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CODING OVER A MEASURABLE CARDINAL
SY D. FRIEDMAN

The purpose of this paper is to extend the coding method (see Beller, Jensen and
Welch [82]) into the context of large cardinals.

THEOREM. Suppose i is a normal measure onx inV and {V,A) = ZFC. Then there
is a {V, A)-definable forcing 2 for producing a real R such that:

(a) V[R]E ZFC and A is V[R]-definable with parameter R.

(b) V[R] = L[ u*,R], where pu* is a normal measure on x in V[R] extending p.

(c) V= GCH — 2 is cardinal and cofinality preserving.

COROLLARY. It is consistent that p is a normal measure, R < w is not set-generic
over L[] and OF ¢ L[ u, R].

Some other corollaries will be discussed in §4 of the paper.

The main difficulty in L[ u]-coding lies in the problem of “stationary restraint”.
As in all coding constructions, conditions will be of the form p(y) = (p,,p,), ¥
belonging to an initial segment of the cardinals, where p(y) is a condition for almost
disjoint coding p,+: |p,+| = 2, |p,«| <™ into a subset of y*. In addition for limit
cardinals y in Domain(p), {p, |y’ < y) serves to code p,-

An important restriction in coding arguments is that for inaccessible y, p, # &
for only a nonstationary set of y’ < y. The reason is that otherwise there are conflicts
between the restraint imposed by the different p,. and the need to code extensions of
p, below y.

However the natural approach to L[ u]-coding violates such a restriction. In this
approach, the key to preserving the measure is “u-distributivity”, a property which
requires p-measure 1 restraint. To state u-distributivity, suppose that D, is open
dense for all « < k. Then p-distributivity asserts that any p can be extended to g so
that g meets D, for all «in a set of u-measure 1. This enables one to show that u in fact
generates a measure u* in the generic extension defined by: u*(X) = 1iff u(Y) =1
for some Y < X.

Instead we establish a weakening of p-distributivity, which is most easily
described in terms of elementary embeddings. The p-distributivity property
implies that if G is 2-generic then j[G] generates a j(#)-generic H over M, where
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1146 SY D. FRIEDMAN

j: V= M is the ultrapower via the measure u. By “generates” we mean that H =
{q€ j(?)|j(p) < q for some pe G}. Our weakening states not that H is j(#)-
generic but only that H* is j(#)-generic, where H* = {q € j(?)|q is compatible
with every j(p) for p € G}. (Conditions in H* are obtained by introducing appro-
priate restraint at k to conditions in H; note thatge H - g, = J.)

Genericity for H* is obtained by defining & to consist of coding conditions p with
domain Card n «*, where a restraint p, is specified for coding j(p),+ into k*. Then
generically we will have that G, codes (J{j(p).+ |p € G}, which is the key to
establishing the genericity of H*. We must also mix this with the coding of 4 < k*
into G, via u, where H, = L,[ A] for infinite cardinals a.

And there is the usual dose of fine structure, this time for L[ #] rather than L. As
proofs of these facts are straightforward, we do not establish them here.

§1 of the paper discusses the successor coding. In §2 we then turn to the definition
of the limit coding. In §3 we discuss the full forcing 2 and prove the theorem. §4
considers some corollaries and related results.

§1. The successor coding. By Jensen [68] we can assume in our theorem that
V= GCH and hence can fix A < ORD such that H, = L,[ 4] for all infinite cardi-
nals a, where H, = all sets of hereditary cardinality less than «. Fix a cardinal « < x
and we now define S,, a collection of “strings” s: [a,|s]) = 2, |s| < a*. For s to
belong to S, we require that s is “u, 4 N a-reshaped”. This means that for n < |s|,
L[y, A n a, s n]E card(n) < . The reshaping of s allows us to code s by a subset
of «, in the manner which we now describe.

For s € S, define structures A2 =Lyo[p, A a,s*] and Ay=L,[u,Ana, s*]
as follows (where s* = [,1|s(n = 1}) If |s|=a then v? = k. In general, v? =
(U{vs1s|n < Is|} and v, = the least p.r. closed v > v¢ such that L,[u, A N a, s*] =
card(|s|) < a. Of course v2, v, and hence /2, o/, are well-defined due to the
reshaping of s.

We must extend the definition of S, to certain cases in which a is not a cardinal.
Suppose that a is p.r. closed and L[ A] k= there is a largest cardinal. Define S, exactly
as we defined S, above and then define S, to consist of all s € S, such that /0 = aisa
cardinal. Thus it is possible that S, has strings which cannot be properly extended in
S,. For s e S, we write a(s) = o.

Using the fine structure of K we can show the following. Let S* = {s|s € S, for
some a, L,[A] &= there is a largest cardinal}.

Fact A. There exists {C,|s € S*) such that:

(a) C,is closed, unbounded in v, and 0.t.(C) < «(s). If |s| is a successor ordinal then
o.t.(Cy) =

(b) ve Lim(C,) » v = v, C, n v = Cq,, for some n <|s.

(c) Cqisuniformly definable over o, where o/ = L, [A N af(s), u, s*], vy = largest
v for which either L,[A N oz(s) u, s*¥]1=|s|isa cardmal orv =12,

dIf = <&/ C> 25 (40,C,> then, for some 5eS*, m=foc where
RE R > 5 (A2, Cyandoisan iteration of (d,C>. And 7@ extends uniquely to
7' ot 2 o, 7 sends X, projectum (sz ) to X, projectum (ﬂ' ) (d is defined in the
statement of Lemma 1.2, below.)

The above form of [J enables us to provide the correct definition of the K-
quasimorass.
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DEFINITION. For 5, s € S* we have § < s if there exists n: (#2,C;> & «#2,C,>
where a(5) = critical point (r). ( 2> means that the boundedness of X, predicates is
preserved.)

The K-quasimorass has the following properties. Let § < s mean that § < s or
§ = s. If § < s then 75 denotes the unique n obeying the above definition, if § < s;
s =1d [ (7, C,).

Fact B. (a) < is atree and, for all s € S*, {a(5)|5 < s} is closed in a(s).

(b Iftcs<sthent <my(t)=tand n; = ng | L.

(©) § < s—(|5|is a limit iff |s| is a limi).

(d) s a<-limit > /2 = | J{rng(ny)|5 < s}.

(€) s not =-maximal in S, — s a <-limit.

