PS introduction to mathematical logic

Exercises week 3 *

October 21, 2016

1 Validity

1. Let $\varphi\left(u, v_{1}, v_{2}, \ldots, v_{n}\right)$ be a formula in the language \mathcal{L} with free variables $u, v_{1}, v_{2}, \ldots, v_{n}$ only, and let x, y variables that do not appear in φ. Prove or disprove the validity of each of the following formulas:
(a) $\forall u \varphi\left(u, v_{1}, v_{2}, \ldots, v_{n}\right) \rightarrow \exists u \varphi\left(u, v_{1}, v_{2}, \ldots, v_{n}\right)$.
(b) $\forall u \varphi\left(u, v_{1}, v_{2}, \ldots, v_{n}\right) \rightarrow \forall x \forall y \varphi\left(F(x, y), v_{1}, v_{2}, \ldots, v_{n}\right)$ where F is a function symbol in \mathcal{L}.
(c) $\exists u \varphi\left(u, v_{1}, v_{2}, \ldots, v_{n}\right) \rightarrow \exists x \exists y \varphi\left(F(x, y), v_{1}, v_{2}, \ldots, v_{n}\right)$ where F is a function symbol in \mathcal{L}.
2. Let $\mathcal{L}=\{P, F, c\}$ where P is 2-ary relational, F is 2-ary functional and c is a constant.
(a) Find two different interpretations for \mathcal{L} in a model whose universe is the set of natural numbers, $P(x, y)$ has the interpretation $x \leq$ y, and such that the following is valid in both interpretations: $\forall x(P(F(x, c), x) \wedge P(x, F(x, c)))$.
(b) Does the following sentence hold in both interpretations?
$\forall x \forall y(F(x, y)=F(y, x))$.
(c) If the answer to the question above was yes, find a third interpretation for which the sentence does not hold. If your answer was no, find an interpretation for which it does.
3. Let φ be the following formula:

$$
\begin{gathered}
(\forall x P(x, y) \wedge \forall x \forall y \forall z(P(x, y) \wedge P(y, z) \rightarrow \\
P(x, z)) \wedge \forall x \forall y(P(x, y) \vee P(y, x))) \rightarrow(\exists x \forall y P(x, y))
\end{gathered}
$$

Prove that any finite model (a model with a finite universe) is a model of φ but there exists infinite models that do not satisfy φ.

[^0]
2 Proof Systems

1. Using the axioms, give a complete derivation for each of the following formulas:
(a) $\forall x(\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \forall x \psi)$ where x is not free in φ.
(b) $\varphi(t) \rightarrow \exists x \varphi(x)$ where t is free for x in φ.
(c) $\forall x \varphi \rightarrow \exists x \varphi$.
(d) $\forall x(\varphi \wedge \psi) \leftrightarrow(\forall x \varphi \wedge \forall x \psi)$.
2. Prove or disprove: (here you may use the generalization theorem, deduction, etc.)
(a) $\vdash \exists x(\varphi \rightarrow \forall x \varphi)$.
(b) $\vdash(\forall x \varphi \vee \forall x \psi) \rightarrow \forall x(\varphi \vee \psi)$.
(c) $\vdash(\exists x \varphi \wedge \exists x \psi) \rightarrow \exists x(\varphi \wedge \psi)$.
(d) $\{\varphi(x), \forall y(\varphi(y) \rightarrow \forall z \psi(z))\} \vdash \forall x \psi(x)$.
(e) $\exists x \forall y \varphi \rightarrow \forall y \exists x \varphi$.
3. Suppose that $\Gamma \vdash \varphi$ and let P be a relation symbol that does not appear in Γ or in φ. Is there a proof of φ from Γ in which P does appear? Is there a proof of φ from Γ that includes only relation symbols that appear both in φ and Γ ? Prove your answers!.

[^0]: *All the exercises are taken from The incompleteness phenomenon, Goldstern-Judah.

