PERFECT TREES AND LARGE CARDINALS

 κ is measurable iff there is $j:V\to M$ with critical point κ

 κ is λ -hypermeasurable iff in addition $H(\lambda) \subseteq M$

 κ is $\lambda\text{-supercompact}$ iff in addition $M^\lambda\subseteq M$

(Measurable = κ^+ -hypermeasurable = κ -supercompact.)

Question: Suppose κ is a large cardinal and G is P-generic over V. Is κ still a large cardinal in V[G]?

Lifting method (Silver):

Given $j: V \to M$ and *P*-generic *G* over *V*.

Let P^* be j(P).

Find P^* -generic G^* over M s.t. $j[G] \subseteq G^*$.

Then $j: V \to M$ lifts to $j^*: V[G] \to M[G^*]$.

If G^* belongs to V[G] then j^* is V[G]-definable, so κ is still measurable (and maybe more) in V[G].

Singular cardinal hypothesis

SCH: The GCH holds at singular, strong limit cardinals

Prikry: Con(GCH fails at a measurable) \rightarrow Con(not SCH)

Silver: Con(κ is κ^{++} -supercompact) \rightarrow Con(GCH fails at a measurable)

Easy fact: GCH fails at measurable $\kappa \rightarrow$ GCH fails at measure-one $\alpha < \kappa$.

So for Silver's theorem, must violate GCH not only at κ , but also below κ .

Silver's strategy: Iterated Cohen forcing

Cohen $(\alpha, \alpha^{++}) = \alpha^{++}$ -product of α -Cohen forcing (with supports of size $< \alpha$)

 P_0 is trivial $P_{\alpha+1} = P_{\alpha} * \operatorname{Cohen}(\alpha, \alpha^{++}), \alpha$ inaccessible $P_{\alpha+1} = P_{\alpha}$, otherwise Inverse limits at singular ordinals, direct limits otherwise

 $P = \text{Direct limit of } P_{\alpha}, \ \alpha \in \text{Ord.}$

P preserves cofinalities and forces not GCH at each inaccessible.

Assume GCH in V.

Let $j: V \to M$ witness κ^{++} -supercompactness. Let G be P-generic.

Want generic G^* for $P^* = j(P)$, $j[G] \subseteq G^*$.

Write $P^* = P^*(\langle j(\kappa) \rangle * P^*(j(\kappa)) * P^*(\langle j(\kappa) \rangle).$

1. (Below $j(\kappa)$) Easy to build generic $G^*(\langle j(\kappa) \rangle)$ containing $j[G(\langle \kappa)] = G(\langle \kappa)$.

2. (At $j(\kappa)$, key step) Using supercompactness, the conditions in $j[G(\kappa)] \subseteq P^*(j(\kappa))$ have a common lower bound *(master condition)* p. Choose $G^*(j(\kappa))$ to include p.

3. (Above $j(\kappa)$) Using distributivity of $P(>\kappa)$, easy to show that $j[G(>\kappa)]$ generates a generic $G^*(>j(\kappa))$.

So $G^* = G^*(\langle j(\kappa) \rangle * G^*(j(\kappa)) * G^*(\langle j(\kappa) \rangle)$ contains j[G], as desired. Woodin: Can replace κ^{++} -supercompactness with κ^{++} -hyperstrength in the Silver strategy.

Subtle argument:

Derived measure: Use both $j: V \to M$ and its derived measure embedding $j_0: V \to M_0$. Leaving the universe: Force a generic $G_0^*(j_0(\kappa))$ over V[G]. κ is measurable in $V[G][G_0^*(j_0(\kappa))]$. Generic modification: Use $G_0^*(j_0(\kappa))$ to obtain a generic $G^{*'}(j(\kappa))$ for $P^*(j(\kappa))$, which must be modified to get the desired generic $G^*(j(\kappa))$.

A new strategy: Iterated Sacks forcing

Let α be inaccessible.

 α -Sacks: α -closed, binary trees of height α , with CUB-many splitting levels.

In the Silver strategy, replace $Cohen(\alpha, \alpha^{++})$ by $Sacks(\alpha, \alpha^{++})$, the α^{++} -product of α -Sacks (with supports of size α).

Assume GCH in V.

Let $j: V \to M$ witness κ^{++} -hypermeasurability. Let G be generic for P = iterated Sacks (α, α^{++}) . Let $P^* = j(P)$.

We want a P^* -generic G^* s.t. $j[G] \subseteq G^*$.

The construction of G^* is now easy.

Do not need the derived measure, leaving the universe or generic modification.

 α -Sacks has a weak form of α^+ -closure called α -fusion:

Write $S \leq_i T$ iff $S \leq T$ and S has the same *i*-th splitting level as T. Then any sequence $T_0 \geq_0 T_1 \geq_1 T_2 \geq_2 \cdots$ of length α has a lower bound.

 α -Sacks is α -closed and α^{++} -cc. α -fusion implies that α^{+} is preserved. If G is α -Sacks generic then $G = \{T \mid f \in [T]\}$ for some unique $f : \alpha \to 2$. We also say that f is α -Sacks generic.

Tuning fork lemma (F - Katie Thompson) Suppose $j: V \to M$ with critical point κ and G is κ -Sacks generic. Then the intersection of the trees in j[G] consists of exactly two $f_0, f_1: j(\kappa) \to 2$, which agree below κ and disagree at κ . Moreover each f_i is $j(\kappa)$ -Sacks generic over M.

Reason: The splitting levels of j(T), $T \in G$, form CUB subsets j(C) of $j(\kappa)$. The intersection of the j(C)'s is $\{\kappa\}$. (We assume that j is given by an extender ultrapower.)

