
The Silver Dichotomy for Generalised Baire Space

Classical Silver Dichotomy: If E is a Borel (or even co-analytic)

equivalence relation on ωω with uncountably many classes, then E

has a perfect set of classes.

The Generalised Baire space κκ has basic open sets

Nσ = {η : κ→ κ | η extends σ}

where σ belongs to κ<κ.

We assume κ<κ = κ, so there is a dense set of size κ.

Borel sets: Close the basic open sets under complements and

intersections of size κ.



The Silver Dichotomy for Generalised Baire Space

T ⊆ κ<κ is a perfect tree i� T is < κ-closed and every node

extends to a splitting node.

X ⊆ κκ is perfect if X = [T ] for some perfect tree T .

Silver Dichotomy for κκ: If E is a Borel equivalence relation on κκ

with more than κ classes then E has a perfect set of classes.

An equivalent form:

Silver Dichotomy for κκ: If E is a Borel equivalence relation on κκ

with more than κ classes then id is Borel-reducible to E , where id is

equality on 2κ.



The Generalised Silver Dichotomy: A negative result

Theorem

(SDF-Hyttinen-Kulikov) Assume V = L. Then the Silver dichotomy

for κκ fails for all uncountable regular κ. There are Borel

equivalence relations with more than κ classes which lie strictly

below id and also ones which are incomparable with id (with

respect to Borel-reducibility).

The problem in L is caused by weak Kurepa trees.

T ⊆ 2<κ is weak Kurepa if every node of T splits, T has more

than κ branches but Tα (the set of nodes in T of length α) has
size at most card(α) for stationary-many α < κ.

T is Kurepa if the previous holds for all in�nite α < κ.



The Generalised Silver Dichotomy: A negative result

Fact. If T ⊆ 2<κ is perfect then for some (in�nite) α, Tα has size

greater than card(α); if κ is inaccessible then this holds for

club-many α < κ.

It follows that Kurepa trees do not contain perfect subtrees and if κ
is inaccessible then weak Kurepa trees do not contain perfect

subtrees.

Now for any tree T de�ne:

xET y i� x , y are not branches of T or x = y .

If T has more than κ branches then the Silver Dichomomy would

yield a perfect subtree of T .

It follows that Kurepa trees kill the Silver Dichotomy and weak

Kurepa trees kill the Silver Dichotomy at inaccessibles.



The Generalised Silver Dichotomy: A negative result

Lemma

(Jensen, essentially) Suppose V = L and κ is regular and

uncountable. Then there exists a weak Kurepa tree on κ. If κ is a

successor cardinal then there exists a Kurepa tree on κ.

Corollary

If V = L then the Silver Dichotomy fails at all uncountable κ.



The Generalised Silver Dichotomy: Silver's hint

Fortunately Silver showed us how to get rid of Kurepa trees.

If κ < λ, λ regular then Coll(κ,< λ) is the partial order that forces

λ = κ+ using conditions of size < κ.

Silver: If κ < λ, λ inaccessible then Coll(κ,< λ) forces that there

are no Kurepa trees on κ.

The same proof shows:

If κ < λ are both inacessible then Coll(κ,< λ) forces that there are

no weak Kurepa trees on κ.

So maybe if κ < λ, λ inaccessible then Coll(κ,< λ) forces the

Silver Dichotomy at κ?

I will return to this question later.



The Generalised Silver Dichotomy: Another worry

More bad news about the Silver Dichotomy at an uncountable κ.

Fact. The Silver Dichotomy provably fails at uncountable κ for ∆1

1

equivalence relations: De�ne xE ranky i� x , y do not code wellorders

of κ or they code wellorders of the same length. Then E rank is ∆1

1
,

has more than κ classes but no perfect set of classes.

E rank is ∆1

1
because wellfoundedness is ∆1

1
(indeed closed: x codes a

wellorder i� x � α codes a wellorder for all α < κ).

If T were a perfect set of codes for wellorders of distinct lengths

then let x be a su�ciently generic branch through T and let β < κ
be the length of the wellorder coded by x .

