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A point of view: the development of mathematics is driven by a
search for completion.

The integers are developed for completing the natural numbers
under substraction.

The rationals are developed for completing the integers under
division.

The reals are developed for completing the rationals under Cauchy
sequences.

The complex numbers are developed for completing the reals under
square roots.
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What about counting?

0 1 2 3 4 5 . . . ∞ ∞+ 1
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There are some psychological studies that indicates that the
concept of ”infinity plus one” is natural for children

Monaghan, John (2001). ”Young Peoples’ Ideas of Infinity”.
Educational Studies in Mathematics 48 (2): 239–257

In mathematics: uniqueness of an expansion of a function in a
trigonometric series.
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Theorem (Cantor, 1870)

Suppose

a0/2 +
+∞∑
n=1

(an cos nx + bn sin nx) = 0 for any x ∈ R.

Then an = bn = 0.

In trying to extend this results (weakening the hypothesis from
∀x), Cantor arrived to this definition:
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Definition (Cantor, 1872)

Let S be a set of reals. Then S ′ = {x ∈ S : x is a limit point of S}.
Define by induction:

• S (0) = S ′;

• S (n+1) = S (n)′;

• S (∞) =
⋂

n∈N S (n).

But maybe S (∞) has some isolated points...

• S (∞+1) = S (∞)′. . .
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Definition (Cantor, 1883)

Two ordered sets (S ,≤S) and (T ,≤T ) have the same order type
if there is an order isomorphism between them, i.e., ∃f : S → T
bijective such that x ≤S y iff f (x) ≤T f (y).

α is an ordinal number if it’s the order type of a well-ordered
set (i.e., linear without infinite descending chains).
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1
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2
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3
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∞
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ω
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ω + 1
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ω + 2
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ω + ω = ω · 2
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ω + ω + ω = ω · 3
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ω · ω
(the order type of the Sieve of Eratosthenes)
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ω · ω
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But wait a minute...

ω + 1 is after ω, but it’s not bigger!

Definition(Cantor, 1874-1884)

Two sets have the same cardinality if there is a bijection between
them.
κ is a cardinal number if it is the cardinality of an ordinal number.

ω is both a cardinal and an ordinal number. When we use it as a
cardinal, we call it ℵ0.

There is a bijection between ω + 1 and ω (Hilbert’s Paradox of the
Grand Hotel). Is there an ordinal really bigger?
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Galileo’s paradox
...

...
7
6 6
5
4 4
3
2 2
1
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Galileo’s paradox
...

...
7 14
6 12
5 10
4 8
3 6
2 4
1 2
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Theorem(Cantor, 1874)

|P(ω)| > ℵ0.

Identify a subset of ω as an ω-sequence of 0’s and 1’s.
1 → 0 0 1 1 0 1 0 1 0 1 0 . . .
2 → 0 1 1 1 1 0 0 0 0 0 0 . . .
3 → 0 1 0 0 0 0 1 0 0 0 0 . . .
4 → 1 1 1 1 1 0 0 1 1 1 0 . . .
5 → 0 1 0 1 0 0 1 0 1 0 1 . . .
6 → 0 0 1 1 0 1 1 0 1 1 1 . . .
7 → 1 0 0 0 1 1 1 1 1 1 1 . . .
8 → 0 1 1 0 1 0 1 0 0 1 1 . . .
9 → 0 1 0 1 1 1 0 0 1 1 0 . . .

10 → 1 1 1 0 0 1 1 1 1 1 0 . . .
11 → 1 1 0 0 0 1 0 0 0 0 0 . . .
...

...
...

...
...

...
...

...
...

...
...

... . . .
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Theorem(Cantor, 1874)

|P(ω)| > ℵ0.

Identify a subset of ω as an ω-sequence of 0’s and 1’s.
1 → 0 0 1 1 0 1 0 1 0 1 0 . . .
2 → 0 1 1 1 1 0 0 0 0 0 0 . . .
3 → 0 1 0 0 0 0 1 0 0 0 0 . . .
4 → 1 1 1 1 1 0 0 1 1 1 0 . . .
5 → 0 1 0 1 0 0 1 0 1 0 1 . . .
6 → 0 0 1 1 0 1 1 0 1 1 1 . . .
7 → 1 0 0 0 1 1 1 1 1 1 1 . . .
8 → 0 1 1 0 1 0 1 0 0 1 1 . . .
9 → 0 1 0 1 1 1 0 0 1 1 0 . . .

10 → 1 1 1 0 0 1 1 1 1 1 0 . . .
11 → 1 1 0 0 0 1 0 0 0 0 0 . . .
...

...
...

...
...

...
...

...
...

...
...

... . . .
1 0 1 0 1 0 0 1 0 0 1 . . .
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The smallest cardinal bigger than ℵ0 is ℵ1, then ℵ2, ℵ3, . . .ℵω,
ℵω+1, . . .ℵωω . . .

Operations are defined, like sum, multiplications...

Definition

κγ = |{f : γ → κ}|.

For example 2κ = |P(κ)|.
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Main Problems in Set Theory #2

Suppose for any n, 2ℵn < ℵω. How big is 2ℵω?
Best result: 2ℵω < ℵω4 .