There is a version of the Tuning Fork Lemma for $Sacks(\kappa, \kappa^{++})$, giving:

Theorem 1. (F - Thompson) Assume GCH. Suppose $j: V \to M$ witnesses that κ is κ^{++} hypermeasurable and G is generic for the iteration of Sacks (α, α^{++}) , α inaccessible. Then j lifts to $j^*: V[G] \to M[G^*]$, witnessing the failure of GCH at the measurable cardinal κ .

Using a result of Gitik, we also get:

 $Con(o(\kappa) = \kappa^{++}) \leftrightarrow$ Con(GCH fails at a measurable) The Tree Property and Large Cardinals

 κ -Aronszajn tree = κ -tree with no κ -branch

TP(κ): There is no κ -Aronszajn tree.

GCH holds at $\kappa \to \mathsf{TP}(\kappa^{++})$ fails

Question: What is the consistency strength of $TP(\kappa^{++})$, κ measurable?

Lemma (F - Natasha Dobrinen) Assume GCH, κ is regular, λ is weakly compact, $\kappa < \lambda$ and G is generic for Sacksit(κ, λ) = the λ -iteration of κ -Sacks (with supports of size κ). Then in $V[G], \lambda = \kappa^{++}$ and $\mathsf{TP}(\kappa^{++})$ holds.

Using a version of the Tuning Fork Lemma, we get:

Theorem 2. (F - Dobrinen) Assume GCH and $j: V \to M$ witnesses that κ is λ -hypermeasurable, where λ is weakly compact and greater than κ . Let G be generic for the iteration of Sacksit(α, λ_{α}), α an inaccessible limit of weakly compacts, λ_{α} the least weakly compact above α . Then in V[G], κ is measurable and TP(κ^{++}) holds.

The upper bound given by Theorem 2 is nearly optimal:

Con(κ is weakly compact hypermeasurable) \rightarrow Con(TP(κ^{++}), κ measurable) \rightarrow Con(κ is < weakly compact hypermeasurable) Easton's theorem and large cardinals

Easton: Con(GCH fails at all regulars)

Question: What is the consistency strength of GCH fails at all regulars and there is a measurable cardinal?

We saw: Con(κ^{++} -hypermeasurable) \rightarrow Con(GCH fails at a measurable)

The same proof yields: $Con(\kappa^{++}-hypermeasurable) \rightarrow$ Con(GCH fails at all regulars except at α^+, α^{++} when α is inaccessible)

Using Sacks (α, α^{++}) at inaccessibles and Cohen (α, α^{++}) elsewhere, one gets:

Theorem 3. (F - Radek Honzík) Assume GCH. There is a forcing P such that if G is P-generic then GCH fails at all regulars in V[G]. Moreover, if κ is κ^{++} -hypermeasurable in V, then κ remains measurable in V[G].

One can also replace κ^{++} -hypermeasurable by $o(\kappa) = \kappa^{++}$, the optimal hypothesis.

Global Domination

So far: Large cardinal preservation

Now: Internal consistency

 φ is *internally consistent* iff φ holds in an inner model (assuming large cardinals).

 $ICon(\varphi) = \varphi$ is internally consistent.

Consistency result: Con(ZFC + large cardinals) \rightarrow Con(ZFC + φ)

Internal consistency result: ICon(ZFC + large cardinals) \rightarrow ICon(ZFC + φ) Examples:

(a) (Easton) Con(ZFC) →
Con(ZFC + GCH fails at all regulars)
(b) (F - Ondrejović) ICon(ZFC + 0[#] exists)
→ ICon(ZFC + GCH fails at all regulars)

(F - Dobrinen)

(a) $Con(ZFC + proper class of \omega_1$ -Erdős cards) $\rightarrow Con(ZFC + Global costat of ground model)$ (b) $ICon(ZFC + \omega_1$ -Erdős hyperstrong with a sufficiently large measurable above) \rightarrow ICon(ZFC + Global costat of ground model)

(a) $Con(ZFC) \rightarrow Con(ZFC + no L-inaccessible)$ (b) ~ ICon(ZFC + no L-inaccessible)

Internal consistency strength: What large cardinals are needed to prove $ICon(\varphi)$? An application of perfect trees to internal consistency strength:

 $d(\kappa) =$ dominating number for $f : \kappa \to \kappa$

 $\kappa < d(\kappa) \leq 2^{\kappa}$

Global Domination: $d(\kappa) < 2^{\kappa}$ for all κ .

Cummings-Shelah: $Con(ZFC) \rightarrow Con(ZFC + Global Domination)$

Proof uses Cohen (α, α^{++}) * Hechlerit (α, α^{+}) for all regular α and gives:

ICon(ZFC + κ^+ -supercompact + measurable above) \rightarrow ICon(ZFC + Global Domination)

Replacing Cohen (α, α^{++}) * Hechlerit (α, α^{+}) with Sacks (α, α^{++}) for inaccessible α gives:

(F - Thompson) ICon(ZFC + $0^{\#}$ exists) \rightarrow ICon(ZFC + Global Domination *except* at α^+ , α inaccessible)

And with Cohen (α^+, α^{+++}) followed by an interlacing of Hechlerit (α^+, α^{++}) with Sacksit (α, α^{++}) for inaccessible α , we get:

Theorem 4. (F - Thompson) ICon(ZFC + $0^{\#}$ exists) \rightarrow ICon(ZFC + Global Domination)

Conclusion

For large cardinal preservation and internal consistency, Sacks is better than Cohen!