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CODING OVER A MEASURABLE CARDINAL 

SY D. FRIEDMAN 

The purpose of this paper is to extend the coding method (see Beller, Jensen and 
Welch [82]) into the context of large cardinals. 

THEOREM. Suppose ,i is a normal measure on K in V and < V, A > - ZFC. Then there 
is a < V, A >-definable forcing Y for producing a real R such that: 

(a) V[R] F ZFC and A is V[R]-definable with parameter R. 
(b) V[R] = L[,u*,R], where yu* is a normal measure on K in V[R] extending ,i. 
(c) V k= GCH -+ a is cardinal and cofinality preserving. 
COROLLARY. It is consistent that ,i is a normal measure, R c co is not set-generic 

over L[yu] and Ot 0 L[yu, R]. 
Some other corollaries will be discussed in ?4 of the paper. 
The main difficulty in L[yu]-coding lies in the problem of "stationary restraint". 

As in all coding constructions, conditions will be of the form p(y) = (pr, -hy), y 
belonging to an initial segment of the cardinals, where p(y) is a condition for almost 
disjoint coding py+: Ip,+ I -l 2, Ip,+ I < y" into a subset of y'. In addition for limit 
cardinals y in Domain(p), <pi I y' < y> serves to code py. 

An important restriction in coding arguments is that for inaccessible y, f 0 
for only a nonstationary set of y' < y. The reason is that otherwise there are conflicts 
between the restraint imposed by the different -t, and the need to code extensions of 
py below y. 

However the natural approach to L[pu]-coding violates such a restriction. In this 
approach, the key to preserving the measure is "pu-distributivity", a property which 
requires M-measure 1 restraint. To state pu-distributivity, suppose that Da is open 
dense for all a < K. Then pu-distributivity asserts that any p can be extended to q so 
that q meets Da for all a in a set of M-measure 1. This enables one to show that ,u in fact 
generates a measure yu* in the generic extension defined by: yu*(X) = 1 iff u(Y) = 1 
for some Y c X. 

Instead we establish a weakening of pu-distributivity, which is most easily 
described in terms of elementary embeddings. The pu-distributivity property 
implies that if G is Y-generic then j[G] generates a j(Y)-generic H over M, where 
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j: V -+ M is the ultrapower via the measure Mi. By "generates" we mean that H = 
{q E j(9) j(p) < q for some p E G}. Our weakening states not that H is j(9)- 
generic but only that H* is j(i)-generic, where H* = {q e j(A) I q is compatible 
with every j(p) for p E G}. (Conditions in H* are obtained by introducing appro- 
priate restraint at K to conditions in H; note that q E H -+ qK = 0.) 

Genericity for H * is obtained by defining 9 to consist of coding conditions p with 
domain Card n Kc, where a restraint -K is specified for coding 1(p)K+ into Kc. Then 
generically we will have that GK codes U{j(P)K+ p e G}, which is the key to 
establishing the genericity of H*. We must also mix this with the coding of A c K+ 
into GK via Mi, where Ha = LJ[A] for infinite cardinals a. 

And there is the usual dose of fine structure, this time for L [M] rather than L. As 
proofs of these facts are straightforward, we do not establish them here. 

?1 of the paper discusses the successor coding. In ?2 we then turn to the definition 
of the limit coding. In ?3 we discuss the full forcing a and prove the theorem. ?4 
considers some corollaries and related results. 

?1. The successor coding. By Jensen [68] we can assume in our theorem that 
V k= GCH and hence can fix A c ORD such that Ha = L,[A] for all infinite cardi- 
nals a, where Ha = all sets of hereditary cardinality less than a. Fix a cardinal a < K 

and we now define Sa, a collection of "strings" s: [a, IsI) -+ 2, Isl < a+. For s to 
belong to Sa we require that s is ",u, A n a-reshaped". This means that for q < Isi, 
L[M, A n a, s ' ] F card(q) < a. The reshaping of s allows us to code s by a subset 
of a, in the manner which we now describe. 

For s e Sa define structures dsl = Lvo[Lu, A n a, s*] and ds = Lju, A n a, s*] 
as follows (where s* = {vs5s(q) = 1}): If Isi = a then v ? = K. In general, v? = 

UI{vSIIq < IsI} and vs = the least p.r. closed v > vo such that L[,[M, An a5, s*] F 

card(IsI) < a. Of course v?, vs and hence ds?, ds are well-defined due to the 

reshaping of s. 

We must extend the definition of Sa to certain cases in which a is not a cardinal. 

Suppose that a is p.r. closed and La[A] I= there is a largest cardinal. Define S3 exactly 

as we defined S<, above and then define S, to consist of all s e 3a such that dS? F a is a 

cardinal. Thus it is possible that S. has strings which cannot be properly extended in 

S.. For s e S. we write a(s) = a. 
Using the fine structure of K we can show the following. Let S' = Is I s e S. for 

some a, La[A] t= there is a largest cardinal}. 

Fact A. There exists <Cs I s e S' > such that: 
(a) Cs is closed, unbounded in v , and o.t.(Cs) < a(s). If IsI is a successor ordinal then 

o t.(CS) = w;. 

(b) v e Lim(Cs) -+v = v [?, C s n v = Csr , for some q < Is. 
(c) Cs is uniformly definable over ds, where ds = LV,[A nr a(s), ,u, s*], v' = largest 

v for which either LV[A n a(s), ,u, s*] t Isl is a cardinal, or v = vso. 
(d) If 7r: <KS/ C> L) < -? Cs> then, for some S-e S+, t = io a where 

f: < , Cs-> - ~<V Cs> and a is an iteration of <S1 C>. And iiextends uniquely to 
ii': v? E1' v, ii' sends Z, projectum (dsi) to Z, projectum (s/s). (dsl is defined in the 
statement of Lemma 1.2, below.) 

The above form of El enables us to provide the correct definition of the K- 

quasimorass. 
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DEFINITION. For s, s e S+ we have s < s if there exists 7r: <Ssl, C > Q* < , Cs> 
where a(s-) = critical point (7t). ( Q* means that the boundedness of Z, predicates is 
preserved.) 

The K-quasimorass has the following properties. Let s- < s mean that s- < s or 
s = s. If s- < s then ics- denotes the unique ic obeying the above definition, if s- < s; 
7SS = id [J <-?, Cs>. 

Fact B. (a) < is a tree and, for all s e S+, {c(s-) I s- < s} is closed in a(s). 
(b) If T c s- < s then T < 7c-s(t) = t and 7rTj = 7c-s 

` 
sl ? 