But wait a minute...

ℵ1 is still too close to ℵ0: 2ℵ0 ≥ ℵ1, but 2n < ℵ0 for all n!

Definition(Sierpiński, Tarski, Zermelo, 1930)

κ is an inaccessible cardinal iff

• κ > ℵ0;

• for any γ, η < κ, γη < κ;

• for any A ⊆ κ, |A| < κ→ sup(A) < κ.
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inaccessible
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Mathematics works through theorems.

They are logical derivations of the form if. . . then. . . .

It is clear that there needs to be a starting point, i.e., an axiomatic
system.

ZFC is now the favourite axiomatic system for mathematics. We
can say it’s the mathematics.
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Theorem(Gödel, 1931)

Any effectively generated theory capable of expressing elementary
arithmetic cannot be both consistent and complete.

For any formal effectively generated theory T including basic
arithmetical truths and also certain truths about formal provabil-
ity, if T includes a statement of its own consistency then T is
inconsistent.

A statement is independent from ZFC if ZFC cannot prove it or
disprove it.

If there is an inaccessible cardinal, then one can prove that ZFC is
consistent. Then ZFC cannot prove that there exists an
inaccessible cardinal, so it’s independent from ZFC.
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Theorem

The existence of an inaccessible cardinal is equiconsistent to

• the measurability of the projective sets in R;

• the existence of Kurepa trees.

Theorem

The existence of a measurable cardinal is equiconsistent to

• every Borelian measure on B([0, 1]) can be extended on a
measure on P([0, 1]);

• there exists a cardinal κ and a non-trivial homomorphism
h : Zκ \ Z<κ → Z.

Theorem(Nyikos, Fleissner 1982)

The consistency of the normal Moore conjecture is between measur-
able and strongly compact.
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Theorem (Wiles, 1995)

Suppose there are unboundedly inaccessible cardinals. Then for any
n > 2 there are no a, b, c integers such that an + bn = cn.

In 1983 Pitowsky constructed hidden variable models for spin-1/2
and spin-1 particles in quantum mechanics. Pitowsky’s functions
calculate in this model the probabilities of spin values.

Theorem (Farah, Magidor, 2012)

If there exists a measurable cardinal, then Pitowski functions do not
exist.
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There are also very debatable results. . .

Theorem (H. Friedman, 2012)

The existence of a measurable cardinal is close to equiconsistent to
the existence of God.

. . . and large cardinals even appear in pop culture!
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Main questions when dealing with a large cardinal:

• What is the relationship between it and other large cardinals?
E.g. is it really different? Is it really stronger (or weaker)?

• What are its consequences on set theory? And mathematics?

• Which theorems needs it to be proven?
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Main Problems in Set Theory #3

Is supercompact equiconsistent to strongly compact?

Main Problems in Set Theory #5

Suppose κ is strongly compact. Is it true that if for any η < κ
2η = η+, then this is true for every η?

Main Problems in Set Theory #1

Is there an inner model for supercompact?
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Definition

The rank of ∅ is 0.The rank of a set S is the supremum of the ranks
of all s ∈ S plus 1.Vα is the set of the sets of rank < α.V =

⋃
α Vα

is the universe of sets.

Examples: V0 = ∅. ∅ ∈ V1, {∅} ∈ V2, {{∅}}, {∅, {∅}} ∈ V3, . . .
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Definition

A function j : M → N is an elementary embedding if it is injective
and for any x ∈ M and any formula ϕ, M � ϕ(x) iff N � ϕ(j(x)).
We write j : M ≺ N.

It’s a morphism for the logical structure.

If x , y ∈ M and x ∈ y , then j(x) ∈ j(y). If ∃x ∈ M that satisfies
something, then ∃y ∈ N that satisfies the same thing. If all x ∈ M
satisfy something relative to a parameter p, then all y ∈ N satisfy
the same thing relative to the parameter j(p).

j(0) = 0, j(1) = 1, j(2) = 2, . . . j(n) = n, . . . , j(ω) =
ω, j(ℵω) = ℵω, . . .
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The critical point of j is the smallest ordinal α such that j(α) 6= α
(it’s easy to see that j(α) ≥ α).

Theorem (Scott, Keisler 1962)

The following are equivalent:

• there is a κ-additive measure on κ (κ is measurable);

• there exists j : V ≺ M ⊆ V , with κ critical point of j .

Can V = M? It would be a very strong hypothesis...

Theorem (Kunen, 1971)

There is no j : V ≺ V .

The proof uses greatly the Axiom of Choice.
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Main Problems in Set Theory #4

Is there a j : V ≺ V when ¬AC ?.

Let’s define a local version of such hypothesis:

Definition

• I3: There exists j : Vλ ≺ Vλ;

• I1: There exists j : Vλ+1 ≺ Vλ+1.
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An example of consequences of very large cardinals: left
distributive algebras.

Note: given the limitations of inner model theory, it is not possible
(for now) to prove that they are necessary.

Let’s start with a symbol, any: x , y , ♠, . . .

