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Section 1

Classic cardinal invariants and their generalizations
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Motivation

“Cardinal invariants are simply the smallest cardinals ≤ 𝔠 for which various results,
true for ℵ0, become false...”

Andreas Blass, Combinatorial cardinal characteristics of the continuum, 2010

Classical cardinal invariants of the Baire space 𝜔𝜔 have been extensively studied
and understood. Moreover, it is possible to directly abstract several definitions from
𝜔 to an arbitrary uncountable cardinal 𝜅.
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The generalized Baire spaces

Let 𝜅 be an uncountable regular cardinal satisfying 𝜅<𝜅 = 𝜅. The generalized
Baire space is just the set of functions 𝜅𝜅 endowed with the topology generated by
the sets of the form: [𝑠] = {𝑓 ∈ 𝜅𝜅 ∶ 𝑓 ⊇ 𝑠} for 𝑠 ∈ 𝜅<𝜅.

Denote NWD𝜅 to be the collection of nowhere dense subsets of 𝜅<𝜅 with respect
to this topology, recall that a set 𝐴 ⊆ 𝜅𝜅 is nowhere dense if for every 𝑠 ∈ 𝜅<𝜅

there exists 𝑡 ⊇ 𝑠 such that [𝑡] ∩ 𝐴 = ∅.
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Then it we define the generalized 𝜅-meager sets in 𝜅𝜅 to be 𝜅-unions of elements
in NWD𝜅 and denote ℳ𝜅 to be the 𝜅-ideal that 𝜅-meager sets determine (here
𝜅-ideal means an ideal that in addition is closed under unions of size ≤ 𝜅).

It is well known that the Baire category theorem can be lifted to this context, i.e. it
holds that the intersection of 𝜅-many open dense sets is open (Friedman, Hyttinen,
Kulikov, 2014).
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The beginning

Since 1995, with the paper “Cardinal invariants above the continuum ” from Cum-
mings and Shelah, the study of the invariants associated to these spaces and their
interactions has been developing.

It is also important to mention that the study of these spaces has been also ap-
proached from the point of view of Descriptive Set Theory (Friedman, Hyttinen,
Kulikov, Motto Ros, Moreno) and Topology (Korch).
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Some cardinal invariants

Definition
If 𝑓, 𝑔 are functions in 𝜅𝜅, we say that 𝑓 <∗ 𝑔, if there exists an 𝛼 < 𝜅 such that
for all 𝛽 > 𝛼, 𝑓(𝛽) < 𝑔(𝛽). In this case, we say that 𝑔 eventually dominates 𝑓.

Definition
Let 𝔉 be a family of functions from 𝜅 to 𝜅.

▶ 𝔉 is dominating, if for all 𝑔 ∈ 𝜅𝜅, there exists an 𝑓 ∈ 𝔉 such that 𝑔 <∗ 𝑓.
▶ 𝔉 is unbounded, if for all 𝑔 ∈ 𝜅𝜅, there exists an 𝑓 ∈ 𝔉 such that 𝑓 ≮∗ 𝑔.
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The unbounding and dominating numbers

Definition
▶ The unbounding number:

𝔟(𝜅) = min{|𝔉|∶ 𝔉 is an unbounded family of functions in 𝜅𝜅}

▶ The dominating number:

𝔡(𝜅) = min{|𝔉|∶ 𝔉 is a dominating family of functions in 𝜅𝜅}
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Cardinal invariants associated to an ideal

Let ℐ be a 𝜅-ideal (closed under 𝜅-sized unions) on 𝜅𝜅:

Definition
▶ The additivity number:

add(ℐ) = min{|𝒥|∶ 𝒥 ⊆ ℐ and ⋃ 𝒥 ∉ ℐ}.

▶ The covering number:

cov(ℐ) = min{|𝒥|∶ 𝒥 ⊆ ℐ and ⋃ 𝒥 = 𝜅𝜅}.
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Definition
▶ The cofinality number:

cof(ℐ) = min{|𝒥|∶ 𝒥 ⊆ ℐ and for all 𝑀 ∈ ℐ there is a

𝐽 ∈ 𝒥 with 𝑀 ⊆ 𝐽}.

