PS introduction to mathematical logic

Exercises week 8

November 24, 2016

- 1. Let DLO^{-} be the theory containing only the following formulas:
 - $\forall x(\neg x < x).$
 - $\forall x \forall y \forall z (x < y < z \rightarrow x < z).$
 - $\forall x \forall y (x = y \lor x < y \lor y < x).$
 - $\forall x \exists yx < y.$
 - $\forall x \forall y (x < y \rightarrow \exists z (x < z < y)).$

Show that DLO^- has exactly two non-isomorphic countable models. Does this contradict the theorem that states that a complete theory cannot have exactly two non-isomorphic models?.

- 2. Let \mathcal{L}_0 be the language with only one binary relation symbol \leq . Let $\mathcal{L} \supset \mathcal{L}_0$ be the language that in addition has countably many constant symbols c_1, c_2, \ldots . Let Γ_0 be the DLO, the theory of dense linear orders. Find a complete theory $\Gamma \supseteq \Gamma_0$ in the language \mathcal{L} which has no countable saturated model.
- 3. Consider the language which has only countably many constant symbols c_1, c_2, \ldots (no function or relation symbols). Let $\Gamma = \{c_1 \neq c_2, c_2 \neq c_3, c_1 \neq c_3, \ldots\}$.
 - (a) Show that Γ has countably many non-isomorphic models. (Hint: For any model \mathcal{M} , consider the set $M \setminus \{c_1^{\mathcal{M}}, c_2^{\mathcal{M}}, \ldots\}$.)
 - (b) Show that there is a countable model of Γ into which all countable models can be elementarily embedded.
 - (c) Conclude that Γ is a complete theory.
 - (d) Describe the atomic and the saturated countable model of Γ .
- 4. Prove that \mathcal{M} is atomic and saturated if and only if every countable model is isomorphic to \mathcal{M} .
- 5. Show that no infinite well ordering is ω -saturated.

- 6. Find non-isomorphic countable models \mathcal{M} and \mathcal{N} such that \mathcal{M} can be elementarily embedded into \mathcal{N} and \mathcal{N} can be elementarily embedded into \mathcal{M} .
- 7. Fix a theory Γ with an infinite model. Let \mathcal{M} be a model. Show that the following are equivalent.
 - (a) \mathcal{M} is a prime model of Γ , i.e., \mathcal{M} can be elementarily embedded into every model of Γ .
 - (b) \mathcal{M} can be elementarily embedded into every countable model of Γ .

Show that the above conditions imply that Γ is complete.