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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 255, November 1979 

,8-RECURSION THEORY' 
BY 

SY D. FRIEDMAN2 

ABSTRACT. We define recursion theory on arbitrary limit ordinals using the 
J-hierarchy for L. This generalizes a-recursion theory, where the ordinal is 
assumed to be 21-admissible. The notion of tameness for a recursively 
enumerable set is defined and the degrees of tame r.e. sets are studied. Post's 
Problem is solved when 1cf /3 > /3*. Lastly, simple sets are constructed for 
all /3 with the aid of a /3-recursive version of Fodor's Theorem. 

Introduction. Recursion theory was generalized from the integers to CK = 

the first nonrecursive ordinal by Kreisel and Sacks [8] and then to an 
arbitrary E1-admissible ordinal a by Kripke and Platek [9], [14]. Since then, 
the subject of a-recursion theory, or recursion theory on the 21-admissible 
ordinals, has flourished, generalizing theorems of ordinary recursion theory to 
many or sometimes all El-admissible a. 

The key step toward accomplishing this program was taken by Sacks and 
Simpson [17] when they adapted the finite injury method, invented by 
Friedberg [2] and Muchnik [13] to solve Post's Problem in ordinary recursion 
theory, to arbitrary El-admissible ordinals. Sacks and Simpson used Skolem 
Hulls in the way that Godel used them [6] to prove the GCH in L. The 
connection between a-recursion theory and set theory is partly explained by 
the fact that the a-r.e. sets are just the sets El-definable over La, the ath level 
of L. 

This suggested that techniques used to analyze the structure of L would 
prove useful in a-recursion theory. 

Ronald Jensen, in his fine structure theory, has greatly extended Godel's 
ideas to provide a very deep analysis of how sets are constructed at each level 
of L, and has used this to settle many important questions of model theory 
and set theory in this model. 

There is an asymmetry between the approach of a-recursion theory and 
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that of Jensen's: a-recursion theory studies only the E1-admissible levels of L 
whereas Jensen's work applies to all levels. The reason is that in a-recursion 
theory the essential problem is always to obtain a bound on an inductive 
process, which appears to require the assumption of admissibility (which is a 
bounding principle). 

However, we feel that the main thrust of the work in a-recursion theory has 
been to demonstrate that recursion-theoretic constructions from ordinary 
recursion theory which seem to require a large amount of replacement, say 22 

or even E3, can actually be refined to succeed with only the assumption of 
E1-admissibility. In view of the applicability of Jensen's ideas to every level of 
L, it is natural to bring things to their logical conclusion and ask: 

(*) Can the assumption of Y1-admissiblity be eliminated? 
If one can make constructions which appear to involve 22 of 23 replacement 
succeed on an arbitrary El-admissible ordinal, can one try even harder and 
get by with no admissibility assumption? 

/3-recursion theory is the study of recursion theory on arbitrary limit 
ordinals. /3-r.e., ,8-finite, and /8-recursive sets are defined as they are in 
a-recursion theory. The passage from a-recursion theory to /3-recursion 
theory is analogous to that from ordinary recursion theory to a-recursion 
theory. Firstly, distinctions appear which were not present in the less general 
theory: In a-recursion theory, the distinction appears between regular and 
nonregular sets (or hyperregular and nonhyperregular sets), though of course 
every set in ordinary recursion theory is both regular and hyperregular. In 
/3-recursion theory, an important distinction appears between those /8-r.e. sets 
which have "tame" enumerations (defined in Chapter 2) and those which do 
not, though every such set in a-recursion theory has a "tame" enumeration. 
Secondly, certain results do not generalize completely to the wider context: In 
a-recursion theory, the maximal sets theorem generalizes only to some admis- 
sible a (see [10]). In /3-recursion theory, the regular sets theorem generalizes to 
only some inadmissible ,8 (for some ,8-r.e. sets). 

In both of these instances, the more general theory helps both to clarify the 
concepts of and to indicate what assumptions are necessary in the more 
specific one. 

A positive answer to (*) would have great importance for a-recursion 
theory, as the unsolved problems in this subject result from lack of :2-admis- 
sibility; if in fact admissibility is not necessary, then the techniques which 
demonstrate that should yield constructions which work for arbitrary a (even 
inadmissible a). This has actually been partially carried out in [4], where 
Post's Problem is solved for many inadmissible /8. What is used to make up 
for the lack of admissibility is, as predicted above, Jensen's fine structure 
theory. 
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The development of ,8-recursion theory has come in two parts This paper 
deals primarily with the first part, where properties of /8-r.e. sets which are 
present with admissibility are explored in the context of inadmissible /3. 
This resulted from joint efforts of the author and G. Sacks (see [5]) to narrow 
the collection of /8-r.e. sets in order to develop a theory with some similarity 
to the admissible case. Results of Maass [12] and the author indicate that this 
yields a good theory when I1cf /8 > /8* and otherwise not. The second part of 
the development instead discards attempts to make /3-recursion theory look 
like a-recursion theory and directly deals with severe failures of admissibility 
(21 cf /8 < 8*). This will be treated in the forthcoming [4]. This split into 
cases was first made evident by Jensen in his proof of E2-Uniformization for 
S (see [7]). 

It is our hope that Jensen's ideas and those from recursion theory on the 
ordinals will combine not only to solve many problems in generalized 
recursion theory, but also to provide an ultimately fine analysis of the 
structure of L. 

In Chapter 1, the basic facts about the J-hierarchy as developed by Jensen 
in [7] are summarized and various types of cofinalities and projecta are 
defined. In Chapter 2, we present the key definitions of /3-recursion theory. 
Chapter 3 establishes some basic results about the degrees of tamely r.e. sets: 
a regular sets theorem, a recursive upper bound to the t.r.e. degrees 
inadmissible /3, and a solution to Post's Problem when EIcf /8 > /8*. Chapter 
4 uses a /8-recursive version of Fodor's Theorem from combinatorial set 
theory to construct simple /8-r.e. sets for all /8 and to characterize those /8 for 
which there is a non-,8-finite t.r.e. subset of /8*. 

CHAPTER 1. THE FINE STRUCTURE OF L 
We begin by describing a hierarchy for Godel's L which differs somewhat 

from the usual one. This hierarchy is due to Ronald Jensen and was 
introduced by him in order to facilitate a very fine analysis of the structure of 
L. The difficulty with the usual L-hierarchy is that in this hierarchy the levels 
are not necessarily closed under very simple set-theoretic operations, e.g., the 
formation of pairs. The Enumeration Theorem for El sets depends upon 
pairing, however. 

The idea of the Jensen hierarchy is to attain each successor level Ja+l by 
closing Ja U {Ja) under a collection of basic functions, like pairing, called 
rudimentary functions. This is sufficient to capture all subsets of Ja first-order 
definable over Ja and in fact these are all of the subsets of Ja obtained. Thus, 
the levels of J are very closely tied with those of L. The exact relationship is 
as follows: JO = Lo = 0, J1 = L, = HF, L.+. = V.+a, n J+a, On nJ= 

a * a =La iff t * a = a iff o divides a. 
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A thorough treatment of the J-hierarchy can be found in Devlin's book [1]. 

1. Rudimentary functions. A function f: V' -> V is rudimentary if and only 
if it is generated by the following schemata: 

(i) fi(X ., . .fiX") = xi, I < i < n, 
(ii)f(5-) = {xi, xj, 1 < i,j < n, 
(iii)f(5-) = -Xj, 1 < i,j < n, 
(iv)f(x-))= ... ) gk(5)) 
(v) f(y, 5-) = U z Ey g(z, 5-). 

R C V' is rudimentary if and only if there is a rudimentary function f such 
that 5x E R*-f(5-) = 0. 

EXAMPLES. x U y, {x-}, <x, y>, x E y are all rudimentary. If R(y, 5-) is 
rudimentary, so isf(y, -) = y n {zIR(z, 5Y). 

There is a nice characterization of rudimentary relations given by 

LEMMA 1.1. R C V' is rudimentary if and only if R is "F* 

(A definable relation is EZF if it has a definition provably equivalent in ZF 
to a formula in In form.) This fails for functions, as graph(J) rudimentary 

f rudimentary. In fact, by 1.1, V x {X}) is rudimentary, but 

LEMMA 1.2. If f(x1, . .. , x") is rudimentary then there exists k < X such that 
ranrkf(x1, . .. , x") < max(rank x1, . .. ., rank x") + k for all (x1 ... , x") 

(rank x = least a such that x E Va+ 1). 

X is rudimentarily closed if, for all rudimentary f: Vn __ V, f"Xn C X. For 
all sets X, define k.m = {<i, x, . . . , xn>l the ith En fmla g is n-ary and 
<X, e> p (x1*, X . ) 

LEMMA 1.3. X rudimentarily closed implies tYn is Ex, uniformly in X. 

Lemma 1.3 is the key fact about rudimentarily closed sets and establishes 
the existence of a universal Ex set for rudimentarily closed X. 

