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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 59. Number 3. September 1994 

JENSEN'S 1* THEORY 
AND THE COMBINATORIAL CONTENT OF V = L 

SY D. FRIEDMAN 

An awkward feature of the standard fine structure theory of the J, 's (see Jensen 
[72]) is that special parameters are required to make good sense of the notion of "En 
Skolem hull", parameters which may not be preserved in condensation arguments. 

The purpose of this article is to indicate how a reformulation of Jensen's Z* 
theory (developed for the study of core models) can be used to provide a more 
satisfactory treatment of uniformization, hulls, and Skolem functions for the Jc's. 
Then we use this approach to fine structure to formulate a principle intended to 
capture the combinatorial content of the axiom V = L. 

?1. Fine structure revisited. We begin with a simplified definition of the J- 
hierarchy. Inductively we define J.>, a E ORD (and then J. = Jfo) : -n = Vn for 
n < co. Suppose Jo is defined for a limit A and let Wn'(e, x) be a canonical universal 
En(J,) predicate (also defined inductively). For e E Jo, let X)^ (e) {xl WI,(e, x)}, 
and for n > 1 let Xn,,I1(e) {Xn(e Wn;+1(ee)}. Then Jn?,,+n {Xn;,(e)Ie E Jo} 
For all limit A. Je = U{Jf hi < A}. It is straightforward to verify that the Jf,, A limit, 
behave like, and in fact equal, the usual Jc,'s. 

Let M denote some J. a > 0. (More generally, our theory applies to "accept- 
able J-models".) We make the following definitions, inductively. We order finite 
sets of ordinals by the maximum difference order: x < y iff a E y, where a is the 
largest element of (y - x) U (x - y). 

1). A Z* formula is just a El formula. A predicate is Z* (Z, respectively) if 
it is definable by a Z* formula with (without, respectively) parameters. pjl" 
Z* projectum of M = least p such that there is a Z* subset of p not in M and 

M least p such that A npm V M for some A Z* in parameter p (where p is a 
finite set of ordinals). Hm = 1' m = sets x in M such that 

M-card(transitive closure (x)) < pjl. 

For any x E M. Ml(x) first reduct of M relative to x = (Hj mAI(x)), where 
AI (x) C Hm codes the Z* theory of M with parameters from Hm U {x} in the 
natural way: A1(x) {(yn)I the nth Z* formula is true at (y,x), y E H M}. A 
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good 
F. 

function is just a 
Y. 

function, and for any X C M the 
Y. 

hull (X) is just 
the F. hull of X. 

2) For n > 1, a Z%* formula is one of the form (p(x) ?->M (x) e=', where Vr 
is F.. A predicate is Z* respectively) if it is defined by a Z* formula with 
(without, respectively) parameters. pmi = Z*+1 projectum of M = least p such 
that there is a * subset of p not in M andpmi =p"m Up, wherep is least such 

thatAfnpnmIMforsomeAF.* in parameterpnmUp.H,+I= HAM = sets x in 
pn+1 

M such that M-card(transitive closure (x)) <pni1. For any x E M, Mn+I (x) = 

(n + I)st reduct of M relative to x = (HM1,A ?i(x)), where An?i(x) C 

codes the Z* theory of M with parameters from Hn+,4 U {x} in the natural way: 
An+1(x) = {(y,m)l the mth Z* formula is true at (y,x),y E Hn+,}. A good 
Z*+I function f is a function whose graph is Z* with the additional property 
that for x E Dom(f), f(x) E E hull (H,' U {x}). The .* hull (X) for X C M 
is the closure of X under good Z* functions. 

FACTS. (a) Ap, t/ are E* formulas - (p V y/1, 'p A ye are Z* formulas. 
(b) 'p E* or Hn* (= negation of Y.*) - ' is F. * 

(c) Y C n* hull (X) - E* hull (Y) C E* hull (X). 
(d) f good E* function - f good Y.*+I function. 
(e) E* hull (X) C Z* hull (X). 
(f) There is a E* relation W(e, x) such that if S(x) is Z* then for some e E co, 

S(x) ?-+ W(e, x) for all x. 
(g) The structure Mn (x) = (Hn", An (x)) is amenable. 
(h) Hn' = JCAM, where An = An(O). 

