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1.-2.Vorlesungen

Introduction

In Barcelona during 2009-2011 I ran a project called the �In�nity Project�.
The idea was to �nd new results in logic through collaborations between
people in its di�erent sub�elds: computability theory, model theory, proof
theory and set theory. It worked rather well, and what I want to do in this
course is report on what we discovered, as well as some further results in the
same spirit.

The In�nity Project was divided into themes as follows:

Computations and Models
Computations and Proofs
Computations and Sets
Models and Sets
Proofs and Sets

You'll notice that �Models and Proofs� is missing; that's because we had
enough to do with the other 5 topics.

Topic 1. Proofs and Sets: Forcing and Provably Recursive Functions

In set theory one has a �ground model� with a given set of functions
from ω to ω. Then one of three things can happen with regard to eventual
domination (mod �nite) when passing to a larger model, as exempli�ed by:

1. Sacks forcing: One adds new functions but any new function is dominated
by an old (ground model) function.
2. Cohen forcing: One adds a new function that cannot be dominated by a
ground model function but no single function which dominates all ground
model functions. If one adds two such functions f, g using �Cohen × Cohen�
forcing, then in addition any function added by both f and g is in the ground
model.
3. Hechler forcing: One adds a new function that dominates all ground model
functions. If one adds two such functions f, g using �Hechler × Hechler�
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forcing, then again any function added by both f and g is in the ground
model.

The analogy in proof theory is the following: Fix a theory T like PA.
Let us take the �T -provably recursive� functions to be those with primitive
recursive graph (the honest functions) such that for some choice of primitive
recursive representation of that graph, totality of the function is T -provable.

Theorem 1. There exists an honest recursive function f such that f is
not provably recursive in PA (via any primitive recursive representation of
its graph) and such that no g which is provably recursive in PA + Tot(f)
(where f is expressed using any primitive recursive graph representation and
Tot(f) expresses the fact that f is total via this representation) dominates
all provably recursive functions of PA.

Theorem 1 is a proof-theoretic analogue of Cohen forcing.

Theorem 2. There are total functions f0, f1 with primitive recursive graphs
which are not provably recursive in PA (via any primitive recursive graph
representation), yet any function which is provably recursive in both PA +
Tot(f0) and PA+Tot(f1) (where these are expressed using primitive recursive
graph representations) is in fact provably recursive in PA.

Theorm 2 is a proof-theoretic analogue of Cohen forcing × Cohen forcing.

I'll sketch the proof of Theorem 1, borrowing some facts from the proof theory
of PA. I won't prove Theorem 2, whose proof is similar but more di�cult.

Proof of Theorem 1. We need to use the Hardy functions, de�ned by:

H0(n) = n
Hα+1(n) = Hα(n+ 1)
Hα(n) = Hα[n](n) for α limit

where α ranges over ordinals ≤ ε0 = ωω
ω...

and (α[n] | n ∈ ω) denotes the
natural �fundamental sequence� converging to the limit ordinal α. The latter
is de�ned as follows:

For an ordinal α such that α > 0, α has a unique representation:

α = ωα1 · n1 + · · ·+ ωαk · nk,
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where 0 < k, n1, . . . , nk < ω, and α1 > · · · > αk.

For each limit ordinal λ ≤ ε0 we de�ne a strictly monotone sequence
(λ[n] | n ∈ ω) co�nal in λ. First assume that λ is less than ε0 and write λ
uniquely as

λ = β + ωγ ·m

where either β = 0 or β has normal form ωβ1 ·m1 + · · ·+ωβl ·ml with βl > γ.

Case 1. λ = β + ωγ ·m and γ = δ + 1.
Put λ[n] = β + ωγ · (m− 1) + ωδ · (n+ 1).

Case 2. λ = β + ωγ ·m, and γ < λ is a limit ordinal.
Put λ[n] = β + ωγ · (m− 1) + ωγ[n].

Finally, if λ = ε0 then we set ε0[0] = ω and ε0[n+ 1] = ωε0[n].

We construct the desired f in stages. d0 = 0. Assume we are at an even
stage s and that ds is de�ned. Assume that f(x) is de�ned for x < ds. Then
set ds+1 = Hε0(ds) and extend f by f(x) = Hε0(x) for ds ≤ x < ds+1.

Now assume that we are at an odd stage s. Set d′s+1 = Hε0(ds) and
ds+1 = Hε0(d

′
s+1). We extend f by f(x) = d′s+1 + x for ds ≤ x < ds+1.

We need some important facts about the Hardy functions:

(a) If α ≤ β ≤ ε0 then Hα is dominated by Hβ.
(b) Each Hα, α < ε0 is provably recursive in PA and any function provably
recursive in PA is dominated by some Hα, α < ε0.
(c) If g is provably recursive in PA + Tot(f) then there is an α < ε0 such
that for all x we have g(x) < fα(x) where:

fα(x) = max({f(x)} ∪ {fβ(fβ(x)) : β < α ∧Nβ ≤ f(Nα + x)}).

Here Nα is de�ned by N0 = 0 and Nα = Nα1 + · · ·+Nαk +nk if α has the
normal form ωα1 · n1 + · · ·+ ωαk · nk.

Now since f(x) = Hε0(x) for in�nitely many x it follows from (b) that f
is not provably recursive in PA.
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Assume that PA+Tot(f) proves Tot(g) and choose α < ε0 such that for
all x we have g(x) < fα(x) where fα(x) is de�ned as in (c) above. Choose
an odd stage s with 2 ·Nα + 12 ≤ d′s+1. Then Weiermann shows that

fα(d′s+1) ≤ Hωα+ω+α+10(d′s+1).

So the function Hωα+ω+α+10 is not eventually dominated by g. 2

Topic 2. Computations and Proofs: Slow Consistency

In computation theory the notion of Turing reducibility plays a central
role. An important operation on the Turing degrees is the Turing jump,
which provides a natural way of increasing any Turing degree to a larger
one. Although there are many Turing degrees between 0 and 0′, exhibiting a
�natural� such degree is a di�cult task.

A proof-theoretic analog of the Turing jump is the consistency operator.
For any consistent theory T obtained from PA by adding �nitely many new
axioms, the theory T + Con(T ) is strictly stronger than T . Although there
are many theories between PA and PA + Con(PA), exhibiting a �natural�
such theory is a di�cult task. I'll give here some examples using a notion of
�slow consistency�.

To motivate slow consistency I'll �rst discuss the interpretability of one
theory in another. To simplify matters, we restrict attention to theories for-
mulated in the language of PA which contain the axioms of PA and have a
primitive recursive axiomatization, i.e. the axioms are enumerated by such a
function. Let S and S ′ be such theories. We de�ne what it means for S ′ to
be interpretable in S (in symbols S ′ / S). A translation is a function t from
formulas of arithmetic to formulas of arithmetic such that for some �xed
formulas η0(x), ηS(x, y), η+(x, y, z), η×(x, y, z) and µt(x) we have:

t(x = y) = (x = y)
t(x = 0) = η0(x)
t(Sx = y) = ηS(x, y)
t(x+ y = z) = η+(x, y, z)
t(x× y = z) = η×(x, y, z)
t(∼ ϕ) =∼ t(ϕ)
t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ)
t(∃xξ(x)) = ∃x(µt(x) ∧ t(ξ(x))).
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t is an interpretation of S ′ in S if S proves t(ϕ) whenever S ′ proves ϕ. S ′ is
interpretable in S i� there exists such an interpretation t.

For an integer k ≥ 0, we denote by T �k the theory consisting of the �rst k
axioms of T . Let Con(T ) be the arithmetized statement that T is consistent.
A theory T is re�exive if it proves the consistency of all its �nite subtheories,
i.e. T ` Con(T �k) for all k ∈ N.

For proofs of the next two results, see the book �Aspects of Incomplete-
ness� by Lindström.

Theorem 3. Any theory containing PA is re�exive.

Another interesting relationship between theories is: T1 ⊆Π0
1
T2, i.e. every

Π0
1 theorem of T1 is also a theorem of T2.

Theorem 4. Let S, T be theories containing PA with primitive recursive
axiomatisations. Then:

S / T if and only if For all n ∈ N, T ` Con(S �n) (1)

if and only if S ⊆Π0
1
T. (2)

Now we turn to slow consistency. We know that

Con(PA) ↔ ∀xCon(PA�x).

Given a function f : N → N (say provably total in PA) we are thus led to
the following consistency statement:

Conf (PA) = ∀xCon(PA�f(x)).

(It is perhaps worth pointing out that the exact meaning of Conf (PA) de-
pends on the representation that we choose for f .)

3.-4.Vorlesungen

Statements of the above form are interesting if the function f grows ex-
tremely slowly, has an in�nite range but PA cannot prove that fact. To show
this we need a modi�cation of the Hardy hierarchy, called the fast-growing
hierarchy:
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F0(n) = n+ 1
Fα+1(n) = F n+1

α (n)
Fα(n) = Fα[n](n) if α is a limit.

Like the Hα's, the Fα's are de�ned for all α ≤ ε0. The exact relationship
between the two hierarchies is given by: Fα = Hωα . In particular, Fε0 = Hε0 .

De�nition 5. De�ne

F−1
ε0

(n) = max({k ≤ n | ∃y ≤ nFε0(k) = y} ∪ {0}).

Note that the graph of F−1
ε0

has a ∆0 de�nition. Thus it follows that F
−1
ε0

is a provably recursive function of PA.

Let Con∗(PA) be the statement ConF−1
ε0

(PA); equivalently:

∀x [Fε0(x) ↓→ Con(PA�x)].

Proposition 6. PA 6` Con∗(PA).

Proof : Aiming at a contradiction, suppose PA ` Con∗(PA). Then PA�k`
Con∗(PA) for all su�ciently large k. As PA �k` Fε0(k) ↓ on account of
Fε0(k) ↓ being a true Σ1 statement, we arrive at PA�k` Con(PA�k), contra-
dicting Gödel's second incompleteness theorem.

Proposition 6 holds in more generality.

Corollary 7. If T is a recursive consistent extension of PA and f is a total
recursive function with unbounded range, then

T 6` ∀xCon(T �f(x))

where f(x) ↓ is understood to be formalized via some Σ1 representation of f .

The next goal is to show that Con(PA) is not derivable in PA+Con∗(PA).
We need some preparatory de�nitions.

De�nition 8. Let E denote the function E(0) = 0 and E(n+ 1) = 2E(n).
Given two elements a and b of a non-standard model M of PA, we say

that b is much larger than a if for every standard integer k we have Ek(a) < b.
If M is a model of PA and I is a substructure of M we say that I is an

initial segment of M, if for all a ∈ |I| and x ∈ |M|, M |= x < a implies
x ∈ |I|. We will write I < b to mean b ∈ |M| \ |I|. Sometimes we write a < I
to indicate a ∈ |I|.
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Theorem 9. Let N be a non-standard model of PA, a, e, c ∈ |N| be non-
standard such that N |= Fε0(a) = e and N |= Fε0(a+ 1) = c. Then for every
standard n there is an initial segment I of N such e < I < c and I is a
model of Πn+1-induction.

De�nition 10. Below we shall need the notion of two models M and N of
PA �agreeing up to e�. For this to hold, the following conditions must be met:

1. e belongs to both models.

2. e has the same predecessors in both M and N.

3. If d0, d1, and c are ≤ e (in one of the models M and N), then M |=
d0 + d1 = c i� N |= d0 + d1 = c.

4. If d0, d1, and c are ≤ e (in one of the models M and N), then M |=
d0 · d1 = c i� N |= d0 · d1 = c.

If M and N agree up to e, d ≤ e and θ(x) is a ∆0 formula, it follows that
M |= θ(d) i� N |= θ(d).

Theorem 11. PA + Con∗(PA) 6` Con(PA).

Proof : Let M be a countable non-standard model of PA + Fε0 is total.
LetM be the domain of M and a ∈M be non-standard. Also let e = FM

ε0
(a).

As a result of the assumption that Fε0 is total in M, M |= Con(PA�a). By a
result of Solovay, there exists a countable model N of PA such that:

(i) M and N agree up to e (in the sense of De�nition 10).

(ii) N thinks that PA�a is consistent.

(iii) N thinks that PA �a+1 is inconsistent. In fact in N there is a proof of
0 = 1 from PA�a+1 whose Gödel number is less than 22e (as computed
in N).

Actually, to be able to apply Solovay's theorem we have to ensure that e
is much larger than a, i.e., Ek(a) < e for every standard number k. It is a
standard fact (provable in PA) that E(x) ≤ F3(x) holds for all su�ciently
large x. In particular this holds for all non-standard elements s of M and
hence

Ek(s) ≤ F k
3 (s) ≤ F s

3 (s) ≤ F4(s) < Fε0(s),
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so that Ek(a) < e holds for all standard k, leading to e being much larger
than a.

