}=\beta_{i} \wedge f_{i} \| g_{i}$,
4. there is $q \leq p \cup p^{*}$ such that $q \Vdash$ " $\beta_{n}, \ldots, \beta_{m-1} \subset \dot{A}^{*}$ and $\dot{F}^{*}\left(\beta_{i}\right) \| g_{i}$ for $n \leq i<m "$,
or
5. $p^{*} \upharpoonright \lambda$ is compatible with p,
6. $n \geq m$,
7. for all $i<m \alpha_{i}=\beta_{i} \wedge f_{i} \| g_{i}$,
8. there is $q \leq p \cup p^{*}$ such that $q \Vdash$ " $\alpha_{m}, \ldots, \alpha_{n-1} \subset \dot{A}$ and $\dot{F}\left(\alpha_{i}\right) \| f_{i}$ for $m \leq i<n "$.
[Note that in both cases the condition q also forces \dot{F} and \dot{F}^{*} to be compatible on a measure one set. This is because the weaker condition p (by definition) forces $j(\dot{F})(\kappa)$ to be in \dot{G}^{\prime}, and therefore, by elementarity, also forces $k(j)(k(\dot{F}))(\kappa)$ to be in $k\left(\dot{G}^{\prime}\right)$, but $k(j)(k(\dot{F}))(\kappa)$ is the same as $k(j)(\dot{F})(\kappa)=[\dot{F}]_{U^{*}}$, since the trivial condition forces $k(\dot{F})=\dot{F}$.]

Equivalently, Q is the set of conditions $\left(p^{*},\left(\aleph_{0}, f_{0}, \ldots, \alpha_{n-1}, f_{n-1}, \dot{A}^{*}, \dot{F}^{*}\right)\right)$ in $\operatorname{Sacks}(\kappa,[\lambda, k(\lambda))) * \dot{R}^{*}$ such that

1. $p^{*} \in \operatorname{Sacks}(\kappa,[\lambda, k(\lambda)))$,
2. $\left\langle\aleph_{0}, \alpha_{1} \ldots, \alpha_{n-1}\right\rangle$ is an initial segment of $S(C)$ (the Prikry sequence arising from C),
3. the collapsing function $\overline{g_{i}}: \alpha_{i}^{+++} \rightarrow \alpha_{i+1}$ arising from C extends $f_{i}, i<n$,
4. p^{*} forces that \dot{A}^{*} is in \dot{U}^{*}, and that \dot{F}^{*} is a function on \dot{A}^{*} such that $\dot{F}^{*}(\alpha) \in$ $\operatorname{Coll}\left(\alpha^{+++}, \kappa\right)$ for each $\alpha \in \dot{A}^{*}$,
5. for every finite subset $x=\left\langle\beta_{n}, \ldots, \beta_{m-1}\right\rangle$ of $S(C)$ and every sequence of functions $\left\langle g_{n}, \ldots, g_{m-1}\right\rangle$ with $g_{i} \subseteq \overline{g_{i}}, n \leq i<m$, there is some extension q of p^{*} which forces that x is a subset of $\left\{\aleph_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right\} \cup \dot{A}^{*}$ and that $\dot{F}^{*}\left(\beta_{i}\right) \| g_{i}$ for $n \leq i<m$.
We now again argue indirectly. Assume that b is not in $N_{1}[g][C]$, and let \dot{b} in $N_{1}[g]$ be an $R * \dot{Q}$ - name for b. Identify $k(\dot{T})$ with the $R * \dot{Q}$ - name defined by interpreting the $\operatorname{Sacks}(\kappa, k(\lambda)) * \dot{R}^{*}$ - name $k(\dot{T})$ in N_{1} as an $R * \dot{Q}$ - name in $N_{1}[g]$. Let $\left(\left(s_{0}, A_{0}, F_{0}\right),\left(p_{0},\left(t_{0}, \dot{A}_{0}, \dot{F}_{0}\right)\right)\right)$ be an $R * \dot{Q}$ - condition forcing that the Prikry-name \dot{T} is a λ-tree and that \dot{b} is a branch through \dot{T} not belonging to $N_{1}[g][\dot{C}]$.