(i) Suppose H C M is closed under good n* functions and 7z: M M, M 
transitive, Range(7z) = H andpm I E H (if n > 1). Then 7r preserves E* formulas: for 

Fn*P andx EM, M l=p(x) ?-+ M l= 'p(7r(x)). And (for n> 1), r(pM1) =PiM* 
Proof of (i). Note that H n Mn1 (7r(X)) is El-elementary in Mn_ (7r(x)), and 

7-1[H n Mn (7r(X))] = (JA, A(x)) for some p, A, A(x). But (by induction on n) 
A =Anml n A, A(x) = Anl(x)M n jA, and p = pM using our assumption n-I P P ~~~~~~~~~~fn-I 
about the parameter PM 1. Also, 7r1(pM ) = must be PM1 as M = *1 hull 
of H;n-1 U {pmI}. 

THEOREM 1. By induction on n > 0: 
(1) If 'p (x, y) is E* then Y E Z* hull (H, 11 U {x}) 'p (x, y) is also E. 

(2) If p(xi * . . Xk) is E m > n, and f I (x), ,fk (x) are good E* functions, 
then I(fl(x) ...fk(x)) j5M 

(3) The domain of a good E* function is E. 

(4) Good En* functions are closed under composition. 
(5) (En* Uniformization) If R(x,y) is E* then there is a good En* function f (x) 

such that x E Dom(f) - y E yE hull (Hn1 U {x}) R(x,y) ' >R(x, f(x)). 
(6) There is a good E* function hn(e, x) such that for each x, E* hull ({x}) = 

{hn (e, x) le E co}. 
PROOF. The base case n = 1 is easy (take S* hull (X) = M for all X). Now 

we prove it for n > 1, assuming the result for smaller n. 
(1) Write ]y E Z* hull (Hn'$ U {x})'p(x,y) as ]5y E H,1I'p (x, h i(e, (x, j))) 
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using (6) for n - 1. Since hn - is good F.* , we can apply (2) for n - I to conclude 
that p(x, hni (e, (x, 5-))) is *. Since the quantifiers ]e3-Ej E range overHn 
they preserve F.*-ness. 

(2) ( (f I(X) ... fk(x)) 3x* . Xk E E-l hull (Hnj1 U {x}) [xi = fi(x) 
for I < i < k A p(x... Xk)]. If m= n then this is E.* by (1). If m > n then 
reason as follows: the result for m = n implies that An((f I (x) . fk (x))) is AI 
over Mn+l(x). Thus Am-((f(x) Ofk(x))) is Al over Mmil(x). So as (p is .m 
we get that (p(fl(x) fk(x)) is also lI over Mmi(x), hence Em. 

(3) If f (x) is good Y., then dom(f) = {x13y E. Y*-I hull of Hn'!I U {x}(y = 

f(x))} is Z* by (1). 
(4) If If, g are good Y.*, then the graph of f o g is E* by (2). Also, f o g(x) E 

En-i hull(Hnj1 U {x}) since the latter hull contains g(x), f is good En and Fact 
(c) holds. 

(5) Using (6) for n - 1, letRW(x,5-) - R(x,hn ( A)) Aj E H, .Then R 
is E* by (2) for n - I and, using El uniformization on (n - i)st reducts, we can 

define a good E* function f such that W(x,:f(x)) 3 ]57 E Hn'1R(x,y). Let 

f(x) = hn-I(f(x)). Then f is good E* by (4). 
(6) Let W be universal * as in Fact (f). By (5) there is a good Z* g(e, x) 

such that ]y E Z*- hull(HM 1 U {x}) W(e, (x, y)) ?-> W(e, (x, g (e, x))) (and 
g(e,x) defined > W(e, (x,g(e,x)))). Let hn(e,x) =g(e,x). If y ECZ* hull ({x}) 
then, for some e, W(e, (x,y')) >y' = y, so y = hn(e,x). Clearly hn(e,x) E 
E* hull ({x}), since hn is good Z* ? 

REMARK. It follows from Jensen [72] (and is explicitly indicated in Jensen [89]) 
that for any JO there is a parameter p such that, over JO, En = E* relative to p 
and all En functions are good E* relative to p. We shall make use of this fact in 
the next section (see the proof of Proposition 2). 

?2. The combinatorial content of V = L. In this section we provide an axiomatic 
treatment of the Z* theory introduced in ?1. When establishing combinatorial 
principles in L[R], R a real, one makes use of a standard Skolem system for R 
(defined below), of which the system of canonical E* Skolem functions for the 
JR 's (relativized to Pn- 1) constitutes the canonical example. Our principal goal is 
to provide combinatorial axioms for a system of functions which guarantee that 
it is in fact a standard Skolem system for some real. These axioms can then be 
used to formulate a single combinatorial principle which captures the full power 
of Jensen's fine structure theory. 

Some notation: For 3 ) A + n, A limit or 0 and n E co, Seq(6) denotes all finite 
sequences from A together with all finite sequences from 3 of length < n. Let x * y 
denote the concatenation of the sequences x, y. For A limit or 0, JPR denotes JjR 
where co .3 = A. 

A standard Skolem system for a real R is a system F = (Fn6 In > 0, 3 E ORD, n > 
I - > limit), where Fn6 is a partial function from co x Seq(6) to 3, obeying (A)- 
(E) below. For any limit A,x E Seq(A),n > I let Hn,(x) = {Fn,(k,x)Ik E co} and 
if)i = ordertype (Hn, (x)) let ir(X ( - be the increasing enumeration 

of H?(x). We say y E H'(x), for y E Seq(A), if each coordinate of y belongs to 

HnA(x ) 
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(A) (Monotonicity). 31 < 362 - F1 C F1,` x E H1f (x) C H2(x) C ...C for 
limit A, and x E Seq(A). 

(B) (Condensation). Let T = r (x). Then for m < n, and xE Seq(A) 

r(FI,;(k x)) _ F,1(k,(-)). Also, iz(F?+'"1(k,)) F(+'Ikz(Y)) for x 
Seq(A + m)i. where ji is the extension of 7z to A + m obtained by sending A + i to 
A+i. 

(C) (Continuity). For limit A, F( = U{F1 P1 < Al. For all x E Seq(A) and y < A 

Fn~v I (x) y iff there is some z E Seq(A) such that for all w E Seq(A), Fn~v I (x) - y-, 
where A= ordertype (Hn z * w)) and wn(z * w) sends x, y- to x, y. 

(D) (Fnl 1 < A, n < co) is uniformly AI (Jf) for limit A, in the parameter R. 

(E) For limit A, H1'(x) = A n ZI Skolem hull of (x, R) in JR and Un Hn(x) 

A{n Skolem hull of (x. R) in Jj for x E Seq(A). 

Intuitively, Fn is a Z* Skolem function forJf relativized to Pn-1, and F1A+n is 

the nth approximation to F1A+w. 

PROPOSITION 2. For every real R there exists a standard Skolem system for R. 
PROOF. Let Vt, I- * be a recursive translation on formulas so that for limit 

J+n u J1 = V A n (where J, is defined just like JT, but relativized to 

R). Fix a recursive enumeration (Kk(v)lk E co) of AO formulas with a predicate 
R denoting R and sole free variable v. Let <R denote the ordering of L[R] given 

by: x <R y iff 3] E LimU{0}3n E co [y c - JfE ~ and either (x E m) 
or (A limit, x E f' e <R f where e .f are <R-least such that X ,.Rj (e) = x. 

Xni+ (f) =y) or (A = 0 and x <L Y)] 

Now define F = (Fn, 13 E ORD, n > 0, n > 1 -?3 limit) as follows: 
(a) Fln (k, x) c y iff L R J= 3w : (y, w) is <R -least such that (k (K(X, y, W)) . 