Then for some α < κ, all su�cienitly generic branches through T

extending x � α code a wellorder of length β, contradiction.



The Generalised Silver Dichotomy: Another worry

Fortunately, not every ∆1

1
set is Borel: There is a ∆1

1
set D(x , y)

such that the Dx 's are exactly the Borel sets. By diagonalisation, D

is not Borel.

In fact:

Theorem

E rank is not Borel.

The proof of this result points the way toward a consistency proof

for the Silver Dichotomy.



The Generalised Silver Dichotomy: The second hint

Theorem

E rank is not Borel.

Proof. For α < κ+, Coll(κ, α) denotes the forcing to collapse α to

κ using conditions of size less than κ.

If g : κ→ α is Coll(κ, α)-generic then g∗ denotes the subset of κ
de�ned by i ∈ g∗ i� g((i)0) ≤ g((i)1) where i 7→ ((i)0, (i)1) is a

bijection between κ and κ× κ.



The Generalised Silver Dichotomy: The second hint

By induction on Borel rank we show that if B is Borel then there is

a club C in κ+ such that:

(∗) For α ≤ β in C of co�nality κ and (p0, p1) a condition in

Coll(κ, α)× Coll(κ, α), (p0, p1) forces that (g∗
0
, g∗

1
) belongs to B in

the forcing Coll(κ, α)× Coll(κ, α) i� it forces this in the forcing

Coll(κ, α)× Coll(κ, β).

It follows that E rank is not Borel, as otherwise we have g∗
0
E rankg∗

1

where g0, g1 are su�ciently generic for Coll(κ, α)× Coll(κ, β) with

α < β. �



The Generalised Silver Dichotomy: Main Result

We now return to the earlier question:

Question. If κ < λ, λ inaccessible then does Coll(κ,< λ) force the

Silver Dichotomy at κ?

I don't know the answer.

But if we require more of λ we get a positive result:

Theorem

(Main Theorem) Suppose that 0# exists, κ is regular in L and

κ < λ where λ is a Silver indiscernible. Then after forcing over L

with Coll(κ,< λ) the Silver Dichotomy holds for the Generalised

Baire Space κκ.

Silver indiscernibles are very large in L, indeed much more than

inaccessible. Indeed any conceivable large cardinal property

consistent with V = L holds for the Silver indiscernibles.



The Generalised Silver Dichotomy: Main Result

Note that to show that Coll(κ,< λ) forces the Silver Dichotomy for

all Silver indiscernible λ > κ, it su�ces to verify it for some Silver

indiscernible λ > κ, by indiscernibility.

We verify it when λ is κ+ of V . The proof works as long as λ is a

�xed point in the enumeration of the Silver indiscernibles.

Let G be Coll(κ,< λ)-generic.
We assume that our Borel equivalence relation in L[G ] has a Borel

code in L and therefore has Borel rank less than (κ+)L.

Suppose that E has λ classes in L[G ] and let p force that the

names (σα | α < λ) are pairwise E -inequivalent.

We can assume that the σα's have size < λ and choose f : λ→ λ
in L so that σα is a Coll(κ,< f (α))-name for each α < λ.
To simplify notation let Lγ denote Coll(κ,< γ) for any ordinal γ.



The Generalised Silver Dichotomy: Main Result

We may also assume that for each α < λ, the E -equivalence class

of σα does not depend on the choice of Lf (α)-generic, as otherwise
we get a perfect set of E -equivalence classes by building a perfect

set of mutual generics.

Let I consist of the Silver indiscernibles between κ and λ and for

i < j in I let πij be an elementary embedding from L to L with

critical point i , sending i to j .



The Generalised Silver Dichotomy: Main Result

In vague analogy to the previous proof we show that for each Borel

B there is a club C contained in I such that:

(∗) Suppose that i0 < i1 < · · · < in = j < in+1 = k belong to C ,

(p0, p1) ≤ (p, p) belongs to Lf (j) × Lf (j) and is L-de�nable from

parameters in i0 ∪ {i0, i1, . . . , in} together with indiscernibles > j .