▶ The uniformity number:

non(ℐ) = min{|𝑌 |∶ 𝑌 ⊂ 𝑋 and 𝑌 ∉ ℐ}.
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Cichón’s diagram

Cichón’s diagram summarizes the provable ZFC relationships between some car-
dinal invariants related to the 𝜎-ideals of meager and null sets (with respect to
the standard product measure) on the Baire space. Is there a straightforward
generalization of (a) these ideals and (b) the corresponding diagram?
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Cichoń’s Diagram on the Baire space 𝜔𝜔

--- -

-

----

6 6

6

66

6

cof 𝒩

non 𝒩

cof ℳ

𝔡

cov ℳadd ℳ

𝔟

non ℳcov 𝒩

add 𝒩ℵ1

𝔠

Figure 1: Cichón’s diagram
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Hasse’s diagram
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Why cardinal invariants of these spaces? I

There are some remarkable differences between the countable and the uncountable
cases that make this study interesting and present new challenges for future
research. Here some examples:

▶ Expected bounds: Typically, classical invariants take values in the interval
[ℵ1, 𝔠]. However, in the uncountable for instance, the generalization of the
splitting number 𝔰(𝜅) can be ≤ 𝜅, and actually large cardinals are necessary
to have the expected inequality 𝔰(𝜅) ≥ 𝜅+ (Suzuki, 1998). Also, Ben-Neria
and Gitik found the optimal large cardinal assumption to get 𝔰(𝜅) > 𝜅+,
2014. Specifically:
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Why cardinal invariants of these spaces? II

Theorem
Let 𝜅, 𝜆 be regular uncountable cardinals such that 𝜅+ < 𝜆. 𝔰(𝜅) = 𝜆 is
equiconsistent to the existence of a measurable cardinal 𝜅 with 𝑜(𝜅) = 𝜆.

▶ New ZFC results: Some examples
▶ Raghavan and Shelah showed that, for uncountable 𝜅, the inequality 𝔰(𝜅) ≤

𝔟(𝜅) holds whereas in the countable case, there are two different forcing
extensions in which inequalities 𝔰 < 𝔟 and 𝔟 > 𝔰 hold respectively.

▶ They also proved that, if 𝜅 > ℶ𝜔 then 𝔡(𝜅) ≤ 𝔯(𝜅). Recently, Fischer and
Soukup showed (among others) that the same conclusion can be obtained
under the hypothesis cf(𝔯(𝜅)) ≤ 𝜅.
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Why cardinal invariants of these spaces? III

▶ Roitman’s problem: It asks whether from 𝔡 = ℵ1 it is possible to prove that
𝔞 = ℵ1.

▶ So far, Shelah gave the best approximation to an answer to this problem: he
developed the method of template iteration forcing to give a model in which
the inequality 𝔡 < 𝔞 is satisfied, yet in his model the value of 𝔡 is ℵ2; the
question that is still open asks if it is possible to find such a model but in
addition having 𝔡 = ℵ1.

▶ In the uncountable in contrast, Blass, Hyttinen and Zhang (2007) proved in
ZFC that for uncountable regular 𝜅 Roitman’s problem can be solved on the
positive, i.e. if 𝔡(𝜅) = 𝜅+, then 𝔞(𝜅) = 𝜅+.
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Why cardinal invariants of these spaces? IV

▶ Global results: Cummings and Shelah used an Easton-like iteration to prove
the following:

Theorem
Assume GCH, if 𝜅 → (𝛽(𝜅), 𝛿(𝜅), 𝜇(𝜅)) is a class function from the class of all
regular cardinals to the class of cardinal numbers, with
𝜅+ ≤ 𝛽(𝜅) = cf(𝛽(𝜅)) ≤ cf(𝛿(𝜅)) ≤ 𝛿(𝜅) ≤ 𝜇(𝜅) and cf(𝜇(𝜅)) > 𝜅 for
all 𝜅. Then, there exists a class forcing ℙ, preserving all cardinals and cofinalities,
such that in the generic extension 𝔟(𝜅) = 𝛽(𝜅), 𝔡(𝜅) = 𝛿(𝜅) and 𝜇(𝜅) = 2𝜅.
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Why cardinal invariants of these spaces? V