We now distinguish two cases.

Case 1: N |= Fε0(a + 1) ↑. Then also N |= Fε0(d) ↑ for all d > a. Hence, in
light of (ii), N |= Con∗(PA). As (iii) yields N |= ¬Con(PA), we have

N |= PA + Con∗(PA) + ¬Con(PA). (3)

Case 2: N |= Fε0(a+ 1) ↓. We then also have e = FN
ε0

(a), for M and N agree
up to e and the formula `Fε0(x) = y' is ∆0. Let c := FN

ε0
(a+ 1). By Theorem

9, for every standard n there is an initial segment I of N such e < I < c and
I is a model of Πn+1-induction. Moreover, it follows from the properties of
N and the fact that 22e < I, that

1. I thinks that PA�a is consistent.

2. I thinks that PA�a+1 is inconsistent.

3. I thinks that Fε0(a+ 1) is not de�ned.

Consequently, I |= Con∗(PA) + ¬Con(PA) + Πn+1-induction. Since n was
arbitrary, this shows that PA + Con∗(PA) + ¬Con(PA) is consistent.

Proposition 6 and Theorem 11 can be extended to theories T = PA + ψ
where ψ is any true Π0

1 statement.

Theorem 12. Let T = PA + ψ where ψ is a Π1 statement such that T +
`Fε0 is total' is a consistent theory. Let T �k to be the theory PA �k +ψ and
Con∗(T) := ∀xCon(T �F−1

ε0
(x)). Then the strength of T + Con∗(T ) is strictly

between T and T + Con(T), i.e.

(i) T 6` Con∗(T).

(ii) T + Con∗(T) 6` Con(T).

(iii) T + Con(T) ` Con∗(T).

Proof : For (i) the same proof as in Proposition 6 works with PA replaced
by T. (iii) is obvious. For (ii) note that Solovay's Theorem also works for T
so that the proof of case 1 of Theorem 11 can be copied. To deal with case
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2, observe that I |= ψ since ψ is Π1, N |= ψ and I is an initial segment of
N.

The methods of Theorem 11 can also be used to produce two �natural�
slow growing functions f and g such that the theories PA + Conf (PA) and
PA + Cong(PA) are mutually non-interpretable in each other.

De�nition 13. The even and odd parts of Fε0 are de�ned as follows:

F even
ε0

(2n) = Fε0(2n), F even
ε0

(2n+ 1) = Fε0(2n) + 1 ,

F odd
ε0

(2n+ 1) = Fε0(2n+ 1), F odd
ε0

(2n+ 2) = Fε0(2n+ 1) + 1, F odd
ε0

(0) = 1,

f(n) = max({k ≤ n | ∃y ≤ nF even
ε0

(k) = y} ∪ {0})
g(n) = max({k ≤ n | ∃y ≤ nF odd

ε0
(k) = y} ∪ {0}).

The graphs of f and g are ∆0 and both functions are provably recursive
functions of PA.

By a small variation on the proof of Theorem 11 we get:

Theorem 14. (i) PA + Conf (PA) 6` Cong(PA).

(ii) PA + Cong(PA) 6` Conf (PA).

A natural Orey sentence

A sentence ϕ is called an Orey sentence for PA if both PA+ϕ / PA and
PA + ¬ϕ / PA hold. An natural Orey sentence for ZFC is CH.

Corollary 15. The sentence ∃x (Fε0(x) ↑ ∧∀y < xFε0(y) ↓ ∧x is even)
is an Orey sentence.

Proof : Let ψ be the above sentence. It su�ces to show that PA `
Con(PA�k +ψ) and PA ` Con(PA�k +¬ψ) hold for all k. Fix k > 0.

First we show that PA ` Con(PA �k +ψ). Note that PA proves the
consistency of PA�k +∃xFε0(x) ↑. Arguing in PA we thus �nd a non-standard
model N such that

N |= PA�k +∃xFε0(x) ↑ .

In particular there exists a least a ∈ |N| in the sense of N such that N |=
Fε0(a) ↑. IfN thinks that a is even, thenN |= ψ, which entails that Con(PA�k
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+ψ). If N thinks that a is odd, we de�ne a cut I such that I |= PA �k and
FN
ε0

(a − 2) < I < FN
ε0

(a − 1), applying Theorem 9. Then I |= ψ which also
entails Con(PA�k +ψ).
Next we show that PA ` Con(PA�k +¬ψ). As PA proves Con(PA�k), we can
argue in PA and assume that we have a modelM |= PA�k. IfM |= ∀xFε0(x)↓
then M |= ¬ψ, and Con(PA�k +¬ψ) follows. Otherwise there is a least a in
the sense ofM such that FM

ε0
(a) ↑. IfM thinks that a is odd we haveM |= ¬ψ,

too. IfM thinks that a is even we introduce a cut FM
ε0

(a−2) < I′ < FM
ε0

(a−1)
such that I′ |= PA �k. Since I′ |= Fε0(a − 1) ↑ we have I′ |= ¬ψ, whence
Con(PA�k +¬ψ).

Some further remarks about slow consistency

1. It is quite natural to consider another version of slow consistency where
the function f : N → N, rather than acting as a bound on the fragments of
PA, restricts the lengths of proofs. Let ⊥ be a Gödel number of the canoni-
cal inconsistency and let ProofPA(y, z) be the primitive recursive predicate
expressing the concept that � y is the Gödel number of a proof in PA of a
formula with Gödel number z ".

Conlf (PA) := ∀x∀y < f(x)¬ProofPA(y,⊥) (4)

Let Con#(PA) be the statement ConlF−1
ε0

(PA).

Note that Con#(PA) is equivalent to the following formula:

∀u [Fε0(u)↓ → ∀y < u¬ProofPA(y,⊥)].

As it turns out, by contrast with Con∗(PA), Con#(PA) is not very interesting.

Proposition 16. PA ` Con#(PA).

2. Iterating slow consistency: What happens if we consider the sequence of
theories

PA / PA + Con∗(PA) / PA + Con∗(PA + Con∗(PA)) / · · · ?

Proposition 17. Setting T0 = PA and Tn+1 = Tn + Con∗(Tn) we have

Tm / PA + Con(PA)

for all m.
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3. Con∗ can be weakened further by considering even slower-growing func-
tions. Every ordinal analysis of a theory T gives rise to a hierarchy of functions
(Fα)α≤τ such that:

i. Each Fα, α < τ is provably recursive in T .
ii. Every provably recursive function of T is dominated by some Fα, α < τ .
iii. Fτ is not provably recursive in T and dominates any function which is
provably recursive in T .

Now if τ is greater than ε0 we will have a strict chain:

PA / PA + ConF−1
τ

(PA) / PA + Con∗(PA).

This yields an in�nite descending chain of natural theories between PA
and PA + Con(PA).

Global Weakenings of the Consistency Operator

In my wish to show that T+Con(T ) is the least �natural� strengthening of
T , I considered global versions of the consistency operator. Let Φ be a com-
putable function from sentences of arithmetic to Π1 sentences of arithmetic.
Then Φ is a proof-theoretic jump operator i�:

1. For any sentence ϕ consistent with PA, PA + ϕ does not prove Φ(ϕ).
2. If ϕ, ψ are provably equivalent in PA then Φ(ϕ),Φ(ψ) are provably equiv-
alent in PA.

Of course the standard example of such an operator is Φ(ϕ) = Con(PA+
ϕ). My hope is that one can show that this is the �least� such operator in
some sense.

Conjecture. If Φ is a proof-theoretic jump operator then PA + Φ(ϕ) proves
Con(PA + ϕ) for all PA-consistent ϕ.

Shavrukov and Visser have refuted a strengthening of this:

Theorem 18. (Shavrukov-Visser) There is a proof-theoretic jump operator
Φ such that for all Π1 sentences ϕ consistent with PA, PA+ϕ does not prove
Φ(ϕ) and PA + ϕ+ Φ(ϕ) does not prove Con(PA + ϕ).
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They also show the same thing with Π1 replaced by Πn for any n and
with no restriction on ϕ but allowing the complexity of Φ(ϕ) to depend on
that of ϕ.

5.-6.Vorlesungen

Topic 3: RE Degrees in Set Theory

Recall that the aim of slow consistency was to �nd a �natural� example
of a statement between PA and PA+Con(PA) in strength. This is analagous
to the problem of �nding �natural� degrees between 0 and 0′, the degree of
the halting set, in computability theory.

Another context in which this problem of �natural intermediate degrees�
can be posed is set theory. The setting of classical computation theory is ω.
To motivate our generalisation in set theory it is convenient to think of this
context as Lω and for A,B subsets of Lω de�ne:

A is Turing reducible to B i� A is ∆1 de�nable over the structure (Lω,∈, B).

Now assume V = L and let κ be an inaccessible cardinal. For A,B subsets
of Lκ say that A is κ-reducible to B i�:

A is ∆1 de�nable over the structure (Lκ,∈, B).

Then κ-reducibility is transitive and we get an upper semilattice of κ-degrees.
Moreover we can de�ne the κ-RE sets to be the subsets of Lκ which are Σ1

de�nable over (Lκ,∈) and obtain an analogue of the Turing jump via:

A′, the κ-jump of A, is the canonical universal Σ1 predicate for the structure
(Lκ,∈, A), i.e.

{(ϕ, x) | (Lκ,∈, A) � ϕ(x) where ϕ is Σ1 and x ∈ Lκ}.

It is straightforward to verify that A′ has the largest κ-degree of any κ-RE
set and the κ-degree of A′ is greater than the κ-degree of A.

In the 1970s and 1980s a lot of work was done exploring this generalisation
of computability theory (replacing κ by an arbitrary �admissible� ordinal).
What I want to say here is that in the case of an inaccessible κ, we can
exhibit �natural� examples of κ-RE degrees between 0 and 0′.
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Theorem 19. Let δ < κ be an in�nite regular cardinal and Sδ the set of
ordinals less than κ of co�nality δ. Then Sδ is κ-RE and the κ-degree of Sδ
is strictly between 0 and 0′. Moreover the κ-degree of S ′δ equals 0′.

For simplicity we'll assume that δ is ω. I should mention that the proof
below has nothing to do with the inaccessibility of κ, we only need that κ
is a limit cardinal in L (or with a little extra e�ort, even weaker: Lκ thinks
that there is no largest cardinal).

The main thing to show is the following:

Lemma 20. Suppose that α is less than κ. Then (Lα++ ,∈, Sω ∩ α++) is a
Σ1 elementary submodel of (Lκ,∈, Sω).

This gives us that the κ-jump S ′ω of Sω is κ-reducible to 0′: Recall that S ′ω
is the set of pairs (ϕ, x) where ϕ is Σ1, x belongs to Lκ and (Lκ,∈, Sω) � ϕ(x).
But by the Lemma we have:

(Lκ,∈, Sω) � ϕ(x) i�
(Lα++ ,∈, Sω ∩ α++) � ϕ(x) when x belongs to Lα++ .

And the set of cardinals less than κ is Π1 de�nable over Lκ and therefore
κ-reducible to 0′. It follows that the function that chooses for each x ∈ Lκ
the least α such that x belongs to Lα++ is also κ-reducible to 0′. So S ′ω is also
κ-reducible to 0′.

Since the κ-jump of Sω is κ-reducible to 0′ it follows that the κ-degree of
Sω is less than 0′. Later we'll also verify that Sω is not κ-reducible to 0.

Proof of Lemma 20. Suppose that ϕ is Σ1, x ∈ Lα++ and (Lκ,∈, Sω) � ϕ(x).
We must show that (Lα++ ,∈, Sω ∩ α++) � ϕ(x). Choose an ordinal δ < α++

such that x belongs to Lδ. Now let M be an elementary submodel of (Lκ,∈
, Sω) such that:

i. Lδ is a subset of M .
ii. M is ω-closed: Any countable subset of M is an element of M .
iii. M has cardinality α+.

It is easy to �nd such an M : Start with Lδ, closing under Skolem functions
and ω-sequences, and repeat this ω1 times. Note that the cardinality will stay
less than α++ as α++ is the successor of an uncountable regular cardinal.
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Let π : M ' M̄ be the transitive collapse of M . As Lδ is a subset of M
and x belongs to Lδ we have that π(x) = x.

Now we have:

(Lκ,∈, Sω) � ϕ(x), so
M � ϕ(x), so
M̄ � ϕ(x).

Now M̄ looks like (Lκ̄,∈, S̄) for some ordinal κ̄, where S̄ is the �image� of Sω
under π, i.e., the set of ordinals less than κ̄ which have co�nality ω in Lκ̄.
But since M is ω-closed, so is Lκ̄ and therefore:

S̄ = Sω ∩ κ̄.