(f) § < s, mg noncofinal - ng, = ng, wheret < s, v = (J(Rng(ng) n ORD).

(8) If 5 <ys (5 immediately <-precedes s) then define t +s if T <,t < mg(f) for
some t < 5. Then |s| limit, ng; cofinal — a(s) = | J{a(r) |t s}

We use the K-quasimorass to define the almost disjoint codes b,, s € S*.

DEFINITION. For s € S* let s* = s * 0. Then b, = {§|5* <s*} when s # ¢; b,
consists of all ¢, € S, where ¢; < @™ and o.t.{o’ < «|¢; < ¢*} is even.

Note that b as defined hereis not a set of ordinals, but instead a set of strings. This
reflects a modification of the usual almost disjoint coding: roughly we will have that
for R*-generic D < «fs), s() = i (i = 0 or 1)iff arbitrarily large 5 * i,5 e b;,,lie on D.
Thus we do not control a final segment of {x|5€ b,,,}, only a final segment of
{5% ils_e bg,, Slying on D}. This is a weaker restraint.

Suppose s € S+, « a cardinal less than k. In the usual definition of R* < ./, we use
conditions (u,u) for certain u: [, |u]) =2, |u| <a® and @ < {by,,|s(n) = 0}, /-
card(u) < a. Here we restrict ourselves to a special dense subset of this collection of
conditions. For (u, u) to belong to R* we insist that:

(@) u: [o,|ul) > 2,ues,.

(b) u = {b,|s(n) = 0,s [ n € Rng(n(u))}, where n(r) is of the form ) ), 7(H) is
cofinal and r(u) < s.

(c) du) e o,.

Extension is defined as follows, where “t lies on v” means that v | Dom(t) = t and
Z, = {{n,y) |y € ORD}, (w);(y) = w({j, ).

d W, u)<wuifucu,ucu,(tebeu,tlieson(u’), -t lieson (u), ort * 1
does not lie on (u');) and ( € |u| — A4, € Z,, (u'),(0) = 1 > (u),(6) = 1).

Thus we have that if D: [, a™) — 2 is R®-generic then D is reshaped, (D), codes s
by s(n) = iiff 5 * ilies on (D), for arbitrarily large § € by, and (D), codes 4 N a* by
neAn o iff (D), N Z, is unbounded in a*.

LEMMA 1.1. Suppose G is R*-generic over </, and let D = | J{u|(u,u) € G}. Then
Ana*,seL,[Ana,pu D]

PRrROOF. Clear. — R

LeMMA 1.2. R** = | J{R'|t = s,t # s} has the a**-CC in o, =L;[A N a”,
U, s*], where v, = largest p.r. closed v such that L,[A n «*, u, s]F |s|is a cardinal or
v=10

Proor. It suffices to show that (u,,#,), (u;,4,) incompatible — u, # u, or
d(uy) # d(u,). But this is clear as otherwise we can amalgamate #,, 4, to get ¥ and
extend u, = u, touso that d(u1) € &, obtaining thereby the compatibility of (4, i),
(uy,uy). -
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LeMMA 1.3. R® is <a-distributive in s/;.

PROOF. R®is equivalent to (R, x R,) * R§ where if D is R*-generic then (D), is R,-
generic, (D), is R,-generic and (D), is R§-generic, E = {<i,6) € D |i>0} =D —Z,.
The forcing R, simply adds a code for 4 na* and is easily seen to be <o-
closed. A condition in R, consists of (u),: [a,|(u),|) = 2 together with = = =,,,
d<rcs. To extend we have (u'); = (u);, Rng(n’) 2 Rng(n), (u’); — (w); must
avoid b, if 7(d [ 77) = s [ n. The only reason that R, is not obviously <a-closed is
that U{Rng(ni)|i < 4} is not necessarily of the form Rng(n) for some 7. But
(J{Rng(n;)|i < A} = Rng(n) for some =, which is enough to establish <a-closure
for R,.

Lastly the forcing RE, viewed as a forcing over & [E] = L, [E, u], is seen to be
< a-distributive as follows. Given (), € RE and predense {D; |i <ayelL,[pn E]let
M, <;, M, <j,---be the first a + 1 Z;-elementary submodels M; <y, L, [1, E] such
that a U {(u)o,<D;|i < ad, . E} = My and M, na* e My, (, M, = J{M;|i <1}
for limit A < . Then choose (1), € M;,, so that (ug)o = (4)o and (4;+1)o 2 (U)o
meets D;, (u;)o = | J{(#:)o|i < A} for limit A < a. We must show that (u,), is well-
defined at limit stages A; that is, we must show that L[u, E N a,,(u;)e] &
card(a;) < a, where a, = |(u;)o|. Clearly o, is m;-singular over Lg[4, E N o, ],
where v = Trans. Collapse (M;) n ORD, and hence over any of its iterates, since
iteration maps are X,-elementary. But some such iterate is of the form
L,[u, E N a,], and so we are done. — R

COROLLARY 1.4. R<* = | J{R'|t = 5, t # s} is <a-distributive in /.

ProOF. By Lemma 1.2 it suffices to prove distributivity in </ . But this is clear by
induction on |s|, using Lemma 1.3 at successor stages. —

LeMMA 1.5. If D < R*5, D € </, is predense and s St € S,+, then D is predense
on R'.

PROOF. As in the proof of Corollary 1.4, it suffices to show thatif D = R*, D € 2/
is predense and s < t € S,+, then D is predense on R". Suppose (4, 4) € R, and we will
find an extension that meets D. We can assume that s € Rng(n(u)) and that D e
Rng(n(#) | o/;), where n(i1)(5) = s. Also assume that 5 does not lie on (u); and that
lu| = |s'| + 1for somes’,s < s’ <s.

Now let (u', #') be the least extension of (u, # N %) € R® meeting D. We are done if
we show that (u', %) < (u, i), for then we can amalgamate (', %') and (u’, ¥) to obtain
an extension of (u, #) meeting D. The worry is that some ¢’ * 1 lies on ('), but not on
(), where t’ € b,,,, is being restrained by (,4) and 1 > |s|. But this is impossible if
a(t’) > a(d(®)) as [|ul,|u’|] lies strictly inside (|spl,|s}]) for s5 < 57 < 's. So the only
dangeris that ¢’ * 1 lies on d(#). But §is an initial segment of d(iz) and by hypothesis §
does not lie on (u),. So t’ does not lie on (u),, which means that t’ * 1is not restrained
after all. -

REMARK. The proof of Lemma 1.5 is somewhat easier than with the usual coding
due to the weaker type of restraint being used. (The last step of the proof takes
advantage of the weaker restraint.)