▶ More cardinal invariants via combinatorial characterizations: In the count-
able case the following holds:

Theorem (Bastoszyński)
Let 𝑓 and 𝑔 be two functions in 𝜔𝜔. We say that 𝑓 and 𝑔 are eventually different if
there is 𝑛 ∈ 𝜔, such that for all 𝑚 ≥ 𝑛 𝑓(𝑚) ≠ 𝑔(𝑚) (and write 𝑓 ≠∗ 𝑔), then:
non ℳ = min{|ℱ|∶ (∀𝑔 ∈ 𝜔𝜔)(∃𝑓 ∈ ℱ)¬(𝑓 ≠∗ 𝑔)}.
cov ℳ = min{|ℱ|∶ (∀𝑔 ∈ 𝜔𝜔)(∃𝑓 ∈ ℱ)(𝑓 ≠∗ 𝑔)}.

Then, if we define for arbitrary uncountable regular 𝜅:
▶ nm(𝜅) = min{|ℱ|∶ (∀𝑔 ∈ 𝜅𝜅)(∃𝑓 ∈ ℱ)¬(𝑓 ≠∗ 𝑔)}.
▶ cv(𝜅) = min{|ℱ|∶ (∀𝑔 ∈ 𝜅𝜅)(∃𝑓 ∈ ℱ)(𝑓 ≠∗ 𝑔)}.
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Why cardinal invariants of these spaces? VI

The following holds:

Proposition
▶ 𝔟(𝜅) ≤ nm(𝜅) ≤ non(ℳ𝜅).

▶ cov(ℳ𝜅) ≤ cv(𝜅) ≤ 𝔡(𝜅).

Moreover, if 𝜅 is strongly inaccessible, the corresponding cardinals coincide.
▶ Club versions:

▶ Cummings and Shelah defined the ”club” versions of 𝔡(𝜅) and 𝔟(𝜅), namely
given 𝑓, 𝑔 ∈ 𝜅𝜅, we say that 𝑓 <∗

cb 𝑔 (𝑔 club dominates 𝑓), if there exists a
club 𝐶 on 𝜅 so that, for every 𝛼 ∈ 𝐶, 𝑓(𝛼) < 𝑔(𝛼) and defined 𝔟cb(𝜅)
and 𝔡cb(𝜅) accordingly. They proved:
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Why cardinal invariants of these spaces? VII

Theorem
𝔟cb(𝜅) = 𝔟(𝜅), 𝔡cb(𝜅) ≤ 𝔡(𝜅) and if 𝜅 is regular and > ℶ𝜔, 𝔡cb(𝜅) = 𝔡(𝜅).

▶ The pseudointersection number: 𝔭(𝜅) is defined as the minimum size of a
family ℱ of subsets of 𝜅 with the strong intersection property (i.e. for every
ℱ′ ⊆ ℱ, |ℱ′|< 𝜅, ⋂ ℱ′ is unbounded) and no pseudointersection of
size 𝜅 (i.e. no set 𝑋 ∈ [𝜅]𝜅 such that 𝑋 ⊆∗ 𝐹, for all 𝐹 ∈ ℱ).