(c) s- < s - (Is is a limit iff IsI is a limit). 
(d) s a <-limit -+s = U{rng(gs-) I s- < s}. 
(e) s not (-maximal in Sa(s) -+ s a <-limit. 
(f) s < s, 7cs- noncofinal -+ s = 7-t where t c s, v= U(Rng(cs-) n ORD). 
(g) If s <* s (s- immediately <-precedes s) then define t -i s if T <* t < ics(t) for 

some t c K Then IsI limit, 7r., cofinal -+ a(s) = U{a(t) I t-Hs}. 
We use the K-quasimorass to define the almost disjoint codes bs, s e S+. 
DEFINITION. For s e S+ let s+ = s * 0. Then b, = {s- I s+ < s+} when s # 0; bo 

consists of all 4), e Sa where 4) < O' and o.t.xa' < a~ Ij < O'} is even. 
Note that bs as defined here is not a set of ordinals, but instead a set of strings. This 

reflects a modification of the usual almost disjoint coding: roughly we will have that 
for Rs-generic D c- a(s), s(q) = i (i = 0 or 1) iff arbitrarily large s- * i, s- e bs 1? lie on D. 
Thus we do not control a final segment of {j ,1 

-e bsri}, only a final segment of 
{s- * i I s-e b. s- lying on D}. This is a weaker restraint. 

Suppose s e Sa+ a a cardinal less than K. In the usual definition of Rs c SI we use 
conditions (u, u-) for certain u: [a, I uI 2, 1 u I < a+ and u ' {b-bs [,I s(q) = O}, /s 

card(u-) < a. Here we restrict ourselves to a special dense subset of this collection of 
conditions. For (u, u-) to belong to Rs we insist that: 

(a) u: [a,IuI)-+2,ueS . 
(b) u- = {bs ?I I s(q) = 0, s ` 

q e Rng(r(ui))}, where r(ui) is of the form 7Ed(iU),r(a)5 7t(u) iS 
cofinal and r(u-) c s. 

(c) d(u.) - -du 
Extension is defined as follows, where "t lies on v" means that v [ Dom(t) = t and 

Z, = {J<q y> I y e ORD}, (u)j(y) = u(Ki, y>). 
(d) (u', u') < (u, u-) if u c u', u- ` u, (t e b e u-, t lies on (u')1 -+ t lies on (u)1 or t * 1 

does not lie on (u')1) and (q e Iul - A, 6 e Z1, (u')2(b) = 1 (u)2() = 1). 
Thus we have that if D: [a, ax) -+ 2 is Rs-generic then D is reshaped, (D)1 codes s 

by s(q) = i iff s * i lies on (D)1 for arbitrarily large s -e b. n, and (D)2 codes A n a+ by 
q e A n a+ iff (D)2 rn Z4 is unbounded in a+. 

LEMMA 1.1. Suppose G is Rs-generic over ds and let D = U{u I (u, u-) e G}. Then 
A n oc, s e Lv[A rn a, ,u D]. 

PROOF. Clear. H 
LEMMA 1.2. R<s = U{Rt It c s, t # s} has the a++-CC in V. = L~1A rn a, 

Yu s*], where -7s = largest p.r. closed v such that Lv[A n- a+, ui, s] s IsI is a cardinal or 
v = vS?. 

PROOF. It suffices to show that (u0,U-0), (u,iu-1) incompatible -+ u0 # u, or 
d(u-0) # d(u-1). But this is clear as otherwise we can amalgamate u-0, 5, to get u- and 
extend u0 = u1 to u so that d(u-) e su, obtaining thereby the compatibility of (ho, ii0), 
(u1,ii1). H 
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LEMMA 1.3. RS is < a-distributive in Us. 
PRoCF. RS is equivalent to (R2 x R1) * RE where if D is Rs-generic then (D)2 is R2- 

generic, (D)1 is R1-generic and (D)o is Rh-generic, E = {i, > E D I i > O} = D - ZO. 
The forcing R2 simply adds a code for A n a and is easily seen to be <a- 
closed. A condition in R1 consists of (u)1: [al(u) ) -+2 together with 7E = 7Ed,r, 

d < r c s. To extend we have (u')1, (u)1, Rng(7t') : Rng(t), (u')1 - (u)1 must 

avoid b, if 7r(d [i`) = s [` l. The only reason that R1 is not obviously < a-closed is 
that U{Rng(7tj) I i <)A} is not necessarily of the form Rng(7t) for some 7r. But 

U{Rng(7tj) I i < A} c Rng(7t) for some 7t, which is enough to establish <a-closure 
for R1. 

Lastly the forcing R , viewed as a forcing over s[E] = LVS[E,,u], is seen to be 

<a-distributive as follows. Given (u)0 E RE and predense <Di I i < a> E L u, E], let 

MO <_ Ml <v ... be the first a + 1 El-elementary submodels Mi <_ Ls[yu, E] such 
that a u {(u)o,<DiIi <a >,II,E} Mo and Mi c a+ E Mi+1, MA = U{MiIi < i} 
for limit A < a. Then choose (ui)0 E Mi+1 so that (u0)0 = (u)0 and (ui+ Do ) (Udo 
meets Di, (uA)O = U{(uj)o I i < A} for limit A < a. We must show that (uA)O is well- 

defined at limit stages A; that is, we must show that L[yu, E rn aA, (uA)O] F 

card(aA) < a, where aA = l(uA)01. Clearly aA is 7rl-singular over L.[ ,i E rn Ad 
where V = Trans. Collapse (MA) r- ORD, and hence over any of its iterates, since 

iteration maps are E1-elementary. But some such iterate is of the form 

L, [iu, E n aj], and so we are done. -H 

COROLLARY 1.4. R<s = U {Rt | t s, t # s} is < a-distributive in s.. 
PROOF. By Lemma 1.2 it suffices to prove distributivity in -s? But this is clear by 

induction on Isl, using Lemma 1.3 at successor stages. -i 

LEMMA 1.5. If D c R<s, D E Vs is predense and s c t E Sa+, then D is predense 
on Rt. 

PROOF. As in the proof of Corollary 1.4, it suffices to show that if D c RS, D E SI 

is predense and s c t E Sa+, then D is predense on Rt. Suppose (u, i-) E Rt, and we will 

find an extension that meets D. We can assume that s E Rng(7r(u-)) and that D E 

Rng(7c(u-) J` Vl), where 7r(u-)(s) = s. Also assume that s does not lie on (u)1 and that 

Jul = Is'I + 1 for some s', s < s' < s. 
Now let (u', W-') be the least extension of (u, U- n s-4) e Rs meeting D. We are done if 

we show that (u', i-) < (u, ii), for then we can amalgamate (u', i-') and (u', i-) to obtain 

an extension of (u, i-) meeting D. The worry is that some t' * 1 lies on (u')1 but not on 

(u)1, where t' E bt,, is being restrained by (u, i-) and q ? IsI. But this is impossible if 

a(t') > a(d(u-)) as [lu, Iu'I ] lies strictly inside (Is' l, Is'1l) for s' < s' < s. So the only 

danger is that t' * 1 lies on d(u-). But s-is an initial segment of d(i^) and by hypothesis s 

does not lie on (u)1. So t' does not lie on (u)1, which means that t' * 1 is not restrained 

after all. -i 
REMARK. The proof of Lemma 1.5 is somewhat easier than with the usual coding 

due to the weaker type of restraint being used. (The last step of the proof takes 

advantage of the weaker restraint.) 
This completes our discussion of the Rs forcing. 

