
Descriptive Complexity Theory

1.-2.Vorlesungen

Introduction

To illustrate the idea of DCT (Descriptive Complexity Theory), consider
a �nite structure which presents a list of cities and �ights between them by
various airlines. So this will look like S = (C,A,E) where C is the set of
cities, A is the set of airlines and E(a, x, y) means that airline a �ies from
city x to city y.

Now we can consider various relations over this structure S: Is there a
�ight from Vienna to Kabul with Aero�ot?

E(Aero�ot,Vienna,Kabul)

Is there such a �ight with one stopover?

∃x(E(Aero�ot,Vienna, x) and E(Aero�ot, x,Kabul))

Is there any way of �ying from Vienna to Kabul at all, with any number of
stops on any of the listed airlines?∨

1≤i≤n ∃x1, . . . , xi∃a1, . . . , ai−1(x1 = Vienna and E(a1, x1, x2) and · · ·
and E(ai−1, xi−1, xi) and xi = Kabul),

where n is the number of cities (minus 2 if you like). Clearly the latter, unlike
the �rst two examples, is not in �rst-order logic, because the length of the
formula depends on the number of cities. We'll introduce some natural logics
making use of �xed-point operators (and second-order quantí�ers) which go
beyond �rst-order logic and can express natural relations on �nite structures
which are not expressible in �rst-order logic.

It is not di�cult to see that �nite structures can be treated as inputs to
a Turing machine and therefore we can ask about the computational com-
plexity of relations such as those above. It will turn out that there is a close
connection between the computational complexity of a relation and its de�n-
ability in a certain logic, and this connection is the main theme of descriptive
complexity theory.

1

Some extensions of �rst-order logic

If M is a �nite nonempty set then P(M) denotes the power set of M .
A function F : P(M) → P(M) induces a sequence ∅, F (∅), F (F (∅)), · · · of
subsets of M . For ease of notation we write F0 = ∅, Fn+1 = F (Fn). If there
is an n0 such that F (Fn0) = Fn0 then of course Fn = Fn0 for all n ≥ n0 and
we write F∞ for Fn0 . We say that the �xed point F∞ of F exists. If F∞ does
not exist then by convention we write F∞ = ∅.

One case in which F∞ must exist is if F is in�ationary ; this means that
X ⊆ F (X) for all X. The following is rather obvious.

Lemma 1 (a) For any F there are m < 2|M | and l > 0 such that Fk = Fk+l

for all k ≥ m.
(b) If F∞ exists then F∞ = F2|M|−1.
(c) If F is in�ationary then F∞ exists and F∞ = F|M |.

Now we consider operations F as above which result from the interpreta-
tion of a formula. Fix a �nite relational vocabulary τ . So τ speci�es a �nite
set of constant symbols and a �nite set of relation symbols, of various arities.
Let ϕ(x1, . . . , xk, ū, X, Ȳ) be a formula in the second-order language where
ū is a sequence of (�rst-order) variables, X is a relation variable of arity k
and Ȳ is a sequence of relation variables. Also �x a �nite structure A which
interprets ū as some tuple b̄ of elements of its universe A and Ȳ as some tuple
S̄ of relations (of various arities) over its universe. Then we can use ϕ,A, b̄
and S̄ to de�ne an operation, which we write just as Fϕ : P(Ak) → P(Ak),
as follows:

Fϕ(R) = {(a1, . . . , ak) | A � ϕ(a1, . . . , ak, b̄, R, S̄)}.

We set Fϕ
∞ to be the �xed point of Fϕ

n if it exists, ∅ otherwise.

Example (path-connectedness in a graph). Suppose that G = (G,EG) is a
graph, i.e., an irre�exive, symmetric binary relation. Consider the formula

ϕ(x, y,X) = Exy ∨ ∃z(Xxz ∧ Ezy).

Then Fϕ
n = {(a, b) | There is a path of length ≤ n from a to b}. so the �xed-

point Fϕ
∞ exists and equals {(a, b) | There is a path from a to b}. Although

2

Fϕ is not necessarily in�ationary, we can make it in�ationary by considering
instead ϕ∗ = ϕ ∨Xxy.

FO(PFP) and FO(IFP)

By adding �xed-point operators to �rst-order logic we obtain the above
logics, de�ned as follows. Again �x a �nite relational vocabulary τ . The class
of formulas of FO(PFP) is given inductively as follows:

• Any atomic second-order formula is a formula.

• If ϕ, ψ are formulas then so are ∼ ϕ, (ϕ∨ψ) and ∃xϕ for any �rst-order
variable x.

• If ϕ is a formula, x̄ is a sequence of �rst-order variables, X is a second-
order variable and t̄ is a sequence of �rst-order terms (i.e., �rst-order vari-
ables or constant symbols) such that length(x̄) = length(t̄) = arity(X) then
[PFPx̄,Xϕ]t̄ is a formula.

Free (�rst-order and second-order) variables are de�ned in the natural way;
for example the free variables of [PFPx̄,Xϕ]t̄ are those of t̄ together with those
of ϕ other than X and the components of x̄.

The semantics is as follows: Suppose that the relation variable X has arity
k and the free variables of [PFPx̄,Xϕ]t̄ are among ū (�rst-order variables), Ȳ
(relation variables). If b̄, S̄ are interpretations of ū, Ȳ in A then

A � [PFPx̄,Xϕ]t̄ [b̄, S̄] i� (t1[b̄], . . . , tk[b̄]) ∈ Fϕ
∞.

The above is �partial �xed-point logic�. To obtain �in�ationary �xed-point
logic� we replace PFP by IFP in the inductive de�nition of formula and in
the semantics replace Fϕ

∞ by FXx̄∨ϕ
∞ (thereby insuring that our operator is

in�ationary).

Example (path-connectedness again). In the language of graphs, the formula

ϕ(x, y) = [IFPxy,X(Exy ∨ ∃z(Xxz ∨ Ezy))]xy

of FO(IFP) expresses that x, y are connected by a path. Thus the class of
connected graphs is axiomatisable in FO(IFP); it is not axiomatisable in
�rst-order logic (using Ehrenfeucht-Fraissé games).

3

Example(even cardinality). In the language {<,S,min,max} the sentence

∼ [IFPx,X(x = min∨∃y∃z(Xy ∧ Syz ∧ Szx))] max

of FO(IFP) together with the linear ordering axioms axiomatises the class of
linear orderings of even cardinality. Again this is not expressible in �rst-order
logic.

FO(TC) and FO(DTC)

These logics are potentially weaker than FO(IFP) and FO(PFP). Again
�x a �nite relational vocabulary τ . The formulas of FO(TC) are de�ned
inductively as follows.

• Any atomic �rst-order formula is a formula.

• If ϕ, ψ are formulas then so are ∼ ϕ, (ϕ∨ψ) and ∃xϕ for any �rst-order
variable x.

• If ϕ is a formula then so is [TCx̄,ȳϕ]s̄t̄, provided the variables in x̄, ȳ
are all distinct, s̄, t̄ are sequences of terms (�rst-order variables or constant
symbols) and the lengths of x̄, ȳ, s̄, t̄ are all the same.

As expected the free variables of [TCx̄,ȳϕ]s̄t̄ are those of ϕ without the
variables in x̄, ȳ, together with the variables in s̄, t̄. The semantics is as fol-
lows: If the free variables in [TCx̄,ȳϕ]s̄t̄ are among ū and b̄ is an interpretation
in the structure A of ū, then

A � [TCx̄,ȳϕ]s̄t̄ [b̄] i� (s̄[b̄], t̄[b̄]) ∈ TC({(x̄, ȳ) | A � ϕ(x̄, ȳ, b̄}),

where for any binary relation R, TC(R) = {(a, b) | There exist e0, . . . , en
such that e0 = a, en = b and for all i < n, R(ei, ei+1)}.

For any binary relation R, DTC(R) = {(a, b) | There exist e0, . . . , en such
that e0 = a, en = b and for all i < n, ei+1 is the unique e such that R(ei, e)}.
The logic FO(DTC) is de�ned just like FO(TC), with TC replaced by DTC.

Example. A graph (G,EG) is connected i� it is a model of the sentence
∀x∀y(x 6= y → [TCx,yExy]xy.

3.-4.Vorlesungen

4

Turing machines and complexity classes

A Turing machine M is a �nite device equipped with a tape which is
bounded to the left and unbounded to the right. The tape is divided into
cells. At each stage of computation each cell is either blank or contains a
single symbol from a �nite nonempty alphabet A that is �xed in advance.
There is however one exception: the leftomost cell contains the symbol α,
which does not belong to A. M has a head which at each stage scans a single
cell and in any computation step either erases or replaces the symbol it sees
by another symbol and either moves one cell to the left or right or remains
at the same cell.

M is also equipped with a �nite set of states, State(M). There is an initial
state s0 as well as an accepting state s+ and a rejecting state s−, which are
distinct. The action ofM at a computation stage depends on its current state
and on the symbol being scanned by its head. It is speci�ed by a �nite set of
instructions Instr(M), consisting of expressions of the form

sa→ s′bh

where:

• s, s′ are states, s is neither s+ nor s−
• a, b belong to A ∪ {α, blank} and (a = α i� b = α)
• h ∈ {−1, 0, 1} and if a = α then h 6= −1

The expression sa → s′bh means: if M is in state s scanning the symbol a
then it replaces a by b, its head moves one cell to the left (if h = −1), one
cell to the right (if h = 1) or stays put (if h = 0) and then goes into state s′.

M is deterministic if for all states s and symbols a ∈ A ∪ {α, blank} there
is at most one instruction of the above form in Instr(M). Machines that are
not required to be deterministic are said to be nondeterministic.

A∗ denotes the set of words over A and A+ the set of nonempty such
words. If u = a1 · · · ar belongs to A∗ then M is started with u if M begins
a computation (or run) in the initial state s0 with its head on the leftmost
cell (scanning α) and with the symbols a1, . . . , ar written in order on the
�rst r cells to the right of the leftmost cell, followed by blanks. M then

5

computes by implementing one of its instructions at each step, until there is
no instruction telling it what to do next. If M is then in the state s+ then
we have an accepting run and if in the state s− a rejecting run. M accepts u
if there is at least one accepting run with input u and M rejects u if all runs
with input u are �nite and rejecting.

A language is a subset of A+. A language L is accepted by M if for all
u ∈ A+, M accepts u i� u ∈ L. L is decided by M i� in addition M rejects u
i� u /∈ L. L is decidable if it is decided by some deterministic Turing machine
and is (e�ectively) enumerable if it is accepted by some nondeterministic
Turing machine.

Suppose f : N→ N. ThenM is f time-bounded if for all u accepted byM
there is an accepting run of M with input u which has length at most f(|u|),
where |u| is the length of the word u.M is f space-bounded if for all u accepted
by M there is an accepting run of M with input u which uses at most f(|u|)
cells before stopping. L is in PTIME (PSPACE respectively) if it is accepted
by a deterministicM that is p time-bounded (p space-bounded, respectively)
where p is given by a polynomial. The classes NPTIME (NPSPACE) are
de�ned in the same way, but allowing nondeterministic machines. One can
show the following:

PTIME ⊆ NPTIME ⊆ PSPACE = NPSPACE.

We will also consider the complexity classes LOGSPACE and NLOGSPACE,
in which the work space needed by the machine is less than the length of the
input; this will be clari�ed later when we introduce Turing machines with
both an input tape and work tapes.

Ordered Structures as Inputs

We want to compute with �nite structures as inputs and for this purpose
we need to code such structures as �nite strings in some alphabet. This is
easier for ordered structures, which are de�ned as follows.

Fix the vocabulary τ0 = {<,S,min,max} where <,S are binary relation
symbols and min,max are constant symbols. Let τ be a vocabulary containing
τ0. A τ -structure A is ordered if the reduct A � τ0 is an ordering (i.e., it
interprets < as a total ordering, S as the successor relation of this ordering

6

and min,max as the least and greatest elements of this ordering). The class
of ordered τ -structures is denoted by O[τ]. If ψ is a sentence in the language
of τ then ordMod(ψ) denotes the class of ordered models of ψ.

Write the vocabulary τ as τ0 ∪ {R1, . . . , Rk, c1, . . . , cl} where the Ri's
are relation symbols and the cj's are constant symbols. We de�ne a Turing
machine M for τ -structures as follows. M has 1 + k + l input tapes and m
work tapes for some positive m. All tapes are bounded to the left, unbounded
to the right and their cells are numbered by −1, 0, 1, . . ., starting with the
leftmost cell which contains the symbol α. Each input tape contains an input
word followed by the symbol ω, indicating the end of the input. Each tape has
its own head, and these heads move independently of each other. The input
heads are read-only, while the work heads are read-and-write. The alphabet
contains only the single symbol �1� and we identify �blank� with �0�.

Now suppose that A is an ordered τ -structure with universe {0, 1, . . . , n−
1}. We write A as an input to the machine M as follows. Order the 1 + k+ l
input tapes from 0 to k+ l. The 0-th tape contains a sequence of 1's of length
n and therefore as α in cell −1, 1 in cells 0 through n − 1 and ω in cell n,
followed by 0's to the right. For 1 ≤ i ≤ k the i-th input tape contains
information about the relation R = RAi , coded as follows: Let r be the arity
of R; for j < nr the j-th cell will contain �1� just in case the j-th r-tuple in
the lexicographic ordering of {0, 1, , n− 1}r belongs to R. For 1 ≤ i ≤ l,
the (k + i)-th input tape contains the binary representation of cAi without
leading 0's.

Computations run as follows. M starts in its initial state with A written
on the input tapes as above, with the work tapes empty and with all heads
positioned at cell 0. Instructions now take the form

sb0 · · · bk+lc1 · · · cm → s′c′1 · · · c′mh0 · · ·hk+l+m

with the meaning: If M is in state s with its heads scanning b0, . . . , bk+l on
the input tapes and c1, . . . , cm on the work tapes, then M replaces the ci by
the c′i, moves the i-th head according to hi and enters state s′. Of course the
bi's belong to {0, 1, α, ω}, the ci's and c′i's belong to {0, 1, α} and the hi's
belong to {−1, 0, 1}, with the obvious restrictions. M is deterministic if any
two instructions with the same left half (part before the →) have the same

7

right half (part after the →). If we don't require determinism, we use the
term nondeterministic.

For f : N→ N we say that M is f time-bounded if for any A accepted by
M there is a run accepting A of length at most f(n), where {0, 1, . . . , n− 1}
is the domain of A. And M is f space-bounded if for all A accepted by M
there is a run which accepts A and uses at most f(n) cells on each work tape
before stopping.

If K is a class of ordered τ -structures then M accepts K if M accepts ex-
actly those ordered τ -structures inK. We de�ne PTIME, NPTIME, PSPACE
and NPSPACE in the natural way. Also, we de�ne: K is in LOGSPACE
(NLOGSPACE, respectively) if there is a deterministic (nondeterministic,
respectively) M and d ≥ 1 such that M accepts K and is d · log space-
bounded (where log n is the least natural number ≥ log2 n).

5.-6.Vorlesungen

Logical Descriptions of Computations

Recall that our goal is to show that for a class K of ordered structures
we have:

K ∈ LOGSPACE i� K ∈ DTC
K ∈ NLOGSPACE i� K ∈ TC
K ∈ PTIME i� K ∈ IFP
K ∈ NPTIME i� K ∈ Σ1

1

K ∈ PSPACE i� K ∈ PFP

In this section we prove the implications from left to right. Our approach
is the following: For any of the above complexity classes C, letM be a Turing
machine (for τ -structures, where τ is a �nite relational vocabulary containing
τ0) which witnesses that the classK belongs to C. We will construct a formula
ϕM in the logic L associated as above with the complexity class C so that for
any ordered structure A,

A � ϕM i� M accepts A.

It follows that K = ordMod(ϕM), as desired.

8

The formula ϕM is built by translating the con�gurations and transi-
tions between them in anM -computation into �rst-order logic; the addition-
al non-�rst-order power of the relevant logics is used to determine when the
computation stops and to derive its outcome.

For simplicity assume that our vocabulary τ is τ0 ∪ τ1 where τ0 is
{<,S,min,max}, τ1 is disjoint from τ0 and τ1 consists just of relation symbols
{R1, . . . , Rk} where Ri is ri-ary. For convenience set r0 = 1.

Suppose that M is a Turing machine for τ -structures, with 1 + k input
tapes and m work tapes. A con�guration of M consists of the following
information:

The current state;
What is currently written on the work tapes;
The current positions of all input and work tape heads

A con�guration is accepting if its state is s+. A con�guration CONF′ is
a successor to the con�guration CONF if an instruction of M allows M
to pass from con�guration CONF to con�guration CONF′ in one step. For
convenience, we allow any accepting con�guration to be a successor to itself.

We �rst consider the case of PSPACE. Suppose that M is a Turing ma-
chine for τ -structures which is xd space-bounded, i.e., ifM accepts an ordered
structure A then there is an accepting run with input A that scans at most
nd cells on each work tape, where n is the size of the universe of A. We make
the following simplifying assumptions: We assume that d is at least ri, the
arity of the relation symbol Ri, for each i and that n, the size of the universe
of A, is greater than both k+m and the number of states. Also assume that
State(M) is an initial segment of N with s0 = 0 as the starting state.

To code the data of CONF we introduce the �state relation� STCONF,

the �end-of-tape relations� ECONFj , the �head relations� HCONF
j and the

�inscription relations� ICONFj . Here are the de�nitions:

STCONF = {s} where s is the state of CONF.

For 0 ≤ j ≤ k +m:

9

ECONFj = {0} if the j-th head is scanning α

ECONFj = {n− 1} if the j-th head is scanning ω

ECONFj = ∅ otherwise.

For 0 ≤ j ≤ k:

HCONF
j = {|e|rj | 0 ≤ e, the j-th head scans the e-th cell and this cell does

not contain ω}. (|e|rj denotes the e-th rj-tuple from {0, 1, . . . , n− 1}.)

For k + 1 ≤ j ≤ k +m:

HCONF
j = {|e|d | 0 ≤ e, the j-th head scans the e-th cell}. (Note that only

the �rst nd cells can be scanned.)

ICONFj = {|e|d | 0 ≤ e < nd and the e-th cell of the j-th tape contains the
symbol 1}.

Note that as we have assumed that ri ≤ d for all i, all of the above
relations are d0-ary for some d0 ≤ d. We put all of these relations into a

single (d+ 2)-ary relation CCONF as follows:

CCONF =
{(0, 0)} × {0̃} × STCONF ∪⋃

0≤j≤k+m{(1, j)} × {0̃} × ECONFj ∪⋃
0≤j≤k+m{(2, j)} × {0̃} ×HCONF

j ∪⋃
k+1≤j≤k+m{(3, j)} × ICONFj .

In the above, 0̃ denotes a string of 0's of su�cient length to ensure arity d+2.

The following technical lemma will enable us to �nish the cases of PSPACE,
PTIME and NPTIME.

Lemma 2 There are a �rst-order formula ϕstart(x̄) and second-order formu-
las ϕsucc(x̄, X), ψsucc(X, Y) (without second-order quanti�ers) such that for
all ordered τ -structures A of large enough size n and all ā ∈ Ad+2 we have:

(a) If C0 denotes the starting con�guration of M with input A then

A � ϕstart[ā] i� ā ∈ C0.

10

(b) If M is deterministic and C is an nd-bounded con�guration of M then

A � ϕsucc[ā, C] i� C has an nd-bounded successor C ′ and ā ∈ C ′.

(c) If C1 is an nd-bounded con�guration of M and C2 a (d+ 2)-ary relation
on A then

A � ψsucc[C1, C2] i� C2 is an nd-bounded con�guration of M which is a successor of C1.

Now we can prove:

Theorem 3 If K is a class of ordered τ -structures in PSPACE then K is
axiomatisable in FO(PFP).

Proof. Let M be a deterministic Turing machine witnessing K ∈ PSPACE.
Choose a suitable d so that M is xd space-bounded. De�ne:

ϕ(x̄, X) ≡
(∼ ∃ȳXȳ ∧ ϕstart(x̄)) ∨ (∃ȳXȳ ∧ ϕsucc(x̄, X)),

where ϕstart and ϕsucc are as in the preceding lemma. Let A be an ordered
structure of size n. Then Fϕ

0 , F
ϕ
1 , . . . is the sequence ∅, C0, C1, . . . where

C0 is the starting con�guration;
If Ci is an n

d-bounded con�guration ofM with an nd-bounded successor con-
�guration C then Ci+1 = C. In particular, if Ci is accepting then Ci = Ci+1;
If Ci is an n

d-bounded con�guration without an nd bounded successor con�g-
uration then Ci+1 = ∅, Ci+2 = C0, Ci+3 = C1, · · · and therefore this sequence
has no �xed-point.

In conclusion:

M accepts A i�
Fϕ
∞ is an accepting con�guration i�
Fϕ
∞ is a con�guration with state s+.

The latter is expressed by the formula

∃y((y is the s+-th element of <) ∧ [PFPx̄,Xϕ] min min m̃in y).

So K = ordMod(ψ) where ψ is the above formula. 2

11

Theorem 4 If K is a class of ordered τ -structures in PTIME then K is
axiomatisable in FO(IFP).

Proof. Let M be an xd time-bounded Turing machine witnessing that K is
in PTIME (for suitable d). For v̄ = v0 . . . vd−1 we set

ϕ(v̄, x̄, Z) ≡ (v̄ = m̃in ∧ ϕstart(x̄)) ∨ ∃ū(Sdūv̄ ∧ ϕsucc(x̄, Zū−)).

In this formula, v̄ = m̃in abbreviates v0 = min∧ · · · ∧ vd−1 = min; Sdūv̄
stands for � v̄ is the successor of ū in the lexicographic ordering of d-tuples�;
and ϕsucc(x̄, Zū−) is obtained from ϕsucc(x̄, X) by replacing subformulas of
the form Xt̄ by Zūt̄. Then for structures A of size n we have:

A ∈ K i� M accepts A i�
The (nd − 1)-st con�guration of M with input A is de�ned and has state s+

i�
A � [IFPv̄x̄,Zϕ]m̃ax min min m̃ins+.

So K is the class of ordered models of a sentence in FO(IFP). 2

Theorem 5 If K is in NPTIME then K is axiomatisable by a Σ1
1 sentence.

Proof. Choose M witnessing that K is in NPTIME and d so that M is xd

time-bounded. Then for input structures A of size n:

A ∈ K i�
There is a run of M with input A of length ≤ nd that accepts A
i�
There is a sequence C0, · · · , Cnd−1 of nd-bounded con�gurations of M with
input A such that C0 is the starting con�guration, Ci+1 is a successor con-
�guration to Ci and s+ is the state of Cnd−1

i�
A � ϕ,

where ϕ is the sentence:

ϕ ≡ ∃Z(∀x̄(Zm̃inx̄↔ ϕstart(x̄))∧∀ū∀v̄(Sdūv̄ → ψsucc(Zū−, Zv̄−))∧Zm̃ax min min m̃ins+).

This is a Σ1
1 sentence. 2

12

7.Vorlesung

LOGSPACE and NLOGSPACE

To capture these complexity classes we need to use the weaker logics
FO(DTC) and FO(TC). Recall that these are de�ned as follows. To �rst
order logic we add the generating rules:

If ϕ is a formula, x̄ and ȳ are sequences of variables (with no variable occurring
twice), the tuples s̄ and t̄ are sequences of variables or constants and x̄, ȳ, s̄, t̄
all have the same length then [TCx̄,ȳϕ]s̄t̄ is a formula of FO(TC) ([DTCx̄,ȳϕ]s̄t̄
is a formula of FO(DTC), respectively).

The meanings of these new formulas are given by.

[TCx̄,ȳϕ(x̄, ȳ, ū)]s̄t̄ i� (s̄, t̄) belongs to the transitive closure TC of {(x̄, ȳ) |
ϕ(x̄, ȳ, ū)}.

[DTCx̄,ȳϕ(x̄, ȳ, ū)]s̄t̄ i� (s̄, t̄) belongs to the deterministic transitive closure
DTC of {(x̄, ȳ) | ϕ(x̄, ȳ, ū)}.

Recall that for a binary relation R, TC(R) consists of pairs (a, b) such that
for some e0, . . . , en, e0 = a, en = b and for each i < n, (ei, ei+1) belongs to R.
DTC(R) is de�ned in the same way except we require that ei+1 is the unique
e such that (ei, e) belongs to R.

A classK of ordered τ -structures belongs to LOGSPACE (NLOGSPACE)
i� there is a deterministic (non-deterministic) Turing machine M and d such
that M accepts K and is d · log space-bounded, i.e., each work tape scans at
most d · log n cells during the course of the accepting run where n is the size
of the input. As numbers less than n have binary-length at most log n, it
follows that we can use d variables to code the contents of a work tape. And
each head position can be represented by a number less than n (assuming n is
larger than d·log n). Therefore we can describe the data of a con�guration by
a sequence of length independent of n consisting of naturalnumbers less than
n. The basic lemma providing formulas which describe the con�gurations of
the machine is as follows.

13

Lemma 6 Let M be d · log space-bounded. Then there are formulas χstart(x̄)
in FO and χsucc(x̄, x̄

′) of FO(DTC) such that for ordered τ -structures A of
large enough size n and ā in A:

(a) A � χstart[ā] i� ā is (a code for) the starting con�guration.
(b) For any d · log n-bounded con�guration ā and any b̄:

A � χsucc[ā, b̄] i� b̄ is a d · log n-bounded successor con�guration of ā.

The need for a formula of FO(DTC) in part (b) of the lemma is due to
the fact that to express the d · log n-boundedness of a con�guration we need
to de�ne addition, multiplication and binary exponentiation (2a = b); the
latter is done using deterministic transitive closure. For example:

x+ y = z i� (y = min∧z = x) ∨ [DTCuv,u′v′(Suu
′ ∧ Svv′)] minxyz.

Now we can show that LOGSPACE and NLOGSPACE are captured by
the logics FO(DTC) and FO(TC), respectively.

Theorem 7 If K is in LOGSPACE then K is axiomatisable in FO(DTC).

Proof. Let M be a detrministic machine witnessing K ∈ LOGSPACE which
is d · log space-bounded. Let χstart and χsucc be the formulas corresponding
to M according to the preceding lemma. Then we have, for a structure A of
size n:

M accepts A i�
There is a sequence ā0, . . . , āk of d · log n-bounded con�gurations such that
ā0 is the starting con�guration, āi+1 is the successor con�guration of āi and
āk is an accepting con�guration i�
A � ∃x̄(χstart(x̄) ∧ ∃x̄′([DTCx̄,x̄′(x̄, x̄′)]x̄x̄′ ∧ x′1 = s+)),

where x′1 denotes the state of the con�guration x̄′. 2

Theorem 8 If K is in NLOGSPACE then K is axiomatisable in FO(TC).

Proof. Just replace DTC by TC in the previous proof. 2

8.-9.Vorlesungen

14

The complexity of the satisfaction relation

We have shown that if a class K of �nite ordered structures belongs to
the complexity class LOGSPACE then it is axiomatised by a formula of the
logic DTC, �rst-order logic enhanced with a deterministic transitive closure
quanti�er. Now we prove the converse of this result, as well as similar results
for the classes NLOGSPACE, PTIME, NPTIME and PSPACE.

Thus if ϕ is a sentence of DTC we want to show that the relation A � ϕ
can be decided by a machine M which is d · log space-bounded for some d;
i.e., ϕ has a log-space model checker. In fact, we shall obtain a machine M
which strongly witnesses that K = ordMod(ϕ) belongs to LOGSPACE, i.e.

M accepts K;
For any A, every run of M with input A stops in state s+ or s−;
For any A, every run of M with input A is log-space bounded.

Strong witnessing is de�ned analogously for the other complexity classes, with
�log-space� replaced by �polynomial-time� or �polynomial-space�, accordingly.

The proof is by induction on ϕ and therefore we need to conider not just
sentences ϕ but also formulas ϕ(x1, . . . , xl, Y1, . . . , Yr). For such a formula we
de�ne:

ordMod(ϕ) = {(A, a1, . . . , al, P1, . . . , Pr) | A � ϕ[ā, P̄]}.

Theorem 9 If a class of ordered structures is axiomatised in FO(DTC) then
it is in LOGSPACE.

Proof. By induction on the formula ϕ doing the axiomatisation.

ϕ atomic. Assume for simplicity that ϕ is Rxy. We want a machine M
strongly witnessing that {(A, i, j) | RAij} belongs to LOGSPACE. View
(A, i, j) as a τ ′-structure, where τ ′ = τ ∪ {c, d} and c, d are new constant
symbols. Assume that A is {0, 1, . . . , n−1}. Then whether or not RAij holds
is coded in the (i · n + j)-th square of the input tape corresponding to the
relation symbol R and the binary representations of i, j are available on the
input tapes corresponding to the constant symbols c, d. Using this we can
design the machine M strongly witnessing that ordMod(Rxy) belongs to
LOGSPACE.

15

ϕ =∼ ψ. By induction there is a machine M strongly witnessing that
ordMod(ψ) belongs to LOGSPACE. To get such a machine for ϕ, just switch
the states s+ and s−.

ϕ = (ψ ∨ χ). Apply induction to get machines Mψ and Mχ for ψ, χ,
respectively. Let M be the machine that �rst carries out the computation
for Mψ, erases the work tapes, and then carries out the computation for Mχ,
accepting the input if at least one of Mψ, Mχ accepts.

ϕ(x1, . . . , xl) = ∃xψ. By induction we can choose a machine M0 for
ψ(x1, . . . , xl, x). The desired machine M for ϕ proceeds as follows: Sup-
pose that the input is (A, a1, . . . , al) where A = {0, 1, . . . , n − 1}. Then for
i = 0, 1, . . . , n − 1, M writes the binary representation of i on a work tape
and checks, using M0, whether A � ψ[a1, . . . , al, i]. If the answer is positive
at least once, M stops in state s+; otherwise M stops in state s−.

ϕ = [DTCx̄,ȳψ]s̄t̄. For simplicity, assume that the free variables of ψ are
among x̄, ȳ and that x̄ = x, ȳ = y, s̄ = s, t̄ = t. Choose a machine M0

strongly witnessing that ordMod(ψ) belongs to LOGSPACE. Given A with
A = {0, 1, . . . , n − 1}, if there is a ψ-path from s to t then there is one
of length at most n. Therefore, the desired machine M can be designed as
follows: It writes s on a work tape andsets a counter to n, which is used to
invoke a subroutine at most n times. M rejects in case the counter becomes
negative. Using M0, the subroutine checks for j = 0, 1, . . . , n − 1 whether
A � ψ[s, j] holds for exactly one j; if not, M rejects. If so, M checks whether
j equals t; if so,M accepts, and otherwiseM replaces s by j and reduces the
counter by one. 2

The previous proof also gives a partial result about NLOGSPACE. De�ne
FO(posTC) to be the formulas of FO(TC) which only contain positive oc-
currences of TC, i.e., each such occurrence is in the scope of an even number
of negation symbols. By introducing ∧ and ∀, we can in fact assume that in
such formulas, TC does not occur in the scope of any negation symbol.

Theorem 10 If a class of ordered structures is axiomatised in FO(posTC)
then it is in NLOGSPACE.

Proof. The proof is just as in the previous theorem, noting that in the case
ϕ =∼ ψ, we can assume that ψ does not contain TC and therefore is �rst-
order. 2

16

We will show later that FO(posTC) has the full expressive power of
FO(TC) and therefore can be replaced by FO(TC) in the statement of the
previous theorem.

Theorem 11 If a class of ordered structures is axiomatised in FO(IFP) then
it is in PTIME.

Proof. Again by induction on ϕ. The atomic case as well as the negation,
disjunction and existential quanti�cation cases are just as in the previous
proof.

Suppose that ϕ is [IFPx̄,Xψ(x̄, X)]t̄ whereX is r-ary. LetM0 be a machine
strongly witnessing that {(A, ā, R) | A � ψ[ā, R]} belongs to PTIME. The
desired machine M contains a subroutine which uses work tapes W and W ′.
If it begins with a word of length nr on W which codes an r-ary relation
R and nothing on W ′, then the subroutine uses M0 to write a code for
R′ = {ā | A � (Xx̄ ∨ ψ)[ā, R]} on the work tape W ′, leaving the contents of
W unchanged. NowM runs as follows: It sets R = ∅ and uses the subroutine
to calculate R′. If R = R′ it checks if Rt̄ and accepts or rejects accordingly.
Otherwise, it sets R to be R′, erases the contents ofW ′ and again applies the
subroutine. After at most nd calls to the subroutine, R = R′ will be achieved.
2

A similar argument gives:

Theorem 12 If a class of ordered structures is axiomatised in FO(PFP)
then it is in PSPACE.

Proof. As in the previous proof we only treat the �xed-point quanti�er case.
Suppose that ϕ is [PFPx̄,Xψ(x̄, X)]t̄ where X is r-ary and M0 is a machine
strongly witnessing that {(A, ā, R) | A � ψ[ā, R]} belongs to PSPACE. The
operator Fψ satis�es Fψ

2nr−1
= Fψ

2nr
(and this is Fψ

∞) or F
ψ
∞ is empty. The

desired machineM starts its computation on the inputA by setting a counter
to 2n

r − 1, by writing the word 11 · · · 1 of length nr on a work tape and then
it proceeds as in the IFP case, but now using the counter to ensure that the
subroutine which now evaluates R′ = {ā | A � ψ[ā, R]} is invoked at most
2n

r − 1 times. When the counter goes negative, M checks whether R = R′

and whether Rt̄ holds; if both answers are positive it accepts, otherwise it
rejects. 2

Also note:

17

Theorem 13 If a class of ordered structures is axiomatised in SO (second-
order logic) then it is in PSPACE.

Proof. By induction on the formula ϕ doing the axiomatising; as before we
need only handle the second-order quanti�er case ϕ = ∃Xψ. Suppose that X
is r-ary and letM0 be a machine strongly witnessing that {(A, R) | A � ψ[R]}
belongs to PSPACE. Given a structure A of size n, the desired machine
M writes the word 11 · · · 1 of length nr on a work tape W and repeatedly
decreases this word, using the machine M0 to check in each case if ψ holds
when X is interpreted by the contents of the tape W . 2

Theorem 14 If a class of ordered structures is axiomatised in Σ1
1 then it is

in NPTIME.

Proof. Suppose that the given class is axiomatised by ϕ = ∃X1 · · · ∃Xlψ
where ψ is �rst-order and the arity of Xi is ri. Let M0 be a machine strongly
witnessing that ordMod(ψ(X1, . . . , Xl)) is in PTIME. The desired machine
M proceeds as follows on input A: it nondeterministically writes words over
{[0, 1} of length nr1 , . . . , nrl on di�erent work tapes, coding interpretations
P1, . . . , Pl of X1, . . . , Xl. Then, usingM0, it checks whether A � ψ[P1, . . . , Pl]
or not, and stops in an accepting or rejecting state correspondingly. 2

To summarise, we have the following so far:

Theorem 15 Let K be a class of ordered structures. Then:
K ∈ LOGSPACE i� K is axiomatised in FO(DTC).
If K ∈ NLOGSPACE then K is axiomatised in FO(TC), and if K is ax-
iomatised in FO(posTC) then K ∈ NLOGSPACE.
K ∈ PTIME i� K is axiomatised in FO(IFP).
K ∈ NPTIME i� K is axiomatised in Σ1

1.
K ∈ PSPACE i� K is axiomatised in FO(PFP) (and this includes all K
axiomatised in SO).

10.-11.Vorlesungen

To obtain a descriptive complexity-theoretic characterisation of the com-
plexity class NLOGSPACE we need the following.

Theorem 16 If K is axiomatised in FO(TC) then it is also axiomatised in
FO(posTC).

18

Recall that the logic FO(TC) is obtained by adding formulas of the form
[TCx̄,x̄′ψ(x̄, x̄′)]s̄t̄, where x̄, x̄′ are sequences of variables, s̄, t̄ are sequences
of terms, all sequences have the same length and ψ is a formula already
belonging to the logic. The intended meaning is that there is a sequence
s̄ = s̄0, s̄1, . . ., s̄n = t̄ such that ψ(s̄i, s̄i+1) for each i < n.

First-order logic can be formulated using ∼, ∨ and ∃; for our present
purposes it will be useful to add ∧ and ∀, and restrict ∼ to only occur in
front of an atomic formula.

Thus any formula of FO(posTC), in which TC occurs only positively, is
built from atomic and negatomic (negations of atomic) formulas, using ∀, ∃,
∨, ∧ and TC. Our �rst goal is to show that on ordered structures we can in
fact eliminate both ∀ and ∃ and allow at most one use of TC (at the front of
the formula).

Lemma 17 On structures in a vocabulary τ containing {<,S,min,max},
every FO(posTC) formula is equivalent (on models with at least two elements)

to a formula of the form [TCx̄,x̄′ψ(x̄, x̄′)]m̃inm̃ax where ψ is quanti�er-free.

Proof. First note that ∀xϕ(x) is equivalent to

[TCx,y(ϕ(x) ∧ Sxy ∧ ϕ(y))] min max .

This eliminates the universal quanti�er. Also note that on �nite structures,
∃zϕ(z) is equivalent to

[TCx,y((x = min∧ϕ(y)) ∨ (ϕ(x) ∧ y = max))] min max .

This eliminates the existential quanti�er.

Now we show that any formula ϕ built from atomic and negatomic for-
mulas using just ∨, ∧ and TC is equivalent to a formula of the desired form,
by induction on ϕ. For simplicity of notation, write min as c and max as d.
Thus m̃in, m̃ax will be written simply as c̄, d̄.

The cases of atomic and negatomic ϕ are easy, as ϕ is equivalent to
[TCx̄,x̄′ϕ]c̄d̄ where x̄, x̄′ are variables not occurring in ϕ.

19

Suppose that ϕ is ϕ1 ∨ϕ2 where ϕi is equivalent to [TCx̄,x̄′ψi(x̄, x̄
′)]c̄d̄, ψi

quanti�er-free. (We can assume that x̄, x̄′ are the same for ϕ1 and ϕ2.) Then
ϕ is equivalent to:

[TCx̄x,x̄′x′ψ(x̄x, x̄′x′)]c̄cd̄d

where:

ψ(x̄x, x̄′x′) ≡
(x = x′ = c ∧ ψ1)
∨(x̄ = x̄′ = d̄ ∧ x = c ∧ x′ = d)
∨(x̄ = x̄′ = c̄ ∧ x = c ∧ x′ = d)
∨(x = x′ = d ∧ ψ2).

Similarly, if ϕ ≡ (ϕ1 ∧ ϕ2) where ϕ1, ϕ2 are of the above form then we take
ψ(x̄x, x̄′x′) to express the existence of the following path:

c̄c . . .→ψ1 . . . d̄c→ c̄d . . .→ψ2 . . . d̄d.

Next suppose that ϕ is [TCū,v̄ϕ
′]s̄t̄ and by induction write ϕ′ as

[TCx̄,x̄′ψ
′(x̄, x̄′, ū, v̄)]c̄d̄ with ψ′ quanti�er-free. Let s̄ = ē0, . . ., ēk = t̄ be a

path witnessing that (s̄, t̄) belongs to TC(ϕ′(·, ·)). Then for i < k there is a
ψ′-path witnessing that (c̄, d̄) belongs to TC(ψ′(·, ·, ēi, ēi+1)). Therefore ϕ is
equivalent to:

[TCūv̄x̄,ū′v̄′x̄′ψ(ū, v̄, x̄, ū′, v̄′, x̄′)]c̄c̄c̄d̄d̄d̄,

where:

ψ(ū, v̄, ū′, v̄′, x̄′) ≡
(ū = c̄ ∧ v̄ = c̄ ∧ x̄ = c̄ ∧ ū′ = s̄ ∧ x̄′ = c̄)
∨(x̄ 6= d̄ ∧ ū′ = ū ∧ v̄′ = v̄ ∧ ψ′(x̄, x̄′, ū, v̄))
∨(x̄ = d̄ ∧ v̄ 6= t̄ ∧ ū′ = v̄ ∧ x̄′ = c̄)
∨(x̄ = d̄ ∧ v̄ = t̄ ∧ ū′ = d̄ ∧ v̄′ = d̄ ∧ x̄′ = d̄).

In the formula ψ, the �rst line sets the corresponding starting values, the
second line takes care of witnessing that (c̄, d̄) belongs to TC(ψ′(·, ·, c̄i, c̄i+1),
the next line allows one to pass from the tuples ēi, ēi+1 to ēi+1, ēi+2 and the
last line says that ēk equals t̄. 2

Proof of Theorem 16. We show by induction that every formula of FO(TC)
is equivalent to a formula of FO(posTC). The only nontrivial case is the

20

negation case, and by Lemma 17 we may assume that our formula is of the
form

∼ [TCx̄,x̄ψ]m̃inm̃ax

with ψ �rst-order (indeed quanti�er-free).

For a structure A and ā, b̄ from Ar let dψ(ā, b̄) be the length of the shortest
ψ-path connecting ā and b̄, setting this to be∞ in case there is no such path.
If dψ(ā, b̄) is �nite then its value is at most |A|r. Our formula ϕ is equivalent
to the assertion

|{v̄ | dψ(x̄,ȳ)(, v̄) <∞}| = |{v̄ | dψ(x̄,ȳ)∧ȳ 6=m̃ax(s̄, v̄) <∞}|.

We shall use |A|-adic representations of natural numbers; in particular the
number |A|r has the string 10̃ of length r + 1 as its |A|-adic representation.

Claim 1. For ϕ(x1, . . . , xr, y1, . . . , yr) ∈ FO(posTC) there is an FO(posTC)
formula χ(x̄, ȳ, z1, . . . , zr+1) expressing the property dϕ(x̄, ȳ) ≤ [z̄], in the
sense that for an ordered structure A and ā, b̄, m̄ in A

A � χ[ā, b̄, m̄] i� dϕ(ā, b̄) ≤ [m̄],

where [m̄] denotes the number with |A|-adic representation m̄.

To obtain χ, use the TC operator to go through all of the tuples lying on a
path from x̄ to ȳ:

χ(x̄, ȳ, z̄) ≡ [TCw̄z̄,w̄′z̄′(ϕ(w̄, w̄′) ∧ [z̄] < [z̄′])]x̄00̃ȳz̄.

Claim 2. For �rst-order ϕ(x̄, ȳ) there is an FO(posTC) formula ρϕ(x̄, z̄) ex-
pressing the property |{ȳ | dϕ(x̄, ȳ) <∞}| = [z̄].

Given this, our formula∼ [TCx̄,ȳψ(x̄, ȳ)]m̃inm̃ax is equivalent to the FO(posTC)
formula

∃z̄(ρψ(x̄,ȳ)(m̃in, z̄) ∧ ρψ(x̄,ȳ)∧ȳ 6=m̃ax(m̃in, z̄)),

so we are done.

Proof of Claim 2. Consider the function

g(ū) = |{ȳ | dϕ(x̄, ȳ) ≤ [ū]}|.

21

Then g(10̃) is |{ȳ | dϕ(x̄, ȳ) ≤ |A|r}| = |{ȳ | dϕ(x̄, ȳ) < ∞}|, the value we
want to de�ne. We give an inductive de�nition of g.

Suppose that g(ū) = z̄ where ū = u1u2 . . . ur+1. Fix ȳ. If ū = 00̃ then
dϕ(x̄, ȳ) � [ū] + 1 is equivalent to ∼ ϕ(x̄, ȳ). Otherwise dϕ(x̄, ȳ) � [ū] + 1
i� there are z̄-many w̄ such that w̄ 6= ȳ, dϕ(x̄, w̄) ≤ [ū] and ∼ ϕ(w̄, ȳ). In
the following formula χϕ(x̄, ū, z̄, z̄′) the second TC occurrence counts these w̄
(with counting variables q̄ = q1 . . . qr+1) and therefore checks whether or not
there are z̄ many. If g(ū) = z̄ then χϕ(x̄, ū, z̄, z̄′) expresses that g(ū+1) = [z̄′]
(where ū+ 1 denotes the string representing the number [ū] + 1).

χϕ(x̄, ū, z̄, z̄′) ≡
[TCȳv̄,ȳ′v̄′(([ȳ

′] = [ȳ] + 1 ∧ [v̄′] = [v̄] + 1 ∧ dϕ(x̄, ȳ) ≤ [ū] + 1)
∨([ȳ′] = [ȳ] + 1 ∧ v̄′ = v̄ ∧ ū = 0̃∧ ∼ ϕ(x̄, ȳ))
∨([ȳ′] = [ȳ] + 1 ∧ v̄′ = v̄ ∧ ū 6= 0̃
∧[TCw̄q̄,w̄′q̄′(([w̄

′] = [w̄] + 1 ∧ q̄′ = q̄) ∨ ([w̄′] = [w̄] + 1 ∧ [q̄′] = [q̄] + 1
∧w̄ 6= ȳ ∧ dϕ(x̄, w̄) ≤ [ū]∧ ∼ ϕ(w̄, ȳ)))]0̃00̃1̃z̄′.

We can view χϕ as an FO(posTC) formula. Now set

ρϕ(x̄, z̄) ≡ [TCūz̄,ū′z̄′([ū
′] = [ū] + 1 ∧ χϕ(x̄, ū, z̄, z̄′))]00̃00̃10̃z̄.

This expresses that g(10̃) equals z̄ and hence that |{ȳ | dϕ(x̄, ȳ) <∞}| = [z̄].
And ρϕ can be viewed as an FO(posTC) formula. 2

12.Vorlesung

We have shown, for example, that on ordered structures, the logics FO(IFP)
and FO(PFP) capture the complexity classes PTIME and PSPACE, respec-
tively. However complexity classes are normally de�ned not with regard to
collections of ordered structures, but with regard to collections of nonempty
words on a �nite alphabet. Fortunately we have:

Fact. There are translations from nonempty words into ordered structures
and from ordered structures into nonempty words so that under these trans-
lations, a set or ordered structures or words belongs to a complexity class
LOGSPACE,NLOGSPACE,PTIME,NPTIME,PSPACE i� the set of trans-
lations of its elements does.

Thus, for example, it follows that FO(IFP) has the same expressive power
as FO(PFP) on ordered structures i� PTIME equals PSPACE in complexity

22

theory. The same holds for the statement that PTIME equals NPTIME if
we replace FO(PFP) by Σ1

1. A fact in complexity theory is that LOGSPACE
is stricly smaller than PSPACE; by the above this means that the logic
FO(DTC) has less expressive power than the logic FO(PFP).

Now consider the capturing of complexity classes of unordered structures.
If K is a class of unordered structures let K< denote the class of structures
obtained by adding an ordering to the structures in K. We say that a logic
L strongly captures the complexity class C i� for all classes K of unordered
structures,K< belongs to C i�K is axiomatisable in L. Then strong capturing
implies capturing, but the converse is false: If K is the class of structures in
the empty language of even size, then K< is axiomatised by a sentence of
FO(DTC):

∼ [DTCx,yy = x+ 2] min max .

But we shall show that no sentence of even FO(PFP) axiomatises K.

However if we consider Σ1
1, whose expressive power is dominated by that

of FO(PFP) only on ordered structures, we do get strong capturing, because
if ϕ is a sentence with a relation symbol < for an ordering, we can replace ϕ
by the sentence ψ ≡ ∃ < ϕ. Thus NPTIME is complemented i� Σ1

1 has the
same expressive power as Π1

1 on arbitrary structures. The latter easily implies
that if NPTIME is complemented then Σ1

1 has the full expressive power of
second-order logic and the polynomial-time hierarchy collapses to Σ1

1.

Whether the classes LOGSPACE,NLOGSPACE or PTIME can be strong-
ly captured by a logic is an open problem. If de�ned too broadly, there are
arti�cal logics which strongly capture PTIME. The right notion is to �e�ec-
tively strongly capture PTIME�, and no logic which does this is known. Prov-
ing that there is no such logic implies that PTIME does not equal NPTIME,
as the latter is e�ectively strongly captured by Σ1

1.

First we give two examples of logics which strongly capture PTIME, but
not e�ectively.

Fix a vocabulary τ and let τ< denote the vocabulary obtained by adding
the new binary relation symbol <. A sentence ϕ in τ< is order-invariant i�
for all �nite τ -structures A and any two orderings <1, <2 on A:

(A, <1) � ϕ i� (A, <2) � ϕ.

23

This notion is not e�ective: Satis�ability for �nite structures is not recursive
and a sentence ψ is unsatis�able in �nite structures i� the sentence

ψ′ ≡ (ψ → P (min))

is order-invariant (on structures with more than one element), where P is a
new unary relation symbol.

Consider now the logic L1 whose sentences are those of FO(IFP) in the
language τ< and where satisfaction for τ -structures is de�ned by:

A �L1 ϕ i�

ϕ is order-invariant and there is an ordering <A such that (A, <A) �IFP ϕ.

Similarly, de�ne the logic L2 by taking as sentences those sentences in the
language τ< which are order-invariant, with satisfaction for τ -structures de-
�ned by:

A �L2 ϕ i�

there is an ordering <A such that (A, <A) �IFP ϕ.

As FO(IFP) captures PTIME on ordered structures, it follows that the above
logics each strongly capture PTIME. But the �rst logic has an undecidable
satisfaction relation and the second logic an undecidable set of sentences. To
rule out these examples, we make the following de�nition, where by a logic we
mean an assigment to each vocabulary τ a collection of τ -sentences together
with a satisfaction relation for these sentences in �nite τ -structures.

De�nition 18 The logic L e�ectively strongly captures the complexity class
C, written L ≡es C, i�:

1. L strongly captures C.
2. For every vocabulary τ :
a. The set of τ -sentences is decidable.
b. There is an e�ective procedure that assigns to every τ -sentence ϕ a pair
(M,F) where M is a Turing machine that accepts Mod(ϕ)< and f is a code
for a function witnessing that M is resource-bounded according to the com-
plexity class C.

24

Using the fact that Σ1
1 ≡es NPTIME and a complete problem for NPTIME,

it is easy to see that if PTIME = NPTIME, then Σ1
1 ≡es PTIME.

13.Vorlesung

We could get a good logic for PTIME if we could �canonically� choose an
ordering of each structure in polynomial time. This idea is captured by the
next de�nition.

De�nition 19 For a �nite relational vocabulary τ let Str[τ] denote the class
of all �nite τ -structures. A PTIME canonization C consists of functions Cτ :
Str[τ]→ Str[τ<] for each τ such that:

(1) For all A in Str[τ], <Cτ (A) is an ordering of A and A is isomorphic to
the restriction to τ of Cτ (A).
(2) If A is isomorphic to B then Cτ (A) is isomorphic to Cτ (B).
(3) There is a PTIME algorithm that when applied to (A, <A) in Str[τ<]
prouduces the structure Cτ (A).

Proposition 20 If there exists a PTIME canonization then there is a logic
e�ectively strongly capturing PTIME.

Proof. Let C be a PTIME canonization. Consider the logic L whose sentences
in vocabulary τ are the FO(IFP)[τ<] sentences with satisfaction de�ned by:

A �L,τ ϕ i� Cτ (A) �IFP ϕ.

We claim that L e�ectively strongly captures PTIME. Clearly the set of L[τ]
sentences is decidable. By earlier work we know that there is an algorithm
assigning to each FO(IFP)[τ<] sentence ϕ a pair (M0, d0) where M0 is an x

d0

time-bounded TM accepting the class of ordered models of ϕ. Using a PTIME
algorithm for Cτ , we can e�ectively assign to every L[τ] sentence ϕ a pair
(M,d) where M is an xd time-bounded TM accepting the class ModL(ϕ)<.
So ModL< is in PTIME. Conversely, if K is a class of τ -structures with K<

in PTIME then K< is ModFO(IFP)(ϕ) for some FO(IFP)[τ<] sentence ϕ,
implying that K equals ModL(ϕ). 2

For an ordered structure A let A+ denote the isomorphic copy of A in
which <A is the standard order on the numbers less than |A|. Then using
A+ any canonization can be improved to obey the stronger property:

A ' B i� Cτ (A) = Cτ (B)

25

for τ -structures A, B. As structures of the form A+ can be canonically coded
by words over the alphabet {0, 1}, canonizations in fact lead to �invarianti-
zations�, i.e., functions reducing isomorphism to equality on words in the
following sense (note the analogy with the notion of �smooth equivalence
relation� from descriptive set theory).

De�nition 21 A PTIME invariantization I consists of functions Iτ : Str[τ]→
{0, 1}∗ such that for each τ we have:

(1) For τ -structures A, B, A ' B i� Iτ (A) = Iτ (B).
(2) Iτ is PTIME computable: there is a PTIME algorithm that produces the
word Iτ (A) from a structure (A, <A) ∈ Str[τ<].

14.-15.Vorlesungen

In fact PTIME invariantizations and canonizations are equivalent notions:

Theorem 22 If there is a PTIME invariantization then there is a PTIME
canonization.

Proof. Suppose that I is a PTIME invariantization. Let τ be a vocabulary
and σ = τ<. We �rst use Iσ to de�ne for every τ -structure A with ordering
≺A a new ordering <A as follows. If a1, . . . , al are distinct elements of A
let [a1, . . . , al] be {(ai, aj) | 1 ≤ i < j ≤ l} if l ≥ 2 and otherwise [a1] =
{(a1, a1)}.

Let w1 be the �rst element in the lex order on {0, 1}∗ of the set {Iσ((A, [a])) |
a ∈ A}. And choose a1 to be ≺A-least so that w1 = Iσ((A, [a])).

Let w2 be the �rst element of {Iσ((A, [a1, a])) | a ∈ A, a 6= a1}. Let a2 be
≺A-least so that w2 = Iσ((A, [a1, a2])) and a2 6= a1.