(b) For A limit, F(; = U{Fk16 < Al}. 
(c) For A limit, n > 0, Fj+n(k, x) - y iff for some m < n, J= (3w: (y, w) 

is <R-least such that Wk ((x, y, w))) and if Vt denotes the formula in parentheses 
then Vt*} is Z. 

(d) For A limit, n > 1, F; (k, x) = F(k, x *Pnl- 1), where F is the canonical Z* 

Skolem function for Jj (restricted to co x Seq(A)) as in (6) of Theorem 1. 

The verification that F is a standard Skolem system for R is straightforward. 
To prove Continuity, use the fact that for some choice of z E Seq(A) we have 

n* = En relative to z (over ]]). 
An abstract Skolem system is a system F obeying properties (A), (B), (C) from 

the definition of standard Skolem system. We would like to prove that every 
abstract Skolem system is a standard Skolem system for some real. However, 
standard systems share one further property which we must also impose: 

(Stability). For A limit, x E Seq(A) let n: A - A be the increasing enumeration 

of H1 (x). Then iT extends uniquely to a Z I-elementary embedding of FJ F ) 

into (JIJF [ A). Also for A limit, x E Seq(A),. if i : -A A is the increasing 

enumeration of HA(x) =U Hn(x) then iT extends uniquely to an elementary 
embedding of (JF, F -2A) into (Jf, F [21). 
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Though Stability is not combinatorial, we shall see that any abstract Skolem 
system can be made stable without changing its "cofinality function". This fact will 
enable us to formulate combinatorial principles which are universal for principles 
which depend only on cofinality. 

THEOREM 3. The following are equivalent: 
(a) F is a stable, abstract Skolem system. 
(b) F is a standard Skolem system in a CCC forcing extension of V. 
Note that (b) - (a) is easy, using the absoluteness of the concept of Stability. 

We now develop the forcing required to prove (a) - (b). 
Fix a stable, abstract Skolem system F and let M denote L[F], Mx (Jf, J F[A) 

for limit A. The desired forcing 4 is a CCC forcing of size co, in M. It is designed 
so as to produce a generic real R which codes F [ co, via a careful almost disjoint 
coding. We will demonstrate that R in fact codes all of F using condensation 
properties of F. 

We begin our description of -9. A limit ordinal A is small if for some x E Seq(A) 
and some n, Hn'(x) = A. Let n(A) be the least n for which such an x exists and 
let pA be the least p E Seq(i) for which H'(,) (p) = A. We now define a canonical 

bijection f,: A - co. First let g: A CO w be defined by g(5) = least k such that 
3 = F1'(,)(kp'. Then 7f,(b) = m if g(b) is the mth element of Range(g) under 

<on co. Now let f : co -MX be g* of;, , where g: A - M, is a canonical 
A1 (M,) bijection. Now choose A, C co to code M, using f2,, and let b2?+n (2) be 

a function from co to co which is An(;x)+l (Mo, A,) yet eventually dominates each 
function from co to co which is An(;,) (M, A,). Also require that Range (b;x+n(;x)) C* 

Range(b,+n) for all A < A and n < co, where we have (inductively) defined b,+n 
(C* denotes inclusion except for a finite set.) 

We also define b,+n for n = n (A) + m. m > 0. For this purpose define F1 (k, x) 

~ to mean Fl(,+n (k, x) - y, where x (i) ?A + (i) if -(i) < n, and x(i) n + x(i) 
otherwise (similarly for y). Let A2,+m C co code: 

(AlM, F, n(X) 
F>2+n)+rn- 1, Fin(2). , Fn(;)+m-1) 

using f A, and let b,+n(,)+?1 be a function from co to co that is An(x)+n+1l (MO, AA+m) 

yet eventually dominates An(2)+m (M,,, A2+m) functions. Furthermore, require that 

Range(b,+n(2,)+1) C* Range(b,+n(,)+n-1l). We use the b;,+nn > n(2), to facilitate 
the desired almost disjoint coding. 