Let us take a closer look at the condition $\left(\left(s_{0}, A_{0}, F_{0}\right),\left(p_{0},\left(t_{0}, \dot{A}_{0}, \dot{F}_{0}\right)\right)\right)$. Say, $s_{0}=\left\langle\aleph_{0}, f_{0}, \alpha_{1}, f_{1}, \ldots, \alpha_{n-1}, f_{n-1}\right\rangle$ and $t_{0}=\left\langle\aleph_{0}, g_{0}, \beta_{1}, g_{1}, \ldots, \beta_{m-1}, g_{m-1}\right\rangle$. Note that the forcing Q lives in $N_{1}[g][C]$, but its elements are in $N_{1}[g]$, so we can assume that $\left(p_{0},\left(t_{0}, \dot{A}_{0}, \dot{F}_{0}\right)\right)$ is a real object and not just an R-name. The condition $\left(s_{0}, A_{0}, F_{0}\right)$ forces $\left(p_{0},\left(t_{0}, \dot{A}_{0}, \dot{F}_{0}\right)\right)$ to be an element of \dot{Q}. But this simply means that:

1. p_{0} is an element of $\operatorname{Sacks}(\kappa,[\lambda, k(\lambda)))$,
2. $\left\langle\aleph_{0}, \beta_{1}, \ldots, \beta_{m-1}\right\rangle$ is an initial segment of $\left\langle\aleph_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right\rangle$,
3. $g_{i} \subseteq f_{i}$ for $i<m$, and
4. for every finite subset $x=\left\langle\delta_{1}, \ldots, \delta_{l}\right\rangle$ of $\left\{\aleph_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right\} \cup A_{0}$ and every sequence of functions $\left\langle g_{\delta_{1}}, \ldots, g_{\delta_{l}}\right\rangle$ with $g_{\delta_{i}} \supseteq F_{0}\left(\delta_{i}\right)$ if $\delta_{i}>\alpha_{n-1}$, and $g_{\delta_{i}} \supseteq f_{i}$
if $\delta_{i}=\alpha_{i}$ (for some $i<n$), some extension of p_{0} forces that x is a subset of $\left\{\aleph_{0}, \beta_{1}, \ldots, \beta_{m-1}\right\} \cup \dot{A}_{0}$ and that $\dot{F}_{0}\left(\delta_{i}\right) \| g_{\delta_{i}}$ for $i<l$.

Moreover, we can assume that $s_{0}=t_{0}$. Namely, the following claim gives us a nice dense subset of $R * \dot{Q}$ on which we will work from now on.

Claim. Let $((s, A, F),(p,(t, \dot{A}, \dot{F})))$ be an arbitrary condition in $R * \dot{Q}$. There is a stronger condition $\left(\left(s^{\prime}, A^{\prime}, F^{\prime}\right),\left(p^{\prime},\left(s^{\prime}, \dot{A}, \dot{F}\right)\right)\right)$ with the property that for each $\alpha \in A^{\prime} p^{\prime} \Vdash F^{\prime}(\alpha) \leq \dot{F}(\alpha)$.

Proof of the claim. Say, s is of the form $\left\langle\aleph_{0}, f_{0}, \alpha_{1}, f_{1}, \ldots, \alpha_{n-1}, f_{n-1}\right\rangle$ and t is of the form $\left\langle\aleph_{0}, g_{0}, \beta_{1}, g_{1}, \ldots, \beta_{m-1}, g_{m-1}\right\rangle$. Let q be an extension of p which forces that $\left\{\alpha_{m}, \ldots, \alpha_{n-1}\right\}$ is a subset of \dot{A} and that $f_{i} \| \dot{F}\left(\alpha_{i}\right)$ for $m \leq i<n$. Extend q further to q^{\prime} to decide $\dot{F}\left(\alpha_{i}\right)$ and let $f_{i}^{\prime}:=f_{i} \cup \dot{F}\left(\alpha_{i}\right)$. Define s^{\prime} to be $\left\langle\aleph_{0}, f_{0}, \alpha_{1}, f_{1}, \ldots, \alpha_{m-1}, f_{m-1}, \alpha_{m}, f_{m}^{\prime}, \ldots, \alpha_{n-1}, f_{n-1}^{\prime}\right\rangle$.

