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Every model of type (N2,R;1) (i.e., the universe has cardinality Np
and there is a predicate of cardinality ;) for a countable language
has an elementary submodel of type (X1, Rp).

Notation: (N2, Nl) — (Nl, No).

Pretty much, the relationship between Ny and R is not that
different from the one between ¥; and Ng.
Proposition (Todorcevic) J

Chang's Conjecture — —[ly,, or the non-existence of a Kurepa tree.
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Theorem (Silver, 1967)

Con(Ramsey) — Con(Chang's Conjecture).

Theorem (Rowbottom, 1971)

Chang’s Conjecture — N; is inaccessible in L.

Theorem (Kunen)
Chang's Conjecture — 0F (in fact, x* for all reals x).

Theorem (Silver)
Con(w;-Erdds) — Con(Chang's Conjecture).

Theorem (Donder, 1979)

Chang's Conjecture — Ny is wi-Erdos in the core model.
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What about (N3, Np) — (N, R1)?

Theorem (Laver)

Con(huge cardinal)—Con((R3, Ra) — (N2, Ny1)).
Theorem (Schindler)

Con((N3,Np) = (N2, R1))—Con(o(k) = ™).
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Theorem (Keisler, 1962)

K is measurable iff there exists j : V < M with crt(j) = s. This
implies <*M C M.

Definition (late 60's)

Let x and v be cardinals. Then & is y-supercompact iff there is
aj:V < Mwith crt(j) = &, v < j(k) and "M C M. If k is
y-supercompact for any -, then x is supercompact.

Definition (Kunen, 1972)

Let k be a cardinal. Then & is huge iff there is a j : V < M with
crt(j) = K, {HM C M.

v
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Let j : V < M with crt(j) = k. We define the critical sequence
(Ko, K1,...) as ko = k and j(Kn) = Knt1-

Definition (Kunen, 1972)

Let x be a cardinal. Then « is n-huge iff there is a j : V < M with
crt(j) =k, "M C M.

Definition (Reinhardt, 1970)

Let x be a cardinal. Then k is w-huge or Reinhardt iff there is
aj:V < M with crt(j) = ko, *M C M, with A = sup,c,, kn-
Equivalently, if there is a j : V < V, with k = crt()).

v

<
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Theorem (Kunen, 1971)
There is no Reinhardt cardinal.
Proof

Let S, = {& < AT : cof () = w}. By Solovay there exists (S¢ : § <
K) a partition of S, in stationary sets. It's a quick calculation that
J(A) = X and j(AF) = AT Let j((Se 1 € < k) = (Te 1 € < k).
C = {a < A" : j(a) = a} is an w-club, therefore there exists
a€ CNT, LetaeSe. Then j(a) =ae Ti(§)N Ts.

<
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Large cardinals are really large, but there is a trick to apply their
properties to small cardinals.

Generic large cardinals are a "virtual” version of large cardinals.
Definition (Jech, Prikry, 1976)

Let k be a cardinal, / an ideal on P(x). Then P(x)/I is a forcing
notion. If G is generic for P(x)//, then G is a V-ultrafilter on P(k)
and there exists j : V < Ult(V, G).

I is precipitous iff Ult(V, G) is well-founded, and in that case there
exists j : V < M C V|[G].

We say that « is a generically measurable cardinal.
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One can extend the definition to all the large cardinals above:
generic ~y-supercompact, generic huge, generic n-huge.

In fact, the Theorem above by Laver is in fact divided in two:
Theorem (Laver)

Con(huge cardinal)—Con(X; is generic huge cardinal and j(®y) =
N3).

Proposition

If j: V< M C V[G], M closed under N3-sequences, crt(j) = N
and j(Nz) = N3, then (N3, Nz) — (Ng,Nl).

’
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Proof

Suppose not. Let U of type (N3,Np) be a counterexample. Then
J(U) is of tpye (XY M), But by hugeness j“U is in M, and j"U <
j(U). Finally, j“U is of type (N3, Np) = (RM RM).

In the same way,

Proposition

If j: V< M C V[G], M closed under X, 1-sequences, crt(j) =
N; and j(Nl) = Ny, j(Nz) = Nj,..., then (N,H_l,...,Ng,Nl) —»
(N, ..., Ry, Ro).
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Definition

K is Jénsson iff every structure for a countable language with domain
of cardinality k has a proper elementary substructure with domain
of the same cardinality.

Then R, is Jénsson is (..., N2, N1) — (..., Nq, Np).
Open Problem
What about Con(R,, is Jénsson)?

There is no w-huge (and Shelah proved there is no generic
w-huge)! What can we do?

12 /23
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Kunen proved in fact =3/ : Vi42 < Vi42. This leaves space for
the following definitions:
Definition

I3 iff there exists A s.t. Jj: V) < Vj;

12 iff there exists A s.t. 3j : Viay1 <1 Vs

I1 iff there exists A s.t. 3j : Viy1 < Voig;

|0 For some A there exists a
E L(V)\+1) =< L(V)\Jrl), with crt(j) <A

With the "right" forcing, generic I* implies N, is Jénsson.
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Disclaimer: it is still not clear how strong this is:
Theorem (Foreman,1982)
Con(2-huge cardinal)—Con(X; is generic 2-huge cardinal and )J

Open Problem
What about Con(R; is generic 3-huge cardinal and ...)?
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Definition (GCH)

Generic 10 at N, is true if there exists a forcing notion P such that
for any generic G there exists j : L(P(R,,)) < L(P(X,))"I¢! and P
is reasonable.