An index is a tuple of one of the forms (A + n, 1, k, xy-),( n, k, x, y-), where A 

is small, n > n (A), and F1 (k, x) - y- or F;,t (k, x) y-, respectively Let (Ze I e E co) 
be a recursive partition of co - {0} into infinite pieces. For each index x we define 

a "code" bY as follows: If x = (A + n. 1, k, -x, y-),(. nk, x-, y-), then bY = b;,+n [ Ze r 

where fx (e) = (n, 1, k, x, -), (0, n, k. x-, -), respectively. A restraint is a function 
of the form b,. x an index. We sometimes view b, as a subset of co by identifying 
it with {(n,m)Ib,(n) = m} , *) a recursive pairing on co. 

A condition in 36 is p = (s, s), where s : Is I 2, Is Ic co)o, s is a finite set 
of restraints, and when i =(m, kxy) <s {then s(i) =1 -Fl (k, x) y. 
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Extension is defined by: (s, s) < (t. 7) iff s D t. s D t and s(i) =1 > t(i) = 1 
or i V U It. (Recall that we can think of b, E It as a subset of co.) 

This is a CCC forcing, and a generic G is uniquely determined by the real 
R = U{sI(s.s) E G for some 7}. Fix such a real R. 

LEMMA 4. (Fn6$1 < A, n < co) is uniformly Al (JfT) for limit i, in the parameter 
R. 

PROOF. By induction we define Fat, F +n for A limit or 0, n E co. If A = 0 then 

Fln can be defined directly from R by the restriction we placed on s for conditions 
(s, Ts). For A limit, Fit is defined by induction and Continuity. Also, induction and 

Continuity enable us to define Fn, Fl+n provided n < n (A) 74 1 or n (A) is not 
defined. Thus if A is not small we are done, and otherwise we can define f;, b;.+n 

by induction. Let f;(e) = (n, 1, k, Y5). Then F1 (k. x) y iff (. + n, 1, k,x y) 
is an index if R is almost disjoint from b.+n [ Z, The definition of Fn4 is similar, 
using (0,n,k,5,y). Li 

Our next goal is to establish a strong statement of the definability of the forcing 
relation for -9 . For any infinite ordinal 6 we let -9 (b) denote those conditions in 39 

involving restraints with indices (A + n, 1, k.y), (R n, k,, -), where A + n < 6. 
For p E -9 we let p [ 6 be obtained from p by discarding all restraints which are 
not of the above form. 

LEMMA 5 (Persistence). Let A be small and for p E -9 (A + co) let p* be obtained 
by replacing each of its restraints of the form b, x = (A + n, 1, k, ,-), (R. n, 

k, xy-), by (n, 1, k7,), (n, k, ,j7), respectively. (Then p* E M},.) Suppose W C 
0 (A + n (A) + m) and W - f-1[{p* P El W}] is En(?)+mn over (MO, A;+,,1 ) Then 
D {p E (A + n(I) + m) l3q E W(p < q) or V q < p(q V W)} is predense on 

9. 

PROOF. Given p E -9 we must find q < p such that q [ A + n (A) + m belongs to 
D. Writep = (s,WsU), wherep A+nQ(A)+m = (sS), sn t = 0. For eachn let sn 

extend s by assigning (mo, ml) to 0 whenever (mo, ml) V Dom(s) and mo < ml < n. 
(We intend that n - > Sn is recursive.) If (Snr -s) belongs to D for some n then 
we are done since (Sn s U Y) extends p. If not then we can define a In(;.)+,,, over 

(MA;,+,,1) function n H> tn so that for some 
I 

, (t tn) K (Sn s), (t ,tn) E W. 