Using the fusion property of $\operatorname{Sacks}(\kappa,[\lambda, k(\lambda)))$ we can find a condition $q^{\prime \prime} \leq q^{\prime}$ and a ground model function F^{*} on A with $\left|F^{*}(\alpha)\right| \leq \alpha^{++}$for each α such that $q^{\prime \prime} \Vdash \dot{F}(\alpha) \in \operatorname{Coll}\left(\alpha^{+++}, \kappa\right) \cap F^{*}(\alpha)$. It follows that $q^{\prime \prime}$ forces that in $\operatorname{Ult}\left(N_{1}[g], U\right)$, the ultrapower of $N_{1}[g]$ by $U, j_{U}(\dot{F})(\kappa) \in \operatorname{Coll}\left(\kappa^{+++}, j_{U}(\kappa)\right) \cap j_{U}\left(F^{*}\right)(\kappa)$, where $\left|j_{U}\left(F^{*}\right)(\kappa)\right| \leq \kappa^{++}$, that is, $q^{\prime \prime}$ forces that there are fewer than κ^{+++}possibilities for $j_{U}(\dot{F})(\kappa)$. Note that $\operatorname{Coll}\left(\kappa^{+++}, j_{U}(\kappa)\right)$ of $\operatorname{Ult}\left(N_{1}[g], U\right)$ is the same as $\operatorname{Coll}\left(\kappa^{+++}, j_{U}(\kappa)\right)$ of $\operatorname{Ult}\left(N_{0}[g], U\right)$, because these two ultrapowers agree below $j_{U}(\kappa)$.
Since $\operatorname{Coll}\left(\kappa^{+++}, j_{U}(\kappa)\right)$ is κ^{+++}-closed we can densely often find conditions in $\operatorname{Coll}\left(\kappa^{+++}, j_{U}(\kappa)\right)$ which are either stronger than or incompatible with all elements in $j_{U}\left(F^{*}\right)(\kappa)$. Therefore we can choose some $j_{U}\left(F^{\prime}\right)(\kappa) \leq j_{U}(F)(\kappa)$ in G^{\prime} with this property, i.e. $q^{\prime \prime} \Vdash j_{U}\left(F^{\prime}\right)(\kappa) \leq j_{U}(\dot{F})(\kappa) \vee j_{U}\left(F^{\prime}\right)(\kappa) \perp j_{U}(\dot{F})(\kappa)$. But actually we have $q^{\prime \prime} \Vdash j_{U}\left(F^{\prime}\right)(\kappa) \leq j_{U}(\dot{F})(\kappa)$, because for any generic K below $q^{\prime \prime}, j_{U}\left(F^{\prime}\right)(\kappa)$ and $j_{U}\left(\dot{F}^{K}\right)(\kappa)$ can not be incompatible as $k\left(j_{U}\left(F^{\prime}\right)(\kappa)\right)$ and $k\left(j_{U}\left(\dot{F}^{K}\right)(\kappa)\right)=j_{k(U)}\left(\dot{F}^{K}\right)(\kappa)$ both belong to the guiding generic $k\left(G^{\prime}\right)$.

It follows that $q^{\prime \prime}$ forces that for some $B \in U, B \subseteq A$, for each $\alpha \in B, q^{\prime \prime} \Vdash$ $F^{\prime}(\alpha) \leq \dot{F}(\alpha)$. Extend $q^{\prime \prime}$ to some p^{\prime} deciding B.

Finally, using the claim from the previous section, shrink B to some A^{\prime} such that every finite subset of A^{\prime} is forced by some extension of p^{\prime} to belong to \dot{A}. Then we have $\left(\left(s^{\prime}, A^{\prime}, F^{\prime}\right),\left(p^{\prime},\left(s^{\prime}, \dot{A}, \dot{F}\right)\right)\right) \leq((s, A, F),(p,(t, \dot{A}, \dot{F})))$ such that for each $\alpha \in A^{\prime} p^{\prime} \Vdash F^{\prime}(\alpha) \leq \dot{F}(\alpha)$. This proves the claim.