Raghavan and Shelah proved also that 𝔰(𝜅) ≤ 𝔭cb(𝜅) ≤ 𝔟(𝜅) where
𝔭cb(𝜅) is the minimum size of a family of clubs without a pseudointersection
of size 𝜅. Recently, in joint work with Fischer and Soukup, we have proved
that there is a model where 𝔭(𝜅) < 𝔭cb(𝜅).
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Some results

-- --

-

----

6

66

6

𝔡(∈∗
𝑝)(𝜅)cof ℳ(𝜅)

𝔡(𝜅)

cov ℳ(𝜅)add ℳ(𝜅)

𝔟(𝜅)

non ℳ(𝜅)

𝔟(∈∗
𝑝)(𝜅)𝔟(∈∗)(𝜅)𝜅+

𝔡(∈∗)(𝜅) 2𝜅

Cichoń’s Diagram on the uncountable for 𝜅 strongly inaccessible.
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𝜅-Sacks forcing

Let 𝜅 be strongly inaccessible. Conditions in 𝕊𝜅 are 𝜅-closed subtrees 𝑇 ⊆ 2<𝜅

such that ∀𝑠 ∈ 𝑇, ∃𝑡 ∈ 𝑇 , 𝑠 ⊆ 𝑡 splitting and the limit of splitting nodes is also
splitting. Also 𝑇 ≤ 𝑆 if 𝑇 ⊆ 𝑆.

▶ It has good fusion properties.
▶ It has the generalized ℎ-Sacks property where ℎ ∈ 𝜅𝜅 is defined by ℎ(𝛼) =

2|𝛼|, i.e. given 𝑆 ∈ 𝕊𝜅 and ̇𝑓 an 𝕊𝜅-name for an element in 𝜅𝜅, there
are 𝑇 ≤ 𝑆 and 𝐹 ∶ 𝜅 → [𝜅]<𝜅 ℎ-slalom (|𝐹 (𝛼)|≤ ℎ(𝛼)) such that
𝑇 ⊩ ̇𝑓(𝛼) ∈ 𝐹(𝛼) for all 𝛼 < 𝜅.
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The iteration of 𝕊𝜅 with 𝜅-support of length 𝜅++ has:
▶ Good fusion, so cardinals ≤ 𝜅+ are preserved.
▶ The generalized Sacks property and, as a consequence 𝔡(∈∗)(𝜅) as well

as the other cardinals in the extended diagram are equal to 𝜅+.
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-- --

-

----

6

66

6

𝔡(∈∗
𝑝)(𝜅)cof(ℳ𝜅)

𝔡(𝜅)

cov(ℳ𝜅)add(ℳ𝜅)

𝔟(𝜅)

non(ℳ𝜅)

𝔟(∈∗
𝑝)(𝜅)𝔟(∈∗)(𝜅)𝜅+

𝔡(∈∗)(𝜅) 2𝜅

Figure 7: Effect of the iteration of 𝜅−Sacks forcing
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𝜅-Miller Forcing

Let ℱ be a 𝜅-complete filter on 𝜅. Define 𝕄𝕀𝜅
ℱ to be the following forcing notion:

Conditions in 𝕄𝕀𝜅
ℱ are 𝜅-closed sub-trees 𝑇 of the set of increasing sequences in

𝜅<𝜅, such that every node can be extended to a ℱ-splitting node.

Also we want that if 𝛼 < 𝜅 is limit, 𝑢 ∈ 𝜅𝛼, and for arbitrarily large 𝛽 < 𝛼, 𝑢 � 𝛽
ℱ-splits in 𝑇, then 𝑢 ℱ-splits in 𝑇;

27



Properties of 𝜅-Miller forcing

▶ It has good fusion which implies ≥ 𝜅+ are preserved.
▶ 𝕄𝕀𝜅

𝒞, where 𝒞 is the club filter, adds a Cohen subset of 𝜅.
▶ 𝕄𝕀𝜅

ℱ generically adds an unbounded function over 𝜅𝜅 ∩ 𝑉.
▶ The product 𝕄𝕀𝜅

ℱ × 𝕄𝕀𝜅
ℱ adds a 𝜅-Cohen function.

▶ 𝕄𝕀𝜅
𝒰 has the pure decision property when 𝒰 is an ultrafilter. i.e. if 𝑇 ∈ 𝕄𝕀𝜅

𝒰
and 𝜑 is a formula in the forcing language, there is 𝑆 ≤ 𝑇 with the same
stem such that 𝑆 decides 𝜑 i.e. 𝑆 ⊩ 𝜑 or 𝑆 ⊩ ¬𝜑.
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The generalized ultrafilter number

Let 𝜅 be an uncountable cardinal.