After n steps we obtain a1, . . . , an with A = {a1, . . . , an} and set <A=
[a1, . . . , an]. The desired canonization is the structure C+

τ (A) with the stan-
dard order on {1, . . . , |A| − 1} which is isomorphic to Cτ (A) = (A, <A). We
must check that if B is isomorphic to A then Cτ (A) equals Cτ (B). Let ≺B be
an ordering of B and <B the ordering given by the above procedure applied
to (B,≺B). It su�ces to show that for all l ≤ n:

(∗) (A, [a1, . . . , al]) ' (B, [b1, . . . , bl]).

26

Then for l = n we get (A, <A) isomorphic to (B, <B) and hence Cτ (A) =
Cτ (B). (∗) is proved by induction on l. To illustrate, suppose l = 1. Suppose
that π is an isomorphism ofA onto B. Then for all a ∈ A, π is an isomorphism
of (A, [a]) onto (B, [π(a)]), so as Iσ is an invariantization,

{Iσ((A, [a])) | a ∈ A} = {Iσ((B, [b])) | b ∈ B}

and hence Iσ((A, [a1])) = Iσ((B, [b1])). So we have (A, [a1]) ' (B, [b1]). 2

The question of the existence of a logic which e�ectively strongly captures
PTIME has a nice equivalent formulation in terms of e�ective enumerations
of complexity classes.

De�nition 23 An e�ective enumeration F of PTIME consists of uniformly
computable functions Fτ , τ a �nite relational vocabulary, each with domain
the natural numbers, such that:

(1) For any i, Fτ (i) is a pair (M,d) where M is an xd time-bounded Turing
Machine accepting a class K< with K consisting of τ -structures.
(2) For any class K of τ -structures such that K< is in PTIME, there is an
i such that Fτ (i) = (M,d) where M accepts K<.

Proposition 24 The following are equivalent:
(a) There is a logic e�ectively strongly capturing PTIME.
(b) There is an e�ective enumeration of PTIME.

Proof. (a) implies (b) follows immediately from the de�nition of e�ective
strong capturing, as if L e�ectively strongly captures PTIME then we can
e�ectively enumerate the L[τ] sentences and pass to a pair (M, f) where M
accepts Mod(ϕ)<. Conversely, let F be an e�ective enumeration of PTIME.
First assume that for each τ the range of Fτ is decidable. Then de�ne the logic
L as follows: The set of L[τ] sentences is the range of Fτ . And if Fτ (i) = (M,d)
where M accepts the class K< set:

A �L Fτ (i) i� A ∈ K.

This works. In the general case we use �padding� to replace F by another
enumeration F∗ with the property that the range of F∗τ is decidable for each τ :
If Fτ (i) equals (M,d) then replace M by M∗ where the code for the machine
M∗ is greater than i. (For example, this can be done by adding i-many new,

27

unused instructions to M .) Then to test if (M ′, d′) belongs to the range of
F ∗τ we need only look at Fτ restricted to the �rst code(M ′) numbers. 2

As mentioned, it is not known if there is a logic which e�ectively strongly
captures PTIME. However there is such a logic if we restrict ourselves to the
special class TREE, consisting of those connected directed graphs (A,EA)
where each node has at most one EA-predecessor. A logic L e�ectively strong-
ly captures PTIME on TREE i�:

(1) The set of L sentences is decidable.
(2) A class K of trees is axiomatized by a sentence of L i� K< belongs to
PTIME.
(3) There is an algorithm that assigns to each sentence ϕ of L a pair (M,d)
such that M is xd time-bounded and accepts Mod(ϕ)<.

The logic that e�ectively strongly captures PTIME on TREE is �xed-
point logic with counting, denoted FO(IFP,#). This logic enhances FO(IFP)
by allowing terms #xϕ, where ϕ is a formula and x a variable, which is
intended to denote the number of x satisfying ϕ. More precisely:

Fix a vocabulary τ disjoint from the ordering-vocabulary {<,S,min,max}.
We consider a language with two sorts. A structure for this language con-
sists of a τ -structure A together with the disjoint structure with universe
{0, 1, . . . , |A| − 1} with its natural interpretation of {<,S,min,max}. We
have point variables x, y, z, . . . ranging over the universe A of A and number
variables µ, ν, . . . ranging over {0, 1, . . . , |A| − 1}. Inductively de�ne:

(a) The terms of the �rst sort are the terms of the vocabulary τ .
(b) The terms of the second sort include (but are not restricted to) the terms
of the vocabulary {<,S,min,max}.
(c) Atomic formulas in either sort are formulas.
(d) If X is a second-order variable of arity (n1, n2) (i.e., of �rst-sort arity
n1 and second-sort arity n2) then Xt̄ρ̄ is a formula where t̄ is a length n1

sequence of terms of the �rst sort and ρ̄ is a length n2 sequence of terms of
the second sort.
(e) Formulas are closed under logical connectives and �rst-order quanti�ers
over both sorts.
(f) If ϕ is a formula then so is [IFPx̄ūXϕ]t̄ρ̄ (where x̄, ū, t̄, ρ̄ have the right

28

arities).
(g) if ϕ is a formula then #xϕ is a term of the second sort.

The interpretation of #xϕ(x, ā) in A is the number of a ∈ A such that ϕ[a, ā]
holds in A.

We want to show that FO(IFP,#) e�ectively strongly captures PTIME
on TREE. For this the following lemma is useful.

Lemma 25 Suppose that there is a formula ϕ(µ, ν) of FO(IFP,#) such that
for all trees A:

A ' ({0, 1, . . . , |A| − 1}, ϕA(·, ·)).

Then FO(IFP,#) e�ectively strongly captures PTIME on TREE.

Remark. In the above isomorphism: on the left, A is to be viewed as a tree
without the second sort and on the right as a tree with the second sort.

Proof sketch. Suppose that K is a class of trees and K< is in PTIME. Then
K< = Mod(ψ) for some sentence ψ in FO(IFP) in the vocabulary with <.
Using the hypothesis of the lemma, we can translate ψ into a sentence ψ∗ of
FO(IFP,#) replacing < with the ordering of the second sort and the edge
relation with the relation de�ned by ϕ. So K is axiomatizable in FO(IFP,#).
The converse holds as the logic FO(IFP,#) with < can only axiomatize
PTIME classes of structures. 2

Now we prove the hypothesis of the lemma. Let A be a tree. By induction
from leaves to root, we de�ne for each u ∈ A a copy of the subtree Au
with root u on an initial segment of {0, 1, . . . , |A| − 1}, the number part of
A. The tree relation will be given by Xu · · where X is a ternary relation
with �rst component for point variables and second and third components
for number variables. The case of a leaf u is trivial. Suppose that u has
successors v1, . . . , vl. By induction the trees Av1 , . . . ,Avl have isomorphic
copies on initial segments of the number part of A given by Xv1 · ·, Xv2 · ·,
· · ·, Xvl · ·. Using the ordering these copies can be ordered lexicographically
in a �rst-order de�nable way as follows:

Xvi · · ≺ Xvj · · i�
�Xvi · · 6= Xvj · · and the lexicographically least pair (µν) where they di�er
belongs to Xvi · ·�.

29

Abbreviate the above by vi ≺ vj and if neither vi ≺ vj nor vj ≺ vi then
we write vi ≡ vj. Now we illustrate the de�nition of the copy of Au on an
initial segment of {0, 1, . . . , |A| − 1} via an example: Suppose that l = 4 and
v1 ≺ v2 ≡ v3 ≺ v4. Then we assign 0 to u and follow it with a copy of Xv1 · ·,
two copies of Xv2 · · and one copy of Xv4 · ·. To inductively de�ne this copy
of Au (and ultimately of A = Au0 where u0 is the root of A) we need IFP
together with a function that keeps track of the total number of elements of
subtrees Av′ for successors v′ of u that are below a given successor v of u in
≺; this function is

δ(u, v) = #{w | ∃v′(Euv′ ∧ v′ ≺ v ∧ w ∈ Av′)},

where E denotes the edge relation. 2

30