Now in $N_{1}[g]$ build a κ-tree E of conditions in $\operatorname{Sacks}(\kappa,[\lambda, k(\lambda)))$, whose branches will be fusion sequences, together with a sequence of ordinals $\left\langle\lambda_{\beta}: \beta<\kappa\right\rangle$, each $\lambda_{\beta}<\lambda$, in the same way as in the last section (using the same notation, Fact 1 and Fact 2):
Let $\left\langle v_{j}: j<2^{\beta+1}\right\rangle$ be an enumeration of level β of the tree E and let $\left\langle u_{m}\right\rangle_{m<\sum_{j<2 \beta+1} d_{v_{j}}}$ be an enumeration of $Y:=\bigcup_{j<2^{\beta+1}}\left\{u_{l}^{v_{j}}: l<d_{v_{j}}\right\}$. In order to construct the next level of the tree we will first thin out all the nodes on level β (by considering all the pairs in Y) and then split each of them into two incompatible nodes. The thinning out is done as follows: Consider u_{0} and u_{1}. If they belong to the same node, i.e. if there is $j<2^{\beta+1}$ and $l_{0}, l_{1}<d_{v_{j}}$ s.t. $u_{0}=u_{l_{0}}^{v_{j}}$ and $u_{1}=u_{l_{1}}^{v_{j}}$, then no thinning takes place. So assume that u_{0} and u_{1} belong to different nodes, say $v_{j_{0}}$ and $v_{j_{1}}$, respectively. Use Fact 1 to construct conditions
$r_{01}=\left(v_{j_{0}}\right)^{u_{0}}$ and $r_{10}=\left(v_{j_{1}}\right)^{u_{1}}$, i.e. thin $v_{j_{0}}$ and $v_{j_{1}}$ through u_{0} and u_{1} to r_{01} and r_{10}, respectively. Now ask whether there exist extensions r_{01}^{\prime} and r_{10}^{\prime} of r_{01} and r_{10}, respectively, such that for some $\gamma_{01}<\lambda$ and some $A_{01}, A_{10}, F_{01}, F_{10}, \dot{A}_{01}, \dot{A_{10}}$, $\dot{F}_{01}, \dot{F}_{10},\left(\left(s_{\beta}, A_{01}, F_{01}\right),\left(r_{01}^{\prime},\left(s_{\beta}, \dot{A}_{01}, \dot{F}_{01}\right)\right)\right)$ and $\left(\left(s_{\beta}, A_{10}, F_{10}\right),\left(r_{10}^{\prime},\left(s_{\beta}, \dot{A}_{10}, \dot{F}_{10}\right)\right)\right)$ force different nodes on level γ_{01} of \dot{T} to lie on \dot{b}. If the answer is 'yes', use Fact 2 to refine $v_{j_{0}}$ and $v_{j_{1}}$ through r_{01}^{\prime} and r_{10}^{\prime}, respectively, and continue with the next pair: u_{0}, u_{2}. And if the answer is 'no', go to the pair u_{0}, u_{2} without refining $v_{j_{0}}$ and $v_{j_{1}}$. The next pairs are $u_{1}, u_{2} ; u_{0}, u_{3}$ and so on, i.e. all pairs of the form u_{δ}, u_{η}, for $\eta<\sum_{j<2^{\beta+1}} d_{v_{j}}$ and $\delta<\eta$. At the limit stages take lower bounds, they exist since the forcing is κ-closed. Let λ_{β} be the supremum of (the increasing sequence of) $\gamma_{\delta \eta}$'s. Now extend each node v on level β (after thinning out the whole level) to two incompatible conditions v_{o} and v_{1}, such that $v_{0}, v_{1} \leq_{\beta, X_{v}} v$.

Let α be the supremum of λ_{β} 's. Note that $\alpha<\lambda$, because $\lambda=\left(\kappa^{++}\right)^{N_{1}[g]}$. Let p be the result of a fusion along a branch through E. As before we can choose $A_{0}(p) \subseteq A_{0}$ in U such that $\left(\left(s_{0}, A_{0}(p), F_{0}\right),\left(p,\left(s_{0}, \dot{A}_{0}, \dot{F}_{0}\right)\right)\right)$ is a condition. Extend this condition to some $\left(\left(s_{1}(p), A_{1}(p), F_{1}(p)\right),\left(p^{*},\left(s_{1}(p), \dot{A}_{1}(p), \dot{F}_{1}(p)\right)\right)\right)$ which decides $\dot{b}(\alpha)$, say it forces $\dot{b}(\alpha)=x_{p}$.

As level α of \dot{T} has size $<\lambda$, there exist limits p, q of κ-fusion sequences arising from distinct κ-branches through E for which x_{p} equals x_{q} and $s_{1}(p)$ equals $s_{1}(q)$. Moreover, we can extend $\left(s_{1}(p), A_{1}(p), F_{1}(p)\right)$ and $\left(s_{1}(q), A_{1}(q), F_{1}(q)\right)$ to get a common $\left(s_{1}, A_{1}, F_{1}\right)$. Say, $\left(\left(s_{1}, A_{1}, F_{1}\right),\left(p^{*},\left(s_{1}, \dot{A}_{1}(p), \dot{F}_{1}(p)\right)\right)\right)$ and $\left(\left(s_{1}, A_{1}, F_{1}\right)\right.$, $\left.\left(q^{*},\left(s_{1}, \dot{A}_{1}(q), \dot{F}_{1}(q)\right)\right)\right)$ force $\dot{b}(\alpha)=x$.