Examples: P = Coll(X3,N2), P = product of P,,, where
P, = Coll(Xp 1, Rp).
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Theorem

Suppose generic 10 at X,,. Then in L(P(R,)):
1. N,41 is measurable;
2. © is weakly inaccessible;

3. © is limit of measurable cardinals.

Confront this with:
Theorem (Shelah)

If R, is strong limit, then 280 < Ny -

(From now on, let's suppose crt(j) = Ny and j(Ny) = N3).

16 / 23



Introduction Hypothesis Motivation Generic 10 Thesis Motivation

Proof of (1)

It is practically the same proof as Kunen's Theorem

17 / 23



Introduction Hypothesis Motivation Generic 10 Thesis Motivation

Proof of (1)

It is practically the same proof as Kunen's Theorem. Suppose
(S¢ : &€ < Ry) is an w-stationary partition

17 / 23



Introduction Hypothesis Motivation Generic 10 Thesis Motivation

Proof of (1)
It is practically the same proof as Kunen's Theorem. Suppose

(S¢ + & < Ny) is an w-stationary partition. Now, j | Ly(P) €
L(P(R.))[G], so € = {a <Ry :j(a) = a} € L(P(R.))[GC]

17 / 23



Introduction Hypothesis Motivation Generic 10 Thesis Motivation

Proof of (1)

It is practically the same proof as Kunen's Theorem. Suppose
(S¢ + & < Ny) is an w-stationary partition. Now, j | Ly(P) €
L(P(Ny))[G], so C = {a < Nyy1 : j(a) = a} € L(P(Ry,))[G]. As
before, then there exists o € T¢ N Ty,.

In L(P(X.)) we have some choice, namely DCy,, ...

17 / 23
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For points (2) and (3) we need more choice than DCy_
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For points (2) and (3) we need more choice than DCy_:

Coding Lemma

Vn < OVp: P(R,) »nIy<OVACPR,) IBCPR,) B e
L,(P(X,)) BC Aand {p(a):a€ B} ={p(a): a € A}.
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Proof of (2)

One has to prove that if there exists p : P(X,) — «, then there
exists 7 : P(N,) — P(a)
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Proof of (2)

One has to prove that if there exists p : P(R,) — «, then there
exists m: P(N,) = P(a). Let A C «, and consider {a: p(a) € A}
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Proof of (2)

One has to prove that if there exists p : P(X,) — «, then there
exists m: P(N,) - P(«a). Let A C «, and consider {a: p(a) € A}.
Apply the Coding Lemma to this, to find B € L,(P(R,)) such that
{p(a) : a € B} = A. Therefore P(a) C L,(P(Xy)).

Proof of (3)

The measurable cardinals will be the first ~'s such that
L,(P(R,)) <1 L(P(R,)) above a fixed point
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Proof of (2)

One has to prove that if there exists p : P(X,) — «, then there
exists m: P(N,) - P(«a). Let A C «, and consider {a: p(a) € A}.
Apply the Coding Lemma to this, to find B € L,(P(R,)) such that
{p(a) : a€ B} = A. Therefore P(a) C L,(P(Xy)).

Proof of (3)

The measurable cardinals will be the first ~'s such that
L,(P(X,)) <1 L(P(X,)) above a fixed point. Prove the Coding
Lemma inside L,(P(R,,)). One can prove, as before, that the w-club
filter on 7y is Wy, 1-complete. Change the filter with the w-club filter
generated by the fixed points of k : N < P(R,,). Pick (Ac: & <)
and choose inside each one the sets of fixed points that witness the
non-empty intersection.
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Having just N1 measurable is nothing new:
Theorem (Apter, 1985)

Suppose k is 2*-supercompact, with A\ measurable. Then there is a
model of ZF+ W11 is measurable.

It's the rest that it is interesting:

Definition

Define D(\) as the following: in L(P(\)):
1. AT is measurable;

2. © is a weakly inaccessible limit of measurable cardinals.

Therefore, the Theorem proves that if we have generic 10 at X,
then D(X,,).
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Theorem
L(R) E AD — L(R) E D(w).
Theorem (Shelah, 1996)

If A has uncountable cofinality, then L(P(A\)) E AC, therefore
-D()\)
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Theorem (Shelah, 1996)

If A has uncountable cofinality, then L(P()\)) E AC, therefore
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Theorem (Woodin)

10(\) — D()).

Open Problem

How "small*“ can be A (uncountable) if D()\)?
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Theorem

L(R) E AD — L(R) E D(w).

Theorem (Shelah, 1996)

If A has uncountable cofinality, then L(P()\)) E AC, therefore
=D(\).

Theorem (Woodin)

10(\) — D()).

Open Problem
How "small*“ can be A (uncountable) if D()\)?

Open Problem

What is the consistency strength of D(\) with A uncountable?
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Thanks for your attention.
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