This completes our discussion of the R* forcing.

§2. The limit coding. In defining the limit coding we combine the R* forcings of
the previous section as in other coding theorems, with restrictions necessary for
extendibility of conditions.
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Fix a limit cardinal « < k and u € S,. We wish to define a forcing 2* for coding u
below a.

We need as usual appropriate forms of [J and <, which we now describe. Let
S = (J{S:| x a cardinal <x}.

Fact C. There exists {(C,|s € S) with exactly the properties of (C,|seS*) in
Fact A.

Let E = {se S|o.t(C) = w}.

Fact D. There exists {D;|s € E) such that D, < H® = H23, and:

() Desd, # 4°D < H®— {&<Is||s| &€ E, Dy, = D N &} is stationary in ,.

(b) Dy is uniformly Al(dsA, C,> forseE.

(c) s€ E, X, projectum (sf,) # a(s) —» D, = ¢.

Note. X, projectum (Jd/i), by definition, is the least p such that some Zl(d:)X cp
is not an element of 7. (c) is needed to satisfy requirements in the proof of
extendibility of conditions (see Lemma 2.3).

Now as a rough indication of the nature of 2* we first define 2 < oZ,, a set of
“quasiconditions” which will have to be thinned out in a number of ways to obtain
the proper 2% An element of 2* — 2<* (where 2<* = ( J{2"!*|¢ <u|}) is a
function p: Card N « — V such that for § € Dom(p), p(8) = (ps, pj) € R?#*, for limit
p € Dom(p) we have (inductively) p [ f € 2P and |p | B| = least £ such that ptB
€ ¢ 1s equal to |ps|. We also insist that p codes u in the following sense: For
¢ < |u| and B € Card N « define M,, = X Skolem hullof f U {u[ ¢, «} in ., and
(bj)* = least ¢; < ¢+ such that M§ N B+ < dando.t.{6'|p; < ¢;}is odd. Then
we code uby: u(¢) = Liff bj. * 1lies on p;. for sufficiently large § € Card N o. Recall
that if {6'|#; < ¢;} has odd ordertype then @, is not an element of b,,. and so
¢; * 0 and ¢; * 1 are not restrained by the successor coding R?s",

To obtain 2 — 2=* we impose a number of further requirements.

Requirements A (predensity reduction). Suppose p € 2 — <,

(Al)If ue E and D, € 2~"is B-predense for all § < o, then p meets D,.

(A2) If |u| is a successor, D = 2<*is predense and D e ./ 2 then p reduces D below
some f§ < .

REMARK. D is f-predense if Vq3r(r e D*, r| B = q | p), where D* = {r|r extends
an element of D}. And p reduces D below fif Vg < par < gq(re D*, (r)y=r—r|p
equals (q),)-

Requirement B (restriction). If p < g belong to 2* and |q| < ¢ < |p| then there
exists re #* — P, p<r<gq,wherev=ul¢

Requirement C (nonstationary restraint). Suppose &7, = « inaccessible. Then
there exists a CUB C < a such that C € o, and fe C - py = .

The remaining Requirement D will be introduced at a later point when we discuss
strong extendibility at successor stages.

Extendibility and distributivity for #* are stated as follows. Let g < p signify that

a<p.qlp=plpand(P), = {(p)|pe?}
(%), pe?*, BeCard na—3q <;p(qge P — P

(%%), VB < a(P<*), is < p-distributive in .o7).

Also o0 = « inaccessible - 2<* is A-distributive in <7,. !



1150 SY D. FRIEDMAN

REMARK. A-distributivity asserts that if (D;|p e Card n «) satisfies Dy is B*-
predense for all 8 then Vp3g < p (q meets each Dj).

(%), and (*%), are proved via a simultaneous induction on |u|. The following
consequences of predensity reduction are needed in the proof.

LemMma 2.1 (chain condition for P<¥). Suppose (¥*), holds. Then 2<* has the o -
CCin o, .

PrOOF. Suppose D = #~* is predense and D € o/,. Consider D* = {pe?=|p
reduces D below some < a} € «/,. Then by (x%), and Lemma 1.2, D* is -predense
for all < a. Apply Fact D to obtain ¢ < |u| such that uf e E and D, =
D* A H#'s. Thus by predensity reduction we have that D* n H Sitse o9 is
predense on 2<%, and therefore so is D N H;’ﬂgf@ e H R

LeEMMA 2.2 (persistence for 2<*). Suppose (x*), holds,D < P~"is predense, D € o,
and u < v. Then D is predense on 2°.

PROOE. By restriction, if p € 2 — 2* then p extends some g € 2" — Z~". By the
chain condition for 2<* we can assume that D € .« and hence by induction that |u|
is a successor. But then ¢ reduces D below some 8 < « by predensity reduction, and
hence so does p. So p is compatible with an element of D. -

We can now turn to the proofs of (x),, (¥%),.

LEMMA 2.3. Assume (x*),. Then (x), holds when |u| is a limit ordinal.

PrOOF. We first claim that if p e 2<* and (D;| B, < p < a) € o/ satisfy that D,
< P<*is B*-predense then 3g <;, p (¢ meets each D). We prove this by showing it
with « replaced by 8, < «, by induction on ;. The base case and successor case are
clear, using (x),. If B, is singular then we can choose y, < y; < ---approximating f;,
replace (Dy|fo < B < By> by <(Ei|Bo < i< ", j=o.t(y’s)), where E; =all g
meeting each D, f, < f < y;, and then we are done by induction. Finally, if f, is
inaccessible we factor 2<% as (2<*);. * 2Ds:, where (2<")s; = {(@)p; |9 € 2™},
and first choose (q);: < (p);; that reduces each Dy, f, < B < By, below B7. This
is possible using (x%), and the {*-CC of 2'@#:, which we have by induction
on a.