Now choose a Collapse Prikry generic C containing (s_{1}, A_{1}, F_{1}) (and hence containing $\left.\left(s_{0}, A_{0}, F_{0}\right)\right)$. As $\left(\left(s_{0}, A_{0}, F_{0}\right),\left(p_{0},\left(s_{0}, \dot{A}_{0}, \dot{F}_{0}\right)\right)\right) \Vdash \dot{b} \notin N_{1}[g][\dot{C}]$ and $\left(\left(s_{1}, A_{1}, F_{1}\right),\left(p^{*},\left(s_{1}, \dot{A}_{1}(p), \dot{F}_{1}(p)\right)\right)\right)$ extends $\left(\left(s_{0}, A_{0}, F_{0}\right),\left(p_{0},\left(s_{0}, \dot{A}_{0}, \dot{F}_{0}\right)\right)\right)$, we can extend $\left(\left(s_{1}, A_{1}, F_{1}\right),\left(p^{*},\left(s_{1}, \dot{A}_{1}(p), \dot{F}_{1}(p)\right)\right)\right)$ to two incompatible conditions, $\left(\left(s_{2_{0}}, A_{2_{0}}, F_{2_{0}}\right),\left(p_{0}^{* *},\left(s_{2_{0}}, \dot{A_{20}}, \dot{F_{2}}\right)\right)\right)$ and $\left(\left(s_{2_{1}}, A_{2_{1}}, F_{2_{1}}\right),\left(p_{1}^{* *},\left(s_{2_{1}}, \dot{A_{2}}, \dot{F_{2}}\right)\right)\right)$, with $\left(s_{2_{0}}, A_{2_{0}}, F_{2_{0}}\right),\left(s_{2_{1}}, A_{2_{1}}, F_{2_{1}}\right) \in C$ and $p_{0}^{* *}, p_{1}^{* *} \leq p^{*}$, which force a disagreement about \dot{b} at some level γ above α.
Now extend $\left(\left(s_{1}, A_{1}, F_{1}\right),\left(q^{*},\left(s_{1}, \dot{A}_{1}(q), \dot{F}_{1}(q)\right)\right)\right)$ to some stronger condition $\left(\left(s_{3}, A_{3}, F_{3}\right),\left(q^{* *},\left(s_{3}, \dot{A}_{3}, \dot{F}_{3}\right)\right)\right)$ which decides $\dot{b}(\gamma)$ with $\left(s_{3}, A_{3}, F_{3}\right)$ in C. Say, $\left(\left(s_{3}, A_{3}, F_{3}\right),\left(q^{* *},\left(s_{3}, \dot{A_{3}}, \dot{F_{3}}\right)\right)\right)$ and $\left(\left(s_{2_{0}}, A_{2_{0}}, F_{2_{0}}\right),\left(p_{0}^{* *},\left(s_{2_{0}}, \dot{A_{2}}, \dot{F_{20}}\right)\right)\right)$ do not agree about $\dot{b}(\gamma)$, and say, s_{3} is of the form $\left\langle\aleph_{0}, f_{0}, \alpha_{1}, f_{1}, \ldots, \alpha_{n-1}, f_{n-1}\right\rangle$, and $s_{2_{0}}$ is of the form $\left\langle\aleph_{0}, g_{0}, \beta_{1}, g_{1}, \ldots, \beta_{m-1}, g_{m-1}\right\rangle$.
We can assume w.l.o.g. that $m<n$. As both $\left(s_{3}, A_{3}, F_{3}\right)$ and $\left(s_{2_{0}}, A_{2_{0}}, F_{2_{0}}\right)$ are in C, we have that $\left\langle\aleph_{0}, \beta_{1}, \ldots, \beta_{m-1}\right\rangle$ is an initial segment of $\left\langle\aleph_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right\rangle$, $g_{i} \| f_{i}$ for $i<m,\left\{\alpha_{m}, \ldots, \alpha_{n-1}\right\} \subset A_{2_{0}}$, and $F_{2_{0}}\left(\alpha_{i}\right) \| f_{i}$ for $m \leq i<n$. Let $f_{i}^{\prime}:=f_{i} \cup g_{i}$ for $i<m$, and $f_{i}^{\prime}:=f_{i} \cup F_{2_{0}}\left(\alpha_{i}\right)$ for $m \leq i<n$. Define s_{3}^{\prime} to be $\left\langle\aleph_{0}, f_{0}^{\prime}, \alpha_{1}, f_{1}^{\prime}, \ldots, \alpha_{n-1}, f_{n-1}^{\prime}\right\rangle$.

