PS introduction to mathematical logic

Exercises week 11

December 15, 2016

1. Which of axioms $1,2,4,5$ are true for the binary relation E on the domain D in the following examples:
(a) $D=\{a\} ; E=\emptyset$.
(b) $D=\{a\} ; E=\{(a, a)\}$.
(c) $D=\{a, b\} ; E=\{(a, b),(b, a)\}$.
(d) $D=\{a, b, c\} ; E=\{(a, b),(b, a),(a, c),(b, c)\}$.
(e) $D=\{a, b, c\} ; E=\{(a, b),(a, c)\}$.
(f) $D=\{0,1,2,3\} ; E=\{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}$.
(g) $D=\{a, b, c\} ; E=\{(a, b),(b, c)\}$.
2. Prove that there is no set X such that $\mathcal{P}(X) \subseteq X$.
3. Say we have defined a "pair "[(x,y)] in some way, and assume that we can prove $[(x, y)]=\left[\left(x^{\prime}, y^{\prime}\right)\right] \rightarrow x=x^{\prime} \wedge y=y^{\prime}$. Prove that $\{x: \exists y([(x, y)] \in R)\}$ and $\{y: \exists x([(x, y)] \in R)\}$ exists for all sets R.
4. Working from the axioms of ZF without the axiom of infinity, prove that the following are equivalent:
(a) Axiom of infinity
(b) $\exists w[\emptyset \in w \wedge \forall y \in w(\{y\} \in w)]$.
5. Prove that for all α, β and γ ordinals:
(a) $\alpha \cdot(\beta+\gamma)=\alpha \cdot \beta+\alpha \cdot \gamma$,
(b) $\alpha^{\beta+\gamma}=\alpha^{\beta} \cdot \alpha^{\gamma}$,
(c) $\left(\alpha^{\beta}\right)^{\gamma}=\alpha^{\beta \cdot \gamma}$.
6. (a) Show that $(\omega+1) \cdot 2 \neq \omega \cdot 2+1 \cdot 2$.
(b) Show that $(\omega \cdot 2)^{2} \neq \omega^{2} \cdot 2^{2}$.