Now write C, = {vJ\,,|i < A} and choose a successor cardinal f, < a to be at least
as large as 4 and the f in the statement of (x),, if A < a; otherwise let f§; equal a. Now
inductively define a subsequence <1;|j < 4o» of (&|i <4y and {p;|j < o) as
follows: 1, = least &, such that the given p e 2=*'%, p, = p; p;, is the least g <; p;
(if Bo < o; otherwise q <z, ,,, P;» Where n; = &;) such that for all y, fo<y<agq
meets all y*-predense D < 2<"!", D e M". = X, Skolem hull of y* U {p,x, u} in
(&/,‘,’[,’j, Cupny> (T Bo < o5 otherwise consider only y between f U X, and a, n; = ¢;)
and 1, | = least & such that p;,., € P~"1%; p, = glb.{p;|i < 4) for limit 4 < 4,,
n, = J{n|i < 4} for limit 4 < 4,. The ordinal 4, is determined by the condition
that n,, = | J{m|i < 4o} is equal to |u].

We must verify that p, as defined above is indeed a condition for limit 4. (At
successor stages, p; ; is well-defined using Lemma 2.2.) For example we must show
that for y a cardinal <«, p;_is u, A N y-reshaped. We need only consider y > B,and
in case f, =a we need only consider y > f U N; where n; =¢;. Now by
construction if y € MJ* then p;_is n[(#=“"*),]-generic over TC(M'}*), where

n: M1 = (X, Skolem hull of y U {p, k, u} in (A3, Cupy, ) = TC(MT)

is the transitive collapse. And |p; | is X;-definably singularized over TC(M?*) and
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hence, by the first statement in (d) from Fact A (which applies here: see Fact C),
|p;,| is 2-definably singularized over {./ Ol G, 0-As G, e L[, A Ny, p¥ ], we
have reshaping as desired. If M?* na =y then pa, is reshaped, as it must be the
image of u [ 5, under the transitive collapse of M1*, in which case reshaping follows
again from (d) in Fact A. Lastly if " = min(M7* n (ORD — %)) then the above two
arguments can be combined to first argue for the reshaping of p, ,; and then for
that of p, .

But we must also show that p, [y € o/, . As p, [y is definable over TC(M"*) €
L[u, A ny,p,,], this amounts to showmg that v, is large enough Now as we
have (x*),;,,, we know that (When M7* N o # y) #<*!"* has the «*-CC i in d,,m by
Lemma 2.1, and hence p, isin fact 7'~ ' [(#<*!"*), ]-generic over &'~ [+, um] o,
where 7' is as in the second part of (d) in Fact A, = = inverse of the transitive col-
lapse of M+ We know that C= '~ '[C,,,] is definable over &' = 7'~ 1[ wtns]
and V' = ORD(&{ ) <least p.r. closed ordinal greater than v = ORD(&/ ) But
.xz/[ply] F |p,,| is a cardinal. So sz = M[p,1 Jand v’ < Vos» Ce;zf If Mﬁ" N
o =y then there is no problem smce pilyis deﬁnable over m 1[<.52/ utne Catnairds
which iterates to {.&/ Ol G, »» T = inverse to the transitive collapse of M7*,

And we must verify Requ1rement (A1). (Requirements B and C for p, are easily
checked.) If M}* na # y then p, € E— D,, = ¢ (see (c) of Fact D), since (d) of
Fact A implies that 2, projectum (d ) = n’y 1(Z, projectum ( “m)) >a(p;)=7.
If M na=yanduln,¢Ethenp, ¢_ E since © preserves square sequences, 1 =
1nverse to the transitive collapse of M 7. Finally if M7* n o =yand u | 5, € E then
D,, = n '[D,,,] by virtue of (b) in Fact D, where n = inverse to the transitive
collapse of M7

Finally set g = p, , and we have established (x),. —

LEMMA 2.4. Assume (*), and (xx), for v < u, v # u, and also assume |u| limit. Then
(%), holds. R

PrOOF. We may assume that ./, # .o/2. This requires only a small change in
the construction of Lemma 2.3. Instead of extending along C, as in that proof we
extend along a closed subsequence C = C,;, for some ¢ < |u| with the property that
if {(D;|i < B> is the given sequence of predense subsets of (2=")p then 0.t(C) = f
and ge 2% - 3r < q (r e "%+, r meets D;) where C = {¢;]i < B}. Moreover
ulé;¢ Eand C n ¢, € o, for limit 4. It is easy to obtain C by choosing ¢ < |u|
so that cof (§) > f, D; N (#~*!°); predense on (#<"1), for all i < § and then taking
an appropriate subsequence of C, .. The 4-distributivity argument is similar. —

We now turn to the case of |u| successor, where an additional requirement must be
imposed for the sake of proving (#x),.

LEMMA 2.5. Suppose (%), holds and |u| is a successor ordinal. Then (x), holds.

PrOOF. We can assume that p € o/, — o/, where v = u [ (Ju| — 1). Also note that
C, = (&;|j < 4) has ordertype w. Now proceed as in the proof of Lemma 2.3,
making successive extensions p >;p, >, p; > --- so that p;, ; meets all y* -predense
D < #<“ n Nj., where N5, = X, Skolem hull of y* U {u,k} in o, ¢;, for all
ye[B,a). If we set § =gl b {p; |i < w) then g meets the necessary requirements
for being a condition at all y with the exception of y such that y e C = {y| M, n
a=7y}ory=a where M, = | J{N%|j < o} = Z, Skolem hull of y U {u,k} in <,.
The reason is that for y e « — C, T, = transitive collapse (M,) belongs to < , since
T, |g,| is a cardinal and g, is generic over T,.
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To extend § to a condition g € 2* we must do two things. First extend q(y™) for
large enough y > B so as to code u(|v]) = 0 or 1. This is easily done as there are no
conflicts between the successor and limit codings. Secondly for y € C we must define
q(y) = (4,,9,) where g, = ti and g, = g, * u(|v]). The only worry left is whether the
restraint g, will allow us to do this.

But notice that by definition of p € 2 u(|v|) = 1 — |v] is not restrained by p on
a CUB set D < a. We know that C — B is contained in D for some f’ < a, and so
we can obtain the desired ¢ by only coding u(|v|) at g(y*) fory > . -

REMARK. Lemma 2.5 and Requirement C together guarantee that if G is 2°-
generic, s € S,+, then G | « codes not only G, but s and 4 N ot as well. In other
words, the restraint imposed by G | « does not interfere with G,’s ability to code s,
Anat.

Finally we turn to the successor case of (¥x),.

LEMMA 2.6. Suppose (x), and (), hold for v < u # v. Then (%), holds.

PrOOF. We must show thatif v=u [ (|u] — 1)and p e (2*); — (P<")p, {D;|i< ) €
o/, are predense on (2"), then there exists ¢ < p, g meets each D;. For simplicity
assume that f = w. Our argument will be exactly as in our proof of the ordinary
coding theorem (over L) with the sole exception of the use of iteration methods in
the proof of strong extendibility.

DEFINITION. Suppose f(f) = M, is a function in </, from Card™ na (=all
successor cardinals <) into .o/, such that card(Mp) < f for all € Dom(f) and
pe?’. Then X} ={qe?’ |Vp € Dom(f)(q(B) meets all predense D < RP#,
D e My)}.

SUBLEMMA 2.7. X% is dense below p in 2"

Before proving Sublemma 2.7 we establish the lemma, assuming it. Choose a limit
ordinal 4 < v, such that p, (D;|i < w) € o/, 4 and so that | cofinality («/, [ ) = .
Choose 4, < 4; < --- cofinal below 4 such that {4;|i < w) € X,(«, | 4) in param-
eter x and p, <D;|i < w), x € | Ay. Define: M, = least M <y, o/, 4; such that
y U {p, x, {D;|i < w), k} = M for each y € Card" n a. Define f;(y) = M:.

Choose p = po > p; = --- successively so that p;,; meets D; and 2. Set p* =
gl.b.{p;|i < w). We must show that p*is a well-defined condition. Thanks to (xx),
it will suffice to show that if D e M ‘y N /2 is predense on (#~°),, y € Card N «a,
then some p; reduces D below y. (For then, p} is generic over the transitive collapse
of Min o))

Choose j > i so that p, reduces D no further than p; for k > j. Let 7’ be least so
that p; reduces D below y". Then 7" < o by predensity reduction for p. If y* < y then
of course p; reduces D below 7 and we are done. If 7’ > vy is a double successor
cardinal then we reach a contradiction, since by definition p;, ; will reduce D further.
If y > 7 is the successor to a limit cardinal 6 then notice that D'P" A .o/ 2,‘6 belongs
to ., and is predense on (<7<, for some k, since

NIl [k < o} = 6* A M5k < o).

So by predensity reduction for p, at é, D is reduced below some ¢’ <4, a
contradiction. Lastly if 7" is a limit cardinal then the preceding argument applies,
replacing 7' by (y')*.

PrOOF OF SUBLEMMA 2.7. First suppose that « is inaccessible in 27,. We want to
extend p tomeet 2%. We can assume that p € o/, — .o/ 9 (by persistence) and choose a
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limit ordinal v < v, such that p, f € o7, v. Let C = { < a| B = a n X, Skolem hull
of B U {p,f,k} in Z,} v}, a CUB subset of o. Enumerate C = {f;|i < «} and pro-
ceed as follows: p, = least g < p such that g meets X%, ; and p;,, = least g <y, p;
such that ¢ meets X% [ f;; for limit A < «, p, = g.l.b. {p;|i < A). Then p;, is well-
defined when p; is, since Dom(f) < card* and we can use induction on « to get the
density of 2% ;. For limit 2 < « notice that p;[ f, € o,, =, since fe C —
f1BCnBesd,,. So p, is well-defined and we can let g = panf,q<p

In the smgular case we can repeat the above argument, provided we have the
following.

STRONG EXTENDIBILITY. Suppose g € #,,g(p) € Hy. forall p € Card N (B, ) and
p e P". Then there is q <z, p such that g | f € s/, for all B € Card N (B, a].

For, strong extendibility allows us to choose ¢ < p,a CUB C < aand v < v, such
that for B € Lim(C), T} = transitive collapse (M) and C n f belong to o/, where

Zl Skolem hull of B u {p,f,k} in &, v. Then f e Lim(C)— C n B and
f f B € o, ,, so our preceding argument applies.

We now break down strong extendibility into the ramified form in which it
will be proved. For any v <v <, and k < w let B”* denote the X, master code
structure for 7, [ v, where o7, = {7, C,). By this we mean the following. We know
that &/ [ vis Z;-projectible so we let B“ 0 Core(&/ [ v) = transitive collapse of 2}
Skolem hull of p} U {k,p} in ﬂ I'v, where p} = X, projectum of %, [ v and p =
least parameter witnessing this fact. Note that « < pj < x. Then B> ! = ¥, master
code structure for B*°. In general B**¥ = X, master code structure for B”°, in the
usual sense. Note that B*? is k-sound for all k.

Let Mjy* = %, Skolem hull of U {k(B**~!),p(B**"!)} in B**" ! for § < a and
k>0 (where p(B**~1) = standard parameter for B**~!, k(B**~') = measurable
of B¥*~1if k = 1). We use TC to denote “transitive collapse”.

SE(v,k). Suppose pe ?° and P, <a. Then there exists q <g,p such that
TC(My¥) e o, for all B> By.

It is clear that strong extendibility is equivalent to the conjunction of SE(v, k) for
v <v,,0< k< . SE(v,k)is proved by induction on v, and for fixed v by induction
on k. However to succeed with this induction we must impose one further require-
ment on our conditions.

Requirement D. Suppose pe?’ — P<" and let v, k be least so that p is
Z,‘H(Vof P v). Then TC(M}*) € s, for sufficiently large f € Card N a.

The proof of (x), shows that Requ1rement D is met in that construction and
therefore SE(v?, 1) does hold, the base case of our induction. Note that SE(v,k) is
automatic by induction unless X, projectum (&, [ v) = a. Suppose k = 1. If vis a
limit ordinal then sois v = ORD(B"°) and we can use a Z,(B"°)-approximation to v
and induction to obtain g < p obeying SE(v, 1) (using the X’s, f € <, 1 v). Similarly
if v is a successor use {Z,(B"°!¥)|k < w) to approximate X;(B>°) where ¥ =
v’ + 1 (using also the Z’s, f deﬁnable over B> V).