?2. The limit coding. In defining the limit coding we combine the Rs forcings of 

the previous section as in other coding theorems, with restrictions necessary for 

extendibility of conditions. 
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Fix a limit cardinal a < K and u E Sa. We wish to define a forcing Au for coding u 
below a. 

We need as usual appropriate forms of El and 0, which we now describe. Let 
S = U{S, I O-a cardinal <KI}. 

Fact C. There exists <Cs I s E S> with exactly the properties of <C, I s E S' > in 
Fact A. 

Let E = {s e S I o.t.(Cs) = -)}. 
Fact D. There exists <Ds I se E > such that Ds ' H- = H's ,+ and: 
(a) D ss:soD HO <IslIs 

` E Ds< =D rn } isstationaryin Vs. 
(b) Ds is uniformly A 1K<?, Cs> for s E E. 
(c) s E E, Z1 projectum (s~) #c a(s) -- = (Ds 
Note. Z1 projectum (4s), by definition, is the least p such that some Z1(QdS)X c p 

is not an element of Vs. (c) is needed to satisfy requirements in the proof of 
extendibility of conditions (see Lemma 2.3). 

Now as a rough indication of the nature of ju we first define ju / -d, a set of 
"quasiconditions" which will have to be thinned out in a number of ways to obtain 
the proper Yu. An element of u - A< (where A<" = U{u I I < IuI}) is a 
function p: Card r- al -+ V such that for el E Dom(p), p(f3) = (pp, -t0) e RPv+, for limit 
fi E Dom(p) we have (inductively) p [fi e E"P( and lp `P1 = least 4 such that p [/` 
E VPars: is equal to Ip01. We also insist that p codes u in the following sense: For 

< Jlo and fl E Card n a define Mp = fl Skolem hull of fl U {` P , K} in -durb: and 
(bM) = least O4' < 4+ such that Mp rl /3 < 6 and o.t.{b' I O4' < O4} is odd. Then 
we code u by: u(4) = 1 iff bM+ * 1 lies on pa for sufficiently large fl E Card r-l a. Recall 
that if {b' |4 < O4} has odd ordertype then 0,5 is not an element of by,+ and so 
015 

* 0 and 0(/ * 1 are not restrained by the successor coding RaP+. 
To obtain ju - A<u we impose a number of further requirements. 
Requirements A (predensity reduction). Suppose p E Au - A<. 
(Al) If u E E and Du c gj<u is fl-predense for all /3 < ac, then p meets Du. 
(A2) If lu is a successor, D c A9<` is predense and D E sl? then p reduces D below 

some /3 < c. 
REMARK. D is /3-predense if Vq~r(r E D*, r ` / = q / 3), where D* = {r I r extends 

an element of D}. And p reduces D below /3 if Vq < per < q(r E D*, (r)0 = r - r ` /3 
equals (q)0). 

Requirement B (restriction). If p < q belong to ju and IqI < 4 < IJI then there 
exists r E TAV - J'm, p < r < q, where v = u [ 4. 

Requirement C (nonstationary restraint). Suppose " - a inaccessible. Then 
there exists a CUB C cia such that C E V. and /3 E C - - = 0. 

The remaining Requirement D will be introduced at a later point when we discuss 
strong extendibility at successor stages. 

Extendibility and distributivity for B9u are stated as follows. Let q <?f p signify that 
q < p, q `3 = p /3 and (9)) = {(p)# pl c 

(*)up P9u, fl cCard n a +3q <flp(q c _ <u 
- 

). 

(**)" BV# < 0C((i<u)p is <? -distributive in "). 

Also so ci a inaccessible A+ 9<u is i-distributive in s". 
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REMARK. J-distributivity asserts that if <D0 I3 E Card n a> satisfies D0 is JY- 

predense for all /3 then Vp~q < p (q meets each D,). 
(*)" and (**)" are proved via a simultaneous induction on lul. The following 

consequences of predensity reduction are needed in the proof. 
LEMMA 2.1 (chain condition for 9<U). Suppose (**)N holds. Then 9<U has the oa- 

CC in -du. 
PROOF. Suppose D c be<" is predense and D E du. Consider D* = {p E < |<U p 

reduces D below some /3 < a} E du. Then by (**)u and Lemma 1.2, D* is /3-predense 

for all /3 < a. Apply Fact D to obtain 4 < Jul such that u -e E and D< = 

D* n H"+ 4. Thus by predensity reduction we have that D* n H e' 1 c V? is 

predense on <U", and therefore so is D r) H-4+" E c 4. -H 

LEMMA 2.2 (persistence for Jl < u). Suppose (**)_ holds, D c Jk<u is predense, D E Slu 

and u c v. Then D is predense on ReAv. 

PROOF. By restriction, if p E g{V - J9u then p extends some q E BNu - Jk<". By the 

chain condition for J9<u we can assume that D E V 0 and hence by induction that lu 
is a successor. But then q reduces D below some /3 < a by predensity reduction, and 

hence so does p. So p is compatible with an element of D. -H 

We can now turn to the proofs of (*)u, (**)u. 
LEMMA 2.3. Assume (**)u. Then (*)u holds when lul is a limit ordinal. 
PROOF. We first claim that if p E J9<U and <D, I flO < /3 < a> E 4? satisfy that D, 

c gk<u is 3+ -predense then 3q <?o p (q meets each D,). We prove this by showing it 

with a replaced by 3,i <? , by induction on /3i. The base case and successor case are 

clear, using (**)u. If 3,i is singular then we can choose yo < yv <. approximating /3i' 

replace <D, I /3o < /3 < /,3> by <Ei I flo < i < /30+j), j = o.t.(yi's)>, where Ei = all q 

meeting each D0, /3f < /3 < yi, and then we are done by induction. Finally, if /3, is 

inaccessible we factor gA<" as (jA<U)p+ * g(G)p, where (?Y<U)0+ = {(q)0| q E 

and first choose (q)0+ < (p)fl that reduces each D0, /3o < /3 < /3k, below /3+. This 

is possible using (**)u and the /13-CC of (G)p, which we have by induction 

on a. 
Now write Cu = {v i < A} and choose a successor cardinal /3o < a to be at least 

as large as i and the /3 in the statement of (*)u, if i < c; otherwise let /3o equal a. Now 

inductively define a subsequence <jIj < X0> of <i Ii < A> and <pjIj < X0> as 

follows: q0 = least i such that the given p E J4< u i, po = p; pj+1 is the least q <0pj 
(if /3o < a; otherwise q <pU i+ p where iqj = i) such that for all y, /3o < y <a, q 

meets all y+-predense D c J<`t7j, D E M -+ Zf Skolem hull of y+ U {p, K,u} in 

<5[?^j, Cubj> (iff /3o < a; otherwise consider only y between /3 u Ni and a, iqj = 

and qj+ I = least di such that pj+ 1 E J"< ~i; p, = g.l.b.<pi I i < A> for limit i < X0, 

q . = U~qi I i < X} for limit i < X0. The ordinal X0 is determined by the condition 
that qij = U~qi I i < X0} is equal to lul. 

We must verify that p, as defined above is indeed a condition for limit A. (At 

successor stages, pj+ , is well-defined using Lemma 2.2.) For example we must show 

that for y a cardinal < a, p ,, is it, A r- y-reshaped. We need only consider y ? /3, and 

in case /3o = a we need only consider y ? /3 u Ni where qr. = hi. Now by 

construction if y E M"yA then p y is r[(91<{u11)1]-generic over TC(M"V), where 

7r: M = (2: Skolem hull of y u {p, K, PI in <V0[,,, Corm>) -+ TC(MyI) 

is the transitive collapse. And lpjV is 21-definably singularized over TC(M"") and 
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hence, by the first statement in (d) from Fact A (which applies here: see Fact C), 
IP Cl is Z1-definably singularized over <_ ,, C, A>. As Cp E L[M, A rl y p, we 
have reshaping as desired. If MA r- ac = y then p is reshaped, as it must be the 
image of u ` q under the transitive collapse of MhA, in which case reshaping follows 
again from (d) in Fact A. Lastly if y' = min(Mr n (ORD - y)) then the above two 
arguments can be combined to first argue for the reshaping of p ,,; and then for 
that of P.v 

But we must also show that p 
` 

y E sp,. As p ` 
y is definable over TC(M,) E 

L[M, A rl y, pY,,], this amounts to showing that v Y is large enough. Now as we 
have (**)ur,1, we know that (when M"A r-l a # y) gP<"UA has the a+-CC in S by 
Lemma 2.1, and hence p y is in fact i- 1 [(9<U"-t1A)]-generic over i` - 1 rii. ]l = X, 
where a' is as in the second part of (d) in Fact A, TC = inverse of the transitive col- 
lapse of M>A. We know that C = i`''1[CutQj is definable over d' = i` - t, I 
and v' = ORD(s') < least p.r. closed ordinal greater than v- = ORD(sl). But 

[ ] IP,,I is a cardinal. So VP = sl/[p y] and v' < vp , C E VP . If M, Al 
a = y then there is no problem since p `y is definable over 7r1[K 1 , Cu>], 
which iterates to <Sp? , Cp A>, 7 = inverse to the transitive collapse of M>A. 

And we must verify Requirement (Al). (Requirements B and C for p. are easily 
checked.) If M,, n a c y then p e E ED = 0 (see (c) of Fact D), since (d) of 
Fact A implies that Z1 projectum r ) = i'-'(Z1 projectum (,14u,,)) > cx(p y) = y. 

If M r-) ca = y and u ` 
q 0 E then p E since TC preserves square sequences, C = 

inverse to the transitive collapse of M"-A. Finally if M"r a = y and u P q E E then 

DPA = 7'- [Dt1A ] by virtue of (b) in Fact D, where C = inverse to the transitive 
collapse of M"A. 

Finally set q = pAO, and we have established (*)" H 
LEMMA 2.4. Assume (*), and (**)S for v c u, v # u, and also assume IuI limit. Then 

(**)" holds. 
PROOF. We may assume that a?" # . This requires only a small change in 

the construction of Lemma 2.3. Instead of extending along CQ as in that proof we 
extend along a closed subsequence C c Cut, for some 4 < lu with the property that 
if <Di i < /> is the given sequence of predense subsets of (9<)0 then o.t.(C) = /3 
and q e t-i ]3 < q (r E gtUi+ 1i r meets Di) where C = Jdi I i < /3}. Moreover 
u ` 

4 E and C n e E Sara: for limit A. It is easy to obtain C by choosing 4 < lul 
so that cof(4) ? /3, Di r (9 

< u )0 predense on (9 < u )0 for all i < 3 and then taking 
an appropriate subsequence of CQ i. The zl-distributivity argument is similar. -H 

We now turn to the case of I u I successor, where an additional requirement must be 
imposed for the sake of proving (**)u. 

LEMMA 2.5. Suppose (**)u holds and Iul is a successor ordinal. Then (*)u holds. 
PROOF. We can assume that p E dv - 0, where v = u (lul -1). Also note that 

Q = <IjI j < A> has ordertype co. Now proceed as in the proof of Lemma 2.3, 
making successive extensions p 2f PO 2p P1 I ... so that pj+ , meets all y+-predense 
D c r<" n N)4,J+ where Nib+ = Z Skolem hull of y+ U {u, K} in a? 

` 
'j, for all 

y E [#, a). If we set qc = g.l.b.<pi I i < co> then q7 meets the necessary requirements 
for being a condition at all y with the exception of y such that y E C = {y I My r 
a = y} or y = a, where My = U{N j I j < w} = 221 Skolem hull of y u {u, K} in su 
The reason is that for y E a -C, Ty = transitive collapse (My) belongs to y,, since 
Ty 4 lqyl is a cardinal and q4Y is generic over Ty. 
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To extend q- to a condition q E au we must do two things. First extend q4(y') for 
large enough y ? /3 so as to code u(IvI) = 0 or 1. This is easily done as there are no 
conflicts between the successor and limit codings. Secondly for y E C we must define 
q(y) = (q,, q-,) where q-, = q-, and q. = q-y * u(IvI). The only worry left is whether the 

restraint q-, will allow us to do this. 
But notice that by definition of p E Au, u(IvI) = 1 -+I vI is not restrained by p on 

a CUB set D ci a. We know that C -/' is contained in D for some /3' < a, and so 
we can obtain the desired q by only coding u(IvI) at q(y') for y ? /3'. H 

REMARK. Lemma 2.5 and Requirement C together guarantee that if G is 'S- 

generic, s E Sa+, then G ` a codes not only Ga but s and A n a+ as well. In other 
words, the restraint imposed by G ` a does not interfere with Ga's ability to code s, 
A r a+. 