Definition
𝔲(𝜅) = min{|ℬ|∶ ℬ is a base for a uniform ultrafilter on 𝜅}.

Uniform means that all the sets in the ultrafilter have size 𝜅. Also, if 𝒰 is an ultrafilter
on 𝜅, ℬ ⊆ 𝒰 is a base if given 𝐹 ∈ 𝒰, there is 𝐵 ∈ ℬ such that 𝐵 ⊆∗ 𝐹.
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Theorem (Brooke-Taylor, Fischer, Friedman, M.)
Suppose 𝜅 is a supercompact cardinal, 𝜅∗ is a regular cardinal with 𝜅 < 𝜅∗ ≤ Γ
and Γ is a cardinal that satisfies Γ𝜅 = Γ. Then there is a forcing extension in
which cardinals have not been changed satisfying:

𝜅∗ = 𝔲(𝜅) = 𝔟(𝜅) = 𝔡(𝜅) = 𝔞(𝜅) = 𝔰(𝜅) = 𝔯(𝜅) = cov(ℳ𝜅)
= add(ℳ𝜅) = non(ℳ𝜅) = cof(ℳ𝜅) and 2𝜅 = Γ.

If in addition (Γ)<𝜅∗ ≤ Γ then we can also provide that
𝔭(𝜅) = 𝔱(𝜅) = 𝔥𝒲(𝜅) = 𝜅∗ where 𝒲 is a 𝜅-complete ultrafilter on 𝜅.
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Section 2

The independence number
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Independent families

Definition (Notation)
Let 𝒜 be a family of infinite subsets of 𝜔:

▶ We denote FF(𝒜) the family of finite partial functions from 𝒜 to 2. Given
ℎ ∈ FF(𝒜), 𝒜ℎ = ⋂{𝐴ℎ(𝐴) ∶ 𝐴 ∈ 𝒜 ∩ dom(ℎ)}, where 𝐴ℎ(𝐴) = 𝐴
if ℎ(𝐴) = 0 and 𝐴ℎ(𝐴) = 𝜔 𝐴 otherwise.

▶ We refer to {𝒜ℎ ∶ ℎ ∈ FF(𝒜)} as the family of Boolean combinations of
𝒜 associated to ℎ.

Definition
A family 𝒜 ⊆ [𝜔]𝜔 is called independent if for for every ℎ ∈ FF(𝒜), the set 𝒜ℎ

is infinite. An independent family 𝒜 is said to be maximal independent if it is not
properly contained in another independent family.
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An example

Put 𝒞 = [ℚ]<𝜔 and for any real 𝑟 ∈ ℝ, look at the set:

𝑋𝑟 = {𝐹 ∈ 𝒞 ∶ |𝐹 ∩ (−∞, 𝑟)| is even}

Then, the family {𝑋𝑟 ∶ 𝑟 ∈ ℝ} is independent: Let 𝑟0 < 𝑟2 < … < 𝑟𝑘 and
𝑠0 < 𝑠1 < 𝑠2 < … < 𝑠𝑙 two sets of reals, then the set

⋂
𝑖≤𝑘

𝐸𝑟𝑖
∩ ⋂

𝑗≤𝑙
(𝜔 𝐸𝑠𝑗

)

is infinite. Why? Let’s look at the following drawing:
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In the figure, the set of rationals {𝑞0, 𝑞1, …} ∈ ⋂𝑖≤𝑘 𝐸𝑟𝑖
∩ ⋂𝑗≤𝑙(𝜔 𝐸𝑠𝑗

)
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The independence number

Definition
𝔦 = min{|𝒜|∶ 𝒜 is a maximal independent family of subsets of 𝜔}.

𝔦 is a cardinal invariant, in the sense that ℵ1 ≤ 𝔦 ≤ 𝔠, some lower bounds for it
are the cardinal invariants 𝔡 and 𝔯.
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How to add an independent real?