Note that $\left(\left(s_{3}^{\prime}, A_{3}, F_{3}\right),\left(q^{* *},\left(s_{3}^{\prime}, \dot{A}_{3}, \dot{F}_{3}\right)\right)\right) \leq\left(\left(s_{3}, A_{3}, F_{3}\right),\left(q^{* *},\left(s_{3}, \dot{A}_{3}, \dot{F}_{3}\right)\right)\right)$ is also a condition.

Since $\left\{\alpha_{m}, \ldots, \alpha_{n-1}\right\} \subset A_{2_{0}}$, there exists some $p^{* * *} \leq p_{0}^{* *}$ which forces that $\left\{\alpha_{m}, \ldots, \alpha_{n-1}\right\} \subset \dot{A_{2_{0}}}$. It follows that there is also some $A_{3}^{\prime} \in U$ such that $\left(\left(s_{3}^{\prime}, A_{3}^{\prime}, F_{2_{0}}\right),\left(p^{* * *},\left(s_{3}^{\prime}, \dot{A_{20}}, \dot{F_{20}}\right)\right)\right) \leq\left(\left(s_{2_{0}}, A_{2_{0}}, F_{2_{0}}\right),\left(p_{0}^{* *},\left(s_{2_{0}}, \dot{A_{20}}, \dot{F_{2_{0}}}\right)\right)\right)$.
Now, for some $\beta<\kappa$ we have $s_{3}^{\prime}=s_{\beta}$ where s_{β} is the β th element of the enumeration of the lower parts. Since s_{β} appears cofinally often in the construction
of the tree E, we can assume that the branches which fuse to p and q split in E at some node below level β and go through some nodes $v_{j_{0}}$ and $v_{j_{1}}$ at level β. It follows that for some $l<d_{v_{j_{0}}}$ and $k<d_{v_{j_{1}}}$,

$$
r_{1}:=\left(\left(s_{3}^{\prime}, A_{3}^{\prime}\left(\left(p^{* * *}\right)^{u_{l}^{v_{j 0}}}\right), F_{2_{0}}\right),\left(\left(p^{* * *}\right)^{u_{l}^{v_{j}}},\left(s_{3}^{\prime}, \dot{A_{20}}, \dot{F_{20}}\right)\right)\right)
$$

and

$$
r_{2}:=\left(\left(s_{3}^{\prime}, A_{3}\left(\left(q^{* *}\right)^{u_{k}^{v_{j_{1}}}}\right), F_{3}\right),\left(\left(q^{* *}\right)^{u_{k}^{v_{j_{1}}}},\left(s_{3}^{\prime}, \dot{A}_{3}, \dot{F}_{3}\right)\right)\right)
$$

force different nodes to lie on \dot{b} at level $\gamma>\alpha$. By construction, this means that for some $\eta<\sum_{j<2^{\beta+1}} d_{v_{j}}$ and $\delta<\eta$,

$$
r_{3}:=\left(\left(s_{\beta}, A_{\delta \eta}, F_{\delta \eta}\right),\left(r_{\delta \eta}^{\prime},\left(s_{\beta}, \dot{A}_{\delta \eta}, \dot{F}_{\delta \eta}\right)\right)\right)
$$

and

$$
r_{4}:=\left(\left(s_{\beta}, A_{\eta \delta}, F_{\eta \delta}\right),\left(r_{\eta \delta}^{\prime},\left(s_{\beta}, \dot{A}_{\eta \delta}, \dot{F}_{\eta \delta}\right)\right)\right)
$$

force different nodes on level $\gamma_{\delta_{\eta}}(<\alpha)$ of \dot{T} to lie on \dot{b}. Say, $\dot{b}\left(\gamma_{\delta_{\eta}}\right)=y_{0}$ and $\dot{b}\left(\gamma_{\delta \eta}\right)=y_{1}$, respectively.