using the fact that A;,+1, codes (M;,, Fl+n(A) and hence "codes" 
(, + n (A) + m). Then f (m + 1) = length (tf (,1)), f (O) 0, defines a En(;)+m 

over (Ma, A;+,n) function, and every such function is eventually dominated by the 
function b;.+n(;,)+,. Thus there must be infinitely many 1 such that [f (1), f (1 + 1)] 
is disjoint from Range(b;.+n(;)+,1). As Range(b) C* Range(b;+n(;)+,,1) for all b C Y, 

it follows that for some 1, [f (l), f (l + 1)] is disjoint from U{Range(b)lb E 7}. But 
then (tf (lf), t (l) U t) = q < q and q L A + n(A) + m belongs to W C D. D 

COROLLARY 6. The forcing relation {(p, 'p)Ip E 9(A) and p I-F in 9((A), where 
p is a ranked sentence in M;,} is El over M,, for limit A. 

PROOF. We argue by induction on A. Note that if A < i, A limit, then forp E 9 (A) 
and p ranked in M-A we have p IF p in 9((A) if p IF p in 39 (A). The reason is that 

by Lemma 5, every g (A)-generic is -9(A)-generic for ranked sentences, since by 
induction the -9(A) forcing relation for ranked sentences is El over Ma,. 

Thus we are done by induction if A is a limit of limit ordinals. Now suppose 
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that we wish to establish the corollary for A + co. We may assume that A is small, as 
otherwise 9 (A + co) is a set forcing in M,+(,. Now any ranked sentence f in M, is 
equivalent to a En(;,)+m statement about M,[R] for some m (R denoting the generic 
real). But then by Lemma 5, p IF p in 9(A + co) iffp IF p in 9(A + n(A) + m) for 
p E 9(A + n(A) + m). As the latter is El-definable over M,+(,, we are done. E 

COROLLARY 7. Suppose A is small and W C _9(A) is En(;,) over M,. Let D 
{p 9 (A) 3q E W(p < q) or V q ?p(q i W)}. Then D ispredense on _9 . 

PROOF. Let m = 0 in Lemma 5. D] 
Now we are prepared to finish the proof of the characterization theorem. Note 

that the only remaining condition to verify in showing that F is a standard Skolem 
system is condition (E), where Stability is used. 

LEMMA 8. For A limit and x E Seq(A), Hj'(x) = A n El Skolem hull of x in Jf. 
For A limit and x c Seq(A), HA(x) = Un Hn;(x) = A n Skolem hull of x in J1R* 

PROOF. We begin with the first statement. The inclusion Hj^ (x) C El Skolem 
hull of x in J/R follows from Lemma 4 and Continuity. To prove the converse we 
make a definition: R is En2-generic for 9((A) if for any En (M) W C 9p(A) there 
exists p E G n 39 (A), G denoting the generic determined by R, such that either 
p extends a condition in W or p has no extension in W. By Corollary 7, if A is 
small then R is En(,)-generic for ?9(A). 

Suppose p(x,y) is a El formula with parameter x. Let 7c : A 2A be the 
increasing enumeration of Hj^ (x) and let c (x-) = x. By Corollary 6 the forcing 
relation for 9 (A) is El (MT) for ranked sentences. Since R is El -generic for 90' (A), 
there is p E G n _2(A) such that either p IF p(xy-) in 9(A) for some - or p IF 

3-fy(xy) in 9 (A). Since F is stable we have that p H-F -,3y(x,y) in 9 (A) or 
p H- (x, y), where y =7 (y-). (Note that 7 extends to a E1 -elementary embedding 

i: MT- M, such that j(p) = p.) If A is small then R is E1-generic for 9(A), 
and thus we have shown that A n ZI Skolem hull of x in JR is contained in Hj^ (x). 
But the above shows that if R is E1-generic for _9(A) for all small A, then R is 
El -generic for all A. So we are done. 

To prove the second statement, use Stability for F. The direction H' (x) C 

Skolem hull of x in JfR follows again from Lemma 4. For the converse, handle 
each formula V (x, y) as in the ZI case, using Stability E 

This completes the proof of Theorem 3. 

