PS introduction to mathematical logic

Exercises week 11

December 15, 2016

- 1. Which of axioms 1, 2, 4, 5 are true for the binary relation E on the domain D in the following examples:
 - (a) $D = \{a\}; E = \emptyset$.
 - (b) $D = \{a\}; E = \{(a, a)\}.$
 - (c) $D = \{a, b\}; E = \{(a, b), (b, a)\}.$
 - (d) $D = \{a, b, c\}; E = \{(a, b), (b, a), (a, c), (b, c)\}.$
 - (e) $D = \{a, b, c\}; E = \{(a, b), (a, c)\}.$
 - (f) $D = \{0, 1, 2, 3\}; E = \{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)\}.$
 - (g) $D = \{a, b, c\}; E = \{(a, b), (b, c)\}.$
- 2. Prove that there is no set X such that $\mathcal{P}(X) \subseteq X$.
- 3. Say we have defined a "pair "[(x, y)] in some way, and assume that we can prove $[(x, y)] = [(x', y')] \rightarrow x = x' \land y = y'$. Prove that $\{x : \exists y([(x, y)] \in R)\}$ and $\{y : \exists x([(x, y)] \in R)\}$ exists for all sets R.
- 4. Working from the axioms of ZF without the axiom of infinity, prove that the following are equivalent:
 - (a) Axiom of infinity
 - (b) $\exists w [\emptyset \in w \land \forall y \in w (\{y\} \in w)].$
- 5. Prove that for all α, β and γ ordinals:
 - (a) $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$,
 - (b) $\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$,
 - (c) $(\alpha^{\beta})^{\gamma} = \alpha^{\beta \cdot \gamma}$.
- 6. (a) Show that (ω + 1) · 2 ≠ ω · 2 + 1 · 2.
 (b) Show that (ω · 2)² ≠ ω² · 2².