So M̄ = (Lκ̄,∈, Sω ∩ κ̄) � ϕ(x) and therefore since ϕ is Σ1, (Lα++ ,∈, Sω ∩
α++) � ϕ(x), as desired. 2

Now we give the promised argument that Sω is not κ-reducible to 0.
Otherwise, the complement of Sω is de�nable over (Lκ,∈) by some Σ1 formula
with some parameter p. Choose α so that p belongs to Lα+ . Then we have
(Lκ,∈) � ϕ(α++, p). But now let M be an elementary submodel of Lκ such
thatM∩α++ is an ordinal δ < α++ of co�nality ω. (This is possible by taking
union of an ω-chain of elementary submodels containing Lα+ which have
increasing intersections with α++.) Let π : M ' M̄ be the transitive collapse
of M . Then π(α++) is an ordinal of co�nality ω, but as M̄ � ϕ(π(α++), p)
it follows that Lκ � ϕ(π(α++), p), contradicting the fact that ϕ and p de�ne
the complement of Sω.

So Sω has κ-degree strictly between 0 and 0′.

The same argument shows that Sδ has κ-degree strictly between 0 and 0′

for any in�nite regular δ < κ. A further argument shows:

Theorem 21. For δ0, δ1 in�nite regular cardinals less than κ, the sets Sδ0 , Sδ1
are incomparable under κ-reducibility.

Open questions remain: Can one get a �natural� example of a κ-degree
which is between 0 and 0′ but not �low� (i.e., whose κ-jump is not computable
from 0′)? Do the distinct Sδ0 , Sδ1 form a minimal pair?
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Topic 4: Analytic equivalence relations and model theory

Vaught was probably the �rst to start looking at the isomorphism relation
on the countable models of a theory in terms of descriptive set theory. His
point was that countable models (for a countable language) can be coded by
reals and then the equivalence relation

xEy i� Mx is isomorphic to My

(where Mx is the model coded by x) is an analytic (i.e., a boldface Σ1
1)

equivalence relation. It is natural to ask: Do all analytic equivalence relations
on the reals look like this, and if not, how do these �logic equivalence relaions�
sit inside the class of analytic equivalence relations as a whole?

First I make a few basic observations. We don't have to restrict ourselves
to �rst-order theories when looking at isomorphism relations as above. In-
deed, let ϕ be any sentence of the in�nitary logic Lω1ω, which allows count-
ably in�nite conjunctions and disjunctions (in addition to �nite strings of
quanti�ers). Then

{x |Mx � ϕ}

is a Borel set and we again get an analytic equivalence relation if we restrict
isomorphism to the models of ϕ. Actually, a theorem of Lopez-Escobar says
that conversely, any Borel set B which is invariant, i.e. satis�es

x ∈ B, Mx isomorphic to My implies y ∈ B

is of the above form for some ϕ. So when talking about isomorphism relations
on countable models of a theory we really should be considering theories
which are described by a sentence of Lω1ω.

Secondly, note that these isomorphism relations are really quite special,
as revealed by the following.

Theorem 22. (Scott) For any real x, {y | Mx is isomorphic to My} is a
Borel set.

Now for an arbitrary analytic equivalence relation E on the reals this
may fail. For example, let A be any analytic set of reals that is not Borel and
de�ne

15



xEy i� x, y ∈ A or x = y.

This is an analytic equivalence relation with the non-Borel set A as one
of its equivalence classes. It follows that this E is not �reducible� to any
isomorphism relation in any reasonable sense.

7.Vorlesung

Borel reducibility

What is a reasonable sense of �reducibility� between analytic equivalence
relations? If E, F are equivalence relations on Polish spaces X, Y then we
write

E ≤B F

i� there is a Borel reduction from E to F , i.e., a Borel function f : X → Y
so that for any x0, x1 in X:

x0Ex1 i� f(x0)Ff(x1).

We write ∼B for (≤B and ≥B) and <B for (≤B and �B).

There are ≤B-complete isomorphism relations, to which all isomorphism
relations are Borel-reducible (examples below). A ≤B-complete isomorphism
relation is necessarily analytic and not Borel. I next describe a ≤B-co�nal
hierarchy of Borel isomorphism relations, together with some examples that
occur at particular levels of this hierarchy. The hierarchy looks like this:

0 < 1 < · · · < ω < idR < E0 < E∞ < F2 < F3 < · · · < Fα < · · · (α < ω1)

1. Borel-equivalent to ω.

Finite linear orderings

2. Borel-equivalent to idR = equality on the reals

Orderings of type ω with a unary predicate

Smooth = Borel-reducible to idR.

3. E0 = equality mod �nite on subsets of ω
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Subgroups of (Q,+)

4. E∞ = ≤B-largest countable Borel equivalence relation

Countable = has countably many equivalence classes.

Fact: Any countable Borel equivalence relation is Borel bireducible to an
isomorphism relation.

Locally-�nite, connected graphs
Finitely-generated groups
Fields of �nite transcendence degree over Q

5. Fα

xF2y i� {xn | n ∈ ω} = {yn | n ∈ ω}

xF3y i� {{(xm)n | n ∈ ω} | m ∈ ω} = same for y

etc.

Each Borel isomorphism relation is Borel-reducible to some Fα

Equivalent to F2:

locally-�nite graphs
Archimedean totally-ordered Abelian groups with a distinguished positive
element

6. Beyond Borel

≤B-complete isomorphism relations: graphs, trees, �elds, groups, linear or-
derings, Boolean algebras

Abelian p-groups: Invariants are elements of 2<ω1 (Ulm invariants). Not com-
plete.

Torsion-free Abelian groups: Not known to be complete.

7. Beyond isomorphism relations
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Hjorth: An orbit equivalence relation is reducible to an isomorphism relation
i� it is not �turbulent�.

Non-turbulent = invariants are given by countable structures

Examples of turbulent actions:

Conjugacy on the homeomorphism group of the unit square
Conjugacy of ergodic, measure-preserving transformations
Unitary equivalence of unitary operators
Biholomorphic equivalence of 2-dimensional complex manifolds

8. Beyond orbit equivalence relations

E1 : xE1y i� {xn | n ∈ ω} almost equals {yn | n ∈ ω}

Composant equivalence relation for certain indecomposable continua

8.Vorlesung

Bi-embeddability relations

As indicated above, the isomorphism relations are very far from capturing
arbitrary analytic equivalence relations up to Borel bireducibility. We'll show
now however that a related model-theoretic notion, that of bi-embeddability,
is su�cient to do this.

A quasi-order is a re�exive, transitive relation. If R is a quasi-order then
the equivalence relation derived from R is given by xEy i� (xRy and yRx). An
embeddability relation is the restriction of the quasi-order of embeddability
to the countable models of a sentence of Lω1ω (for some countable language
L).

First observe the following.

Theorem 23. There is a ≤B-complete analytic quasi-order.

Proof. Let W0 be an analytic subset of (2ω)3 which is universal for analytic
subsets of (2ω)2, i.e., any analytic subset of (2ω)2 is of the form {(y, z) |
(x, y, z) ∈ W0} for some x. De�ne W by: (x1, y1)W (x2, y2) i� (x1 = x2 ∧
∃z1, . . . , zn(z1 = y1, zn = y2 and (x1, zi, zi+1) ∈ W0 for 1 ≤ i < n). Then W
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is a complete analytic quasi-order: Clearly it is an analytic quasi-order, as
analytic relations are closed under existential quanti�cation over reals. If R
is any analytic quasi-order on 2ω with W0-code x, then

y1Ry2 ↔ (x, y1)W (x, y2),

and therefore the map y 7→ (x, y) reduces R to W . 2

Theorem 24. Let E be an analytic equivalence relation on a Polish space
X. Then E is ≤B-complete as an analytic equivalence relation i� E is the
equivalence relation ≡R derived from a ≤B-complete analytic quasi-order R
on X.

Proof. Suppose that R is a complete analytic quasi-order. If F is an analytic
equivalence relation on a Polish space, then F is in particular a quasi-order
and therefore is Borel-reducible to R. But then the same reduction shows that
F also Borel-reduces to ≡R, which is therefore a complete analytic equiva-
lence relation.

Conversely, suppose that E is a complete analytic equivalence relation
on X and let R0 be a complete analytic quasi-order on 2ω. Let f : 2ω → X
be a Borel reduction of ≡R0 , the equivalence relation derived from R0, to E.
De�ne:

xRy ↔ xEy ∨ ∃a∃b(xEf(a) ∧ yEf(b) ∧ aR0b).

Then R is analytic and contains E. Let X0 be {x | ∃a(xEf(a))} and X1 =
X \X0. Then f is a reduction of R0 to R restricted to X0 and the latter is
a quasi-order whose derived equivalence relation equals E restricted to X0.
And R restricted to X1 equals E. It follows that R is an analytic quasi-order
whose derived equivalence relation is E and as f is a reduction of R0 to R,
it follows that R is a complete analytic quasi-order. 2

Theorem 25. There is an embeddability relation which is complete as an
analytic quasi-order (and therefore there is a bi-embeddability relation which
is complete as an analytic equivalence relation).

Proof. First we introduce a particular complete analytic quasi-order ≤max,
and then use it to show that a certain embeddability relation is also complete.

If s, t are �nite sequences from ω of the same length, then we write s ≤ t
i� s(i) ≤ t(i) for all i < |s| and s + t for the sequence of length |s| whose
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value at i is s(i) + t(i). For any set X, a tree on X is a subset of X<ω closed
under restriction. If T is a tree on X × ω then we view elements of T not as
sequences of pairs (x, n) from X × ω but rather as pairs (u, s) of sequences
u ∈ X<ω, s ∈ ω<ω of the same length. We say that T is normal i� whenever
(u, s) belongs to T and s ≤ t then (u, t) belongs to T . For s ∈ ω<ω set
T (s) = {u ∈ X<ω | |u| = |s| ∧ (u, s) ∈ T}. Thus for normal T we have
s ≤ t→ T (s) ⊆ T (t).

A function f : ω<ω → ω<ω is Lipschitz i� f preserves both length and
extension (i.e. |s| = |f(s)| for each s and s ⊆ t→ f(s) ⊆ f(t) for each s, t).

De�nition 26. Let T be the space of normal trees on 2×ω, with its natural
Polish topology. De�ne ≤max on T by:

S ≤max T ↔ ∃ Lipschitz f : ω<ω → ω<ω ∀s ∈ ω<ω S(s) ⊆ T (f(s)).

This is a strong way of saying that the projection of S is included in the
projection of T .

9.-10.Vorlesungen

≤max is an analytic quasi-order on T . To prove that it is complete, we
use the following �normal form� result for analytic quasi-orders on 2ω.

Lemma 27. Let R be an analytic quasi-order on 2ω. Then there is a tree S
on 2× 2× ω such that:
(i) R is the projection of S, i.e., xRy i� for some z, (x|n, y|n, z|n) ∈ S for
all n.
(ii) S is normal, i.e., if (u, v, s) belongs to S and s ≤ t then (u, v, t) belongs
to S.
(iii) If u ∈ 2<ω and s ∈ ω<ω have the same length, then (u, u, s) belongs to
S.
(iv) If (u, v, s) and (v, w, t) belong to S then so does (u,w, s+ t).
(v) If u, v ∈ 2<ω have the same length then (u, v, 0|u|) ∈ S implies u = v.

Proof. Start with any tree T0 on 2 × 2 × ω with R the projection of T0. If
we set T1 = {(u, v, t) | ∃s ≤ t(u, v, s) ∈ T0} then T1 is normal and we have
by König's lemma that R is also the projection of T1. Also, if we let T2 be
T1 ∪ {(u, u, s) | |u| = |s|} then T2 satis�es (i),(ii) and (iii).
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Now de�ne S by: (∅, ∅, ∅) ∈ S and for k, n ∈ ω, u, v ∈ 2k, s ∈ ωk, i, j ∈ 2:
(u ∗ i, v ∗ j, n ∗ s) ∈ S i� ∃u0, u1, . . . , un ∈ 2k(u0 = u ∧ un = v ∧ ∀l <
n(ul, ul+1, s) ∈ T2). (So if n = 0, (u ∗ i, v ∗ j, 0 ∗ s) ∈ S i� u = v.)

Then S has properties (i-iv): Clearly it is a tree. To check (i), note �rst
that if (x, y, a) is a branch through T2 then (x, y, 1∗a) is a branch through S.
So R is a subset of the projection of S. Conversely, suppose that (x, y, n ∗ a)
is a branch through S. If n = 0, x = y and (x, y) ∈ R. If n > 0 we get
for each k sequences (uki )i≤n in 2k with uk0 = x|k, ukn = y|k and for i < n,
(uki , u

k
i+1, a|k) ∈ T2. By the compactness of 2ω, we can �nd a subsequence

(kl) and for i ≤ n elements zi of 2ω such that ukli → zi, as l →∞. But then
for i < n, (zi, zi+1, a) is a branch through T2, hence ziRzi+1. As z0 = x and
zn = y, by transitivity we get xRy, as desired.