Suppose k > 1. By induction we can assume that TC(M}’ ke s, for large
enough B and by Requirement D we can assume that p is Zk(ﬂ lv) = Z(B"°).If C
={f<a|f=an M;"‘} is unbounded in « then successively extend p | ffor fe C
asin the inaccessible case so that TC(M j*) € o, for f’ < B. There is no problem at
limits since TC(M ), C n e, for ,B eC (B” O iterates to sz v and the itera-
tion preserves 2 deﬁnablhty)
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If ais Zk(azf I v)-singular then choose a continuous cofinal Zk(.ﬁj I v) sequence f,
< By < -+ below a of ordertype 4, = cof(«). Also choose 3, large enough so that
Mpk! |= B: is defined. This is possible since S v =2 (B k=1y for subsets of
aand B** ! = ( J{M}*~!| B < a} unless X, _; projectum (<, [ v) > o, in which case
we can approximate B**~ ! as in the case k = 1. Now define N fori < 4,, f < f;as
follows: Ni; = X, Skolem hull of U {p(B**~*)} in My;*~*. Then (TC(Np)| B < B>
€ o, for i <Ay since it is easily defined from My k-1 € o, . Successively Ao
extend p [ﬂ,, producing p = py =;,p; =, Where TC(Nﬂ) € M for B € (4o, B)
This is possible by induction on « and since TC(N}) is easﬂy defined from
<TC(N' B < [3} for limit § < f;. We must also require that p;, , >lo p; meets X7
when f(B) = Nj. Then p, is well-defined for limit 1 < 4, and contams
{TC(N})|i < Ay and hence TC(M kyfor B > 4,. Finally use 1nduct10n o fill in on
(0, A5 ] so that SE(v, k) is satisfied.

Finally there is the intermediate case where a is Zk(d [ v)-regular but C =

{B<a|fp=an My ¥} is bounded in a. Then X , (<, | v)-cof(x) = w and we apply
induction to produce p = py = p; > -+, so that p;. ([ [, Bi+1] obeys SE(v,k)
where B, < B, < --- is a cofinal w-sequence of successor cardinals below a. Let
q =glb{p;|i <w).

This completes the proof of Sublemma 2.7 and hence of (),. —

§3. Proof of the theorem. As remarked carlier we can assume that V = L[/f]
where H, = L [A] for all infinite cardinals x (in particular, GCH holds). B
standard L-coding techmques we can then code 4 so as to produce L[4, u], where
Ank=Ank ACSk",no subsets of x are added and A is L-reshaped: for any
E<k*, L[A N E]F Card(é) < . Note that as no subsets of x are added, u is still
a measure in L[y, A].

Now we must use the 2" forcings, u € S,, from §2 to code 4 by a real in such a way
as to allow for measure preservation. We first define large structures .o/, £ < k', for
controlling the A-coding. There are in fact two codings taking place simultaneously
at k, one for coding a j(u)-reshaped B = k* and the other for coding the L-reshaped
A. They are related by: n € 4 < (3,1, € B, where . = ORD(s%).

DErFINITION. The ordinals 7, and ng are defined by induction on ¢ € [k, k") as
follows:

r]K =x,and n¢ = {J{n, |é < ¢} otherwise.

= least p.r. closed # > ¢ such that o/ = (L, [#2] ulL, [;zl(’]) is amenable,
szfé l= Card(¢) < x and in addition  is closed under: < € . a well-ordering of
K- 0.t.(<) € .

Note that 5, is well-defined as u[ L[4 n ¢ pu] is a normal measure in
L[A ~ & pl. We let o0 =<(LJ[A), A k) and 2., = (o, (A N &)*), where
(AN &*={na|&eAn &} and & = {2 E < &} for limit ¢ greater than k.
Note that each (/¢, u | /) is amenable and, for ¢ > k, ¢ = (x*)M* when M, is
the ultrapower of /¢ via u | 2.

DEFINITION. S, = all u: [, |u|) = 2, |u| < k™ which are 4 N k, j(p)-reshaped: for
¢ <u|, L[A Nk, j(u), ul ¢] = Card(¢) < k. Here we are using j(u) to denote the
image of u under the embedding j: V — M determined by the measure u. Note that
j(u)is a measure in M 2 L[A N k, j(u), ul &] for & < |ul.

For u € S, we can define the forcing 2* exactly as in §2, except with «, u replaced
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by j(x), j(u). However we restrict ourselves here to only those u € S, which are
consistent with Requirement A4 of coding.

DEFINITION. u € S, is OK if u | 1 € o/ whenever # < 5, and for {(3,7,> € Dom(u),
u({3,ney) = A(§) =0or 1.

The desired forcing 2 consists of all conditions p = {p [ , u(p), u(p)) satisfying
the following:

(@ plke?“P,|pl k| =|u(p)l and u(p) € S, is OK.

(b) (u(p), u(p)) is a condition in R* where v = j(p)-+-

Andp < qin Ziff p| k < qxin 2", (u(p), 4(p)) < (u(q), u(q)) in R*, v = j(p)e+-

Extendibility for 2 follows from extendibility for 2, u € S,, given the ;ollowing
claim.

Claim. Suppose p € 2 and 6 < k™. Then there exists q < p, ||q|| = 9, where ||q|| =
least &:q | k € ;.

As the claim is proved using distributivity methods, we treat distributivity first
(assuming the claim) and prove the claim later.

Distributivity. For o < k, &, = {{p | [, k), u(p), u(p)) |p € 2} is <o-distributive.
Also, 2 is A-distributive.

This is established as follows, using the distributivity properties of the Z*
forcings, u € S,. Suppose a < k and {4;|i < «) are predense on Z, and p € %,. We
can make successive extensions p = p, > p; > -+ of p in a steps so that at limit
stages A < a, ||p,ll = 1, =k A N, for some N; < L,..[A4,u] such that 4, u, p,
{4;|i < a) € N;. To verify that p, is a well-defined condition we must arrange that
u(p;) = J{u(p))|i < 4} is A N K, j(u)-reshaped and p; I k, d(ii(p,)) € Zyp-

Let j,: o/, — M, be the ultrapower and u} = (J{j.(u(p)|i < A} = (Uja[u(p:)]-
We claim that u(p,) generically codes u¥ via the forcing 2}, where #* =
U{.[2"?"]|i < A}. Indeed, 4-distributivity of 2?3 implies that any predense
A* < P*, A* € LogpmyLizl4 0 k], uf] is reduced by some j,(p;) below x*, and
therefore v is 2} -generic where v = | J{ji(po); |1 < A} and k} denotes (k*)M* =
n,. But we can easily arrange in the construction of the p;s that for limit 4, u(p,) is
R-generic (v defined as above) by choosing (u(p; 1), #(p; 1)) appropriately. Thus
u(p,) is Z¥-generic and hence codes u}.