2. The J and S, hierarchies. For any transitive set X, rud(X) = rud. 
closure (X U {X)) = the least rud. closed Y D X U {X). 

LEMMA 1.4. X transitive implies '0P(X) n rud(X) = Def(X), where Def(X) 
= { Y C XI Y is first-order definable over <X, e>}. 

Thus, each z E (rud(X) - X) is simply obtained from first-order definable 
subsets of X. 

LEMMA 1.5. There is a rudimentary function S such that for transitive X, 
S(X) is transitive, X U {XI 5 S(X), U ,n Sn(X) = rud(X). 

The S-hierarchy is defined by 

So =0, Sa+1 = S(Sa)' SA U Sa. 
a<X 
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The limit levels (and only those levels) of this hierarchy are rudimentarily 
closed. We define 

Jo = 0 Ja+I = rudJa, JA= U Ja' 
a<X 

So, Ja = S.a. 

LEMMA 1.6. (i) Each Sa J,a is transitive. 
(ii) <Syly < * a> and <JaIy < a> are uniformly l:tfor all a. 
(iii) On n Ja = 0 a,f or all a. 

2 I well-orderings. What makes the Ja's special among rudimentarily closed 
sets is the fact that they are uniformly 2: well-orderable. This is the content 
of the following important lemma. 

LEMMA 1.7. There are well-orderings <- of the Sy such that 

(i) Y1 < Y2 -> < is an initial segment of <Y2. 

(ii) < < -yI < . a > is uniformly EA. 
(iii) The function pra(x) = {zjz <I x} is uniformly M1a. 

(iv) Order-type (<..a)= = 

Note that the ordering <. of Ja has order-type wa, not On n J, = to a. 
Thus, unlike a-recursion theory, one cannot identify members of Ja with 
ordinals less than X * a. The following lemma shows, however, that one can 
nonuniformly in a construct a 2, well-ordering of J'a of length X - a. 

LEMMA 1.8. There is a Et map of J 1-1 onto X a. 

The well-ordering of Lemma 1.8 will require in general a parameter from Ja 
and will not satisfy property (iii) of Lemma 1.7. Property (iii) is crucial to 
enable the inductive construction of :1 sets over J 

Skolem Functions. Let X be rudimentarily closed. A In Skolem Function for 
X is a Ex function f, dom f C to x X, such that if P(y) is Ex with parameter 
p, then 3yP(y) -* 3i E wP(h(i, p)). 

The preceding lemmas enable one to obtain a :1 Skolem Function for each 
J as follows: Define h'(i, x) the least (in <s,a) pair <y, z> such that 
4(i, x, y, z), where 3z41(i, x, y, z) is a 2 I formula universal for 2 I formulas of 
two variables x, y. Then define h(i, x) = (h'(i, x))0, where ( )0 is projection 
onto the first coordinate. Then 

LEMMA 1.9. h is a 2I Skolem Function for Ja. 

h is called the canonical 21 Skolem Function for Ja. Note that h is 
parameter-free and has a uniform definition over all Ja's. 

A very deep and important result of Jensen is 
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THEOREM 1.10 (JENSEN'S UNIFORMIZATION THEOREM). Each Ja has a In 
Skolem Function, n > 1 (nonuniformly). 

For n > 2, the In Skolem Function requires a parameter. 1.10 allows one 
to generalize many operations performed on :1 predicates to En predicates, 
n> 1. 

LEMMA 1.11. (i) (Taking the Hull). Say f is a En Skolem Function for Ja with 
parameter p and X C Ja is closed under pairing. If p1,.... ,Pk E Ja' then 
f"[w x (X U {KP,Pi, ... I Pk>})] <E "a 

(ii) (Inverting the Hull). Say /3 < X * a, f as in (i). If P1, . . . ,Pk EE J 
Y = f"[w x (S0 U {<p,p1,.p . Pk>})], then there is a 1-1 function g: Y B-* / 
which is En over < Y, e>. 

In (i) above, f"[w x (X U {<p,P1, . . . ,Pk>}] is called the En Skolem Hull 
of X U {P,P1, * I PJ. 

LEMMA 1.12 (CONDENSATION). If X -<E Jca then there is a unique 7T: X J 
for some /3 < a. Also, if Y C X is transitive 'ni Y = idl Y. 

Lemmas 1.11 and 1.12 are very useful in conjunction and were first 
exploited by Godel in his proof of the GCH in L [6]. 

3. Cofinalities, projecta, and stability. There are important differences 
among the Ja's for various a, and these differences are best revealed by 
examining set theory inside J, 

Let ,/, y be limit ordinals, y < /3, n > 1. Then V-cf(y) (Y:n-cofinality of y) 
is the least 8 < y such that there is an unbounded f: 38 - y which is En 
definable over S,B The :-pr(y) (2fn-projectum of y) is the least 8 < y, such 
that there is a 1-1 f: y -* 8 which is E definable over S,B If y = /3, we write 
n cf /, pn for Y:-cf(/3), YO-pr(/), respectively. If n = 1, we write /3* for p. 

For /3, y limit ordinals, y < /, y is a /3-cardinal if S, t "y is a cardinal", y is 
a regular /3-cardinal if S,B t "y is regular", and the /3-cardinality of y (,/-cofi- 
nality of y, resp.) equals 8 if and only if S,B t "cardinality y = S" (S, t 
"cofinality y = 3", resp.). 

PROPOSITION 1.13. (i) Y2f-pr(y) is a /8-cardinal for y < /3. pn = /3 or is a 
/3-cardinal. 

(ii) Y.-cf(y) is a regular /3-cardinal for y </,. Encf ,/ = /3 or is a regular 
/3-cardinal. 

,/ is E2n-admissible if and only if Encf,/ = /3 and E2n-nonprojectible if and 
only if p%l = /. An important characterization of p,l is given by the following 
result. 
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THEOREM 1.14. pn = the least 8 such that there is a set A C 8 which is 
I2n-definable over S3 but not a member of S,3. 

PROOF. We use 1.10, 1.11, and 1.12. Let f be a En Skolem Function with 
parameter p, 8 < /. Suppose there is a A 5 8, A M S3, and A is E over S,B 
with parameter q. Let X = f"[w x (S8 U {<p, q>})] -<, SO. By 1.12, let 7T: 

X Sy, y </3. A C 8 is definable over X, hence over SY, since '7TI = idI3. 
Since A 4 S,3, we must have y = /8. But then by 1.1 1(ii), pn < 3. 

It remains to show there exists A 5 pn, A 4 S3 and A is E over S,B By 
1.8, let g: SB -,B / be 1-1 and onto, g E I over S,B Let h: /3 pn be 1-1, 1 n 
over S,B Then define A C pn by3 E A -3x[h o g(x) = 8 and 8 4 x]. Then 
A is E over S,B If A E S,, then if So = h o g(A), we have 

So E A *-> M (h o g) 1(80) <-0 S A. - 

We now state some results which are special to the E I case and arise from 
the fact that E, unlike En for n > 0, is closed under complementation. 

LEMMA 1.15. y a /3-cardinal, y > X implies Sy <,SIl (i.e., y is /3-stable). 

PROOF. Suppose 8 < y, +(x) is A with parameters from S,, and S,, t 
3x+(x). We want to show Sy t 3x+(x). 

Case 1. /3 is a limit of limit ordinals. 
Choose a limit ordinal /3' < / such that S,B' t 3x+(x). Let h be the canoni- 

cal : Skolem Function for S,. Let X = h"(w x S^,). By 1.12, let '7: X -S 

Since I 8 = idl3, Sa t 3x+(x). But by 1.1 1(ii), /3-card (a) 8 < Ky. So a < Ky 
and Sy t 3x+(x). 

Case 2. ,/ = /3' + w. 
Suppose (3x E Sfl,+ )4(x). Let 3zo(i, x,y, z) be a E I formula univer- 

sal for El formulas of the variables, x, y- Define the partial function h, 
domh c X x S8, by h(i, x)y if 3z[<y, z> C and <y, z> is the 
<fl-least pair such that 4(i, x, y, z)]. Let X = range h. It is easy to show that 
Y = x n S' < /-<j . Let 7: Y 

S.a 
by 1.12. As in Case 1, a < Ky. Since 

X C rud(Sf3,), there exists Z c Sa+n' Z transitive, such that <X, e> - <Z, e>. 
But then <Z, E> k 3x+(x), and so Sa+n t 3x+(x). Since a + n < y, Sy t 
3x4o(x). -- 

PROPOSITION 1.16. If /B is not (E2l)-admissible, then 
(i) S,B t 3 largest cardinal. 
(ii) /* < A. 

PROOF. Let f: yo -*B / be order-preserving, unbounded, yo </3, and f be : 
over S,B with parameter p. 