To check (ii), let (u, v, s) ∈ S and t ≥ s. The case of (∅, ∅, ∅) is trivial.
So suppose u = u′ ∗ i, v = v′ ∗ j, s = n ∗ s′ and t = m ∗ t′, with n ≤ m
and s′ ≤ t′. As T2 is normal we also have (u, v, n ∗ t′) ∈ S, with the same
witnesses (ui)i≤n. Also, using property (iii) of T2 we can repeat the witness
u0 (m− n) times to get witneses for (u, v,m ∗ t′) ∈ S, as desired.

(iii) follows from (ii) and the fact that if |u| = |s| and s(0) = 0 then
(u, u, s) ∈ S.

To check (iv), let u = u′ ∗ i, v = v′ ∗ j, w = w′ ∗k, s = n∗ s′ and t = m∗ t′
satisfy (u, v, s) ∈ S and (v, w, t) ∈ S. By (ii) we also have (u, v, n∗(s′+t′)) ∈ S
and (v, w,m ∗ (s′ + t′)) ∈ S, as witnessed by say (ui)i≤n, (vj)j≤m. But then
(ui)i<n ∗ (vj)j≤m is a witness that (u,w, (n+m) ∗ (s′ + t′)) ∈ S, as desired.

Finally, to obtain (v) simply modify S by discarding elements of the form
(u, v, 0|u|) when u, v are of the same length and di�erent. This preserves
properties (i-iv). 2 (Lemma 27)

Now we show that any analytic quasi-order R on 2ω is Borel-reducible to
≤max. Let S be the tree associated to R by the lemma and de�ne f : 2ω → T
by

f(x) = Sx = {(u, s) ∈ (2× ω)<ω | (u, x � |u|, s) ∈ S}.

The tree Sx is normal as S is. We check that f is the desired Borel reduction.
Suppose �rst that Sx ≤max Sy, witnessed by the Lipschitz map ϕ : ω<ω →
ω<ω. Then the sequences ϕ(0k), k ∈ ω, extend each other and hence build
some a ∈ ωω. By property (iii), for all k, (x|k, 0k) ∈ Sx, hence (x|k, ϕ(0k)) ∈
Sy. So (x, y, a) is a branch through S and by (i), xRy.
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Conversely, suppose xRy and let a be such that (x, y, a) is a branch
through S. De�ne ϕ : ω<ω → ω<ω by ϕ(s) = s+(a � |s|). The map ϕ is clear-
ly Lipschitz. We must show that for each s, u ∈ Sx(s) implies u ∈ Sy(ϕ(s)).
Suppose u ∈ Sx(s) and |u| = k. Then we have (u, x|k, s) ∈ S, and as (x, y, a)
is a branch through S we also have (x|k, y|k, a|k) ∈ S. Hence by property
(iv) of S, (u, y|k, s+ a|k) = (u, y|k, ϕ(s)) ∈ S and so (u, ϕ(s)) ∈ Sy. Thus ϕ
witnesses Sx ≤max Sy, as desired.

Also note that this reduction of R to ≤max is injective, as using proper-
ties (iii,v) of Lemma 27 we have that if x|k 6= y|k then (x|k, 0k) ∈ Sx but
(x|k, 0k) /∈ Sy.

Finally we Borel-reduce ≤max to a particular embeddability relation,
namely, the embeddability relation on (countable) combinatorial trees, i.e.,
symmetric, irre�exive, connected, acyclic binary relations. Fix some injection
θ of 2<ω into ω such that |s| ≤ |t| implies θ(s) ≤ θ(t). For each T ∈ T we
describe the combinatorial tree GT .

First we add, for each s ∈ ω<ω \ {∅} another vertex s∗ and put edges
between s∗ and s and between s∗ and the predecessor s− of s. This de�nes a
combinatorial tree G0. Then for each pair (u, s) ∈ T we add vertices (u, s, x)
where x is either 0k or 02θ(u)+2 ∗ 1 ∗ 0k, for k ∈ ω: Also, we link each (u, s, x)
to (u, s, x′) where x′ is the predecessor of x (as a sequence) and link (u, s, ∅)
to s. This completely describes the combinatorial tree GT .

We make some simple observations about GT . First, one can compute the
valence vT (number of neighbours) of vertices in GT : elements in ω<ω have
valence ω, elements (u, s, 02θ(u)+2), for (u, s) ∈ T , have valence 3, and all other
vertices have valence 2. Next consider the distance dT between vertices. The
distance between vertices in ω<ω is even, and the distance between a vertex
(u, s, 02θ(u)+2) and points in ω<ω is odd and at least 2θ(u) + 3 (obtained at
s).

11.-12.Vorlesungen

Suppose that S ≤max T . Then there is in fact a 1-1 Lipschitz map f :
ω<ω → ω<ω with S(s) ⊆ T (f(s)) for s ∈ ω<ω. De�ne an embedding of GS

into GT as follows: Send s ∈ ω<ω to f(s) and s∗ to f(s)∗. This de�nes an
embedding of G0 into itself. Next if (u, s) ∈ S we have (u, f(s)) ∈ T so we
can send (u, s, x) to (u, f(s), x). Thus GS embeds into GT .
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Conversely, suppose that g is an embedding of GS into GT . Then we have
vT (g(y)) ≥ vS(y) and dT (g(y), g(z)) = dS(y, z) for all vertices y, z in the
domain of GS. Using the �rst of these facts, g must send elements in ω<ω

to elements of ω<ω, i.e., de�nes a map f : ω<ω → ω<ω. We claim that f
witnesses S ≤max T . First we show f(∅) = ∅: Consider x = (∅, ∅, 02). It is
a vertex in GS of valence 3 and dS-distance 3 from ∅. So it must be sent to
some vertex of valence at least 3 in GT , witih dT -distance 3 from f(∅). But
there is only one possible such vertex, namely, (∅, ∅, 02), as points in ω<ω are
at even distance from f(∅) and the other vertices of valence 3 are at a larger
distance. This implies that f(∅) = ∅. Second we show that f is Lipschitz. It
su�ces to show by induction on the length of s that f(s) has the same length
as s and extends f(s−) (when s is nonempty). The base case was done above.
As s∗n has distance 2 from s in GS, f(s∗n) must have distance 2 from f(s)
in GT ; it cannot be f(s)−, which is f(s−) by induction. So it is f(s) ∗ k for
some k, completing the induction. So f is Lipschitz. Finally, we show that
if (u, s) ∈ S then (u, f(s)) ∈ T . Consider the vertex x = (u, s, 02θ(u)+2) in
GS. It must be sent by g to some vertex y in GT of valence at least 3 and at
distance 2θ(u) + 3 from f(s). Again points in ω<ω are forbidden by parity,
so y = (v, t, 02θ(v)+2) for some (v, t) ∈ T . But as the path in GS joining s
to x does not contain s−, the path in GT joining f(s) to y does not contain
f(s−) = f(s)−, and so t must extend f(s). But if it extends it strictly, we
get |v| = |t| > |f(s)| = |s| = |u| and θ(v) > θ(u) so that the distance from
y to f(s) is too big. So t = f(s) and θ(v) = θ(u), hence v = u and �nally
(u, f(s)) ∈ T , as desired. 2

For future use we need a modi�cation of the above argument. The col-
lection OCT of ordered (countable) combinatorial trees consists of those
G = 〈UG, G,≤G〉 such that 〈UG, G〉 is a combinatorial tree (that is a con-
nected and acyclic graph) and ≤G is a linear order of UG.

Theorem 28. The relation vOCT of embeddability on OCT is complete for
analytic quasi-orders.

Proof. To each normal tree T ∈ T on 2 × ω associate the combinatorial
tree GT de�ned above.

Now de�ne the order ≤T=≤GT on the points in GT in the following way:
for s, t ∈ ω<ω put s � t if and only if |s| < |t| or |s| = |t| and s ≤lex t (the
symbol ≺ will denote the strict part of �). Also for nonempty s, t ∈ ω<ω put
s∗ �∗ t∗ i� s � t. Now we order the points in GT by:
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• Points in ω<ω are less than points of either of the forms s∗ or (u, s, x)

• Points of the form s∗ are less than points of the form (u, t, x)

• Points in ω<ω are ordered by �

• Points of the form s∗ are ordered by �∗

• (u, s, x) ≤T (v, t, y) i�

(s ≺ t) ∨ (s = t ∧ u ≺ v) ∨ (s = t ∧ u = v ∧ x � y).

(≤T is a well-founded linear order.)

Now we show that the map T 7→ GT is a reduction of ≤max to vOCT .
Assume �rst that S, T are normal trees on 2 × ω such that S ≤max T ;
then as above this can be witnessed by a Lipschitz ≤lex-preserving function
f : ω<ω → ω<ω, that is by an f such that s � s′ ⇐⇒ f(s) � f(s′) for every
s, s′ ∈ ω<ω (in particular f is injective). Now embed GS into GT sending
s to f(s), s∗ to f(s)∗, and (u, s, x) to (u, f(s), x), and check that the order
relations are preserved.

For the other direction, if GS v GT than GS embeds in GT as a combi-
natorial tree (disregarding the orders) and so S ≤max T by the second part
of the previous proof. 2

Our aim now is to show that every analytic quasi-order is Borel bi-reducible to
an embeddability relation on a Borel invariant class of ordered combinatorial
trees. The key is to show that distinct normal trees S, T on 2 × ω give rise
to non-isomorphic ordered combinatorial trees GS, GT and each GS is rigid
(i.e. has no nontrivial automorphism).

Lemma 29. Let S, T be normal trees, and GS and GT the ordered combina-
torial trees de�ned as in the previous proof. If S 6= T then GS 6∼= GT .

Proof. Suppose i is an isomorphism between GS and GT . Since the orders ≤S
and ≤T coincide on ω<ω we have that i � ω<ω must be the identity. Suppose
now (u, s) ∈ S: as in the earlier proof, the point (u, s, 02θ(u)+2) must be sent
to a point of the form (u, i(s), 02θ(u)+2) = (u, s, 02θ(u)+2), and the existence of
such a point witnesses (u, s) ∈ T . Hence S ⊆ T . Exchanging the role of S
and T and using i−1 instead of i one gets T ⊆ S, and therefore S = T . 2
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Although the domain of each ordered combinatorial tree of the form GT

is formally di�erent from ω, one can easily code such a structure into another
structure ĜT with domain ω. For simplicity we will identify the structures
GT and ĜT .

Let S∞ be the Polish group of permutations on ω, L = {P,Q} the rela-
tional language with just two binary symbols and jL : S∞ ×ModL → ModL
the usual (continuous) action of S∞ on ModL, the collection of all countable
L-structures, de�ned by sending (p,A) to the isomorphic copy of A obtained
by applying the permutation p to A. For every normal tree S on 2× ω and
p ∈ S∞, put GS,p = jL(p,GS), where GS is the ordered combinatorial tree
obtained from S as above (identi�ed with a structure on ω).

Lemma 30. For every distinct p, q ∈ S∞ and every normal tree S on 2×ω,
we have GS,p 6= GS,q.

Proof. Let ≤S,p and ≤S,q be the well-orders on GS,p and GS,q, respective-
ly. Let g be the ≤S-minimal element of GS such that p(g) 6= q(g). We
claim that p(g) ≤S,p q(g) but p(g) �S,q q(g) (this implies that the two
structures GS,p and GS,q are di�erent). Assume toward a contradiction that
q(g) <S,p p(g) and therefore p−1(q(g)) <S g; then q(p

−1(q(g))) <S,q q(g). But
as p(p−1(q(g))) = q(g), the previous inequality shows that p(p−1(q(g))) 6=
q(p−1(q(g))), contradicting the ≤S-minimality of g. Therefore p(g) ≤S,p q(g).

Assume now towards a contradiction that p(g) ≤S,q q(g). Since p(g) 6=
q(g) (by hypothesis) we get p(g) <S,q q(g), which implies q−1(p(g)) <S g.
Arguing as before (with p and q exchanged), we get a contradiction with the
≤S-minimality of g. Therefore p(g) �S,q q(g), as required. 2

Now we are ready to prove:

Theorem 31. If R is an analytic quasi-order on 2ω, then there is an Lω1ω-
sentence ϕ such that R is Borel bi-reducible to embeddability on Modϕ = {x ∈
ModL | x � ϕ}.