Finally we see that reshaping of u(p;) (and the properties p, [ k, d((p,)) € Hy(,,)
is guaranteed provided we can show that A* = | J{j(4 n n;)|i < A} is coded by u,
ja(u 1 £9). Equivalently, we must show that A N, is coded by u(p,), u | /. But
Ee A nn,iff u(p,)(<3,n:>) = 1and {n¢| & < A) can be inductively recovered from
u(p), ut 3.

This demonstrates the reshaping of u(p;). The reshaping of p,, for g€ [a,x)
follows similarly, using the methods of §2. Finally, A-distributivity is a straightfor-
ward modification of the above.

We are left with our claim concerning extendibility. To prove it, we use:

Fact F. There exists {C¢|& < k") such that C; = ng is CUB, 0.t(C;) < k and
n € Lim(C;) = = ng, where Cy = C; 0 1. Moreover Cy is uniformly definable as
an element of ;.

Proof of the Claim. Assume the claim for 6’ < 6. Successively extend p to p =
Po = p; = -+, where ||p;|| € C;. By induction we can assume that d is a limit ordinal
and that p;,, can be chosen to properly extend p;; we must guarantee tl]at pi=
glb.{p;|i < 1) is a well-defined condition for limit A. To do so, arrange as in
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distributivity that u(p,) generically codes u¥ = { J{j,(u(p;)|i < 4}. This guarantees
the reshaping of u(p;) and of p,, for f <x. —

We have shown that & preserves cofinalities and that if G is Z-generic then
V[G] = L[, R] for some real R. Finally we show:

THEOREM. If G is P-generic then k is measurable in V[G] via a measure p*
extending p.

PROOF. Let p arise from j: V — M. We must select a G* = j[G] such that G* is
Jj(2)-generic over M, for then j extends to j*: V[G] - M[G*]. Consider G* = {p*
€ j(2)| for some p € G, p* and j(p) agree at all « < j(k) except p*(x) = (u(p), u(p))}.
Then G* is compatible by the P-genericity of G. If 4* < j(2P) is predense, 4* € M,
then by 4-distributivity of j(2), G* reduces 4* below k*. But then G* meets 4* by
the 2-genericity of G. So G* = {p*|p* is extended by some element of G*} is the
desired j(#)-generic. —

§4. Extensions and applications.

THEOREM 4.1. Suppose L[ u] = pis ameasure and 0 exists. Then there exists a real
R,0" ¢ L[ u, R], which is not set-generic over L[ u] such that L[ u, R] = pextendstoa
measure. Moreover, R can be chosen independently of p.

PrOOF. Let L[ po]kE= po is a measure on k,, where k, is the least ordinal
measurable in an inner model. Then k, is countable and there is a class of
indiscernibles for L[] (i.e., uf exists). So using the technique of the proof of
Theorem 0.2 of Beller, Jensen and Welch [82], we can produce R < w so that
Ll po,R]1F py extends to a measure u} and R generically codes the ¢-class
over L[uy]. Now if we iterate u¢ to u* then u* extends u and R is generic over
L[u]. So L[u, R]F p extends to a measure, 0" ¢ L[ u, R] and R is not set-generic
over L[u]. —

THEOREM 4.2 (Coding over K). Suppose {V,A> = ZFC + GCH. Then there is a
cardinal and cofinality preserving forcing for producing a real R such that V[R] =
V = K®, A is definable with parameter R and every cardinal which is Ramsey in V is
still Ramsey.

PRrOOF. We use the coding of §2 aslong as #’s exist: As we do not necessarily have
the measure u at our disposal, we work with mice instead. For example, if every
subset of « has a sharp then s € S, must be K“ " *-reshaped, meaning that y < |s| —
M = card(n) < o for some 4 N o, s | n-mouse M. And v, = ORD(M,), where M, is
the <*-least core 4 N a, s-mouse such that M, card(|s|) < « and v, p.r. closed.
Note that t = s — M, iterates to an initial segment M, of M via a unique j,;. Then
vy = |J{ORD(M,) |t S s,t # s}, s* = {ORD(M,)|t<s,s(|t])=1} and M? =
Lyo[us, A n o, s*], where p is the measure of M;. The fine structure properties of
K allow the earlier coding arguments to go through.

If some subset of a does not have a #, then use L-coding. Now notice that there
is no conflict between the K-coding and the L-coding, because if p e 2 u € S, and
L-coding is used at « then for CUB-many f < o, either L-coding is used at f or the
ordinals needed to code at f8 are (beyond some fixed f, < o) larger than those
committed by p.

Now suppose « is Ramsey and 2 is the forcing described above. We wish to show
that 2 |-k is Ramsey. To do so we must make an extra assumption about the
predicate A: if o is inaccessible and a <7 < «* then M collapses to an initial
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segment of (L[A], A) for CUB-many M < (L,[A], A n n). We first “prepare the
universe” to create A satisfying this property, while still obeying H, = L,[A] for
infinite cardinals 7.

Q (=the forcing to add A) is defined as follows. First fix 4, = ORD such that
H, = L,[A,] for infinite cardinals « (and such that the A of the statement of the
theorem is coded onto the even part of 4,). Now we force 4 using conditions
q: Dom(q) — V, Dom(g) a closed initial segment of the cardinals, where g(x) €
S, = {s:[o[s])=2]|s| <a®, Liy[s, Agna]F=o is the largest cardinal AZF~,
L[s, Aon o] |s| is not a cardinal}. (Note that we do not require s € S, to be
L-reshaped.) For s € S, define .o/ = CLigls, Ag nal, sy and o/, = L, [s, Ag N o],
where u; = least p.r. closed u > |s| such that L,[s, 4y n o] = card(|s|) < «. Then
we also require that .o, = o inaccessible — g [ « € %, and there is CUBC < a,
C € o, such that o/, = direct limit of an elementary chain {(&/2;|B € C),
{my,|B <yinC)) € A, where my has critical point , m, (8) = y.

Note that if s obeys the first two properties required for membership in S, then s
can be extended to an element of S,. Moreover given g € Q defined on Card n o™,
&,y F ainaccessible, and given s € S, extending g(«) we can easily extend g to g’ so
that g'(«) = s. Distributivity is also easily verified. Thus Q preserves cardinals and
adds a predicate B with the strong reflection property: « inaccessible, « < < o™
— M ~ an initial segment of (L[B], B) for CUB-many M < {L,[A], A n n).The
desired 4 is B A Ag, where A = {y* + 7|y € A}. Note that even for limit « we
have H,. = L,+[B], so H, = L,[A] for all infinite o.