(i) If y is a /3-cardinal such that yo, p E Sy then by 1.15, range f C y, 
contradiction. 
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(ii) Let y = largest fl-cardinal. For a < yo, let g, be the <<-least injection 
of Sf(a+l) -S,f,a) into y. Definef(x) = <y, z> if and only if (y = leasty' such 
that x E Sf(Y + l) - SAy,) and gy(x) = z). Then f is a 2f injection of SO into 

Yox y. LetgE Smap yo x y 1-1 into y. Theng of injects / into y </3. -' 

Note that in the proof of 1. 16(ii), we could have actually shown that there 
is a Ep map of 8 1-1 onto y = greatest fl-cardinal. Define /3 = least 8 such 
that there is a Efl bijection of /8 onto 8. Thus, 

PROPOSITION 1.17. ,/ is admissible if and only if /3 = /3. 

There is no analogous result for 22-admissibility, as XL is not 22-admissi- 
ble, but certainly not l22-projectible. 

Every successor /8-cardinal is /3-regular; the proof is the usual one in set 
theory with the axiom of choice. However, if a successor fl-cardinal is < /3*, 
we get more: 

PROPOSITION 1.18. Suppose X S /3* is a successor /3-cardinal. Then X is 
E-regular, i.e., X is regular with respect to functions 2 over Ss. 

PROOF. If A <,/3*, then any Y: function with domain and range c A is a 
member of S0 by 1.14. So the proposition is clear in this case. 

Supposef: y -*/*, y <,8*, andf(x) = y is defined by 3z4(x, y, z) over S. 
Also, assume ,u+ = /3* (so that /8* is a successor /3-cardinal) and for each 
a < 8*, let g, = the <al-least in injection of a into ,. Now if f is unbounded, 
then define g: 8* -* y x u by 

g(x) = <yl, 8 > iff 3z, 3Z2 3a1 3a2[0(yl, a1, z1) A 0(Y1 + 1, a2, Z2) 

Aal < x < a2 A g2(X) =8- 

Then g is E and g: /3* y X IL, contradicting the definition of /8*. - 

Note. It may happen that /3* is a regular /3-cardinal but /3* is not regular 
with respect to functions El over S,. For example, let K be strongly inaccessi- 
ble in L and define 80 = K, 8 = K + c - n. Also let Ko = ) K"+l= 

sup[(2:1- Skolem Hull (w X (K,, U {K})) in S,B+,) n K]. Then K. + o2 is such a 
,/ where K,, = U n Kn. In this case /3* = K,, is a regular /8-cardinal but the 
sequence Ko, K1, K2, ... is /3-recursive. This example is due to Fred Abram- 
son. 

CHAPTER 2. THE KEY DEFINITIONS 

Let /8 be a limit ordinal. We define /3-recursion theory to be the study of 
sets : definable over S,. The following definitions coincide with those from 
a-recursion theory (recursion theory on El admissible ordinals): 

A C S, is ,8-recursive enumerable if A is El definable over S,. 
A C Sq is /3-recursive if both A and S - A are /3-recursively enumerable. 
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We abbreviate fl-recursively enumerable as fl-r.e. and fl-recursive as /8-rec. 
Recursively enumerable and recursive sets were defined initially for sets of 
natural numbers as those sets enumerable or computable by an algorithm; 
i.e., a procedure given by a finite machine. The recursively enumerable sets of 
integers coincide with those 2:I-Definable over HF = the hereditarily finite 
sets. The above definition is a generalization of this definability-theoretic 
viewpoint of recursively enumerable set. As in a-recursion theory the notion 
of finite undergoes alteration: 

A C S is /8-finite if A E S,B 
A functionf: A -* Sf, A 5 is fi-rec. if graph(f) is fi-rec., andf is fl-finite if 
graph(f) is fl-finite. 

At this point, a few remarks are in order concerning our choice of 
definitions. fl-recursion theory certainly should capture the idea of perform- 
ing "computations" of length <fi. Accordingly, certain basic relations and 
functions such as < r /8 x fi and ordinal successor should be taken to be 
fl-computable, as well as relations obtained from these by closure under 
bounded quantification Vx < y, for y <,f. From this one can show that all 
relations A over <Sfi, E> must be fl-computable. 

Our notion of fl-recursively enumerable should capture the idea of being 
listable in a fl-computable way. As any set El over <Sfi, e> is the range of a 
function whose graph is A over <Sfi, e>, we see that all fl-r.e. sets in fact are 
fi-computably listable. But in practice any set which has a fl-computable 
listing turns out to be 2:I-definable over <Sfi c> 

Our notion of fl-finite can similarly be justified in this way as the /3-finite 
sets are exactly those fl-r.e. sets which can be listed in fewer than /3 steps. The 
situation with fl-recursiveness is less clear. There are certainly reasonable and 
stronger conditions for a set to be fl-recursive. For example, for A 5 SP 
define A* = {z C AIz is fl-finite). We may require that not only A, Sf - A 
be 83-r.e. but also A*, (S - A)* be 83-r.e. in order for A to be fl-recursive. 
However, there is an a posteriori justification for our definition in that it is 
the fl-recursive sets as we have defined them that play a key role in the 
classification of the fl-r.e. sets. So making further restrictions on /3-recursive- 
ness would only necessitate inventing a new term for those sets which are 
both,f-r.e. and co-,f-r.e. 

Enumerations. In a-recursion theory, an enumeration of an a-r.e. set A is 
just an a-rec. function whose range is A. It follows from the 11-admissibility 
of a that one can effectively compute each initial segment of such an 
enumeration, uniformly. In fl-recursion theory, the notion of enumeration 
requires greater scrutiny. 

An enumeration of a fl-r.e. set A C S is a fi-rec. function f: S A such 
that Range f = A and for some limited formula 4p(x, y, z), we have, for 
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sufficiently large 8 < /, 

f(x) = y -3z E S8)(x, y, z) 

for all x, y E S8. Thusfl S6 is uniformly Th over S,, for 8 sufficiently large. 
Any nonempty f3-r.e. set has an enumeration, for if A is defined by 

x E A *-* 3y)(x, y), 4 limited, let 

f(z) = fx, if z = <x, y> and+(x, y), 1 least member of A, otherwise. 

Thenf is an enumeration of A. 
It will be convenient to discuss enumerations in terms of their increasing 

sequence of ranges { Range fI S,}. Thus by an "enumeration" {E8 }, we mean 
such a sequence arising from an enumerationf. 

An enumeration {E8 } is terminating if for some 80, E8, = E80, for all 8 > So. 
Clearly, the /3-finite sets are exactly the /8-r.e. sets which have a terminating 
enumeration. But not every enumeration of a ,8-finite set need terminate, and 
this is an important difference between 8-recursion theory and a-recursion 
theory. For example, when constructing,8-r.e. sets via an enumeration, there 
may be fl-finite subsets of the resulting /8-r.e. set whose enumeration is never 
completed at any stage of the construction. In the next chapter it is shown 
that for many /3, this phenomenon must be present when constructing 
nontrivial ,-r.e. sets. 

Another principle from a-recursion theory which fails in this context is: 
"An a-recursive subset of an a-finite set is a-finite." At first sight, this 
appears to be an inadmissible pathology, but further thought reveals its 
plausibility: Although for each member of the given f-finite set one can 
effectively decide if it belongs to the given /8-recursive subset, one cannot 
necessarily make all of those decisions by some bounded stage. This occurs 
for every inadmissible / as a consequence of the existence of a fl-recursive 
1-1 correspondence of /3 with some smaller ordinal. 

Reducibilities. As S,, is rudimentarily closed, we may obtain a /3-recursive 
enumeration {4)e(x)}e,s of the El formulas with parameters from S, and 

sole free variable x. (We identify formulas with their godel numbers.) Then 

,O(e, x) *>3 8 < ,0< S,, E> 
t 
f(x) 

is a El formula universal for El formulas of one free variable. We let 
W= {xlSfi t)e(X)}, the eth ,B-r.e. set. Clearly C = {Ke, x>ISfi t (e, x)} is a 

complete ,-r.e. set. 
Let { e} be the partial El function defined by 

{e}(x) y *->38[<y, 8 > = <8l-least pair s.t. <Se, E> t xe(KX,y>)]. 
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Also, for A 5 S, 

{eA (x)y-> 33Zi2[ Zi, Z2 ESp, Zl C A, z2 S -A and 

<Z1 Z2,Y> = <p-least triple s.t. {e}(<z1, z2, x>) cy]. (*) 

Clearly { e}A is single-valued (though not necessarily total). A function f is 
weakly fl-reducible to A (f <,? A) iff f { (e}A for some e. B C S, is weakly 
fl-reducible to A (B <w A) if CB = {e)A for some e, where CB = the char- 
acteristic function of B. Also, B is fl-reducible to A (B <S A) iff there exists 
an e such that 

z1 CB< B{e}A(zl) O, 

Z1 Z2 E S,. 

Z2 C S- B {e}A(z2) 1 

Lastly, B is finitely /3-reducible to A (B <fpA) iff 3e CB R {e}A where {e})A is 

defined as in (*) above, except where zl, Z2 range over finite sets. 
A pair <z1, Z2> where z1 c A, z2 C S - A is termed a membership fact 

about A. A membership fact <z1, Z2> is finite if and only if z1 and Z2 are finite. 