The following results are due to Brendle:

Lemma

Let 𝒜 be an independent family. Then there is an ideal 𝒥𝒜 on 𝜔 with the
following properties:

1. 𝒥𝒜 ∩ {𝒜ℎ ∶ ℎ ∈ FF(𝒜)} = ∅.

2. For every 𝑋 ∈ [𝜔]𝜔 there is ℎ ∈ FF(𝒜) such that either 𝑋 ∩ 𝒜ℎ or
𝒜ℎ 𝑋 belongs to 𝒥𝒜.

Whenever 𝒜 be an independent family and 𝒥𝒜 is an ideal satisfying properties (1)
and (2) of the lemma above, we say that 𝒥𝒜 is an independence diagonalization
ideal associated to 𝒜.
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The forcing

Definition

Let 𝒜 be an independent family and let 𝒥𝒜 be an independence diagonalization
ideal associated to it. The poset 𝔹(𝒥𝒜) consists of all pairs (𝑠, 𝐸) where
𝑠 ∈ [𝜔]<𝜔, 𝐸 ∈ [𝒥𝒜]<𝜔 with extension relation defined as follows:
(𝑡, 𝐹 ) ≤ (𝑠, 𝐸) if and only if 𝑡 ⊇ 𝑠, 𝐹 ⊇ 𝐸 and (𝑡\𝑠) ∩ ⋃ 𝐸 = ∅.

This poset 𝔹(𝒥𝒜) is 𝜎-centered, so it preserves cardinals. Additionally it has the
following weakly diagonalization property:
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Lemma

Let 𝐺 be a 𝔹(𝒥𝒜) generic filter. Then 𝑥𝐺 ∶= ⋃{𝑠 ∶ ∃𝐹(𝑠, 𝐹) ∈ 𝐺} is an
infinite subset of 𝜔 such that in 𝑉 [𝐺], 𝒜 ∪ {𝑥𝐺} is independent, while for every
𝑌 ∈ ([𝜔]𝜔\𝒜) ∩ 𝑉, the family 𝒜 ∪ {𝑥𝐺, 𝑌 } is not independent.

As a corollary we obtain:

Theorem

(GCH) Let 𝜅 < 𝜆 be regular uncountable cardinals. There is a ccc generic
extension in which 𝔦 = 𝔡 = 𝜅 < 𝔠 = 𝜆.
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A generic maximal independent family

Shelah constructed a maximal independent family, which remains a witness to
𝔦 = ℵ1 in a model of 𝔲 = ℵ2. With Fischer, we showed that, over a model of GCH
for example, his construction naturally gives rise to the existence of a countably
closed, ℵ2-cc poset ℙ, which generically adjoins a maximal independent family,
which turns to be Sacks indestructible.
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Lemma

Let 𝒜 be an independent family and let 𝒟(𝑋) to be the set of all functions
ℎ ∈ FF(𝒜) for which 𝑋 ∩ 𝒜ℎ is finite, then:

id(𝒜) = {𝑋 ⊆ 𝜔 ∶ ∀ℎ ∈ FF(𝒜)∃ℎ′ ⊇ ℎ(𝒜ℎ′ ∩ 𝑋) is finite}
= {𝑋 ⊆ 𝜔 ∶ 𝒟(𝑋) is dense in FF(𝒜)}

is an ideal on 𝜔, to which we refer as the independence density ideal associated to
𝒜. Here when we say “dense” in FF(𝒜), we mean dense respect to the inclusion
relation.
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The poset

Definition

Let ℙ be the poset of all pairs (𝒜, 𝐴) where 𝒜 is a countable independent family,
𝐴 ∈ [𝜔]𝜔 such that for all ℎ ∈ FF(𝒜) the set 𝒜ℎ ∩ 𝐴 is infinite. The extension
relation on ℙ is given by: (ℬ, 𝐵) ≤ (𝒜, 𝐴) if and only if ℬ ⊇ 𝒜 and 𝐵 ⊆∗ 𝐴.