Finally we turn to the successor case of (**)u. 
LEMMA 2.6. Suppose (*)u and (**)v hold for v c u # v. Then (**)u holds. 
PROOF. We must show that if v = u ` (lul - 1) and p E (V)0 - (`<V)0, <Di I i < IB> E 

,dv are predense on (jv)0 then there exists q < p, q meets each Di. For simplicity 

assume that /3 = w. Our argument will be exactly as in our proof of the ordinary 
coding theorem (over L) with the sole exception of the use of iteration methods in 
the proof of strong extendibility. 

DEFINITION. Suppose f(/3) = M0 is a function in sv from Card+ r l a (= all 
successor cardinals <a) into s1v such that card(M0) < /3 for all /3 E Dom(f) and 
p E g9v. Then ZP = {q E 9v |V/ -E Dom(f)(q(/3) meets all predense D c ReP+ 
D E M,)} 

SUBLEMMA 2.7. ZP is dense below p in 9v. 
Before proving Sublemma 2.7 we establish the lemma, assuming it. Choose a limit 

ordinal i < vV such that p, <Di I i < co> c Vv 
` 

i and so that Z1 cofinality (,dv 
` 
A) = co. 

Choose X0 < Xj < cofinal below i such that <Xi I i < co> c Z1(1,(v A) in param- 
eter x and p, <Di I i < co>, x c Vv 

` 
sO. Define: My = least M <_l, Jdv Xi such that 

y U {p, x, <Di I i < 0)>, Kc} c M for each y E Card+ al x. Define fi(y) = M',. 
Choose p = PO 2 PI > successively so that pi+1 meets Di and 2:P. Set p* = 

g.l.b.<pi I i < co>. We must show that p* is a well-defined condition. Thanks to (**)v 
it will suffice to show that if D E My n SV is predense on (9`V)y, y E Card r-) o, 

then some pj reduces D below y. (For then, p* is generic over the transitive collapse 
of My i n ? ) 

Choose j 2 i so that Pk reduces D no further than pj for k > j. Let y' be least so 

that pj reduces D below y'. Then y' < a by predensity reduction for p. If y' < y then 

of course pj reduces D below y and we are done. If y' > y is a double successor 
cardinal then we reach a contradiction, since by definition pj + 1 will reduce D further. 
If y' > y is the successor to a limit cardinal 6 then notice that D(Pi)y' n slk belongs 
to /pk and is predense on (A<Pk(4)y for some k, since 

q{IPk,5 k < w} = 6+ n U{Mk I k < w}. 

So by predensity reduction for Pk at 6, D is reduced below some 6' < 6, a 
contradiction. Lastly if y' is a limit cardinal then the preceding argument applies, 
replacing y' by (y')+. 

PROOF OF SUBLEMMA 2.7. First suppose that ca is inaccessible in qv We want to 
extend p to meet ZP. We can assume that p E qv - 4 (by persistence) and choose a 



CODING OVER A MEASURABLE CARDINAL 1153 

limit ordinal v < vV such that p, f E Av P v. Let C = {ft < a f t = a r- Z1 Skolern hull 
of ft u {p, f, K} in qv P v}, a CUB subset of ar. Enumerate C = {Bfi I i < c4 and pro- 
ceed as follows: PO = least q < p such that q meets Pflo and pi+, = least q <?pi, 
such that q meets Z /Pp; for limit i < ?a, p1 = g.l.b.<pi I i < A>. Then pi+ 1 is well- 
defined when pi is, since Dom(f) c card' and we can use induction on ca to get the 
density of ZPf . For limit i < a notice that p1 ft A qeSPA,. = qP,1 since fEc- C 

f Il, C r) ft E Spa. So PA is well-defined and we can let q = pa e ZP, q < P. 
In the singular case we can repeat the above argument, provided we have the 

following. 
STRONG EXTENDIBILITY. Suppose g 4, g(ft) E Hp+ for all ft e Card r) (fO, c) and 

p e ?PV. Then there is q <po p such that g f e Eq/3 for all ft e Card rn (fO, oe]. 
For, strong extendibility allows us to choose q < p, a CUB C c ca and v < vv such 

that for ft E Lim(C), Tv = transitive collapse (Mv) and C rn ft belong to , where 
Mv = Z1 Skolem hull of f u {pf, K} in /v P v. Then f E Lim(C)- C f and 
f f tl e Sq/3, so our preceding argument applies. 

We now break down strong extendibility into the ramified form in which it 
will be proved. For any vo < v < vv and k < co let BVk denote the 2k master code 
structure for jv F v, where Vv = <KVv Cv>. By this we mean the following. We know 
that v v is Z1-projectible so we let Bv? = Core(/dv v) = transitive collapse of Z1 
Skolem hull of pv u {K, p} in qv P v, where pv = Z1 projectum of qv v and p = 

least parameter witnessing this fact. Note that ca < pv < K. Then Bv" = Z1 master 
code structure for Bv ?. In general BV'k = Zk master code structure for Bv ?, in the 

usual sense. Note that Bv o is k-sound for all k. 
Let Mv'k = Z1 Skolem hull of ft u {K(BVsk- 1) p(BVk-- 1)} in Bvk - 1 for ft < a and 

k > 0 (where p(BV'k-l) = standard parameter for Bvk-1, K(BVk -1) = measurable 

of BV'k- 1 if k = 1). We use TC to denote "transitive collapse". 

SE(v, k). Suppose p E OP v and fO < oc. Then there exists q < pop such that 
TC(Mv k) E ,q/3 for all ,f > t0. 

It is clear that strong extendibility is equivalent to the conjunction of SE(v, k) for 

v < vV, 0 < k < a). SE(v, k) is proved by induction on v, and for fixed v by induction 

on k. However to succeed with this induction we must impose one further require- 

ment on our conditions. 
Requirement D. Suppose p e- 02v - 0<V and let v, k be least so that p is 

Yk+ (,/v v). Then TC(M#k) E qpp for sufficiently large ft E Card r- a. 

The proof of (*)v shows that Requirement D is met in that construction and 

therefore SE(v?, 1) does hold, the base case of our induction. Note that SE(v, k) is 

automatic by induction unless 2k projectum (qv P v) = a. Suppose k = 1. If v is a 

limit ordinal then so is v- = ORD(Bv O) and we can use a Z1(Bv ?)-approximation to v- 

and induction to obtain q < p obeying SE(v, 1) (using the Zf's5, f E v P v). Similarly 

if v is a successor use <Zk(Bv'? P v-') I k < w> to approximate Z1(Bv ?) where v- = 

V' + 1 (using also the Zf's5, f definable over ftvo i v`'). 