Thus B <w, A if all finite membership facts about B can be effectively 

generated from (,8-finite) membership facts about A, B <p A if all member- 

ship facts about B can be effectively generated from membership facts about 

A, and B <fq A if finite membership facts about B can be effectively 

generated from finite membership facts about A. 

<wa was introduced originally as the reducibility when a is admissible, but 
due to its asymmetric definition was later discovered to be intransitive for 

0a = CK = first nonrecursive ordinal. 

<, is transitive and has evolved to be the correct reducibility for fl-recur- 

sion theory. If a is admissible, many theorems about Turing degrees have 

been lifted to < a-degrees. A word of warning: A <,p 0 is not the same as A 

,f-recursive. Thus there may be different fl-degrees of f8-recursive sets. (In the 

next chapter we will show that this occurs exactly when ,8 is not admissible.) 

<ff3 is introduced primarily as a technical device in various proofs. It is 

transitive but does not capture the full flavor of f8-recursion theory as all 

membership facts are finite. 

Tamely-r.e., strongly-r.e. and regular sets. We wish to study the f8-degrees 
of fl-r.e. sets, where for A C S, the fl-degree of A = IBIB <p A and 

A < p B). In case f8 is admissible, this study has gone quite far with the use of 

priority method, invented in ordinary recursion theory by Friedberg [2] and 

Muchnik [13] to prove the existence of incomparable Turing degrees of r.e. 

sets of integers. In a priority construction, the desired properties of the r.e. 

sets we wish to build are expressed in terms of a collection of requirements. 
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These requirements are then arranged into a well-ordered list, a requirement 
lower in the list having "higher priority" than those above it. In the case of 
Post's Problem for an admissible a, where a-r.e. sets A, B of incomparable 
a-degree are constructed, a typical requirement is satisfied by placing some x 
into B (A, respectively) and establishing a computation {e}A(x) = 0 ({e}B(x) 
= 0, respectively); accordingly, certain a-finite sets zl, Z2 are sought so that 
z1 C A, Z2 C La-A (z1 C B, Z2 C Lt -B, respectively). Conflicts arise 
between requirements because, for example, we may wish to place some x' 
into A for some requirement R', but requirement R may require Z2 C La -A 
where x' E Z2. The priority listing gives preference to requirements of higher 
priority and one then shows inductively that each requirement is permanently 
satisfied beyond some stage of the construction. 

When a > w, the above method encounters difficulties as the final induc- 
tion is 12 over La and not 2 over La. Sacks and Simpson [17] employ an 
argument using E2l-elementary substructures to perform this induction for 
arbitrary :l-admissibles. If one would like to adapt this approach to the case 
of an inadmissible /3, then the problems with induction are even greater, but 
there is another added difficulty: Computations te}A(x) = 0 depend on 
,f-finite sets z1 C A, Z2 C X - A. In the admissible case, there will be some 
stage a in the construction where, if A U = part of A enumerated by stage a, 
we will have z C A, Z2 C - A C S- A and thus {e}A (x) = 0. Tis 
can fail in the inadmissible case, where z1 C A does not imply 3a(z1 5 A'). 
So the computation (e}A(x) = 1 may never be apparent at any stage of the 
construction. 

Thus we would like our enumeration {A') of A to have the following 
property: If K C A is /8-finite, then 3a(K C A ). This property of {A U) is 
called tameness. Now if we arrange our construction so that the resulting 
enumeration of A is tame, then all computations from A will appear at some 
stage in the construction. 

We define 
A is tamely-r.e. (t.r.e.) iff A has an enumeration {AU) s.t. K C A, K 

,8-finite -* K C A U for some a. 
Of course, even if A is t.r.e., there may be (and will be if ,B is inadmissible) 

enumerations of A which are not tame. If /8 is admissible, any enumeration is 
tame and thus t.r.e. = r.e. 

PROPOSITION 2.1. A is t.r.e. **A* = {KIK C A) is r.e. <-> A* is t.r.e. 

PROOF. If A is t.r.e., let {A U) be a tame enumeration of A. Then K C A 
3a(K C AU) so A* is r.e. Also, K C A**<* U K C A *->3a(UK C AU) so 
A * is t.r.e. 

Suppose A* is r.e. We show that A is t.r.e. Let {A)*) be an enumeration of 
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A*. If AU = U A*, then {A'} is an enumeration of A. But K C A -* K E 
A*--3a(K ECA*)--3a(K C AU), so {A ?} is tame. - 

The statement " {KIK C A) is r.e." is equivalent to the statement that the 
collection of certain limited sentences (i.e., no unbounded quantifiers) which 
are true about A is r.e. Let AO(A) be the set of all sentences with parameters 
from S,3 which consist of a string of bounded quantifiers followed by a 
quantifier-free matrix in which A occurs as a predicate. Also, let Al(A) 5 

Ao(A) consist of those sentences in A4(A) in which all occurrences of A are 
positive, i.e., x E A is within the scope of an even number of negation signs 
whenever it occurs. Then p E Ao(A) qp(A) true, A 5 B implies T(B) true. 
Also, if Tp E A4(A), 8 </, and all parameters in p belong to S8, then 

T(A)*-*q(A n Sa). 
Now, A is t.r.e. iff {fT Ec 4,(A)I T(A) is true and p is of the form Vx E K(x 

E A)) is r.e. If /3 is admissible, then {fT C 4,(A)JT is true) is an r.e. set (we 
identify sentences with their Godel numbers E S,B). We define 

A is strongly-r.e. (s.r.e.) iff the true sentences of Ah(A) form an r.e. set. 
Also, let A be 

n-r.e. iff the true sentences of /+(A) involving (n - 1) alternations of 
bounded quantifiers form an r.e. set, for n > 0. So s.r.e. *-> Vn (n-r.e.), and 
l-r.e.-* t.r.e. If /8 is admissible, s.r.e. = r.e. 

A C S is regular if z E S, implies A n z Ec S. Regularity is important as 
it allows one to get a universal II predicate for <Se, E, A>, and thus do 
recursion theory relative to A. A theorem of Sacks [16] in a-recursion theory 
says that any a-r.e. set has the same a-degree as some regular a-r.e. set. We 
shall prove a regular sets theorem for s.r.e. sets. 

PROPOSITION 2.2. If A is t.r.e. and regular, then A is s.r.e. 

PROOF. If +(A) E A (A), then 

4(A ) is true*-> 38 < 13[4(A n Sa ) is true] 

*->3z[4(z) is true andz c A]. 

Since A is t.r.e, this last equivalence is an r.e. predicate of 4. - 

CHAPTER 3. DEGREES OF T.R.E. SETS 

1. A regular sets theorem. The regular sets theorem of Sacks [16] states that 
for admissible a, every a-r.e. set has the same a-degree as some regular a-r.e. 
set. Admissibility is used heavily, and in fact, we shall see that this theorem is 
false for some inadmissible /B. However, a version is true for s.r.e. sets: 

THEOREM 3.1. Suppose /3 is admissible or /3* = gc ,8, the largest /3-cardinal. 
Then every s.r.e. set has the same /3-degree as a regular s.r.e. set.3 

3We thank W. Maass for pointing out the necessity of the assumption ",8* = gc ,8" in our 
proof of 3.1. Maass has proved 3.1 without this assumption. See [12]. 
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The regular sets theorem is useful in a-recursion theory, as regular a-r.e. 
sets are easier to work with than nonregular ones. Results later in this chapter 
indicate that nonregularity is an essential feature of /3-recursion theory. 

PROOF OF 3.1. The proof is similar to the one in a-recursion theory (see 
Simpson [20]). 

LEMMA 3.2. Let A be s.r.e. Then there is a set A*, A* A, A* s.r.e. such 
that for all C, A* <C iff A* <wC. 

PROOF OF 3.2. Let A* = {zIA n z # 0). A* is s.r.e. since any sentence in 
AZ (A*) is effectively equivalent to a sentence in AZ (A). 

A <lA * because: 
(i)z C S1 - A *-z A* 
(ii) z C A is an r.e. (even s.r.e.) predicate. 
A* (fi A because: 

(i)z C S- A* z U z C S- A. 
(ii) z C A* is an r.e. (even s.r.e.) predicate. 
Lastly, suppose A* <wfl C. As before, z C A* is s.r.e., so we need only 

concern ourselves with the negative part of the reduction A * < C. But 

z C S, - A* * U z 5 A* 

and since A * <wo C, we can determine the r.h.s. from /3-finite membership 
facts on C. -- 

We assume that the given s.r.e. set A has the property of A * in the lemma. 
We can assume /3 is inadmissible (by Sacks' Theorem), so by 1.16, there is a 

largest ,8-cardinal. By assumption, it is ,8*. 
Let yo = ty(A n S.Y is not f8-finite). Let k be a /3-finite bijection from SY. 

onto /3*. Since A is t.r.e., k[A n S.Y] has a tame enumeration f': S,B k[A n 

SY] = A1. 
We define a 1-1 tame enumeration f: S- ,8* x /3* as follows: Let 

zo, zli ... o Za ... be the members of S,, in <fl-increasing order such that 

f'(Za) 
t f'[{zlz <fl Za)]. Let fa be the <,f-least injection of tzlza <,1 z 

<,s Za+ I} into 3*- {0) (since ,8* = gc /3). Define 

f(z) =<f (KZa),fa(Z)> if Za <f Z <13 Za+l1 

f(za) = K(Za), 0>) 

Thus f simply "fills out" f' so as to make it 1-1. Order /3* x /3* as follows: 

(a, y) < (a', y') iff a < a' or (a = a' and y < y'). 
We can assume that A has a 1-1 tame enumeration (if not, replace A by 

{<O, x>lx E S,B) U {<1, x>jx E A)); let h be one. Then g = f o h is a 1-1 
tame enumeration of B = f[A] C A1 x /3* 

The deficiency set of g is Dg = tzl3z' >p z g(z') < g(z)}. We show that Dg 
is the desired set in 9 steps: 
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(a) Dg is regular. 
CLAIM. For any z, 3z' ># z s.t. Vz" ># z', 

{W <,s zj g(z') < g(w)} = { w <t zj g(z") < g(w)}. 