Proof. For x ∈ 2ω let Sx be de�ned as before, so that the map which sends
x to Sx is Borel and injective. Let R′ be the quasi-order on X × S∞ de�ned
by (x, p)R′(y, q) ⇐⇒ xRy. It is clear that R and R′ are Borel equivalent
(as witnessed by the maps x 7→ (x, id) and (x, p) 7→ x), hence it is enough
to prove the theorem for R′ (on the space 2ω × S∞). We will �nd a Borel
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and invariant subset Z of ModL and an injective reduction of R′ to the
embeddability relation v (on ModL) with range Z, and then use the fact
(due to Lopez-Escobar) that such a Z must coincide with Modϕ for some
Lω1ω-sentence ϕ.

Using the same notation of the previous lemmas, consider the (Borel,
indeed continuous) map f which sends (x, p) to GSx,p. First note that f
reduces R′ to the embedding relation v, as

(x, p)R′(y, q) ⇐⇒ xRy ⇐⇒ Sx ≤max Sy ⇐⇒ GSx v GSy ⇐⇒ GSx,p v GSy ,q.

We now show that f is injective: Assume (x, p) 6= (y, q). If x 6= y then
Sx 6= Sy, and therefore by Lemma 29 we get that GSx 6∼= GSy , which in turn
implies that GSx,p 6∼= GSy ,q as well (so that, in particular, GSx,p and GSy ,q

must be di�erent). If instead x = y but p 6= q, then by Lemma 30 we get
GSx,p 6= GSx,q = GSy ,q and hence we are done.

Since X × S∞ is a Borel set and f is Borel and injective, we get that
f [X×S∞] ⊆ ModL is a Borel set and that f−1 is Borel as well. But f [X×S∞]
is clearly invariant under isomorphism, so f [X×S∞] = Modϕ for some Lω1ω-
sentence ϕ. Since f and f−1 witness the Borel bi-reducibility of R′ and the
embeddability relation on Modϕ, this concludes the proof. 2

Corollary 32. Every analytic equivalence relation is Borel bi-reducible to a
bi-embeddability relation on Mod(ϕ) for some sentence ϕ of Lω1ω.

13.-14.Vorlesungen

Topic 5: Computable Model Theory

We'll next discuss some recent work of Montalbán equating the Vaught
Conjecture for in�nitary sentences (i.e. sentences of Lω1ω) with a statement
in computable model theory, under a suitable set-theoretic hypothesis (PD,
the axiom of Projective Determinacy).

Recall that the original Vaught Conjecture is the statement that if a �rst-
order theory has uncountably many countable models (up to isomorphism)
then it has continuum many. Here we replace ��rst-order theory� with �in�ni-
tary sentence� and take the Vaught Conjecture to be this stronger statement.
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Notice that CH implies Vaught's Conjecture. But this misses the point, as
in fact there is an absolute version of Vaught's Conjecture which is equivalent
to Vaught's Conjecture when CH fails and which is not sensitive to CH. This
is explained by the proof of the following theorem of Morley:

Theorem 33. (Morley) If an in�nitary sentence ϕ has more than ℵ1 count-
able models then it has continuum many.

Proof. For a countable ordinal α and countable structuresA, B, writeA ≡α B
i�A and B satisfy the same in�nitary sentences of rank less than α. (The rank
of
∨

Φ is the strict sup of the ranks of the ϕ ∈ Φ, the ranks of ∀xϕ,∼ ϕ are the
rank of ϕ +1, the rank of an atomic formula is 0.) The equivalence relations
≡α are Borel (on codes for countable structures). A Borel equivalence relation
has either countably many or continuum many classes, so if ϕ has fewer than
continuum many countable models, it follows that for each countable α, there
are only countably many ≡α classes of countable models of ϕ. Now Scott's
Theorem says that for any countable structure A the isomorphism type of A
is determined by its ≡α class for α su�ciently large, approximately the �Scott
rank� of A. It follows that for any countable α there are at most countably
many models of ϕ of �Scott rank� less than α and therefore there are at most
ℵ1 countable models of ϕ. 2

A sentence ϕ is scattered if for each countable α, there are only countably
many ≡α classes of countable models of ϕ. And ϕ is a counterexample to
Vaught's Conjecture i� ϕ is scattered and has uncountably many countable
models.

If ϕ is a counterexample to Vaught's Conjecture in this sense then by Lévy
absoluteness, it is still a counterexample after we enlarge the universe of sets.
In particular if we force to make CH false then we get a counterexample to
Vaught's Conjecture in the original sense (i.e., a sentence with uncountably
many but fewer than continuum many countable models). And conversely,
any counterexample to Vaught's Conjecture in the original sense yields a
counterexample in the above sense, by Morley's Theorem.

Now here is a statement of Montalbán's theorem, still using many notions
that need to be explained.

Theorem 34. (Montalbán) Assume PD and let ϕ be a sentence of Lω1ω with
uncountably many countable models. Then the following are equivalent:
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(V1) ϕ is a counterexample to Vaught's conjecture (i.e. ϕ is scattered).
(V2) Relative to some oracle, ϕ satis�es Hyp is recursive.
(V3) Relative to some oracle,

{Sp(A) | A � ϕ} = {{x | ωx1 ≥ α} | α < ω1}.

A class of structures K satis�es Hyp is recursive i� every hyperarithmetic
(i.e., ∆1

1) structure in K has a computable copy. This is true for the class of
wellorders and other classes (such as superatomic Boolean algebras) which
are closely related to wellorders. None of these classes are axiomatisable by
an in�nitary sentence. K satis�es Hyp is recursive relativ eto some oracle i�
for some real x and all y ≥T x, every y-hyperarithmetic structure in K has a
y-computable copy.

The spectrum Sp(A) of a structure A is the set of all x such that A
has an x-computable copy. For any x, ωx1 is the least ordinal which is not
x-computable, i.e., the least α such that (α,∈) has no x-computable copy.
Using these de�nitions it is easy to check that (V3) implies (V2).

Note that for a wellorder A of ordertype α, Sp(A) is {x | ωx1 > α}. So
the class of wellorders does not yield the class of spectra exhibited in (V3).
There is however a Σ1

1 class of structures the spectra of whose elements are
exactly those of the form {x | ωx1 ≥ α}, α < ω1; an example is the class of
linear orders of the form Zα ·Q, α < ω1.

About Scott rank

Fix a countable structure A. By induction on α de�ne equivalence rela-
tions ≡α in �nite tuples from A of the same length by:

~a ≡0
~b i� ~a, ~b satisfy the same atomic formulas in A.

For limit λ, ~a ≡λ ~b i� ~a ≡α ~b for all α < λ.
~a ≡α+1

~b i� for all a′ there exists b′ such that ~a ∗ a′ ≡α ~b ∗ b′ and conversely
(for all b′ there exists a′ such that · · · ).

And for each tuple ~a de�ne ρA(~a) to be the least α such that~b ≡α ~a→ ~b ≡β ~a
for all β. The Scott rank of A, SR(A) is the supremum of the ρA(~a) + 1 for
~a a �nite tuple from A. There is an in�nitary sentence ϕ, called the Scott
sentence of A, such that ϕ has rank a bit more than SR(A) and the models
of ϕ are exactly the isomorphic copies of A.
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Now suppose that A were a computable (or even Hyp) structure. Then for
each ~a in A, ρA(~a) is at most ωck1 , the least nonrecursive ordinal. Therefore
the Scott rank of A is at most ωck1 + 1. There are computable structures
of this highest possible Scott rank such as the Harrison order, which has
ordertype ωck1 · (1 + Q). There are also examples of Scott rank ωck1 . We say
that a computable structure A has high Scott rank i� its Scott rank is at
least ωck1 .

For any countable structure A we can de�ne ωA1 to be the min of the ωx1
for x in the spectrum of A. Then A has Scott rank at most ωA1 + 1 and A
has high Scott rank i� its Scott rank is at least ωA1 .

We now prepare to prove a special case of (V1) implies (V3) of the The-
orem. We say that ϕ is a minimal counterexample to Vaught's Conjecture i�
ϕ is a counterexample to Vaught's Conjecture and for any in�nitary sentence
ψ, either ϕ ∧ ψ or ϕ∧ ∼ ψ has countable many models.

If there is a counterexample to Vaught's Conjecture then there is a mini-
mal one. The idea of the proof is to take a counterexample ϕ with no minimal
strengthening and strengthen it to a perfect tree of counterexamples, yield-
ing continuum many models of ϕ, contradicting the assumption that ϕ is
scattered.

We will show that any minimal counterexample to Vaught's Conjecture
satis�es (V3), using PD. First we discuss some consequences of PD due to
Martin.

Martin's Lemmas

A pointed tree is a perfect subtree P of 2<ω all of whose (in�nite) paths
compute P . To each x ∈ 2ω associate the path P (x) through P obtained by
following x at each split of P . When P is pointed, we have x⊕P ≤T P (x) so
P (x) ≡T x⊕P . Thus the Turing degrees of the paths through P are exactly
the Turing degrees of the reals which compute P . The set of such reals is
called the cone above P .

For A ⊆ 2ω the game G(A) is played as follows: There are two players I,
II. At even stages I plays a 0 or a 1 and at odd stages, II plays a 0 or a
1; the result is an element x of 2ω. Then I wins this play of the game i� x
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belongs to A. The axiom of determinacy asserts that for any A, one of the
players has a winning strategy in this game (i.e., a rule for determining how
to play next, given earlier plays). The axiom of projective determinacy (PD)
is the same under the assumption that A is a subset of 2ω which is projective,
i.e., Σ1

n for some n (equivalently, de�nable in second order arithmetic).

Lemma 35. Assume PD and suppose that A is a projective set of reals which
is Turing co�nal, i.e., for all x there is y ∈ A with x ≤T y. Then there is a
pointed tree, all of whose paths belong to A.

Proof. We prove it in the special case that A is Turing invariant, i.e., closed
under ≡T .

Assume that I has a winning strategy in the game G(A). A strategy for I
can be though of as a function from �nite strings of 0's and 1's of even length
into 2; let s ∈ 2ω be a real coding such a strategy. Now let P be the set of
all initial segments of plays of the game G(A) where I uses his strategy and
II plays s(n) at stage 4n + 1 (and II plays anything he wants at stages of
the form 4n + 3). Then P is a perfect tree (with splitting nodes at lengths
4n + 3 for some n) and P is pointed because if x is a path through P then
s(n) = x(4n+ 1) and hence I's strategy as well as the tree P is computable
from x.

Finally we show that II cannot have a winning strategy and therefore by
the assumption of PD we are done. Otherwise, using the above argument, we
get a pointed tree P all of whose paths are not in A; but then each Turing
degree in the cone above P contains a real not in A and since A is closed
under ≡T , it follows that A contains no real Turing above P , contrary to the
hypothesis that A is Turing co�nal. 2

15.Vorlesung

Last time we proved Lemma 35 in the special case where A is Turing
invariant, i.e., closed under ≡T . Now we give the proof in the general case.

Recall that the game G(A) is played as follows: There are two players, I
and II. At even stages I plays a 0 or a 1 and at odd stages, II plays a 0 or
a 1; the result is an element x of 2ω. Then I wins this play of the game i� x
belongs to A.
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We generalise the game G(A) as follows: Suppose that T is a perfect
subtree of 2<ω and de�ne a bijection πT from the full tree 2<ω onto the
splitting nodes of T by:

πT (∅) = the least splitting node of T
πT (s ∗ i) = the least splitting node of T extending πT (s) ∗ i.

Then the game G(A, T ) is played just like the game G(A) but the winning
condition is: If x ∈ 2ω is the result of the play then I wins i� the union of
the πT (x � n)'s belongs to A.

Now proceed as follows. Let A∗ denote the closure of A under ≡T , i.e.
{x | x ≡T y for some y ∈ A}. Then II cannot have a winning strategy in
G(A∗) because otherwise there is a pointed tree, all of whose branches belong
to the complement of A∗ and therefore all su�ciently large Turing degrees
contain an element of the complement of A∗; but his implies that A is not
Turing co�nal. So by PD, I has a winning strategy in G(A∗). It follows that
there is a pointed tree, all of whose branches belong to A∗.

For each n ∈ ω, view n as a pair (n0, n1) and de�ne:

An = {x | {n0}x is total, {n0}x belongs to A and {n1}{n0}x = x}.

Note that A∗ is the union of the An's.

If I has a winning strategy in one of the games G(An) then A contains the
branches of a pointed tree: If σ is a winning strategy for I then as before
consider the tree Tn of all plays of the game where I uses the strategy σ and
at stage 4n + 1, II plays c(n), where c ∈ 2ω is a code for σ; then Tn is a
pointed tree all of whose branches belong to An. But then {{n0}x | x is a
branch through Tn} consists of the branches through another pointed tree T ,
all of whose branches belong to A.

