PS introduction to mathematical logic

Exercises week 7

November 17, 2016

- 1. In this exercise you will show that if two models are elementary equivalent and finite, then they are isomorphic. Fix a language \mathcal{L} of first order logic, and write $\mathcal{L}(c)$ for the language which has all function, relation and constant symbols from \mathcal{L} , and an additional constant symbol c. If $m \in M$, then write (\mathcal{M}, m) for the model \mathcal{M}' of $\mathcal{L}(c)$ which is an expansion of \mathcal{M} , and in which the constant symbol c is interpreted as m.
 - (a) Assume that \mathcal{M} is a finite model, and assume that \mathcal{M} is elementarily equivalent to \mathcal{N} . Show that \mathcal{N} is also finite, with the same number of elements as \mathcal{M} .
 - (b) Assume that \mathcal{M} and \mathcal{N} are two elementarily equivalent finite models. Show that for any $m \in M$ there is $n \in N$ such that (\mathcal{M}, m) and (\mathcal{N}, n) are isomorphic.
 - (c) Assume that \mathcal{M} is a finite model in which each element is the interpretation of some constant symbol. Assume that \mathcal{N} is elementarily equivalent to \mathcal{M} . Show that \mathcal{M} and \mathcal{N} are isomorphic. (Hint: Any isomorphism f must satisfy $f(c^{\mathcal{M}}) = c^{\mathcal{N}}$ for any constant symbol c.)
 - (d) Assume that M and N are as in (a). Show that M and N are isomorphic. (Hint: Use (b) inductively to arrive at a situation where (c) applies.)
- 2. Assume that \mathcal{M} and \mathcal{N} are two models and $\mathcal{M} \equiv \mathcal{N}$. Show that there are natural numbers n_1, n_2, \ldots, n_k such that the number of isomorphisms between \mathcal{M} and \mathcal{N} is $n_1! \cdot n_2! \cdot \ldots \cdot n_k!$. (Hint: Define an equivalence relation \sim on \mathcal{M} by : $a \sim b$ if and only if for all formulas $\varphi(x), \mathcal{M} \models \varphi(a) \leftrightarrow \varphi(b)$. Let n_1, n_2, \ldots, n_k be the sizes of the equivalence classes.)
- 3. Let $\mathcal{A} \subseteq \mathcal{B}$ be \mathcal{L} -structures. Suppose that for every finite sequence $a_1, a_2, \ldots, a_m \in A$ and every $b \in B$ there is an automorphism of \mathcal{B} that fixes each element of a_1, a_2, \ldots, a_m and moves b into A. Show that $\mathcal{A} \preceq \mathcal{B}$.

- 4. Let K be a field and let \mathcal{L} the first order language of vector spaces over K: the non-logical symbols of \mathcal{L} are a constant 0, a binary function symbol +, and an unary function symbol F_a for each $a \in K$. Given a K-vector space V, we regard V as an \mathcal{L} -structure in the obvious way: 0 is interpreted by the identity element of V, + is interpreted by the addition of V, and each F_a is interpreted by the operation of scalar multiplication by a. Suppose that $W \subseteq V$ are infinite dimensional K-vector spaces. Use the previous exercise to prove $W \preceq V$. Use this result to show that any two infinite K-vector spaces are elementarily equivalent.
- 5. Let Γ be a consistent theory all of whose countable models are isomorphic. Show that Γ is complete.
- 6. Show that any two countable saturated models are isomorphic. (Hint: If $f : \mathcal{M} \to \mathcal{N}$ is an isomorphism, then for all $a_1, a_2, \ldots \in \mathcal{M}$ we have :

$$type_{\mathcal{M}}(a_1) = type_{\mathcal{N}}(f(a_1))$$
$$type_{\mathcal{M}}(a_2) = type_{\mathcal{N}_{f(a_1)}}(f(a_2))$$
$$:$$

Use a back-and-forth argument.)