PROOF OF CLAIM. Otherwise, there is a sequence g(z') > g(z") > g(z"') 
> ... - . ---- 

Given z, choose z' as in claim. Then 

{w <ft zIw E Dg} = {w <ft zIg(z') <g(w)} 

U {w <, zj3w', w <,a w' <, z', s.t. g(w') < g(w)}. 

Both sets on the right are fl-finite. 
(b) Dg is t.r.e. 

z C Dg *-* 3z'[z C {w <,0 z'jg(z') <g(w)} 

U {w <,8 z'l3w', w <f? w' <8 z', g(w') < g(w)}]. 

Thus, by 2.2, Dg is s.r.e. 
(c)A <ff B.zEA*-+f(z) B. 
(d) A1 n a, B n a are fl-finite for all a < f*. This is clear since A1, B are 

r.e. 
(e) g[Sft - Dg] is unbounded in ,f* X fl*. 
Let a < 8*. We will find w E S}- Dg such that g(w) > (a, 0). 
Since g is tame and (by (d)) B n a is fl-finite, we can choose x, so that for 

all x >,f x1, g(x) > a. Let a' = < -least member of g[{yIx1 (, y}]. Then let 
w = <fl-least w' >,f x, such that g(w') = a'. Then w E S,B - Dg and g(w) > 

(a, 0). -i 

(f) B -ff Dg. z B-z fl* X fl*X or 3w E - Dg[g(w) > z and Vw' 
<t w g(w') #& z]- 

(g) A </3 Dg. By (c) and (f), A (, Dg. By choice of A, A <w, Dg> A 

<,B Dg. 
(h) z C S -Dg, z fl-finite -- g[z] is bounded in fl* x f8*. 
g is order-preserving on S,- Dg, S - Dg is unbounded, and g[S - DgJ 

is unbounded in ,8* x l*. 
(i) Dg < (A. z C S - Dg*+ U z ez[{(ai, a2)I(ai, 2) <g(z')}-g[{wlw 

<ft z'}]] C fl* x f* - B. Denote this union by z0. Then z0 is bounded in 
l* x 8* by (h). By (d), z0 n A1 is fl-finite, so z C S, - Dg<_+ 

f1[zo n A1] CS - A. Since A A, we are done. - 

The s.r.e.-ness of the original set is needed to apply 3.2. But full s.r.e.-ness is 
not needed, but only 2-r.e.-ness. So 

COROLLARY 3.3. If A is 2-r.e. then there exists a regular s.r.e. set B such that 
A =- B (under the assumptions of 3.1). 
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Questions. Is there a nice characterization of the /3-degrees of regular /8-r.e. 
sets? For which /8 does the regular sets theorem hold for all fl-r.e. sets? 

We will later exhibit a 13 where there are /8-r.e. sets not of the same /8-degree 
as any regular set. 

2. Upper bounds for the t.r.e. degrees. It is not apparent that there is an 
abundance of t.r.e. sets, or even a nonrecursive t.r.e. set when ,8 is inadmissi- 
ble. Of course, for admissible a, t.r.e = r.e. and the results of a-recursion 
theory show that the structure of the t.r.e. degrees is quite rich. In this section, 
we show that for some inadmissible /3's, the t.r.e. sets are all /8-reducible to 0 
and that for every inadmissible /8 there is an incomplete upper bound to all 
the t.r.e. degrees. Thus in general, tameness is a very strong assumption. 

THEOREM 3.4. Assume /3 is not admissible. Then there is a /3-recursive set A 
such that 

(i) 0 <0 A <fi C where C = complete /3-r.e. set; 
(ii) any t.r.e. set and any /3-recursive set is /8-reducible to A; 
(iii) C <wf A. 

PROOF. Let y = E:Icf /8. Let f: y ->,8 be /8-recursive, Range f unbounded. 
Define A = {<e, x, a>I{e)(x) converges by stage f(a)) = {<e, x, a>ISJ(a) > 
4:ke(X) is defined). A is clearly A1 over S,B hence /3-recursive. 

LEMMA 3.5. B wo A -> B is A2 over S,,. 

PROOF. Say 

z E B* 3zi 3Z2[S5(ZZI1,Z2)OAz1 CA AZ2 C S- A] 

where 4) is 21- The predicate on the right is Y2 since 

ZQ A *-cVw zl(w C A) EI, 

Z2 C S,- A *--Vw E Z2(w E S - A) E- HI. 

Similarly for S - B. - 

LEMMA 3.6. Let C2 = complete Y2 set for Sq, C = comwlete I set for Sq. 
Then C2 <wo C. 

PROOF OF 3.6. Say z E C2 *-* 3z1Vz2R(z, Z1, Z2) with R a limited formula. 
Define O(z, Z1) - Z2 if and only if Z2 = <fl-least w such that R(z, zl, w). 
Let f(z) = index for Xz1)(z, z1) as a partial , I function, f /8-recursive. Then 

z 4 C2 *Vz1 3Z2 -R(z, z1, Z2) {f(z) } total. 

Let /3 be as defined after Proposition 1.16. By 1.8, there is a /8-recursive, 1-1, 
onto g: /8 -- /8. Let h be /8-recursive such that {h(e)} {e} o g. Then 

z 4 C2 {h(f(z))) is total on /8*-* {h(f(z))) X /8 C C= {<e, x>{e)(x) is 
defined). Also, if eo is such that <eo, x> c C if and only if -Vz2R(xo, x1, Z2) 
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(where x = <xo, xl>), then 

z c C2 *-3zV [Vz2R(z, zl, Z2)]*-- 3z [ eo, <z, zl>> C]- 

SoC2 ?<WOC. -_ 

LEMMA 3.7. C <w,0 A. 

PROOF OF 3.7. C = {<e, x>I{e)(x) is defined). <e, x> a C*-*{e} x {x) x 
YCS,-fA. - 

PROOF OF (i). 0 <,B A, because otherwise, by 3.7, C <W,B A <S, 0- C 

<w, 0 - C is A1, contradiction. 
A <,B C, because otherwise, by 3.6, C2 <W,0 C <,3 A -> C2 ?w,0 A, con- 

tradicting 3.5. -H 

PROOF OF (ii). Say B is t.r.e. Then z c B is 211 Also z C S- B {eo} x 
Z X Y C S - A, for some eo. So B <, A. 

Say B is /3-recursive. Then 

z C B*-*{e} X z X yC S2 -A, 

Z q -SB {e2} X z X yC SB - A 

where e1, e2 are indices for S, -B, B, respectively as E: sets. - 

PROPOSITION 3.8. Suppose E:Icf /8 < 8* and S, t "k/3* = greatest cardinal is 
a successor cardinal." Then every t.r.e set is regular. 

PROOF. Say A is t.r.e. If A is not regular, then there exists 8 such that 
A n S, is a t.r.e. non-/3-finite subset of S8. Since /8* = gc ,/, there is a /8-finite 
f: S, *-/,8*, 1-1 onto. Then B = f[A n sj is a t.r.e. non-fl-finite subset of 
/3*. Let g: Sq -> B be a tame enumeration of B. 

Let h: Y1cf /- S, be such that Va g(h(a)) a g[{wlw <fi h(a)}], Range h 
is unbounded in <,s, and h is fl-recursive. h exists since otherwise B must be 
,8-finite. By 1.18, C = Range g o h is bounded in /8* and hence is a /8-finite 
subset of B. But then g is not tame since Va, C Z g[wIw <p h(a)}]. - 

Note. The hypothesis /3* = gc ,8 can be eliminated from 3.8. 

PROPOSITION 3.9. Suppose E:Icf /3 < /3*. Then every regular t.r.e. set is 
recursive in 0. 

PROOF (MAASS, AFTER R. SHORE [19]). Let y = E:cf /3, h: y -> /3, Range h 
unbounded, h /3-recursive. Let A be regular, t.r.e., and {A8} be a tame 
enumeration of A. Define P C y x y by: 

P(a1 I2)<>V8 > h(a2)[h(a1) n (A8 - Ah(a2)) = 0]. 