Suppose k > 1. By induction we can assume that TC(M, k -) e q/p for large 

enough ft and by Requirement D we can assume that p is Zk(j/v V) = 2k(Bv'?). If C 

= {ft <c o flt = r r Mv'k} is unbounded in ar then successively extend p ft for ft E C 

as in the inaccessible case so that TC(Mk) Eq for ft' < ft. There is no problem at 

limits since TC(M: k), C rn el E qp, for ft E C (Bv ? iterates to qv P v and the itera- 

tion preserves 2k definability). 
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If ar is Zk(/V v)-singular then choose a continuous cofinal Zk(sl v) sequence f0 
< /, <. below ca of ordertype )O = cof (a). Also choose /, + large enough so that 
M v' k 1 /3 is defined. This is possible since Zk(d v) V)Z1(Bv k-1) for subsets of 
c and BVk-l = U{MP k- I f < o} unless Zk - projectum (a1 P v) > oc, in which case 
we can approximate BV k- 1 as in the case k = 1. Now define N' for i < Lo, f < /pi as 
follows: Np = Z1 Skolem hull of f u {p(BVk- ')} in Mj- 1. Then <TC(N') < P <fl > 
E 4P., for i < AO since it is easily defined from Mk-- 1e EJp, . Successively AO- 
extend p [ fit, producing p = Po ?loPi ?2*O where TC(NJ) E s4aP for # E (AOefi). 
This is possible by induction on ca and since TC(N') is easily defined from 
<TC(Ni,) I /3' < A> for limit /3 < f3i. We must also require that P+i 1 ?Opi meets ZXP 
when fi(/3) = No. Then pA is well-defined for limit i ? ..%A and s/ contains 
<TC(N) Ii < AO> and hence TC(Mpk) for f > O. Finally use induction to fill in on 
(0, )-] so that SE(v, k) is satisfied. 

Finally there is the intermediate case where a is Zk(VS v)-regular but C- 

{f < o i / = a n M v 
} is bounded in a. Then Lk+ 1(4s r v)-cof(a) = o and we apply 

induction to produce p = PO ? P, > , so that Pi+1 i' [At, A+ l obeys SE(v,k) 
where fto < /3 <.** is a cofinal co-sequence of successor cardinals below ar. Let 
q = g.l.b.<pi I i < w>. 

This completes the proof of Sublemma 2.7 and hence of (**). H 

?3. Proof of the theorem. As remarked earlier we can assume that V= L=A], 
where HK = LK[A] for all infinite cardinals K (in particular, GCH holds). By 
standard L-coding techniques we can then code A so as to produce L[A, y], where 
A r K = A r K, A K+, no subsets of K are added and A is L-reshaped: for any 
4 < K+, LEA r) fl Card(4) < K. Note that as no subsets of K are added, y is still 
a measure in L[u, A]. 

Now we must use the Yu forcings, u E SK, from ?2 to code A by a real in such a way 
as to allow for measure preservation. We first define large structures H, 4 < K+, for 
controlling the A-coding. There are in fact two codings taking place simultaneously 
at K, one for coding a j(p)-reshaped B c K+ and the other for coding the L-reshaped 
A. They are related by: q E A * <3,5q> E B, where ant = ORD(I4:). 

DEFINITION. The ordinals C<: and C<: are defined by induction on 4 E [K, K+) as 
follows: 

= K, and Ad = U I d' < 4} otherwise. 
I:= least p.r. closed q > Hi such that -X = <Ln[-9]/, it [ L,[,4]> is amenable, 

a?< t Card(4) < K and in addition d< is closed under: < e SI, a well-ordering of 
K -* o.t.(<) E a?<. 

Note that r, is well-defined as 1 [L[A r ), u] is a normal measure in 
L[A r) , ,u]. We let d? = KLK[A], A r) K> and X,?+1 = <d,, (A r- c)*>, where 
(A r 4)* = |' e A r- } and Sq = U Jq/ ' < 4} for limit 4 greater than K. 

Note that each <S.:, y rd,> is amenable and, for 4 > K, qO = (K+)Mg when Me is 
the ultrapower of a?, via ji [ an. 

DEFINITION. SK = all u: [K, IUJ) -* 2, Jul < K+ which are A n K, j(p)-reshaped: for 
< ? IuI, L[A r) K, j(u), U r fl k Card(4) < K. Here we are using j(p) to denote the 

image of y under the embedding j: V -* M determined by the measure it. Note that 

j(p) is a measure in M:L[A C K, j([), U[ f] for ? lul. 
For u E S K we can define the forcing YAu exactly as in ?2, except with K, u replaced 
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by j(K), j(1u). However we restrict ourselves here to only those u E SK which are 
consistent with Requirement A of coding. 

DEFINITION. u E SKis OK if u c C E /4 whenever C < C< and for <3, t4> E Dom(u), 

u(<3, Gi >) = A(4) = 0 or 1. 
The desired forcing OP consists of all conditions p = <p K K, U(p), Ui(p)> satisfying 

the following: 
(a) p P K E )u (P) I P KI = u(p))I and u(p) E SK is OK. 
(b) (u(p), 6(p)) is a condition in RV where v = j(P)K+. 

And p < q in ,' iff p P K < q P K in Jlu(P), (u(p), u(p)) < (u(q), u(q)) in RV, v = j(P)K+. 

Extendibility for J1 follows from extendibility for gO", u E SKI given the following 
claim. 

Claim. Suppose p E J1 and 6 < K+. Then there exists q < p, jIq1 ? 6, where IIqjI = 

least : q K E an. 

As the claim is proved using distributivity methods, we treat distributivity first 
(assuming the claim) and prove the claim later. 

Distributivity. For ca < K, = {<p [0t, K), U(p), u (P)> I p E go} is < a-distributive. 
Also, J1 is A-distributive. 

This is established as follows, using the distributivity properties of the Jlu 
forcings, u E SK. Suppose oa < K and <1i I i < o> are predense on J~ and p E J~. We 
can make successive extensions p = Po 2 Pi ? ... of p in ca steps so that at limit 
stages i < ? , I IPII = qA = K+ r) N. for some NA -< LK++ [A,5 ] such that A, A, PI 

<,Ai i < oe> E NA. To verify that PA is a well-defined condition we must arrange that 

u(p.) = U{u(pi) I i < A} is A n K, j(u)-reshaped and PA P K, d(iU(pA)) E q/u(P,). 

Let ji: ? -- M. be the ultrapower and u* = U{h(u(pi)) i < = Uhl[u(P)]. 
We claim that u(pA) generically codes u* via the forcing 2?K, where Jl*= 

U j.[P"u(Pi)] I i < A}. Indeed, zl-distributivity of Jlu(pA) implies that any predense 
A C iZRK) A E LORD(Mj)[j[A r) K], U*] is reduced by some jA(pi) below K , and 

therefore v is 01K` -generic where v = U; P(J)K| i < A} and K+ denotes (KA)MA = 

q.. But we can easily arrange in the construction of the pi's that for limit i, u(pA) is 
Rv generic (v defined as above) by choosing (u(pi+, ), U-(pi+ )) appropriately. Thus 

u(pA) is ??'*-generic and hence codes u*. 
Finally we see that reshaping of u(pA) (and the properties PA P K, d(i-(pA)) E q/u(p 

is guaranteed provided we can show that A* = U h jA(A r) qi) I i < A} is coded by u*, 

jAiL( P 4). Equivalently, we must show that A m q. is coded by u(pA), t P 40? But 
c E A r- q. iff u(pA)(<3, qi>) = 1 and <qKu I < A> can be inductively recovered from 

U(pA), P 1t . 

