PS introduction to mathematical logic

Exercises week 6

November 10, 2016

- 1. Let Σ_1 and Σ_2 be sets of sentences (not necessarily finite) such that there is no model \mathcal{M} such that both $\mathcal{M} \models \Sigma_1$ and $\mathcal{M} \models \Sigma_2$. Prove that there exists a sentence φ such that: Every model of Σ_1 satisfies φ and every model of Σ_2 satisfies $\neg \varphi$.
- 2. Assume that Γ is a theory satisfying the following:
 - (a) Γ is a Henkin theory.
 - (b) For any two constants c, d either $\Gamma \vdash c = d$ or $\Gamma \vdash c \neq d$ (i.e. $\Gamma \vdash \neg(c = d)$).
 - (c) There are two constants a, b such that $\Gamma \vdash a \neq b$.

Show that Γ is a complete theory. (Hint: For any sentence φ , consider the sentence: $\exists x [(\varphi \land x = a) \lor (\neg \varphi \land x = b)]$

and apply that Γ is Henkin.)

- 3. Let I be a nonempty set, \mathcal{U} an ultrafilter on I, and J an element of \mathcal{U} . Define \mathcal{V} to be the set of $X \subseteq J$ such that $X \in \mathcal{U}$.
 - (a) Show that \mathcal{V} is an ultrafilter on I.
 - (b) Show that if $(\mathcal{A}_i : i \in I)$ is a family of \mathcal{L} -structures, then $\prod_{\mathcal{U}} (\mathcal{A}_i : i \in I)$ is isomorphic to $\prod_{\mathcal{V}} (\mathcal{A}_i : i \in I)$.
- 4. Let \mathcal{L} be the first order language whose only non-logical symbol is the binary predicate symbol <. Let $\mathcal{A} = (\mathbb{N}, <)$ and let $\mathcal{B} = \mathcal{A}^I / \mathcal{U}$ be the ultrapower of \mathcal{A} where I is a countably infinite and \mathcal{U} is a non principal ultrafilter on I.
 - (a) Show that \mathcal{B} is a linear order.
 - (b) Show that the range of the diagonal embedding of \mathcal{A} into \mathcal{B} is a proper initial segment of \mathcal{B} . Give an explicit description of a element of B that is not in the range of this embedding.

(c) Show that \mathcal{B} is not a well-ordering: that is, describe an infinite decreasing sequence of elements in \mathcal{B} .

Remember the following definition:

Definition 1. Let I be an index set and \mathcal{U} be an ultrafilter on I. Fix a first order language \mathcal{L} and an \mathcal{L} -structure A. Consider the ultrapower $\mathcal{A}^{I}/\mathcal{U}$ of \mathcal{A} . Define a function δ on A by setting $\delta(a) = g_a/\mathcal{U}$, where g_a is the constant function with $g_a(i) = a$ for all $i \in I$. Then δ is an elementary embedding from A into $\mathcal{A}^{I}/\mathcal{U}$. (This is called the diagonal embedding; often one identifies a with $\delta(a)$ for each $a \in A$ and thereby regards A as an elementary substructure of $\mathcal{A}^{I}/\mathcal{U}$.)

- 5. Let \mathcal{A} be any \mathcal{L} -structure. Show that \mathcal{A} can be embedded in some ultraproduct of a family of finitely generated substructures of \mathcal{A} .
- 6. Let (I, \leq) be a linearly ordered set. For each $i \in I$ let \mathcal{A}_i be an \mathcal{L} -structure, and suppose this indexed family of structures is a chain. That is, for each $i, j \in I$, we suppose $i \leq j \to \mathcal{A}_i \subseteq \mathcal{A}_j$. Prove that:
 - (a) There is a well defined structure whose universe is the union of the sets A_i and which is an extension of each \mathcal{A}_i ; moreover, such a structure is unique.
 - (b) If, in addition, $\mathcal{A}_i \preceq \mathcal{A}_j$ holds whenever $i, j \in I$ and $i \leq j$, then the union of this chain of structures is an elementary extension of each \mathcal{A}_i . (In this situation we refer to $(\mathcal{A}_i | i \in I)$ as an elementary chain of \mathcal{L} -structures