Then P(al, a2) *-* [A n h(al) = Ah(a2) n h(al)]. Since P is a HI over S 
subset of y x y, and y <,8*, by 1.14, P is f8-finite. But then 
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K C A *-*3a13a2[K C h(al) n Ah(a2) and P(a1, a2)], 

K C S -A *-3a13a2[K C h(aj)-Ah(a2)andP(aj a2)], 

soA <,B 0. - 

COROLLARY 3.10. Suppose ,B = N + w. Then every t.r.e. set is fl-reducible 
to 0. 

3. Post's Problem when Y1cf /3 > /3*. We use the method of blocking, 
invented by R. Shore [18], to solve Post's Problem when Y1cf /8 > /8*. 

Post's Problem. Show that there are /3-r.e. sets A, B such that A 4w B, 
B gwA. 

The original solution to Post's Problem in a-recursion theory (Sacks and 

Simpson [17]) is not as easily adapted to this context as the later blocking 

proof found in [21]. The reason is that the following lemma (Lemma 2.3 of 

[17]) may fail: 

LEMMA. Let a be admissible, K an infinite regular a-cardinal, y < K and 

tA,lp < y) an a-r.e. sequence of a-r.e. sets. If a-card. Ap < K for all p < y (so 
in particular each Ap is a-finite) then U p A,p is a-finite and has a-cardinality 
< K. 

PROPOSITION 3.1 1. There is a limit ordinal /3, Icf /8 > /8* > X, and a /3-r.e. 
sequence (AnIn < ) such that ,8-card. An = w for all n, but U n<s, An = A 

PROOF. Define inductively: 

Ho = E1-Skolem Hull of (MLf) inside L,L+ L, 
a1 = Ho n M = an ordinal, 

Hn+ 1 = E1-Skolem Hull of ta?n+1, 8f inside L ,, 
an+2 = Hn+1 n R= an ordinal. 

Let a = sup an, /3 = a + a. L/ = the transitive collapse of U n Hn 
L L L+L. Under this collapse, a corresponds to ML 

CLAIM. /3 = a = 

PROOF. Otherwise, there exists f: a Xo, f is :1 over Lf. Let 7r: 

H = U n Hn L/3 and if p C L/3 is the parameter definingf, let q = 

Then q e Hn -* Domf Hn-> a C a?n contradiction. - 

Since I cf / = E:cf a, by 1.18 we have I cf /3 = a -ML. 

Define An = 74[Hn], for all n. 
CLAIM. {AInn E wo is /3-r.e. 
PROOF. For each a < /, define inductively 

A'= 1-Skolem Hull of {(L) inside L,, 
'= A' n a = an ordinal < a. 

A +l = ,1-Skolem Hull of (ML, a, '+) inside L, 
a a = A,'+1 n a = an ordinal < a. 
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Now, U 
,f 

A' = AO. But since /3-card. AO = w, 3a A' = A0. Thus 3a 
au = al. Thus 3aA' = Al. Inductively, Vn 3aA,' = An.Thus{AnEw}is 
,8-r.e. - 

Note. Despite this counterexample, the lemma holds when :lcf /8 > K. 

DEFINITION. Let y < ,B. A function f: y -, 8 is tame A2 if f is the limit of a 
"tamely convergent" /3-recursive sequence of /3-recursive functions, i.e., there 
is a /3-recursive g(a, a): y X /3 -,B / such that 

(i) For all a < y, there is a "stage" a such that, for a' < a and any a' > a, 
g(a', a') = g(a', a). 

(ii) f = lim g, i.e., Va 3a Va' > a[f(a) = g(a, a')]. 
For 8 < ,B, the T-A2cf 8 (tame A2 cofinality of 8) is the least y such that there 
is a tame A2 g: y -> 8, U Range g = 8. Tame A2 functions were introduced 
by Lerman (On suborderings of the a-r.e. a-degrees, Ann. Math. Logic 4 
(1972)) to give a unified treatment of Post's Problem for admissible ordinals. 

LEMMA 3.12. T-A2cf /3* = T-A2cf 3, if Elcf /3 > /X*- 

PROOF. Let f: 3 -> /3* be 1-1, /3-recursive, and h: a0 = T-A2cfC * /*be 
unbounded, order-preserving, and T-A2. Define h': a0 - /3 by 

h'(a) = vy[f[y] n hz(a) = Rangef n hz(a)]. 

h' can be approximated by h'(a, a) = yy < a[f[y] n h(a, a) = f[a] n h(a)] 
where h(a, a) is a tame approximation to h. But the approximation h'(a, a) is 
tame, since (by the assumption E1cf ,/ > ,/*) Va 3a[f[a] n h(a) = Range f 
n h(a)]. 

But h' is unbounded sincef is total and 1-1. Thus T-A2cf /3 = T - A2 cf(aO) 
=a. -4 

From now on in this section assume E1cf /8 > i8*. We now describe how 
Shore blocking may be used to solve Post's Problem. 

We would like to construct /3-r.e. sets A, B such that A -w, B, B 4Aw A. 
Thus we would like to satisfy requirements. 

ReA: {e }A B, 
for each e C Sfi. 

Re: {e }B A, 

Let 

(0, x B. 

An attempt at RA consists of setting up a negative requirement z C SB- A 
and putting some x into B in order to insure B(x) = 1 # te)A(x) (z is the 
negative part of A used in the computation e )A(x) - 0). Attempts at ReB are 
defined similarly. 
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There are conflicts between these attempts, as we may want some y 4 A to 
insure a computation {e)A(w) 0 for some w, yet we may wish to puty into 
A in order to insure {e'}B(y) = 0 #7 A(y) = 1. However, there are no con- 
flicts between Re and RiA, as our attempts for them are to keep elements out 
of A and put elements into B. Thus if our priority listing of requirements is 
arranged into blocks S?A<, 'i3, qP3, jqB3 . .. with requirements of type ReA 
(R B) in blocks 4A+1 (i3Ba) then there will be no conflicts within a block. 

Of course, our blocks must be ordered in some list-how long should the list 
of blocks be? We would like it as short as possible, so we use the T-A2 
cofinality of /8*. That is, let H: ao = T-zX2cf /8* -> /* be T-A2 and order-pre- 
serving. Then the requirements are arranged in a list of length ,B*, but such 
that requirements of rank y where H(2a) < y < H(2a + 1) are of type RB 
and where H(2a + 1) < y < H(2a + 2) are of type Re. 

Define g(8) ="sup of the stages at which requirements of rank < 8 are 
acted upon." Let y = f8 [g(8) = /3]. We would like y = /3*. Suppose H(a) < 
y < H(a + 1) for some a. But then we have a contradiction for there are no 
conflicts between requirements of rank in [H(a), y), and since 21cf /8 > y, 
there will be a stage at which all of these requirements will have been acted 
upon. Thus y = H(X) for some limit X. But g o H is T-A2 on X, so it cannot be 
unbounded since X < a0 = T-A2cf /3* = T-zA2cf /3. 

So, we arrange our requirement as above. Of course, at each stage we will 
only have the correct priority listing on some proper initial segment, but each 
proper initial segment will eventually be correctly ordered. 

There is one last feature of the construction which needs comment. We 
must add requirements to insure that A and B are t.r.e. They are 

TA: e C A 3ae C A?, TBe:eCB B3aeCB?. 

Here, A0 (B0) = amount of A (B) enumerated by stage a. An attempt is 
made at TB by setting up the negative requirement of keeping some member 
of e out of A (similarly for B). Thus requirements TeA (TB) are blocked with 
Re (Re). 

The construction. The construction of A and B takes place in "stages" a; 
A<' (B<0) = amount of A (B) enumerated before stage a, A' (B') = 

A <(0+) (B <(+1)) where a + 1 = next stage after a. Unlike a-recursion 

theory, we may not identify stages in S with ordinals in S,3. By a stage we 
mean a position in the well-ordering <,, which has length cy if /3 = X * y. 
However, we think of stages as ordinals < coy. Of course, the sets A and B 
will be I I over S: replace ordinal stages by the members of S of the 
corresponding ranks in <A. 

Let H: ao = T-A2cf /8* > /3* be as above and H(a, a) be a tame approxi- 
mation to H. We assume that CoH(',') = H(a, a) for all a, a, H(a, 0) = 0 for 
all a, and H(a0, a) in an order-preserving function of a for fixed ao. 
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Let L: S -- /3* be an enumeration such that L - 1({}) is unbounded in 
<13, for all 8 </,*. An example of such an L is 

L(z) - 8 if z = <K,y> for somey, 8 </3*, 
0 0 otherwise. 

L is used to determine which requirement to examine at a given stage. 
Also let f: S, /3* be /3-recursive. Let {f8}^<, be an enumeration of 

Graph(J). 
If e is a reduction procedure, recall that {e}(x) y *- 38[<K,y>=<3- 

least pair such that <S6, e> k :e(<x, y>)]. Write 4e(x) = 3z4le(x, z). Then de- 
fine 

{e}0f(x) y {e}(x) y and 3z <,1 a(4'e(<x,y>, z)). 