Then (p0, p1) forces that (σg0j , σ
g1
j ) belongs to B in the forcing

Lf (j) × Lf (j) i� (p0, πi0i1πi1i2 · · ·πin−1inπin in+1
(p1)) forces that

(σg0j , σ
g1
k ) belongs to B in the forcing Lf (j) × Lf (k).

Now apply (∗) to the Borel set E , producing a club C .

We know that (p, p) Lf (i) × Lf (i)-forces σ
ġ0
i Eσġ1i .

It follows from (∗) that for i < j in C , (p, p) also

Lf (i) × Lf (j)-forces σ
ġ0
i Eσġ1j .

But this contradicts the fact that σġ0α , σġ1β are forced by (p, p) in

Lα ×Lβ to be E -inequivalent when p belongs to Lα and α < β. �



Final remark

Another important dichotomy from the classical setting is:

Harrington-Kechris-Louveau Dichotomy: If E is Borel and not

smooth then E0 Borel-reduces to E .

This is provably false for uncountable κ:

Theorem

(SDF-Hyttinen-Kulikov) In κκ for uncountable κ there is a Borel

equivalence relation E ′
0
which is strictly above id and strictly below

E0 with respect to Borel reducibility.

E ′
0
is de�ned as follows:

xE ′
0
y i�

xE0y and {i < κ | x(i) 6= y(i)} is a �nite union of intervals.



Final remark

But maybe there is still some hope; the following is open:

Question. Suppose that a Borel equivalence relation E is not Borel

reducible to id. Then is E ′
0
Borel reducible to E?

Thanks for your attention!



Final remark

Claim 1. id ≤B E ′
0
≤B E0.

For the �rst reduction use f (x) = the set of codes for proper initial

segments of x ; then x = y → f (x)E ′
0
f (y) and

x 6= y →∼ f (x)E0f (y)→∼ f (x)E ′
0
f (y).

For the second reduction: for each α < κ choose fα : 2α → 2α such

that for x , y ∈ 2α, {i < κ | x(i) 6= y(i)} is a �nite union of

intervals i� fα(x) = fα(y) and for x ∈ 2κ de�ne f (x) = the set of

codes for the pairs (fα(x |α), x(α)), α < κ; then
xE ′

0
y → f (x)E0f (y) and ∼ xE ′

0
y →∼ f (x)E0f (y).



Final remark

Claim 2. E ′
0
�B id.

Otherwise let M be a transitive model of ZFC− of size κ containing

all bounded subsets of κ as well as a code for the Borel reduction f .

Let x ∈ 2κ be κ-Cohen generic over M and de�ne x̄(i) = 1− x(i)
for each i < κ.
Then as ∼ xE0x̄ there is α < κ such that f (x) 6= f (y) whenever y

is κ-Cohen generic over M and extends x̄ |α. But then
f (x) 6= f ((x̄ |α) ∗ (x |[α, κ))), contradicting xE ′

0
((x̄ |α) ∗ (x |[α, κ))).



Final remark

Claim 3. E0 �B E ′
0
.

As in the previous argument choose a reduction f , a transitive

model M of ZFC− of size κ containing all bounded subsets of κ as

well as a Borel code for f and x ∈ 2κ which is κ-Cohen over M.

Choose α0 so that ∼ f (x)E ′
0
f (y) whenever y is κ-Cohen over M

and extends x̄ |α0; we can further demand that for some ordinal

i0 < α0, f (x)(i0) 6= f (y)(i0) for such y .

Then choose α1 > α0 so that f (x)E ′
0
f (y) whenever y is κ-Cohen

over M and extends (x̄ |α) ∗ (x |[α0, α1)); we can further demand

that for some ordinal i1 ∈ [α0, α1), f (x)(i1) = f (y)(i1) for such y .

After ω steps we obtain ∼ f (x)E ′
0
f (y) whenever y is κ-Cohen over

M and extends (x̄ |α0) ∗ (x |[α0, α1)) ∗ (x̄ |[α1, α2)) ∗ · · · ,
contradicting the fact that there is such a y which is E0 equivalent

to x . �


