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1. Pure and Applied Set Theory

I see set theory as consisting of two overlapping areas, the pure and the
applied. In pure set theory we are trying to find justifiable ways to strengthen
the ZFC axioms (syntactic), and correspondingly, justifiable pictures of the
set-theoretic universe (semantic). I use the phrase applied set theory to refer
to everything else.

According to this definition, the Martin-Steel Theorem is applied, rather
than pure. The Covering Theorem is a result of pure set theory, with hun-
dreds of applications.

The most important results in pure set theory were obtained by trying to
solve problems in applied set theory. For example, Jensen proved the Cover-
ing Theorem in order to better understand the singular cardinal problem.

The converse is not true. Shelah’s work provides a clear counterexample.
His interest is to obtain results in or consistency results relative to ZFC +
large cardinals, rather than to examine the nature of inner models of set
theory, or what the sources of large cardinals might be.

The rest of this article is concerned exclusively with pure set theory.

2. Extending ZFC

What should we expect from an extension of ZFC? Obviously we cannot
hope to “prove” the new axioms we choose, and by Gödel we cannot even
hope to prove their consistency.

Desirable properties for new axioms are the following.
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Naturality: The axioms should come directly from the semantics of ZFC, and
constitute an attempt to clarify the structure of the set-theoretic universe V .

Power: The axioms should explain a lot.

Stability: The axioms should be unaffected by small changes, and in particu-
lar, small changes should not knowingly lead to inconsistency. Semantically,
a small extension of a model of the axioms (obtained by set-forcing or by a
reasonable class-forcing) should also be a model.

A number of interesting new axioms have arisen out of applied set theory
over the past several decades. Recently there have been suggestions that
some of these axioms provide us with the ”right” extension of ZFC. Unfor-
tunately these suggestions suffer from oversimplification, and lead to axioms
that violate the above criteria.

Remark. My aim here is not to argue for or against the consistency of
various axioms; I simply assume that the axioms that we do not currently
know to be inconsistent are in fact consistent. Instead, I am discussing the
appropriateness of axioms, based upon the above criteria.

3. Examples

a. V=L

Of course this axiom is natural and very powerful. But by the work of
Cohen we know that the axiom

V = L[a Cohen Real]

is just as consistent, and surely constitutes a small change to the axiom
V = L. Therefore the criterion of stability is violated. The same problem
exists with any axiom of the form

V = L[G] where G is P -generic over L

for any L-definable set-forcing P , as one can similarly violate this by forcing
with even larger partial orders.

b. Large cardinals

Typically these are of the form

There exists j : V → M , where M is ”close” to V .

Certainly such axioms are natural and very powerful. They are however
unstable: If we require M = V , we have a contradiction. If we only require
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M to agree with V up to j(κ) where κ is the critical point of j, then by
stability, we should also allow agreement up to arbitrary iterates of j applied
to κ, another contradiction. A possibility is to allow M to agree with V up
to j(f)(κ) for any particular function f : κ → κ, but not simultaneously for
all such f ; more about this later.

c. Determinacy

Of course I am not referring to the full axiom AD, as this contradicts the
axiom of choice, but rather to determinacy for sets of reals that are definable
(say, ordinal-definable with real parameters). This axiom has proved to be
powerful and stable. Unfortunately the existence of strategies for infinite
games does not arise naturally out of the semantics of ZFC.

However I will argue later that some definable determinacy is a conse-
quence of natural axioms, even though determinacy itself does not qualify as
one.

d. Absoluteness principles

These are principles which assert that the truth of certain formulas is not
affected by enlarging the universe in certain ways. The classical example of
this is Shoenfield absoluteness, which says that Σ1(H(ω1)) formulas (with
parameters) are absolute for arbitrary extensions.

Absoluteness principles are however unstable. Absoluteness for Σ2(H(ω1))
formulas cannot hold with respect to all (ω1-preserving) class-forcing exten-
sions. Even Σ1 absoluteness cannot hold for H(ω2) with respect to all (ω1-
and ω2-preserving) set-forcing extensions, nor with respect to H(c+) with
respect to ccc forcing extensions.

e. Forcing axioms

The most common such axioms assert that for certain forcings P and
certain collections X of dense subsets of P , there is a compatible subset G

of P which intersects all elements of X. The classical example is Martin’s
axiom (at ω1), which asserts this for ccc P and collections X of cardinality
ω1.

As with the absoluteness principles, these axioms suffer from instability:
One cannot have this forcing axiom for ω1-many dense sets with respect to all
ω1-preserving set-forcing extensions or for ω2-many dense sets with respect
to all ω1- and ω2-preserving set-forcing extensions.

Other types of forcing axioms have also been considered. Foreman, Magi-
dor and Shelah considered the statement:
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Every set-forcing either adds a real or collapses a cardinal.

Unfortunately, little is known about this axiom.

Chalons (as modified by Larson) proposed:

”If a statement with real parameters holds in a set-forcing extension and all
further set-forcing extensions, then it holds in V ; moreover this property is
not only true in V , but also in all set-generic extensions of V .”

Woodin proved the consistency of this axiom from large cardinals. Unfor-
tunately, even a weak form of this axiom is inconsistent when ”set-forcing”
is replaced by ”class-forcing”, in violation of stability. A reasonable class-
forcing version of this axiom is not known.

Yet another kind of forcing axiom will be discussed below.

f. Strong logics

These are logics whose set of validities is large and remains unchanged by
set-forcing. One can obtain such a logic as follows: Say that ϕ is ∗∗-provable
iff for some set-forcing P , if P belongs to Vα and Vα satisfies ZFC, then V P∗Q

α

satisfies ϕ for all Q in V P
α . Woodin proposes the use of such a strong logic,

together with the existence of a proper class of Woodin cardinals. This gives
a ∗∗-complete theory of H(ω1) and, assuming that H(ω2) is obtained by
forcing with Woodin’s forcing Pmax over L(R), gives a ∗∗-complete theory of
H(ω2). Therefore under Woodin’s assumptions, the theory of H(ω2) cannot
be changed by set-forcing.

There are several difficulties with this approach.

i. The assumption of the existence of a proper class of Woodin cardinals is
left unjustified. However I will suggest below an argument in favour of an
inner model for this assumption.
ii. Although strong logics are immune to set-forcing, they are not immune to
class-forcing. Class-forcing methods provide consistent ways to enlarge the
set-theoretic universe, in the same way that set-forcing methods do. There-
fore adopting as new axioms the validities of a logic with only set-generic
absoluteness violates stability.
iii. The axiom asserting that H(ω2) is obtained by set-forcing over L(R) is
easily contradicted by class-forcing, and therefore unstable.

A strong logic whose validities are absolute for (appropriate) class-forcing
is not known.
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4. Patience and Necessity

The most important axioms that have been explored until now have arisen
naturally and necessarily out of the need to solve central problems in applied
set theory. This is especially true of the large cardinal axioms, which have
even provided a measure for the consistency strength of virtually all set-
theoretic statements. But in my view we should not impatiently assert that
these axioms are ”correct” until we can derive them from other axioms which
meet strict criteria like the ones discussed above.

Ideally, we could aim for the following.

Necessity: The axioms should be necessary, in the sense that their failure
lead to an unacceptable picture of the set-theoretic universe.

Necessity is very strong. It implies uniqueness: any two necessary axioms
must be compatible with each other. I do not know how strong a necessary
extension of ZFC can be. It may turn out that uniqueness fails, and that
there are mutually contradictory extensions of ZFC, each of which provides a
natural, strong and stable description of (parts of) the set-theoretic universe.

In my view, the correct axioms for the first-order theory of H(ω) are
provided by finite set theory. Surely these axioms are necessary, and in my
view they are sufficient, as H(ω) is the unique well-founded model of this
theory and no clear examples of ill-founded models are known. I also believe
that the correct axioms for the first-order theory of H(ω1) are provided by PD
(projective determinacy). Below I will provide an argument for the necessity
of inner models with Woodin cardinals, and therefore of this theory. However
I have not seen a convincing argument that PD is sufficient, in the sense that
it captures the full first-order theory of H(ω1) (although I do believe this to
be the case).

Remark. Necessity may require a modification to our earlier criterion of Sta-
bility. The reason is that we do not yet know if Necessity leads to unstable
axioms. The modified form of Stability would say: The axioms should be un-
affected by small changes, unless they are necessary and a small change leads
to inconsistency. None of the examples considered earlier were of necessary
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axioms, and therefore those which were unstable in the old sense remain so
in this modified sense.

To discover necessary axioms, we can only begin with the basic techniques
that we have for forming well-founded models of set theory, due to Gödel and
Cohen. So I begin by considering L and its forcing extensions.

We have seen that by stability, the universe must contain nonconstructible
sets, and indeed such sets which are P -generic over L for various constructible
forcings P . A natural question to ask is:

Which constructible forcing notions P have generics (over L)?

Stability requires that if P has a generic in a small extension of V then it
already has one in V . If P is countable then a P -generic extension of V is a
small extension and therefore we necessarily have:

(∗) V is L-saturated for countable forcings: If P is a countable constructible
forcing then P has a generic.

This axiom is not very strong; indeed it holds in L[a Cohen real].

Next I consider L-saturation for ω1-forcings, i.e., forcings with universe
ω1. We consider only extensions which preserve the notion “constructible ω1-
forcing”, i.e., extensions which preserve ω1. Which such extensions shall we
take to be the “small” extensions? Surely any set-generic extension should
qualify and therefore we have:

(∗∗) V is L-saturated for ω1-forcings: If P is a constructible ω1-forcing with
a generic in an ω1-preserving set-generic extension of V then P has a generic
in V .

Theorem 1. The following are equivalent:
(a) (∗∗) holds.
(b) (∗∗) holds in the stronger form: If P is a constructible ω1-forcing with a
generic in an arbitrary ω1-preserving extension of V then P has a generic in
V .
(c) 0# exists.
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The existence of 0# is therefore in my view necessary, as otherwise V is
not saturated for constructible ω1-forcings, a violation of stability.

Can we go further? Obviously we can repeat what we have just done for
the model L[0#], and obtain the existence of 0##. By iterating further we
get 0#n

for any n and even 0#ω

. Can we continue this sequence long enough
to reach a measurable cardinal?

Rather than iterate #’s, we can reach our goal directly, by generalising
saturation from L to larger inner models. Suppose that M is an inner model,
defined by the formula ϕ. How shall we define M-saturation for ω1-forcings?
In the case M = L it was important to only consider extensions of V which
preserve the concept “constructible ω1-forcing”. For general M , we must be
careful to guarantee that not only ω1, but also the interpretation of ϕ, the
defining formula for M , does not change.

Definition. Let ϕ define the inner model M . We say that V is M-saturated
for ω1-forcings (via ϕ) iff whenever an ω1-forcing in M has a generic (over
M) in an ω1-preserving extension W of V where ϕW = M , it already has a
generic in V .

Now we apply this to the Dodd-Jensen core model KDJ , using the stan-
dard defining formula for this model (whose interpretation is unchanged by
set-forcing).

Theorem 2. (a) Suppose that V is KDJ -saturated for ω1-forcings. Then there
is an inner model with a measurable cardinal.
(b) Conversely, suppose that there is an inner model with a measurable
cardinal κ, where κ is countable. Then V is KDJ-saturated for ω1-forcings.

If we apply saturation for ω1-forcings to Mitchell’s core model, we can ob-
tain measurable cardinals of higher order. Further strength appears however
to require the use not only of larger inner models, but also of larger forcings.
I can only offer a conjecture about this.

If M is an inner model defined by a formula ϕ and α is an uncountable
ordinal, then we say that V is M-saturated for α-forcings (via ϕ) iff whenever
an α-forcing in M has a generic (over M) in an extension W of V where V ,
W have the same cardinals ≤ α and ϕW = M , it already has a generic in V .
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A Woodin cardinal is a cardinal κ such that for each f : κ → κ there is
an elementary embedding j : V → M with critical point κ and Vj(f)(κ) ⊆ M .
Under appropriate assumptions (e.g., if there is no inner model with a Woodin
cardinal, or if every set belongs to an inner model with a Woodin cardinal
and a measurable above), and assuming a strong enough class theory (Ord
is “subtle”), Steel constructs an inner model KS which does for one Woodin
cardinal what Silver’s Lµ does for one measurable cardinal. As with the core
models mentioned earlier, KS is defined by a formula which has the same
interpretation in all set-generic extensions of V .

Theorem 4. Suppose that V is KS-saturated for ℵ+KS

ω -forcings. Then there
is an inner model with a Woodin cardinal.

Unfortunately, in Theorem 4 saturation is applied to forcings which de-
stroy CH and in fact which add ℵ+KS

ω reals. I conjecture that Theorem 4,
and a suitable converse, hold even when saturation is restricted to GCH-
preserving forcings.

Conjecture 5. (a) Suppose that V is KS-saturated for ℵ+KS

ω -forcings which
preserve GCH over KS. Then there is an inner model with a Woodin cardinal.
(b) Conversely, suppose that every set belongs to an inner model with a
Woodin cardinal and a measurable above. Then V is KS-saturated for ℵ+KS

ω -
forcings which preserve GCH over KS.

Conjecture 5 yields the necessity of inner models with Woodin cardinals.
Stability then implies that for each n there are inner models with n Woodin
cardinals containing any given real, and therefore that PD holds.

CUB-Completeness

There is another type of necessary axiom which, although not as natural
as forcing-saturation, does provably lead to inner models with Woodin cardi-
nals. Suppose that M is an inner inner model defined by the formula ϕ and
κ is a regular uncountable cardinal. We say that V is CUB-complete over
M at κ (via ϕ) iff whenever A ⊆ κ belongs to M and has a CUB subset in
an extension W of V where ϕW = M and all cardinals ≤ κ are preserved,
then A already has as CUB subset in V .
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Theorem 6. (a) For any regular uncountable cardinal κ, V is CUB-complete
over L at κ iff 0# exists.
(b) If V is CUB-complete over KDJ at ω1 then ω1 is measurable in an inner
model; conversely, if κ is a cardinal and some ordinal α < κ is measurable in
an inner model, then V is CUB-complete over KDJ at κ.
(c) For κ > ℵω, if V is CUB-complete over KS at κ then there is an inner
model with a Woodin cardinal. Conversely, if every set belongs to an inner
model with a Woodin cardinal and a measurable above, then V is CUB-
complete over KS at every regular κ.

Obtaining further strength from CUB-completeness is obstructed only
by the current failure of core model theory to reach very far past Woodin
cardinals.

The above approaches, forcing-saturation and CUB-completeness, though
they justify the existence of inner models with Woodin cardinals, do not
justify the existence of Woodin cardinals in V . Indeed, I am not optimistic
about the possibility of finding good arguments for the existence of large
cardinals in V until a good criterion is found for excluding those class-forcings
which destroy large cardinal properties. Fortunately, large cardinals in V do
not appear to be necessary to reach the right axioms for H(ω2), a goal which
in my view is still well beyond our reach.
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