Then {e})<O(x) - y means 3z13z2[z1 C A<, z2 C S<G -,A< 
and 

{e}o(<zl, Z2, X>) y]. A<o may change, so {e}< -(x) y 74{e}A(x) y. 
But if A is t.r.e., {e}(x) y ->3a{e}) (x) y. 

We also will need the auxiliary function b(a, a): S13 X ao -- S3 which gives 
a bound (in <A3) on elements mentioned by stage a in positive or negative 
requirements for the sake of requirements of rank < H(a, a). b is used to 
preserve negative requirements. 

Lastly, we introduce the Witness Function Proviso (WFP) after Sacks and 
Simpson [17]. This says that witnesses for attempts to satisfy requirements 
RjA[B], R A[B], e =# e2, should come from disjoint sets, so that an x which is a 
candidate for {el }A(x) B# B(x) el}B(x) 7# A (x)) should never be a candidate 
for {e2}A(x) 7# B(x) ({e2}B(x) #A(x)) when eI =# e2. So if L': S, /3* is a 
fixed enumeration such that (L'f 1({3}) is unbounded in <13 VS </,*, then 
WFP requires that all x's put into A or B for the sake of an attempt to satisfy 
the requirements of rank 8 should belong to (L') -1({ 8}). This insures that at 
each stage, each requirement RA has a plentiful supply of arguments x on 
which to attempt {e}A(x) =# B(x). 

We are now ready to describe the construction. 
Set b(O, a) = 0 for all a. AO = Bo = 0. 

Stage a. Let L(a) = 3. Choose a < ao such that H(a, a) < 8 < H(a, a + 
1). We would like requirements in each block [H(a), H(a + 1)) to examine 
all reduction procedures e such that f(e) < H(a + 1). 

So, let c be the <A0-least map of [H(a, a), H(a, a + 1)) 1-1 onto 
H(a, a + 1). c exists since we can assume H(o,a +1) = H(a, a + 1). 

Let f? = f_P [{wIw <13a} where y = Ivy'[a E S4. Then fJ = part of 
Graph(J) enumerated by stage a. If c(8) M Range f, go to the next stage. 

If f?(e) = c(8), we consider the reduction procedure e. 
a is even. We make attempts at R B and TB. Let <x, z1, Z2> = <A-least 

<X, Zl Z2> such that z C5 B<o, Z2 5 S - B<o, {e}(z<l, Z2, x>)?O and 
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x > b(a, a), L'(x) = c(8)(WFP). This says that {e}B< (x) - 0 via a neighbor- 
hood condition (z1, Z2) and x does not interfere with WFP or any require- 
ment of rank < H(a, a). Let y = <fl-least y such that y E e - B <'. If there 
is an x' E A <, {e})B<f(x') 0, X' < b(a, a), L'(x') = c(8), then let 

A a 
A<a, 

b (a + 1, a') b f (a, a'), a' < a, 

b <AO-maximum(y, b(o, a')) + 1, a' > a. 

Otherwise, let 

Aa = A<a U {x}, 

b(a + ,a') 
b 
b(ar, a'), a' < a, 

b(o + 1, a) = ( <a-supremum(Z2 U {y} u {b(a, a'))) + 1, a' > a. 

Note. (a + 1) = <,f-immediate successor to a. The definition of b insures 
that no member of z2 u { y} will be put into B by a requirement of higher 
rank (lower priority). 

a is odd. Identical to a is even, except switch A and B. 
It is understood that if no such <x, zI, Z2> and no suchy exist in the above, 

then one simply goes to the next stage and b(a, -) does not change, A? = 

A <, Ba = B<a. 

This ends the construction. 
CLAIM 1. Va < 0, lima b(a, a) exists. 
PROOF. Let a = Aa (lima b(a, a) does not exist). We argue toward a 

contradiction. 
a = 0. Since H(a, 0) = OV a, we have b(a, 0) = 0 Va. 
a = a' + 1. Pick a stage ao such that Va ># aO. 

(i) H(a, a") = H(a ") for a" < a. 
(ii) b(a, a') = lima b(a, a'). 

ao exists since H is tame and, by choice of a, lim0 b(a, a') exists. 
Now b(a, a) can change at most twice for each 8 E [H(a'), H(a' + 1)) 

(once for ReB and once for TB if f(e) = 8 and a is even; replace B by A if a is 
odd). Since Elcf /3 > H(a' + 1), there is a stage a, beyond which b(a, a) 
cannot change. 

a a limit ordinal. Let b': a ,/ be defined by 

b'(a) = pLa[b(a', a') = limb(a, a') Va' > a]. 

Then b' is T-A2, and since a < a0 = T-zA2cf /3* = T-A2cf /3, b' is bounded. 
But then b'(a) = supaa<a b'(a) exists and so lim0 b(a, a) exists. - 

Let b(a) = limr b(a, a), a < ao. 
CLAIM 2. A and B are t.r.e. 
PROOF. We show that TeA and TB are satisfied. Letf(e) = 8. Choose a such 

that H(a) < 8 < H(a + 1) and let ao be such that Va ># ao, 
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(i) H(a, a') = H(a') Va' < a + 2, 
(ii) b(a, a') = b(a') Va' < a + 2. 

Assume a is even, without loss of generality. Let cl = <Al-least map of 
[H(a), H(a + 1)) 1-1 onto H(a + 1), and c2 = <Al-least map of [H(a + 
1), H(a + 2)) 1-1 onto H(a + 2). Let 81 = cl1(3), 82 = C2-1(8). 

If e Z B'Va (e Z A'Va), then for some a >fl ao, L(a) = 81 (82), an 
attempt is made at TeB (TA). Since b(a, a) = b(a) (b(a, a + 1) = b(a + 1)), 
any such attempt will be permanent, so e _ B (e _C A). 

So A, B are t.r.e. -- 

CLAIM 3.A A4l B, B 4flA. 
PROOF. Pick a reduction procedure e and let f(e) = 3. Choose a even, 

H(a + 1) > 8 and let cl = <Al-least map of [H(a), H(a + 1)) 1-1 onto H(a 
+ 1). Let 83 = cl1(3). 

Since lim, b(a, a + 1) exists and {xIL'(x) = 8 } is unbounded in <fi, the 
WFP implies that Y = {xlL'(x) = 8 and x M A} is unbounded in <AO. If 
{e}B = A, pick x0 E Y, x0 > b(a + 1) and a stage a, L(a) = 81, such that 

(i) {e}B <'(X0) A(x0) = 0. 
(ii) Va' >p a b(a', a + 1) = b(a + 1), b(a', a) = b(a). 

But then at stage a, the least such xo would have been put into A (contradict- 
ing (ii)) unless there is an x' C A<', {e}B< (X') 0, X' < b(a, a). But by (ii) 
again, {e})B<c(X) {e}B(x') A A(x') = 1. This contradiction shows {e}B # 
A. Similarly {e}A = B. - 

CLAIM 4. A and B are regular. 
PROOF. Let z C S,. Choose a < ao such that b(a) >p z (this is possible 

because there are requirements T A} which cause Range b to be unbounded in 

<AO). Choose a stage ao such that Va >p ao, b(a, a) = b(a) and H(a, a) = 

H(a). Then no requirement of rank > H(a + 1) can put an element w <,0 z 
into A or B after stage ao. Thus A n {wlw <p z} and B n {wlw <p z} are 
fl-finite. -- 

By 2.2, we have proved 

THEOREM 3.13. If 21cf fl > fl*, then there exist regular s.r.e. sets A, B such 
that A Aw,4 B, B iw, A. 

CHAPTER 4. SIMPLE fl-R.E. SETS 

A C ,3* is simple if l* - A has order type fl* and for every fl-r.e. set 
B C fl*, B unbounded in fl* -> A n B 7# 0. Making a set simple is the 
easiest way to make it nonrecursive and simplicity is often used for this 
reason. When /B* = fi, every 83-r.e. set has the same fl-degree as some simple 
fl-r.e. set-take the deficiency set of some enumeration (see [21]). 

The construction of simple a-r.e. sets when a is admissible is fairly easy. A 
similar construction works for arbitrary fi, but to show this, we shall need a 
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fl-recursive analogue of 

FODOR'S THEOREM. If K is an uncountable regular cardinal and f: A -> K, 

A C K then {a < KIf[A n a] c a} is a closed unbounded subset of K. 

Our fl-recursive analogue holds for arbitrary fl-recursively regular cardi- 
nals, but we shall only need 

THEOREM 4.1. If K < /* is a successor :-cardinal and f is a partial 
fl-recursive function, Domf, Rangef 5 K, then {a < KIf[Domf n a] c a} is 
a closed unbounded subset of K. 

DEFINITION. A C K is closed if X < K, A n X unbounded in X implies X e A. 
PROOF OF 4.1. Let K = X+. Choose a limit ordinal a0 > X, a0 < K. Letp be 

the parameter needed to define f as a partial /3-recursive function and let 

H = 11-Skolem Hull (a0 U {p}) in S,. 