This demonstrates the reshaping of u(p,4 The reshaping of P., for ft E [oC, K) 

follows similarly, using the methods of ?2. Finally, zl-distributivity is a straightfor- 
ward modification of the above. 

We are left with our claim concerning extendibility. To prove it, we use: 
Fact F. There exists <C4 | < K+> such that C, I q0 is CUB, o.t.(C4) < K and 

q E Lim(C ) -q = at, where C, = C, r) tj. Moreover C, is uniformly definable as 

an element of ah. 
Proof of the Claim. Assume the claim for 6' < 6. Successively extend p to p = 

PO ? Pi ? .- , where IIpill E Ca. By induction we can assume that 6 is a limit ordinal 
and that pi+, can be chosen to properly extend pi; we must guarantee tlhat P. = 

g.l.b.<pi I i < A> is a well-defined condition for limit A. To do so, arrange as in 
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distributivity that u(pj) generically codes u =U { j(u(pm)) I i < A}. This guarantees 
the reshaping of u(pA) and of p for f < K. H 

We have shown that Y preserves cofinalities and that if G is p-generic then 
V[G] = L[yu, R] for some real R. Finally we show: 

THEOREM. If G is ?-generic then K is measurable in V[G] via a measure * 

extending ,u. 
PROOF. Let y arise from j: V -* M. We must select a G* 2 j[G] such that G* is 

j(Y)-generic over M, for then j extends to j*: V[G] -* MEG *]. Consider G* = {p* 
E j(YA)l for some p E G, p* and j(p) agree at all ca < j(K) except p*(K) = (u(p), U?-p))}. 

Then G* is compatible by the 9?-genericity of G. If a * c ] j(9) is predense, A * E M, 
then by Az-distributivity of j(,OA), G* reduces A * below K+. But then G* meets A * by 
the ?7-genericity of G. So G* = {p* p* is extended by some element of G*} is the 
desired j(Y)-generic. -1 

?4. Extensions and applications. 
THEOREM 4. 1. Suppose L [i] # ,u is a measure and OW exists. Then there exists a real 

R, Ot 0 L[1i, R], which is not set-generic over L[,i] such that L[,i, R] # ,u extends to a 
measure. Moreover, R can be chosen independently of ,u. 

PROOF. Let L[,iO] F yo is a measure on Ko, where Ko is the least ordinal 
measurable in an inner model. Then Ko is countable and there is a class of 
indiscernibles for L[1O] (i.e., y# exists). So using the technique of the proof of 
Theorem 0.2 of Beller, Jensen and Welch [82], we can produce R c w) so that 
L[io, R] F ,o extends to a measure y* and R generically codes the +-class 
over L[1io]. Now if we iterate y* to y* then ,y* extends ,u and R is generic over 
L[ii]. So L[1i, R] # ,u extends to a measure, Ot 0 L[1i, R] and R is not set-generic 
over L[1i]. -4 

THEOREM 4.2 (Coding over K). Suppose < V, A> # ZFC + GCH. Then there is a 
cardinal and cofinality preserving forcing for producing a real R such that V[R] # 
V = K R, A is definable with parameter R and every cardinal which is Ramsey in V is 
still Ramsey. 

PROOF. We use the coding of ?2 as long as # 's exist: As we do not necessarily have 
the measure ,u at our disposal, we work with mice instead. For example, if every 
subset of o has a sharp then s E Sa must be KA a-reshaped, meaning that q < ? s I - 
M # card(Q) < oa for some A n ot, s [ q-mouse M. And v, = ORD(Mj), where M, is 
the <*-least core A n ot, s-mouse such that M, # card(IsI) < o and vy p.r. closed. 
Note that t c s -+ Mt iterates to an initial segment M,, of M, via a unique j,. Then 
Vs = U{ORD(Mts) I t c s, t 0 S}, s* = {ORD(Mts) I t c s, s(ItI) = 1} and MO = 

LVO[Us, A n ot, s*], where ps is the measure of Ms. The fine structure properties of 
K allow the earlier coding arguments to go through. 

If some subset of o does not have a #, then use L-coding. Now notice that there 
is no conflict between the K-coding and the L-coding, because if p E YAU u E Sa and 
L-coding is used at o then for CUB-many /3 < ot, either L-coding is used at /3 or the 
ordinals needed to code at /3 are (beyond some fixed #0 < ot) larger than those 
committed by p. 

Now suppose K is Ramsey and 0k is the forcing described above. We wish to show 
that ?07 K1K is Ramsey. To do so we must make an extra assumption about the 
predicate A: if o is inaccessible and o < q < oc+ then M collapses to an initial 
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segment of <L[A], A> for CUB-many M -< <L,[A], A ri q>. We first "prepare the 
universe" to create A satisfying this property, while still obeying H. = LJ[A] for 
infinite cardinals y. 

Q (=the forcing to add A) is defined as follows. First fix AO c ORD such that 
Ha = La[Ao] for infinite cardinals ot (and such that the A of the statement of the 
theorem is coded onto the even part of AO). Now we force A using conditions 
q: Dom(q) -+ V, Dom(q) a closed initial segment of the cardinals, where q(Lx) E 

Sx= {s: [o lsl)- 21 sl <a, Lis,[s, AO n oc]] #o is the largest cardinal A ZF-, 
L[s, AO nrc] F Isl is not a cardinal}. (Note that we do not require s E SX to be 
L-reshaped.) For s E Sx define dso = <L1sl[s, AO n oc], s> and ds = L,.[s, AO n 0c], 
where ps = least p.r. closed , > Isl such that LUs, AO n oc] # card(lsl) < oc. Then 
we also require that slq () LO inaccessible -+ q [ oc c dq(a) and there is CUB C c oc, 
Ce slq(a), such that sl/x)= direct limit of an elementary chain <K<Kq( /3 e C>, 
< / 3 , < y in C>> e sq(a) where 7ty has critical point /3, 2to(f) = y. 

Note that if s obeys the first two properties required for membership in SX then s 
can be extended to an element of S,. Moreover given q e Q defined on Card q c+, 
Vq () # OC inaccessible, and given s e Sx extending q(ox) we can easily extend q to q' so 
that q'(ox) = s. Distributivity is also easily verified. Thus Q preserves cardinals and 
adds a predicate B with the strong reflection property: oc inaccessible, oc < q <Loc 
-+ M - an initial segment of <L[B], B> for CUB-many M -< <LjA], A n q>. The 
desired A is B A A', where A' = {y+ + y Iy e A0}. Note that even for limit oc we 
have Hx+ = Lx+[B], so Hx = Lx[A] for all infinite oc. 