We must also check that Q preserves Ramseyness. Suppose g € Q and « is
Ramsey, and let I <k consist of good indiscernibles for the structure
(Li[A40], Ao,q 1 k) = o/ and for y € I let M, = transitive collapse (Skolem hull of
y U {y9,715...} In &), where y, < y, < --- are the first w-many elements of I greater
thany. Then there are natural embeddings ,,.: M, — M, fory < y"in I. Define u, on
2(y) n M, by p(X) = 1iff yen,(X)fory <y'in I Let o, = y* in the sense of M,.
Then {M,[a,, u,> is amenable for yel and direct limit {{(M,[a,, pu,>,c;,
M,y Dy<yin1y is of the form (L,[B], B,q, u», where u is countably complete. We
can extend q to ¢’ so that |q'| > nand {r|q’ <r < g, |r| < n} reduces each predense
4<Qn L,[B], 4 € L,[B] below k. (Note that cof(n) = w.)

The point now is that q" < gforces that yextends to ameasure on L,[ B, G]. To see
this note that Q n L,[B] satisfies u-distributivity: If {4, |« < k) € L,[B] and 4, is
predense on Q N L,[B] for a < k, then for each g, € Q n L,[B] there is q; < g,
meeting (u-measure 1)-many 4,’s. The latter in fact implies that yu is forced to
generate a measure on L,[B,G].

Finally suppose ¢ |l f: [k]=“ — 2. We can choose ¢’ < q as above so that g’ |-
f € L,[B,G] and there is a measure u* on L,[B, G]. But then, by countable com-
pleteness, ¢’ |- f has a homogeneous set of size k. So Q |-k is Ramsey.

Now let us return to 2. We want to apply a similar argument (with A4, replaced
by A) to show that £ |-k is Ramsey (when k is Ramsey in V and hence in V'?). This
time we have to choose g’ < g so that |g,| = 5 and g is R’-generic, where v =
U{i(@),|r e 2%, |r| <n} and j: (L,[B],u) - M is the ultrapower. Note that in
this case L,[B] = L,[A] and B n n = A n 5, thanks to our preparatory forcing to
add A. Also # is singular in KA"%4°7 and hence in K“"*% as required for
q, € S,. We must also know that ¢’ could have been chosen to avoid the restraint
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imposed by g,. But the A-restraint in g, is appropriate for the forcing R*. To avoid
the coding restraint in g, observe that this restrains strings ¢ such that o(z) is
A-stable in x*:

(Lyy[A na(®)], A N a(t)) < (L+[A], A n k™).

We may assume that the extension g, < g, takes place between adjacent A-stables in
k*. So there is no conflict.

Once again we get that g |- f: [k]=“ — 2 implies ¢’ |- f has a size K homogeneous
set for some ¢’ < ¢, and thus 2 |-k is Ramsey. —

REMARK. Implicit in the previous proof is the following fact, due to a number of
people.

PROPOSITION 4.3. Assume GCH. Then k is Ramsey iff for every A < k there exists
U, M such that (M, u) is amenable, A € M, {M, u) = p is a measure on x and p is
countably complete.

Also note that by the method of Jensen [68], we can drop the GCH assumption in
Theorem 4.2 if we also drop the requirement of cardinal preservation.

The next result is analogous to a result of Beller and David (see §5.2 of Beller,
Jensen and Welch [82], or David [82]). M is a ZF, R-mouse (for R € w) if M =
{L,[u, R], 1y is an R-mouse satisfying ZF. If R = (J we say that M is a ZF-mouse.

THEOREM 4.4. Suppose M is a countable ZF-mouse. Then there exists a real R such
that M[R] is the <*-least ZF, R-mouse. Moreover the measure of M[R] extends the
measure of M.

PROOF. Suppose M = <{L,[u], u>, u ameasure on k. First produce an L-reshaped
A = (k") such that no f§ < o satisfies Ly[u, A n E] = ZF + & = k* for any &
This is possible using the proof of Theorem 5.2 in Beller, Jensen and Welch [82] or
David [82]. Then code A4 by a real, preserving the measurability of k. If N[R] is a
ZF, R-mouse then compare it to M[R]; if the iterate of N[R] is a proper initial
segment of the iterate M*[R] of M[R], then A* = image of 4 in M*[R] fails to
obey in M*[R] the defining property of A in M[R], contradiction. —

THEOREM 4.5. The existence of a precipitous ideal on w, is consistent with the
existence of a A} well-ordering of the reals.

PRrooF. Start with L[ u], u a measure on k, and collapse k to w, in a special way:
Use k**-Souslin trees from L[ x] as in David [83] to guarantee that each successor
cardinal <k will have a canonical real code. Thus we L[ u]-code branches through
the trees into subsets of cardinals «** < k and then define a, to collapse «* and to be
uniquely determined by the subsets of «** that it almost disjointly codes. Now
notice that the relation “R codes an ordinal « > (w,)¥*” is a 7} relation on reals: it
holds iff whenever M is an S-mouse, M = |R| is uncountable iff whenever M is a
transitive model of ZF~ + (V = L[, S]) + (u is a measure), [R| e M - M = |R| is
uncountable. The latter equivalence follows as the hypothesis |R| € M guarantees
that M is an iterable S-premouse when |R| > (w,)X°.

Thus we have that there is in L[y, {a,|a < k)] a =} relation P(R,S) & S =
(ag| B < o), o> (w,)*". We can now well-order the reals by Ry < R; <> 3S(P(R,, S)
and R, < R, in K%). This is 43.

To get a precipitous ideal, follow Jech, Magidor, Mitchell and Prikry [80] and
take I = {X < k|3Y(u(Y) =1and X n Y = ¥)}. The proof that I is precipitous
goes through, using the above forcing in place of the gentle Lévy collapse of k.
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Some open questions. 1) Is there a coding theorem for hypermeasures?

2) Suppose 0 ¢ L[ u, R] and p is a measure, R < w. Then is R generic over L[ ]
(via possibly a class forcing)?

3) Say that M is recursively inaccessible if M is admissibleandxe M »xeye M
where y is admissible. Is there a real R such that M[R] is an admissible R-mouse iff
M is a recursively inaccessible mouse?
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