Proposition
Let 𝐺 be ℙ-generic over 𝑉. Then 𝒜𝐺 = ⋃{𝒜 ∶ ∃𝐴 ∈ [𝜔]𝜔 with (𝒜, 𝐴) ∈ 𝐺}
is a maximal independent family.
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Theorem

The generic maximal independent family adjoined by ℙ over a model of CH and
2ℵ0 = ℵ1 remains maximal after the countable support iteration of Sacks forcing
𝕊 of length 𝜔2.
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Comparing the two ideals I

▶ Let 𝒜 be an independent family. Then id(𝒜) ⊆ 𝒥𝒜.
▶ If 𝒜 is an independent family which is not maximal, then id(𝒜) ⊊ 𝒥𝒜.

Definition

An independent family 𝒜 is said to be densely maximal if for every 𝑋 ∈ [𝜔]𝜔\𝒜
and every ℎ ∈ FF(𝒜), there is ℎ′ ∈ FF(𝒜) for which either 𝑋 ∩ 𝒜ℎ′

of
𝒜ℎ′\𝑋 is finite.

Proposition
If 𝒜 is densely maximal independent, then 𝒥𝒜 ⊆ id(𝒜) and so 𝒥𝒜 = id(𝒜).
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Comparing the two ideals II

Proposition

The maximal family that turned to be Sacks indestructible is densely independent.

Corollary

A densely maximal independent family 𝒜 such that the dual filter of its
diagonalization ideal id(𝒜) is generated by a Ramsey filter and the co-finite sets
remains maximal after the countable support iteration of Sacks forcing, as well as
after the countable support product of Sacks forcing.
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The generalized case

Definition
Let 𝒜 be a family of unbounded subsets of 𝜅 of size ≥ 𝜅:

▶ We call BF𝜅(𝒜) the family of functions from 𝒜 to 2 with domain of size < 𝜅.
▶ Given ℎ ∈ BF𝜅(𝒜), 𝒜ℎ = ⋂{𝐴ℎ(𝐴) ∶ 𝐴 ∈ 𝒜 ∩ dom(ℎ)}, where

𝐴ℎ(𝐴) = 𝐴 if ℎ(𝐴) = 0 and 𝐴ℎ(𝐴) = 𝜅 𝐴 otherwise. We also refer to
{𝒜ℎ ∶ ℎ ∈ BF𝜅(𝒜)} is the family of generalized Boolean combinations of
𝒜.

Definition
A family 𝒜 ⊆ [𝜅]𝜅 such that |𝒜|≥ 𝜅 is called 𝜅-independent if for for every
ℎ ∈ BF𝜅(𝒜), the set 𝒜ℎ is unbounded on 𝜅. A 𝜅-independent family 𝒜 is said
to be 𝜅-maximal independent if it is not properly contained in another
𝜅-independent family.
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A generalization of Brendle’s result

Fischer and Shelah have characterized filters associated to an independent family
that can be used to diagonalize an independent family of subsets of 𝜔 by using
Mathias forcing with respect to such filters. Now, we aim to generalize their results:

Definition
Let 𝒜 be a 𝜅-independent family. A 𝜅-complete filter ℱ is called a diagonalization
filter for the family 𝒜 if the following hold:

1. For every 𝐹 ∈ ℱ and ℎ ∈ BF𝜅(𝒜), |𝐹 ∩ 𝒜ℎ|= 𝜅.

2. ℱ ∩ {𝒜ℎ ∶ ℎ ∈ BF𝜅(𝒜)} = ∅.

In addition, a maximal diagonalization filter is a 𝜅-complete filter that is maximal
with respect to properties (1) and (2), i.e. there is no 𝜅-complete filter ℱ′ ⊃ ℱ
satisfying these properties.
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Finally...

In recent work with V. Fischer we have used the results above to decide the value
of 𝔦(𝜅) in the model where 𝔲(𝜅) was small. Namely, we also decide it to be 𝜅∗.
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Thanks!
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