?3. Universal combinatorial principles. Inherent in any abstract Skolem system 
F is its cofinality function cofF defined at limit ordinals A as follows: cofF (A) 
least ordertype of an unbounded subset of A of the form 

H'(y U {f}) = U{H (x *p)Ix c Seq(y)} 

for some 6 > A, n > 1, y < A, p E Seq(s). For any inner model M let cofM be the 
cofinality function of M, and write cof = cof v. 

LEMMA 9. Suppose F is an abstract Skolem system. Then there exists a stable 

abstract Skolem system G such that cofG cofL[F]. 

PROOF. First note that in the statement of Condensation for F we can in fact 
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let 2c: A 2A be the increasing enumeration of any set of the form H,'(X) 

U{H' (x) x a finite sequence from X}, X C A: This follows from the usual 
statement if H~'j(X) = H11(x) for some x E Seq(A) and otherwise follows by 
induction, using Continuity (see the proof of Lemma 4). Thus, the X* theory 
relativizes without difficulty to F. Now let G be obtained from F just as in the 
proof of Proposition 2, with R replaced by F. Then G is stable. Since G codes L[F], 
cofG(L) ? cofL[F]L(A) all A. But d is (L[ ],F )-definable, so cofG cofL[F]. 

We now state our universal combinatorial principle P 
PRINCIPLE P. There is an abstract Skolem system F such that cof cof. 
We show that P implies all "fine-structural principles" for L. 
DEFINITION. A fine-structural principle is a statement of the form 3/ V(0), 

where v denotes a class and t, is first-order, such that: 
(a) For every real R and every standard Skolem system J for R L[R] () 

for some v which is definable over (L[F], 8, F). 
(b) If M, N are inner models of ZF C, v is amenable to both M and N, cofM 

cofN, and (Mo) J= Y(0), then (Ne) J= V(0) 
THEOREM 10. P implies allfine-structural principles. 
PROOF. Suppose M J= P with witness F, and let p be fine-structural. Then 

cofF =cofM - cofL[F], since L[F] C M. By Lemma 9 there is G amenable to 
M such that cofG = cofM and G is stable. By the characterization theorem there 
is a (generic) real R such that G is a standard Skolem system for R and hence 
L[R] J= p with witness v definable over (L[G], , G). Then v is amenable to M 

and cofM= cofG = cofL[R], so M 1= is 
E and Morass are fine-structural, but o is not. To obtain a universal principle 

which also implies o we introduce a strengthening of P. 
PRINCIPLE P*. V = L[F], where F is an abstract Skolem system. 
Note that P* P. in view of Lemma 9. We define an L-like principle to be a 

statement p which is true in L[F] whenever F is a standard Skolem system. By 
Lemma 9 and the characterization theorem, P* implies all L-like principles. But 
unfortunately P* is not much weaker than V = L: 

THEOREM 1 1. P* holds iff V = L[A], A C wl, where A is L-reshaped (a <cal -l 
E < cw1 in L[A n a]). 

PROOF. Suppose V = L[F] for some abstract Skolem system F and that a! is 
countable in L[F]. If a! < A limit and Jf la uncountable, then F 2 A can be 
recovered inductively from F [ a, using continuity and condensation for abstract 
Skolem systems. We can also recover Fn for all n > 0 for such A. Thus if A is least 
so that a! is countable in J1,+,,, we see that a! is countable in L[F [ a]. So F cil 
is L-reshaped. The same argument shows that F is definable over L[F [ co,], so 
we have the desired conclusion. 

For the converse, note that for L-reshaped A C co, we can define the canonical 
Skolem system FA for A as we defined FR for reals R, provided we replace the 
hierarchy JY,,5 E ORD, by Jf,,, E ORD, and we assume that for A < cw,, A n 
[R. A] 0, where A is the least limit so that J.' J[= A is countable. Then L[FA] 

A 
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L[A] and FA satisfies the axioms for an abstract Skolem system. (In fact A = F 
for some generic real R coding A.) D 

Though P* does not therefore have models which are very far from L, we hope 
that its analogue in the context of core models will lead to an interesting class of 
"K-like" models. 
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