More generally, if T is a pointed tree and I has a winning strategy in one
of the games G(An, T ) then A contains the branches of a pointed tree and
we are done.

Now inductively de�ne pointed trees Tn as follows: T0 is a pointed tree, all
of whose branches belong to A∗. Suppose that Tn is de�ned. Then consider
the game G(An, Tn). As said above, if I has a winning strategy in this game
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then A contains the branches of a pointed tree and we are done. Let σn be
a winning strategy for II in this game and let c ∈ 2ω be a code for σn. Now
take T ′n+1 to consist of all �nite plays of the game G(An, Tn) in which II
uses the strategy σn and I plays c(k) at stage 4k + 1. De�ne Tn+1 to be the
subtree of Tn whose splitting nodes are the nodes πTn(s) for s ∈ T ′n+1. Then
Tn+1 is a pointed tree, all of whose branches belong to the complement of
An.

The intersection of the Tn's contains an in�nite branch x. But then x
belongs to A∗ but not to any An, contradiction! 2

16.-17.Vorlesungen

Lemma 36. Assume PD and suppose f : 2ω → ω1 is Turing invariant (i.e.,
x ≡T y → f(x) = f(y)) and has a projective presentation, i.e., for some
projective g : 2ω → 2ω, g(x) is a wellorder of length f(x) for each x. If for
each x, f(x) < ωx1 then f is constant on a cone (i.e., constant on all reals
Turing above some �xed real).

Proof. For each x there is an e ∈ ω such that {e}x is a wellorder of length
f(x). Therefore there is some �xed e such that on a Turing co�nal set A
of x's, {e}x has length f(x). By the previous lemma there is a pointed tree
P such that all paths x through P satisfy that g(x) is isomorphic to {e}x.
So x 7→ {e}x restricted to the paths through P is a continuous map from
a closed set to the set of wellorders and therefore is bounded below ω1. It
follows that f is bounded below some α < ω1 on the cone above P . Then f
is constant on a Turing co�nal set of reals so again by the previous lemma,
f is constant on a cone. 2

Now we apply Martin's lemma to prove a result about ranked equivalence
relations. These consist of an equivalence relation ≡ on a subset R of 2ω

together with an ≡-invariant function r : R → ω1. We say that (R,≡, r) is
projective if R and ≡ are projective and r has a projective represenation, i.e.
there is a projective function r∗ : 2ω → 2ω such that r∗(x) is a real coding
the ordinal r(x) for each x.

(R,≡, r) is scattered if for each α < ω1 there are only countable many ≡
classes of reals x such that r(x) = α. A key example is where r assigns Scott
rank to the models of a scattered theory and ≡ is the equivalence relation of
isomorphism on those models.

32



Lemma 37. Assume PD and suppose that (R,≡, r) is a scattered projective
ranked equivalence relation. Then for a cone of z's, we have that if r(x) < ωz1
then z computes a member of [x]≡, the ≡ equivalence class of x.

Proof. Otherwise on every cone there is a z for which there is an x with
r(x) < ωz1 and the [x]≡ has no z-computable member. There is a cone of
such z's. For each z in this cone let αz be the least α < ωz1 for which there
is an x such that r(x) = α and z does not compute any member of [x]≡.
By the previous lemma, the function z 7→ αz is constant on a cone. But this
is not possible because there are only countably many ≡ classes to which r
assigns a rank less than α and so any z of su�ciently large Turing degree
can compute members of all of them. 2

The previous result has some nice applications.

Example 1. Consider isomorphism of countable wellorders where the rank
function is the ordertype. It follows from the above that for a cone of z's,
any wellorder which is Hyp in z has a z-computable copy. Of course Spector
proved that this is true for all z.

Example 2. Consider bi-embeddability of linear orders. A linear order is scat-
tered if it does not embed Q; the non-scattered linear orders form a single
equivalence class under bi-embeddability. To each scattered linear order is
associated its Hausdor� rank, the least α such that L embeds into Zα (�nite-
supported functions from α into Z, ordered by comparing the largest place
of di�erence). For each scattered L, the Hausdor� rank of L is less than ωL1 .
Laver showed that there are only countably many bi-embeddability classes
of each Hausdor� rank. So by the above result, for cone of z's, any scattered
linear order which is Hyp in z is bi-embeddable with a z-computable such
order. Montalbán proved that this is true for all z.

Example 3. Consider bi-embeddability on countable p-groups. The associated
ranking function is called Ulm rank and Barwise-Eklof showed that there are
only countably many equivalence classes of each Ulm rank. Except for one
class, represented by the group Z(p∞)ω, the Ulm rank of a group G is less
than ωG1 . It follows then from the above result that for a cone of z's, every
p-group which is Hyp in z is bi-embeddable with a z-computable such group.
Greenberg and Montalbán showed that this is true for all z.
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The family of spectra of minimal counterexamples

Recall that ϕ is a minimal counterexample to Vaught's conjecture if ϕ
is scattered (i.e. has only countably many models of any given Scott rank),
has uncountably many models but for each ψ, either ϕ ∧ ψ or ϕ∧ ∼ ψ has
countably many models. If there is a counterexample to Vaught's conjecture
then there is a minimal one.

Also recall that the spectrum of a model A, Sp(A), is the set of z for which
A has a z-computable copy. And ωA1 denotes the least ωz1 for z ∈ Sp(A).

More generally, for any real z0 de�ne the z0-spectrum of A, Spz0(A), to be
the set of z ≥T z0 such that A has a z-computable copy. And ωA,z01 denotes
the least ωz1 for z ∈ Spz0(A).

Theorem 38. (Montalbán) Assume PD and suppose that ϕ is a minimal
counterexample to Vaught's conjecture. Then for some z0 and every model A
of ϕ:

Spz0(A) = {z ≥T z0 | ωz1 ≥ ωA,z01 }.

Corollary 39. Under the hypotheses above, there is a z0 such that for every
model A of ϕ, if z ≥T z0 and there is a copy of A which is Hyp in z then
there is also a copy of A which is z-computable.

Proof of Corollary. If A has a copy which is Hyp in z then A has a copy
which is computable in z∗ where z∗ ≥T z is Hyp in z; but as ωz

∗
1 = ωz1 it

follows from the Theorem that A also has a copy which is computable in z.
2

Proof of Theorem. Note that the direction ⊆ of the Theorem is immediate
from the de�nitions. Thus we want to show that relative to some real, if A
is a model of ϕ and ωz1 is at least ωA1 , then z computes a copy of A. There
will be two cases: A has Scott rank < ωz1 and A has Scott rank ≥ ωz1; note
that in the latter case, as the Scott rank of A is at most ωA1 + 1, we have
that ωz1 = ωA1 .

For the models A of Scott rank < ωz1, we use our earlier work on scat-
tered ranked equivalence relations: Consider (Mod(ϕ),', SR) where Mod(ϕ)
denotes the countable models of ϕ, and SR denotes Scott rank. As ϕ is a
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counterexample to Vaught's conjecture, this is a (projective) scattered equiv-
alence relation. So by an earlier result, relative to some real, if A has Scott
rank < ωz1 then z can compute a copy of A.

Now to show that relative to some real, if A is a model of ϕ with ωz1 =
ωA1 ≤ SR(A) then z can compute a copy of A it su�ces to show that relative
to some real:

X = {z | z computes a copy of all A ∈ Mod(ϕ) with ωz1 = ωA1 ≤ SR(A)}

is Turing co�nal. For given this, we can apply PD to conclude that relative
to some real, z computes a copy of all A in Mod(ϕ) with ωz1 = ωA1 ≤ SR(A),
so we are done.

So we show that relative to some real, X is Turing co�nal.

First we show that for any z there is z∗ ≥T z such that z∗ computes
some A ∈ Mod(ϕ) with SR(A) ≥ ωA1 = ωz

∗
1 : This follows from Gandy's

Basis Theorem as follows. We may assume that ϕ is computable relative to
z. Let α be ωz1. As ϕ has uncountably many models and is scattered, there
are models of ϕ of arbitrarily high Scott rank and therefore there is one of
Scott rank at least α. The set of codes for models of Scott rank at least α is a
Σ1

1 set with parameter z and by Gandy's Basis Theorem there is therefore a
code z∗ ≥T z for such a model satisfying ωz

∗
1 = ωz1; then the model A coded

by z∗ satis�es SR(A) ≥ ωA1 = α.

Apply PD to conclude that relative to some z0, every real z computes at
least one A ∈ Mod(ϕ) of high Scott rank such that ωA1 = ωz1.

Now we show that X is Turing co�nal relative to some real. We �rst need
a lemma.

Lemma 40. There is a club C in ω1 such that for each α ∈ C, if two
models of ϕ have Scott rank at least α then they are elementarily equivalent
for sentences of rank less than α.

Proof. For a countable ordinal α let ≡α denote the equivalence relation on
Mod(ϕ) of satisfying the same sentences of rank less than α. Each ≡α equiv-
alence class forms the models of a sentence of rank at most α+ 1. And as ϕ
is a minimal counterexample to Vaught's Conjecture, at most one ≡α class
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is uncountable (up to isomorphism). Let f(α) bound the Scott ranks of the
models in the ≡α classes with only countably many models and suppose that
β is closed under the function f . Then if two models of ϕ have Scott rank at
least β then they belong to the same ≡α class for each α < β and therefore
satisfy the same sentences of rank less than β. Let C be the club of such β's.
2

18.-19.Vorlesungen

Now let z ≥T z0 be any real and choose an ordinal α in the club C of the
Lemma of the form ωz

∗
1 for some z∗ ≥T z. (This is possible as C contains z-

admissible ordinals and Sacks showed that any z-admissible ordinal is of this
form.) We claim that z∗ belongs to X (relativised to z0). Indeed, by choice of
z0, z

∗ computes at least one A in Mod(ϕ) of high Scott rank ≥ ωz
∗

1 . Let B be
another model in Mod(ϕ) of high Scott rank ≥ ωz

∗
1 = ωB1 ; we claim that A

and B are isomorphic: Choose z∗∗ ≥T z0 which computes B with ωz
∗∗

1 = ωz
∗

1 .
Then there is an interpolating z∗∗∗ such that

α = ωz
∗

1 = ωz
∗,z∗∗∗

1 = ωz
∗∗∗

1 = ωz
∗∗∗,z∗∗

1 .

But z∗∗∗ also computes a model C of ϕ of high Scott rank with ωC1 = α.
By choice of α, the three models A, B and C are equivalent for sentences of
rank less than α. But as ωz

∗,z∗∗∗

1 = α it follows that A and C are isomorphic;
similarly B and C are isomorphic, so A and B are isomorphic. Therefore z∗

belongs to X (relativised to z0), as desired. 2

Topic 6: The e�ective theory of Borel equivalence relations

If E and F are Borel equivalence relations then E is Borel reducible to F
if and only if there is a Borel function f : X → Y such that xEy if and only if
f(x)Ff(y). The study of Borel equivalence relations under Borel reducibility
has developed into a rich area of descriptive set theory. In this non-e�ective
setting, Borel equivalence relations with countably many equivalence classes
are equivalent (i.e. bi-reducible) exactly if they have the same number of
equivalence classes. For Borel equivalence relations with uncountably many
equivalence classes there are two fundamental dichotomies:

The Silver Dichotomy. If E is a Borel equivalence relation with uncountably
many equivalence classes then equality on P(ω), the power set of ω, is Borel
reducible to E.
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The Harrington-Kechris-Louveau Dichotomy. If E is a Borel equivalence re-
lation not Borel reducible to equality on P(ω) then E0 is Borel reducible to
E, where E0 is equality modulo �nite on P(ω).

Now we introduce the e�ective version of this theory. If E and F are e�ec-
tively Borel (i.e., ∆1

1) equivalence relations then we say that E is e�ectively
Borel reducible to F if there is an e�ectively Borel function f : X → Y such
that xEy if and only if f(x)Ff(y). The resulting e�ective theory reveals an
unexpectedly rich new structure, even for equivalence relations with �nitely
many classes. For n ≤ ω, let =n denote equality on n, let =P(ω) denote equal-
ity on the power set of ω and let E0 denote equality modulo �nite on P(ω).
The notion of e�ectively Borel reducibility on e�ectively Borel equivalence
relations naturally gives rise to a degree structure, which we denote by H.

We'll show the following:

Theorem 41. (Katia-Asger-Sy) For any �nite n, the partial order of ∆1
1

subsets of ω under inclusion can be order-preservingly embedded into H be-
tween the degrees of =n and =n+1. The same holds between the degrees of =ω

and =P(ω), and between =P(ω) and E0.

A basic tool in the proof of this theorem is the following result:

(∗) There are e�ectively Borel sets A and B such that for no e�ectively Borel
function f does one have f [A] ⊆ B or f [B] ⊆ A.

