PS introduction to mathematical logic

Exercises week 1 *

October 6, 2016

1. Show that the number of blocks in every sentential formula is one greater than the number of binary connectives.
2. Let $B=\{00,01,10,11\}$ be the set of blocks. Also let $K_{1}=\left\{F_{1}, F_{2}, F_{3}, F_{4}\right\}$ where the F_{i} are the operators over sequences of 0 's and 1's defined as follows:

- $F_{1}(x)=0 x 0$
- $F_{2}(x)=0 x 1$
- $F_{3}(x)=1 x 0$
- $F_{4}(x)=1 x 1$

Also, let $K_{2}=\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$ where the G_{i} are also the operators over sequences of 0 's and 1 's defined as follows:

- $G_{1}(x)=00 x$
- $G_{2}(x)=01 x$
- $G_{3}(x)=10 x$
- $G_{4}(x)=11 x$

Show that $C\left(B, K_{1}\right)=C\left(B, K_{2}\right)$.
3. Find how many truth assignments defined on the set of blocks $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ satisfy the following set of sentential formulas $\left\{\neg A_{1} \vee A_{2}, \neg A_{2} \vee A_{3}, \ldots, \neg A_{i} \vee\right.$ $\left.A_{i+1}, \ldots, \neg A_{n-1} \vee A_{n}\right\}$. Remember: A truth assignment S satisfy α if $\bar{S}(\alpha)=T$ and if B is a set of formulas, S satisfy A if S satisfy α, for all $\alpha \in B$.

[^0]4. Give the truth table for the following formulas. Which ones are tautologies?
(a) $(\neg(p \rightarrow q) \rightarrow \neg(q \rightarrow p)) \wedge(p \vee q)$.
(b) $(\neg(p \wedge q)) \leftrightarrow((\neg p) \vee(\neg q)))$.
(c) $((p \leftrightarrow(q \wedge r)) \vee((\neg q) \leftrightarrow(\neg p)))$.
5. Let α be a sentential formula such that the only logical connective that appears in α is \leftrightarrow. Show that if each block that appears in α appears an even number of times, then α is a tautology. Is the converse true? Why?. (Hint: First show that $(\alpha \leftrightarrow \beta) \leftrightarrow \gamma \Rightarrow \alpha \leftrightarrow(\beta \leftrightarrow \gamma)$. Then show by induction that: if $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{k}}$ are those variables which appear and odd number of times in α, then $\alpha \Rightarrow\left(\left(\ldots,\left(A_{i_{1}} \leftrightarrow A_{i_{2}}\right) \leftrightarrow \ldots\right) \leftrightarrow A_{i_{k}}\right)$. $)$

[^0]: *Almost all the exercises are taken from The incompleteness phenomenon, GoldsternJudah.