We add an operation: ·.

x , x · x , (x · x) · x , x · ((x · x) · x), x · (x · (x · (x · x))), . . .
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We add just one rule (LD): a · (b · c) ≡ (a · b) · (a · c). This is what
we call free left distributive algebra with one generator.

So for example x · (x · x) ≡ (x · x) · (x · x) ≡ ((x · x) · x) · ((x · x) · x),
x · ((x · x) · x) ≡ (x · (x · x))(x · x).
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Is there an algorithm that, given two “words”, tells you whether
they are equivalent or not?

Theorem (Laver, 1989)

Under I3, the word problem for LD-algebras is decidable.

The main idea behind it is that the set of embeddings in Vλ is a
free LD algebra. . . and there is just one! The second idea is
defining a division algorithm and proving that strict division is
irreflexive.

Theorem (Dehornoy, 1994)

The word problem for LD-algebras is decidable.
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Laver tables:

Suppose we want our LD-algebras to be finite. We consider
{1, . . . ,N} as generators. We have two rules:

• a · (b · c) ≡ (a · b) · (a · c)

• a · 1 ≡ a + 1 (where + is cyclical).

We call such algebra SN .

Theorem

• SN , when it exists, is unique;

• SN exists iff N = 2n for some n ∈ N (we call it An);

• for any a, the orbit of a under · is periodical.
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A2 1 2 3 4

1
2
3
4
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A2 1 2 3 4

1 2
2 3
3 4
4 1
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A2 1 2 3 4

1 2
2 3
3 4
4 1 2

4 · 2 = 4 · (1 · 1) = (4 · 1) · (4 · 1) = 1 · 1 = 2
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A2 1 2 3 4

1 2
2 3
3 4
4 1 2 3 4

4 · 3 = 4 · (2 · 1) = (4 · 2) · (4 · 1) = 2 · 1 = 3
4 · 4 = 4 · (3 · 1) = (4 · 3) · (4 · 1) = 3 · 1 = 4
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A2 1 2 3 4

1 2
2 3
3 4 4 4
4 1 2 3 4

3 · 2 = 3 · (1 · 1) = (3 · 1) · (3 · 1) = 4 · 4 = 4
3 · 3 = 3 · (2 · 1) = (3 · 2) · (3 · 1) = 4 · 4 = 4
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A2 1 2 3 4

1 2 4 2 4
2 3 4 3 4
3 4 4 4 4
4 1 2 3 4
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A3 1 2 3 4 5 6 7 8

1 2 4 6 8 2 4 6 8
2 3 4 7 8 3 4 7 8
3 4 8 4 8 4 8 4 8
4 5 6 7 8 5 6 7 8
5 6 8 6 8 6 8 6 8
6 7 8 7 8 7 8 7 8
7 8 8 8 8 8 8 8 8
8 1 2 3 4 5 6 7 8

65 / 70



Breaking the ceiling of infinity Stronger than mathematics I axioms

A4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 12 14 16 2 12 14 16 2 12 14 16 2 12 14 16
2 3 12 15 16 3 12 15 16 3 12 15 16 3 12 15 16
3 4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16
4 5 6 7 8 13 14 15 16 5 6 7 8 13 14 15 16
5 6 8 14 16 6 8 14 16 6 8 14 16 6 8 14 16
6 7 8 15 16 7 8 15 16 7 8 15 16 7 8 15 16
7 8 16 8 16 8 16 8 16 8 16 8 16 8 16 8 16
8 9 10 11 12 13 14 15 16 9 10 11 12 13 14 15 16
9 10 12 14 16 10 12 14 16 10 12 14 16 10 12 14 16

10 11 12 15 16 11 12 15 16 11 12 15 16 11 12 15 16
11 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16
12 13 14 15 16 13 14 15 16 13 14 15 16 13 14 15 16
13 14 16 14 16 14 16 14 16 14 16 14 16 14 16 14 16
14 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16
15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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Can we say something about the periods?

• Is there a relation between periods for different rows in the
same table?

• Given n, is there a row in some table with period n?

• If so, how big is the table?

Theorem (Laver, 1995)

Under I3,

• for every n ∈ N, the period of the second row of An is ≥ the
period of the first row of An

• for every p ∈ N, there exist n such that the first row of An has
period 2p.

There is no known proof of this that does not use large cardinals.
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It is not possible in primitive recursive arithmetic:

Theorem (Dougherty)

Let q(p) the minimal n such that the first row of An has period
2p. Then q(0) = 0, q(1) = 2, q(2) = 3, q(3) = 5, q(4) = 9,
q(5) > f9(f8(f8(254))), where f is the Ackermann function.
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To recap:

• Completing the natural numbers under the operation of
”‘counting”’, opens up a very rich universe;

• large cardinal are seemingly innocuous infinite combinatorial
properties;

• yet they function very well as a measure for calculating the
strength of many mathematical propositions;

• for unknown reason, they are ordered in a linear way;

• large cardinals above Woodin are more misterious, because we
don’t have inner model theory there;

• yet they are also the more potentially productive.
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Thanks for your attention!

Twitter: @DimonteSet
Blog: cantorontheshore.blogspot.com

Youtube: see Vsauce video ”‘How to count past infinity”’.
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