(∗) is proved via a Barwise compactness argument applied to a deep
result of Harrington establishing for any recursive ordinal α the existence of
Π0

1 singletons whose α-jumps are Turing incomparable.

Harrington's proof of the Silver dichotomy and the original proof of the
Harrington-Kechris-Louveau dichotomy respectively show that if an e�ective-
ly Borel equivalence relation has countably many equivalence classes then it
is e�ectively Borel reducible to =ω and if it is Borel reducible to =P(ω) then
it is in fact e�ectively Borel reducible to =P(ω).

Theorem 42. Let O denote Kleene's O. If an e�ectively Borel equivalence
relation E has uncountably many equivalence classes then there is a ∆1

1(O)
function reducing =P(ω) to E, and this parameter is best possible. If an e�ec-
tively Borel equivalence relation E is not Borel reducible to =P(ω) then there
is a ∆1

1(O) function reducing E0 to E, and this parameter is best possible.
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In other words, while the �rst theorem rules out that the dichotomy
Theorems of Silver and Harrington-Kechris-Louveau are e�ective, the second
theorem shows that the Borel reductions obtained in the dichotomy Theorems
can in fact be witnessed by ∆1

1(O) functions, and that Kleene's O is the
best possible parameter we can hope for in general. The proof of the second
theorem is based on a detailed analysis of the e�ectiveness of category notions
in the Gandy-Harrington topology, due to Asger Törnquist.

Harrington's Theorem and (∗)

We will use the following deep result of Harrington without proof.

Theorem 43. For any recursive ordinal α there is a sequence of reals 〈an|n <
ω〉 such that for some recursive sequence 〈ϕn|n < ω〉 of Π0

1 formulas, an is
the unique solution to ϕn for each n and no an is recursive in the α-jump of
〈am | m 6= n〉.

Using this we show:

Theorem 44. There exist two nonempty Π0
1 sets A,B, such that for no Hyp

function F do we have F [A] ⊆ B or F [B] ⊆ A.

Proof. Let A = Lωck1 , L ⊇ {∈, <, x0, x1} ∪ {α : α ∈ A}, where x0, x1 and α
are constant symbols. Consider the set of sentences Φ consisting of:

1. ZF−, where ZF− is ZF without Power Set,

2. (∀x)(x ∈ ω ↔
∨
n x = n)

3. <=∈� Ordinals

4. x0, x1 ⊆ ω

5.
∨
ϕ∈Π0

1

[
(∃!v)ϕ(v) ∧ ϕ(xi)

]
(i = 0, 1, ϕ ranges over all Π0

1 formulas.)

6. x0 �T x1
α, x1 �T x0

α, for all α < ωck1 .

The set Φ is a Σ1 set of sentences. By Harrington's Theorem, for every re-
cursive ordinal α there exist Π0

1 singletons aα, bα, such that aα is not recursive
in the α-th Turing jump of bα and bα is not recursive in the α-th Turing jump
of aα. We apply Barwise Compactness to get a model 〈M,E,<, x0, x1〉 |= Φ
such that Lωck1 ⊆M ,M has nonstandard ordinals and every standard ordinal
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ofM is recursive, i.e., the standard part of <M is ωck1 . Then inM there must
be Π0

1 singletons a and b such that a �T b
α, b �T a

α for α < ωck1 and since
ωa1 = ωb1 = ωck1 , a and b are Hyp-incomparable.

Choose Π0
1 formulas ϕa and ϕb, such that in M , ϕa(x) ↔ x = a and

ϕb(x)↔ x = b. Then the formulas ϕa and ϕb de�ne Π0
1 sets (not singletons)

in V . Let A = {x : ϕa(x)} and B = {x : ϕb(x)}. To �nish the proof we show:

Claim. There is no Hyp function F such that F [A] ⊆ B or F [B] ⊆ A.

Proof of Claim. By symmetry it su�ces to prove that there is no Hyp function
F such that F [A] ⊆ B. Suppose F were such a function. Consider F (a); it
is Hyp in a and therefore belongs to M . But by assumption F (a) belongs to
the Π0

1 set B and therefore by de�nition of B, ϕb(F (a)) is true. But ϕb is a
Π0

1 formula and therefore ϕb(F (a)) also holds in M . It follows that F (a) = b.
But then b is Hyp in a, implying that it is recursive in aα for some α < ωck1 ,
contradicting the properties of a and b. 2

Using the more general form of Harrington's theorem We also have:

Theorem 45. There exists a uniform sequence A0, A1, . . . of nonempty Π0
1

sets such that for each n there is no Hyp function F such that F [An] ⊆⋃
m 6=nAm.

Hyp Equivalence Relations under Hyp Reducibility

Let E and F be equivalence relations on reals. We say that E is Hyp-
reducible to F if there exists a Hyp function f such that xEy i� f(x)Ff(y),
in which case we will write E ≤H F .

This induces a natural notion of Hyp-equivalence (or Hyp bi-reducibility)
and Hyp-degrees : we let E ≡H F if and only if E ≤H F and F ≤H E.

For 0 < n < ω, let =n be the Hyp-degree of the equivalence relation:
x ≡ y ⇐⇒ x(0) = y(0) or both x(0), y(0) ≥ n−1. The Hyp-degree =ω is the
Hyp-degree of the equivalence relation x ≡ y ⇐⇒ x(0) = y(0).

Hyp Equivalence Relations with countably many classes

Proposition 46. Let 1 ≤ n ≤ ω and let E be a Hyp equivalence relation.
Then =n≤H E i� E has at least n classes containing Hyp reals.
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Proof. (⇒): For every 1 ≤ n ≤ ω, the equivalence relation =n has exactly
n equivalence classes and each of them contains a Hyp real. Under Hyp-
reducibility Hyp reals are sent to Hyp reals and inequivalent reals are sent
to inequivalent reals.
(⇐): If n is �nite, pick n Hyp reals x0, . . . , xn−1 that lie in di�erent equiva-
lence classes of E. The function F that sends the i-th equivalence class of =n

to xi witnesses the reduction. Now suppose n = ω. Suppose E is an equiva-
lence relations with in�nitely many classes containing Hyp reals. We want to
prove that =ω Hyp-reduces to E. We will �nd a Hyp sequence of equivalence
classes of E with Hyp reals in them. Consider the following relation P (X, Y )
on ω × (ωω)<ω:

P (X, Y ) ⇐⇒ [X = (n,X0, . . . , Xn) ∧
∧
i 6=j

¬XiEXj] −→

[Y = (n+ 1, Y1, . . . , Yn, Yn+1) ∧
∧
i

Xi = Yi ∧
∧
i 6=j

¬YiEYj]

Then P is Hyp. Moreover, as E has in�nitely many Hyp classes, for
every Hyp X there exists a Hyp Y such that P (X, Y ). It follows from Hyp
Dependent Choice that there exists a uniform sequence of Hyp setsX0, X1, . . .
such that

∀i, j(i 6= j → ¬XiEXj).

Then the function that sends the equivalence class {x : x(0) = n} of =ω to
Xn is Hyp and witnesses the reduction. 2

Corollary 47. If =n≤H E, for all 1 ≤ n < ω, then =ω≤H E.

Proposition 48. Let 1 ≤ n ≤ ω and let E be a Hyp equivalence relation.
Then E ≤H=n i� E has at most n classes.

Proof sketch. The direction (⇒) is obvious since non-equivalent reals are
sent to non-equivalent reals under Hyp-reducibility. To prove (⇐) we need
to show that the equivalence classes of a Hyp equivalence relation with at
most countably many equivalence classes are uniformly Hyp.

By Harrington's proof of the Silver Dichotomy, if E has only countably
many classes then every real belongs to a Hyp subset of some equivalence
class. Let C be the set of codes for Hyp subsets of an equivalence class; then
C is Π1

1. Consider the relation

R = {(x, c) | c ∈ C and x ∈ H(c), the Hyp set coded by c}.
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Then R is Π1
1 and can be uniformised by a Π1

1 function F . As the values of
F are numbers, F is Hyp and by separation we can choose a Hyp D ⊆ C,
D ⊇〉(F ). Now de�ne an equivalence relation E∗ on D by:

d0E
∗d1 ⇐⇒ (∀x0, x1)(x0 ∈ H(d0) ∧ x1 ∈ H(d1))→ x0Ex1

⇐⇒ (∃x0, x1)(x0 ∈ H(d0) ∧ x1 ∈ H(d1) ∧ x0Ex1).

i.e. d0E
∗d1 if and only if H(d0) and H(d1) are subsets of the same E-

equivalence class. Note that E∗ is Hyp. The relation E Hyp-reduces to E∗

via x 7→ F (x). But E∗ is just a Hyp relation on a Hyp set of numbers, so E∗

is Hyp-reducible to =ω (to see this, send c to the least number c∗, cE∗c∗).
Thus if E is a Hyp equivalence relation with at most countably many

classes then E is Hyp-reducible to =ω. (In particular, all equivalence classes
of E are Hyp.) One can similarly see that if E has at most n classes then E
is Hyp-reducible to =n. 2

Obviously, the degree =1 is Hyp-reducible to any equivalence relation.
But =2, the equivalence relation with the two classes {x : x(0) = 0} and
{x : x(0) ≥ 1} is not the successor to =1. This is the content of the next
theorem.

Theorem 49. 1. There is a Hyp equivalence relation strictly between =1

and =2.

2. For every �nite n, there is a Hyp equivalence relation strictly between
=n and =n+1.

3. For every n0 < n1 ≤ ω, there is a Hyp equivalence relation above =n0,
below =n1 and incomparable with =n, for all n0 < n < n1.

Proof. There is a nonempty Hyp set X which contains no Hyp reals. Take
a Hyp equivalence relation E with the two equivalence classes X and ∼ X.
By Proposition 63, E Hyp-reduces to =2. By Proposition 61, =2 does not
Hyp-reduce to E.

To prove the second statement, we let E consist of exactly n+ 1 equiva-
lence classes, such that only n of them contain Hyp reals: For each i < n−1,
we de�ne the i-th equivalence class by taking all x ∈∼ X, such that x(0) = i.
We take the n-th class to contain all x ∈∼ X with x(0) ≥ n − 1. And the
(n+ 1)-st class is X.

For the proof of the third statement, consider an equivalence relation with
n1 classes such that only n0 of them contain Hyp reals. 2
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Theorem 50. There are incomparable Hyp equivalence relations between =1

and =2.

Proof. We consider the following equivalence relations: Let A and B be Π0
1

sets such that for no Hyp F do we have F [A] ⊆ B or F [B] ⊆ A. We take the
equivalence relation EA with two equivalence classes A,∼ A and EB with two
equivalence classes B, ∼ B. Then EA and EB are Hyp-reducible to =2. By
the properties of A and B, the relations EA and EB are Hyp-incomparable,
as otherwise (since neither A nor B contain Hyp reals) we would have a Hyp
function which maps A to B or vice versa. 2

Theorem 51. The partial order of Hyp subsets of ω under inclusion can be
order-preservingly embedded into the structure of degrees of Hyp equivalence
relations between =1 and =2.

Proof. Let X be a Hyp subset of ω. De�ne the corresponding equivalence
relation EX in the following way. We let xEXy i� both x, y ∈

⋃
i∈X Ai or

both x, y ∈∼
⋃
i∈X Ai, where A0, A1, . . . are the sets constructed earlier using

Harrington's theorem, i.e., they are uniformly Π0
1 and no Ai can be mapped

by a Hyp function into the union of the Aj's, j di�erent from i. We check
that X ⊆ Y ⇐⇒ EX ≤H EY .

Suppose X ⊆ Y . For every i ∈ X we send Ai into itself. We send
∼
⋃
i∈X Ai into a single Hyp real chosen in ∼

⋃
i∈Y Ai. Therefore EX ≤H EY .

Now suppose X * Y but EX ≤H EY via a Hyp function F . Note that
neither

⋃
i∈X Ai nor

⋃
i∈Y Ai contain Hyp reals. Thus F sends ∼

⋃
i∈X Ai to

∼
⋃
i∈Y Ai and

⋃
i∈X Ai to

⋃
i∈Y Ai. Choose an i0 ∈ X \ Y . Then F [Ai0 ] ⊆⋃

i∈Y Ai ⊆
⋃
i 6=i0 Ai, contradicting the properties of the sequence A0, A1 . . .

2

Corollary 52. 1. There are in�nite antichains between =1 and =2.