CLAIM 1. H n K = an ordinal (call it a). 

PROOF. If y < K, y e H, then 3f E H(f: y A1 X). Since X C H, Domf = 

Rangef -1 = y C H. 
CLAIM 2. a < K. 

PROOF. By 1.1 (ii), there is a function f: H ao which is E: over H, hence 

over S,. Thus it suffices to show that there is no /3-recursive g: K (since 

,/-cardinality (a0) = X). But since X < K < /* the range of any such g is 

/3-finite by 1.14. Let h = g -. Then h shows that K is not regular with respect 

to /3-recursive functions, contradicting 1.18. 

CLAIM 3.f[Domf n a] C a. 
PROOF. Since H -<Y S,, certainly f[Domf n a] c H. But H n k = a. 

The simple set construction.4 For each e C S, we have the requirement: Se: 

We C /*, We unbounded in ,/* implies A n We =# 0. These requirements are 

easy enough to meet; conflicts arise because in addition we would like to 
1-1 

have order type (,/* - A) = /3*. As before, we use a /3-recursive f: /3 >,/* to 

list our requirements Se. 

Let L: S, -> /3* be an enumeration such that L 1({3 }) is unbounded in <, 
forall </3*. 

Stage a. A<' = part of A enumerated so far. If L(a) j Range f?, go to the 

next stage. Otherwise, let f?(e) = L(a). If We' n A <' # 0, go to the next 

stage. 

Otherwise, define x = ,y[y E We' andy > L(a) + L(a)], if such ay exists. 

Then let A' = A <? U { x }. This completes the construction. 

4The technique used here can be used to simplify Simpson's generalization of Dekker's 
Theorem (every nonzero r.e. degree contains a simple r.e. set). Simpson's result appears as 
Lemma 2.9, p. 59 in [20]. 
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CLAIM 1. For all e, Se is satisfied. 
PROOF. Sayf(e) = 8. If We C /* is unbounded in ,/*, then at some stage a, 

f0(e) = 8, L(a) = 8 and WJ' has a member > 8 + 3. But then at stage a, 
either A <? n we' # 0 or some x E We was put into A. 

CLAIM 2. ,/* - A has order type ,*. 
PROOF. Case 1. /8* > w. It suffices to show: K a successor /3-cardinal, 

K < /3* implies K - A has o.t. K. 

Note that for 8 < K, there is at most one x put into A for the sake of S, 
wheref(e) = 3. Define 

g(3) - x iff 3e[f(e) = 8 and x is put into A for the sake of Se]. Then by 
4.1, X = {a < Kjg[Domg n a] C a) is closed unbounded in K. But a C X 
implies [a, a + a] C K-A, so o.t. (K -A) = K. - 

Case 2. ,8* = w. In this case we want /* - A infinite. Fix n < . There is a 
k S n + n, k > n such that k is never put into A for the sake of Se, f(e) < n 
(by a counting argument). But then k a A. So A is infinite. - 

T.R.E. subsets of /8*. 

THEOREM 4.2. There exists a t.r.e. subset of /3* which is not /8-finite 
T-A2cf / = T-A2cf /*- 

PROOF OF (--). Say A C /3*, A t.r.e. but not /3-finite. Let 81 = T-A2cf /3* 
and let f1 be a T-A\2 function mapping 51 order-preservingly onto an unbounded 
subset of j*. 

Let f be a tame enumeration of A. 
Define g: 81 -, 8 as follows: 

g(8 ) = w[4f[a] n f1(8) = A n f1(8)]. 

g is well defined since f is tame and is actually T-A2 since f1 is. If g were 
bounded, then A = f[a] for some a, contradicting A not being /3-finite. 
Lastly, g is order-preserving. Thus T-LA2cf / = T-A2cf 81 = 31. -i 

PROOF OF (<-). Here we have two types of requirements. The first ones are 
Te: e C A -- 3a(e C A'). These are just the tameness requirements from the 
proof of 3.13. In order to insure A C /8* is not /3-finite, we use simplicity 
requirements as above, except here we only require the weaker Se: e C /8*, 
o.t. e = /* -* A n e # 0. The important difference is that we deal only with 
/3-finite sets and not /3-r.e. sets. Of course, this suffices to show that A is not 
,8-finite. 

An attempt is made at Te as follows: If e _ A <a, pick 8 = least member of 
e - A <? and set up the negative requirement 8 4 A. 

Attempts at Se are as before: If e C /3*, o.t. e = /8*, then put into A the 
least member of e exceeding 8 + 8, where 8 = height of Se in the listing of 
requirements. 
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To show that the requirements Te will be met, we will need to know that 
the activity of requirements of higher priority eventually ceases (as in admissi- 
bility theory). We can achieve this by using a very nice projection of S, into 
,/* to define the priority listing. Since the Se requirements deal only with 
fl-finite sets, we can bound the activity of a proper initial segment of the 
priority listing as soon as we bound the reduction procedures e which are 
represented by this proper initial segment. 

LEMMA 4.3. Say T-LA2cf /3 = T-LA2Cf /8*. Then there is a fl-recursive p': 
S x SO -> * such that 

(i) p' is convergent, i.e., for some p: S, -> /3*, Valim0p'(a, a) = p (a). 
(ii) p = lim p' is 1-1 . 
(iii) VS < /* 3a[p- '[] C a and Va' >,0 a Va(p(a) < 8 ->p'(a', a) <S)]. 

1-1 < 
PROOF. Choose a /3-finite c: /3* x /3* B*> /, such that for all a l2 <3*, 

c(31, 82) > 81. Let yo = T-A2cf /3 = T-A2cf /* and hl, h2 be order-preserving 
T-A2 functions mapping yo unboundedly into /3*, P3. Also, let f: S, /3* be 
1-1, /3-recursive and { J } be an enumeration of Graph(f). 

Define p(a) = c(hl(3),f(a)) where 8 = pii[a E Sh2(o) and fh2(O)(a) is de- 
fined]. 

p is 1-1 as c andf are. The p'(a, a) of the lemma is the natural approxima- 
tion top using the approximations to h1, h2 and the enumeration {f a}. 

Now if a a Sh(6,, then for some 3' > 8, p(a) = c(hl(3'), f(a)) > hl(3') > 
hl(3). So p - l[hl(3)] is <Al-bounded by h2(3). But also, p(a) < hl(3) implies 
fh2(O)(a) is defined, sop(a) < hI(8) *-*p'(a, a) < hI(8) for all a >fi h2(8). - 

We use p to define the priority listing. Of course, at stage a we use the 
approximation p'(a, a) to p(a). Let L: S0- S, be the enumeration defined 
by 

L(z) x= z = <x,y> for somey, 
{O, otherwise. 

Stage a, L(a) = <0, e>. We consider Se, If e n A<' # 0 or e . /3*, go to 
the next stage. Otherwise let x be the least member of e such that x > 
p'(a, <0, e>) + p'(a, <0, e>) and x does not belong to any negative require- 
ment for TI> where Tet has higher priority than Se i.e., p'(a, <1, e'>) < p'(a, 
<0, e>). If such an x exists, set A? = A<? U {x}; if not, A? = A<?. 

Stage a, L(a) = <1, e>. We consider Te. If e C A<' or e _ /3*, go to the 
next stage. Otherwise, let x = least member of e - A <a and set up the 
negative requirement for Te of keeping x out of A. 

If L(a) 7# <0, e> or <1, e>, go to the next stage. This ends the construction. 
CLAIM 1. Let 8 < /* and let a be as in 4.3(iii). Let ao > a be the first stage 
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such that L[{a Ia oa a' <, ao}J] D 3. Then the activity of requirements Se, Te 
with p(<O, e>), p(<l, e>) less than 8 ceases by stage ao. 

PROOF. After stage ao, each such Se, Te has had the opportunity to act. The 
only reason for any of these requirements to act again is if p(a', <0, e>) or 
p(a', <1, e>) changes value for some a' >, ao, contradicting the choice of a. 

--4 

CLAIM 2. If p(<l, e>) = 8, /8-cardinality (8) = K, then Te is attempted at 
most K-many times and is eventually satisfied. 

PROOF. By Claim 1, there is a stage ao beyond which all requirements Set of 
higher priority than 8 do not act. Then Te will act (permanently) at most once 
beyond this stage. Since any two attempts at Te before this stage are 
separated by the action of some Se, of higher priority, there are a total of at 
most K-many attempts at Te. - 

CLAIM 3. Each Se is satisfied. 
PROOF. Choose a such that p'(a, <0, e>) = p(<O, e>), L(a) = <0, e>. If o.t. 

e = /3*, e C /3*, then the x defined in the construction for stage a must exist 
since the subset of /8* being kept out of A for the sake of requirements Te1 of 
higher priority has size < 1* by Claim 2. - 

CLAIM 4.1,* - A has order type ,*. 
PROOF. Just as in Claim 2 of the earlier simple set construction. - 
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