We must also check that Q preserves Ramseyness. Suppose q e Q and K is 
Ramsey, and let I c K consist of good indiscernibles for the structure 
<LK[AO], AO, q [ K> = s/ and for y e I let M, = transitive collapse (Skolem hull of 
T U {m YD. . .} in s/), where To <Y < ... are the first w)-many elements of I greater 
than y. Then there are natural embeddings 7yy: My - My, for y < ' in I. Define py on 
)(y) r- My by iiy(X) = 1 iffy e 27yy(X) for y < ' in I. Let ay = y+ in the sense of My. 

Then <My [ ay, py> is amenable for y e I and direct limit <<My [ cty, [Ly>yeI, 

<7Eyy'>y<y' in> is of the form <LjB], B, q, ii>, where ,u is countably complete. We 
can extend q to q' so that Iq'I ? q and {r I q' < r < q, IrI < q } reduces each predense 
a ( Q n LUJ[B], a e Lt1[B] below K. (Note that cof(q) = w.) 

The point now is that q' < q forces that , extends to a measure on LUJ[B, G]. To see 
this note that Q n LJ[B] satisfies ,u-distributivity: If <KAx II < K> e LJB] and Az is 
predense on Q n LUJB] for oc < K, then for each qO e Q n LUJB] there is q1 < qO 
meeting (,u-measure 1)-many J4's. The latter in fact implies that ,u is forced to 
generate a measure on LJB, G]. 

Finally suppose q Kff: [K]'< -+ 2. We can choose q' < q as above so that q' 
f e LJB, G] and there is a measure ,* on LJB, G]. But then, by countable com- 
pleteness, q' [k f has a homogeneous set of size K. SO Q 1K K is Ramsey. 

Now let us return to ?07. We want to apply a similar argument (with Ao replaced 
by A) to show that ?k 1K K is Ramsey (when K is Ramsey in V and hence in VQ). This 
time we have to choose q' < q so that Iqj = q and qK is Rv-generic, where v = 

U{j(r)l r e , I rI < q} and j: <Lt7[B], > M is the ultrapower. Note that in 
this case LJB] = LUJ[A] and B n rq = A n rj, thanks to our preparatory forcing to 
add A. Also q is singular in KAnkAn7 and hence in KAnKqK as required for 
qK e SK. We must also know that q' could have been chosen to avoid the restraint 
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imposed by q-K. But the A-restraint in qK is appropriate for the forcing Rv. To avoid 
the coIing restraint in qiK, observe that this restrains strings t such that a(t) is 
A-stable in K+: 

<LK(t)[A rn o(t)], A n 2(t)> -< <LK+ [A], A n K+>. 

We may assume that the extension qK C qK takes place between adjacent A-stables in 
K+. So there is no conflict. 

Once again we get that q I-f: [K]<( 1- 2 implies q' I-f has a size K homogeneous 
set for some q' < q, and thus ?)k I-- K is Ramsey. -4 

REMARK. Implicit in the previous proof is the following fact, due to a number of 
people. 

PROPOSITION 4.3. Assume GCH. Then K is Ramsey if for every A c K there exists 
,u, M such that <M, ,> is amenable, A E M, <M, I> # /1 is a measure on K and ,u is 
countably complete. 

Also note that by the method of Jensen [68], we can drop the GCH assumption in 
Theorem 4.2 if we also drop the requirement of cardinal preservation. 

The next result is analogous to a result of Beller and David (see ?5.2 of Beller, 
Jensen and Welch [82], or David [82]). M is a ZF, R-mouse (for R c w) if M = 
<LA[ji, R], ,i> is an R-mouse satisfying ZF. If R = 0 we say that M is a ZF-mouse. 

THEOREM 4.4. Suppose M is a countable ZF-mouse. Then there exists a real R such 
that M[R] is the <*-least ZF, R-mouse. Moreover the measure of M[R] extends the 
measure of M. 

PROOF. Suppose M = <L[,4] ,i>, ,u a measure on K. First produce an L-reshaped 
A c (K+)M such that no /3 < ot satisfies L,[u, A r -] f ZF + 4 = K+ for any 4. 
This is possible using the proof of Theorem 5.2 in Beller, Jensen and Welch [82] or 
David [82]. Then code A by a real, preserving the measurability of K. If N[R] is a 
ZF, R-mouse then compare it to M[R]; if the iterate of N[R] is a proper initial 
segment of the iterate M*[R] of M[R], then A* = image of A in M*[R] fails to 
obey in M*[R] the defining property of A in M[R], contradiction. -4 

THEOREM 4.5. The existence of a precipitous ideal on wc is consistent with the 
existence of a a 3 well-ordering of the reals. 

PROOF. Start with L[EY], ,u a measure on K, and collapse K to 0)1 in a special way: 
Use K++-Souslin trees from L[EY] as in David [83] to guarantee that each successor 
cardinal <K will have a canonical real code. Thus we L[ii]-code branches through 
the trees into subsets of cardinals o + <K and then define aX to collapse o and to be 
uniquely determined by the subsets of or++ that it almost disjointly codes. Now 
notice that the relation "R codes an ordinal or ? (wl)'s" is a Z2 relation on reals: it 
holds iff whenever M is an S-mouse, M F I RI is uncountable iff whenever M is a 
transitive model of ZF- + (V = L[EY, S]) + (yu is a measure), IRI E M -+ M I RI is 
uncountable. The latter equivalence follows as the hypothesis IR I E M guarantees 
that M is an iterable S-premouse when IRI ? (1)J)Ks. 

Thus we have that there is in L[1i, <ax I c< K>] a 7r' relation P(R, S) +-S = 

Kan /3? ,B >, or 2 (w1)l)R. We can now well-order the reals by Ro < R1 +-* ]S(P(R1, S) 
and Ro < R1 in KS). This isA3. 

To get a precipitous ideal, follow Jech, Magidor, Mitchell and Prikry [80] and 
take I = {X c K I 3 Y(1(Y) = 1 and X n Y = 0)}. The proof that I is precipitous 
goes through, using the above forcing in place of the gentle Levy collapse of K. 4 
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Some open questions. 1) Is there a coding theorem for hypermeasures? 
2) Suppose OW 0 L[ , R] and y is a measure, R c w. Then is R generic over L[1] 

(via possibly a class forcing)? 
3) Say that M is recursively inaccessible if M is admissible and x E M -+ x E y E M 

where y is admissible. Is there a real R such that M[R] is an admissible R-mouse iff 
M is a recursively inaccessible mouse? 
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