2. There are in�nite descending chains between =1 and =2.

3. There are in�nite ascending chains between =1 and =2.

The same proof shows:

Corollary 53. For any 1 ≤ n0 < n1 ≤ ω there is an embedding of the
partial order (P(ω)∩Hyp,⊆) into the structure of degrees of Hyp equivalence
relations that are above =n0, below =n1 and incomparable with each =n for
n0 < n < n1.
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Hyp Equivalence Relations between =ω and =P(ω)

Let =P(ω) denote the Hyp-degree of the equivalence relation of = on P(ω).
By an earlier Proposition and Silver's dichotomy, every Hyp equivalence re-
lation E is either Hyp reducible to =ω, or =P(ω) is Borel reducible to E. We
show that the latter option is not e�ective:

Theorem 54. There exist Hyp-incomparable Hyp equivalence relations be-
tween =ω and =P(ω).

Proof. Suppose that A and B are Π0
1 sets such that there is no Hyp function

F such that F [A] ⊆ B or F [B] ⊆ A.
Now consider the equivalence relations EA and EB:

xEAy ⇐⇒ [(x ∈ A ∧ x = y) ∨ (x, y /∈ A ∧ x(0) = y(0))]

and similarly for EB with B replacing A.
By sending n to the real (n, 0, 0, . . .) we get a Hyp reduction =ω to EA

and EB. Also EA Hyp-reduces to =P(ω) via the map G(x) = x if x belongs
to A, G(x) = (x(0), 0, 0, . . .) for x /∈ A. Similarly for B.

There is no Hyp reduction of EA to EB. Indeed, suppose that F were
such a reduction and let C be the preimage under F of ∼ B. As ∼ B is Σ0

1,
C is Hyp and therefore A ∩ C is also Hyp. But A ∩ C must be countable as
F is a reduction. So if A ∩ C were nonempty it would have a Hyp element,
contradicting the fact that A has no Hyp elements. Therefore F maps A into
B, which is impossible by the choice of A and B. 2

Theorem 55. The partial order of Hyp subsets of ω under inclusion can be
embedded into the structure of degrees of Hyp equivalence relations between
=ω and =P(ω).

Proof. Let A0, A1, . . . be the uniformly Π0
1 sets used earlier. For every Hyp

set X ⊆ ω consider the equivalence relation

xEXy ⇐⇒ [(x ∈
⋃
i∈X

Ai and x = y) or (x, y /∈
⋃
i∈X

Ai and x(0) = y(0))].

Then =ω≤H EX ≤H=P(ω). Suppose X ⊆ Y . Then EX Hyp-reduces to EY via
the map G(x) = x if x ∈

⋃
i∈X Ai, G(x) = (x(0), 0, 0, . . .) for x /∈

⋃
i∈X Ai.

Suppose X * Y but EX ≤H EY via a Hyp function F . Pick i0 ∈ X \ Y .
As before, we consider the set

Ai0 ∩ F−1(∼
⋃
j∈Y

Aj).
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Then this is a countable Hyp set. If it is non-empty then it contains a Hyp
real, contradicting the de�nition of Ai0 . Therefore we get F [Ai0 ] ⊆

⋃
j∈Y Aj ⊆⋃

j 6=i0 Aj, contradiction. 2

Corollary 56. There are in�nite chains and antichains between =ω and
=P(ω).

Corollary 57. For any �nite n0 ≥ 1, the partial order of Hyp subsets of ω un-
der inclusion can be embedded into the structure of degrees of Hyp equivalence
relations between =n0 and =P(ω) but incomparable with =n for n0 < n ≤ ω.

Proof. For every Hyp X ⊆ ω, consider the equivalence relation of the form

xEn0
X y ⇐⇒ x ∈

⋃
i∈X

Ai ∧ x = y∨

x, y /∈
⋃
i∈X

Ai ∧ (x(0) = y(0) < n0 − 1 ∨ x(0), y(0) ≥ n0 − 1).

Then En0
X has exactly n0 equivalence classes with Hyp reals. Therefore =n0≤H

En0
X and for n0 < n ≤ ω, the equivalence relation =n is incomparable with

En0
X . 2

Hyp Equivalence Relations between =P(ω) and E0

Harrington-Kechris-Louveau showed that any Hyp equivalence relation is
either Hyp reducible to =P(ω), or E0 is Borel reducible to it. We now show
that the latter option is not e�ective.

Theorem 58. There exist Hyp-incomparable Hyp equivalence relations be-
tween =P(ω) and E0.

Proof sketch. Let A and B be Hyp sets such that for no Hyp function F do
we have F [A] ⊆ B or F [B] ⊆ A.

De�ne two Hyp equivalence relations EA and EB by

(x, y)EA(x′, y′) ⇐⇒ x = x′ ∧ [(x /∈ A) ∨ (x ∈ A ∧ yE0y
′)],

and similarly for EB with B replacing A.
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Suppose F is a Hyp-reduction of EA to EB. De�ne F
′(x, y) = z ⇐⇒

(∃w)F (x, y) = (z, w). Note that F ′ is constant on EA classes. De�ne a func-
tion h by

h(x) = z ⇐⇒ {y ∈ 2ω : g′(x, y) = z} is non-meagre

( ⇐⇒ {y ∈ 2ω : g′(x, y) = z} is comeagre.)

h is an everywhere de�ned Hyp function. Suppose x ∈ A. Then for a comeagre
set C we have F ′(x, y) = h(x) for all y ∈ C. We claim that h(x) ∈ B.
Indeed, otherwise the set {x} × C is mapped by g into a single EB class,
contradicting that all EA|{x} × 2ω classes are meagre in {x} × 2ω (in fact,
they are countable).

Thus h is a Hyp function with h[A] ⊆ B, contradicting the properties of
A and B. 2

Similarly we have:

Theorem 59. The partial order of Hyp subsets of ω can be embedded into
the structure of Hyp equivalence relations between =P(ω) and E0.

Theorem 60. For any n0 ≤ ω the partial order of Hyp subsets of ω can be
embedded into the structure of degrees of Hyp equivalence relations between
=n0 and E0, but incomparable with =n for n0 < n ≤ ω and incomparable with
=P(ω).

20.Vorlesung

Hyp Equivalence Relations with countably many classes

Proposition 61. Let 1 ≤ n ≤ ω and let E be a Hyp equivalence relation.
Then =n≤H E i� E has at least n classes containing Hyp reals.

Proof. (⇒): For every 1 ≤ n ≤ ω, the equivalence relation =n has exactly
n equivalence classes and each of them contains a Hyp real. Under Hyp-
reducibility Hyp reals are sent to Hyp reals and inequivalent reals are sent
to inequivalent reals.
(⇐): If n is �nite, pick n Hyp reals x0, . . . , xn−1 that lie in di�erent equiv-
alence classes of E. The function F that sends the i-th equivalence class
of =n to xi witnesses the reduction. Now suppose n = ω. Suppose E is an
equivalence relations with in�nitely many classes containing Hyp reals. We
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want to prove that =ω Hyp-reduces to E. We will �nd a Hyp sequence of
reals representing distinct equivalence classes of E. Consider the following
relation P (X, Y ) on ω × (ωω)<ω:

P (X, Y ) ⇐⇒ [X = (n,X0, . . . , Xn) ∧
∧
i 6=j

¬XiEXj] −→

[Y = (n+ 1, Y1, . . . , Yn, Yn+1) ∧
∧
i

Xi = Yi ∧
∧
i 6=j

¬YiEYj]

Then P is Hyp. Moreover, as E has in�nitely many Hyp classes, for
every Hyp X there exists a Hyp Y such that P (X, Y ). It follows from Hyp
Dependent Choice that there exists a uniform sequence of Hyp setsX0, X1, . . .
such that

∀i, j(i 6= j → ¬XiEXj).

Then the function that sends the equivalence class {x : x(0) = n} of =ω to
Xn is Hyp and witnesses the reduction. 2

Corollary 62. If =n≤H E, for all 1 ≤ n < ω, then =ω≤H E.

Proposition 63. Let 1 ≤ n ≤ ω and let E be a Hyp equivalence relation.
Then E ≤H=n i� E has at most n classes.

Proof sketch. The direction (⇒) is obvious since non-equivalent reals are
sent to non-equivalent reals under Hyp-reducibility. To prove (⇐) we need
to show that the equivalence classes of a Hyp equivalence relation with at
most countably many equivalence classes are uniformly Hyp.

By Harrington's proof of the Silver Dichotomy, if E has only countably
many classes then every real belongs to a Hyp subset of some equivalence
class. Let C be the set of codes for Hyp subsets of an equivalence class; then
C is Π1

1. Consider the relation

R = {(x, c) | c ∈ C and x ∈ H(c), the Hyp set coded by c}.

Then R is Π1
1 and can be uniformised by a Π1

1 function F . As the values of
F are numbers, F is Hyp and by separation we can choose a Hyp D ⊆ C,
D ⊇ Range (F ). Now de�ne an equivalence relation E∗ on D by:

d0E
∗d1 ⇐⇒ (∀x0, x1)((x0 ∈ H(d0) ∧ x1 ∈ H(d1))→ x0Ex1)

⇐⇒ (∃x0, x1)(x0 ∈ H(d0) ∧ x1 ∈ H(d1) ∧ x0Ex1).
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i.e. d0E
∗d1 if and only if H(d0) and H(d1) are subsets of the same E-

equivalence class. Note that E∗ is Hyp. The relation E Hyp-reduces to E∗

via x 7→ F (x). But E∗ is just a Hyp relation on a Hyp set of numbers, so E∗

is Hyp-reducible to =ω (to see this, send c to the least number c∗, cE∗c∗).
Thus if E is a Hyp equivalence relation with at most countably many

classes then E is Hyp-reducible to =ω. (In particular, all equivalence classes
of E are Hyp.) One can similarly see that if E has at most n classes then E
is Hyp-reducible to =n. 2

Incomparable Hyp equivalence relations

For the proofs of the next three results, we �x Π0
1 sets A and B such that

for no Hyp F do we have F [A] ⊆ B or F [B] ⊆ A.

Theorem 64. There are incomparable Hyp equivalence relations between =1

and =2.

Proof. We take the equivalence relation EA with two equivalence classes A,
∼ A and EB with two equivalence classes B, ∼ B. Then EA and EB are
Hyp-reducible to =2. By the properties of A and B, the relations EA and
EB are Hyp-incomparable, as otherwise (since neither A nor B contain Hyp
reals) we would have a Hyp function which maps A to B or vice versa. 2

Theorem 65. There exist Hyp-incomparable Hyp equivalence relations be-
tween =ω and =P(ω).

Proof. Consider the equivalence relations EA and EB:

xEAy ⇐⇒ [(x ∈ A ∧ x = y) ∨ (x, y /∈ A ∧ x(0) = y(0))]

and similarly for EB with B replacing A.
By sending the n-th class of =ω to the real (n, 0, 0, . . .) we get a Hyp

reduction =ω to EA. Also EA Hyp-reduces to =P(ω) via the map G(x) = x if
x belongs to A, G(x) = (x(0), 0, 0, . . .) for x /∈ A. Similarly for B.

There is no Hyp reduction of EA to EB. Indeed, suppose that F were
such a reduction and let C be the preimage under F of ∼ B. As ∼ B is Σ0

1,
C is Hyp and therefore A ∩ C is also Hyp. But A ∩ C must be countable as
F is a reduction. So if A ∩ C were nonempty it would have a Hyp element,
contradicting the fact that A has no Hyp elements. Therefore F maps A into
B, which is impossible by the choice of A and B. 2
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Theorem 66. There exist Hyp-incomparable Hyp equivalence relations be-
tween =P(ω) and E0.

Proof sketch. De�ne two Hyp equivalence relations EA and EB by

(x, y)EA(x′, y′) ⇐⇒ x = x′ ∧ [(x /∈ A) ∨ (x ∈ A ∧ yE0y
′)],

and similarly for EB with B replacing A.
Suppose F is a Hyp-reduction of EA to EB. De�ne F

′(x, y) = z ⇐⇒
(∃w)F (x, y) = (z, w). Note that F ′ is constant on EA classes. De�ne a func-
tion h by

h(x) = z ⇐⇒ {y ∈ 2ω : F ′(x, y) = z} is non-meagre

( ⇐⇒ {y ∈ 2ω : F ′(x, y) = z} is comeagre.)

h is everywhere-de�ned (as a Baire-measurable function which is constant on
E0-classes is constant on a comeagre set). Also h is a Hyp function (as being
meagre is a Π1

1 property of the code for a Hyp set). Suppose x ∈ A. Then
for a comeagre set C we have F ′(x, y) = h(x) for all y ∈ C. We claim that
h(x) ∈ B. Indeed, otherwise the set {x} × C is mapped by F into a single
EB class, contradicting that all EA|{x} × ωω classes are meagre in {x} × ωω
(in fact, they are countable).

Thus h is a Hyp function with h[A] ⊆ B, contradicting the properties of
A and B. 2
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