On the other side, r_{1} and r_{2} extend $\left(\left(s_{1}, A_{1}, F_{1}\right),\left(p^{*},\left(s_{1}, \dot{A}_{1}(p), \dot{F}_{1}(p)\right)\right)\right)$ and $\left(\left(s_{1}, A_{1}, F_{1}\right),\left(q^{*},\left(s_{1}, \dot{A}_{1}(q), \dot{F}_{1}(q)\right)\right)\right)$, respectively. Therefore we have that r_{1} and r_{2} also force $\dot{b}(\alpha)=x$.
Note that $\left(p^{* * *}\right)^{u_{l}} \leq r_{\delta \eta}^{\prime}$ and $\left(q^{* *}\right)^{u_{k}^{v_{j}}} \leq r_{\eta \delta}^{\prime}$. Since any two $R * \dot{Q}$ conditions with the same lower part and compatible Sacks conditions are compatible (this follows by the same arguments used in the proof of the last claim), we have that $r_{1} \| r_{3}$ and $r_{2} \| r_{4}$. Let $\left(\left(s_{3}^{\prime}, B^{\prime}, H^{\prime}\right),\left(\bar{p},\left(s_{3}^{\prime}, \dot{B}^{\prime}, \dot{H}^{\prime}\right)\right)\right)$ be a common lower bound of r_{1} and r_{3}, and let $\left(\left(s_{3}^{\prime}, B^{\prime \prime}, H^{\prime \prime}\right),\left(\bar{q},\left(s_{3}^{\prime}, \dot{B^{\prime \prime}}, \dot{H}^{\prime \prime}\right)\right)\right)$ be a common lower bound of r_{2} and r_{4}. The first condition forces $\dot{b}\left(\gamma_{\delta \eta}\right)=y_{0}$ and $\dot{b}(\alpha)=x$, and the second condition forces $\dot{b}\left(\gamma_{\delta \eta}\right)=y_{1}$ and $\dot{b}(\alpha)=x$.
Finally, let $\bar{B}:=B^{\prime} \cap B^{\prime \prime}$ and $\bar{H}:=H^{\prime} \cap H^{\prime \prime}$. Then $\left(s_{3}^{\prime}, \bar{B}, \bar{H}\right)$ forces that $y_{0}, y_{1}<_{\dot{T}} x$ in the ordering of the tree \dot{T}, because \dot{T} is a Collapse Prikry-name, i.e. all the relations between the nodes of \dot{T} are determined by the Collapse Prikry parts of the conditions above. Contradiction.

Open questions.

1. What is the consistency strength of \aleph_{ω} strong limit with the tree property at $\aleph_{\omega+2}$? [The best known lower bound is a weakly compact λ such that for each $n<\omega$ there exists $\kappa<\lambda$ with $o(\kappa)=\kappa^{+n}$.]
2. What is the consistency strength of the tree property at every even successor cardinal?
3. Is it consistent with ZFC to have the tree property at each $\aleph_{n}, 1<n<\omega$, and $\aleph_{\omega+2}$?

REFERENCES

[1] U. Abraham, Aronszajn trees on \aleph_{2} and \aleph_{3}, Annals of Pure and Applied Logic, vol. 24 (1983), pp. 213-230.
[2] J. Cummings and M. Foreman, The tree property, Advances in Mathematics, vol. 133 (1998), pp. 1-32.
[3] N. Dobrinen and S. Friedman, The consistency strength of the tree property at the double successor of a measurable, to appear in Fundamenta Mathematicae.
[4] M. Foreman, M. Magidor, and R. Schindler, The consistency strength of successive cardinals with the tree property, this JournaL, vol. 66 (2001), pp. 1837-1847.
[5] M. Gitiк, The negation of sch from $o(\kappa)=\kappa^{++}$, Annals of Pure and Applied Logic, vol. 43 (1989), pp. 209-234.
[6] A. Kanamori, Perfect set forcing for uncountable cardinals, Annals of Mathematical Logic, vol. 19 (1980), pp. 97-114.
[7] M. Magidor and S. Shelah, The tree property at successors of singular cardinals, Archive for Mathematical Logic, vol. 35 (1996), pp. 385-404.

KURT GÖDEL RESEARCH CENTER
UNIVERSITY OF VIENNA
E-mail: ???
KURT GÖDEL RESEARCH CENTER
UNIVERSITY OF VIENNA
E-mail: ???

[^0]: Received October 8, 2009.
 *The authors wish to thank the Austrian Science Fund (FWF) for its generous support via project P19898-N18.

