The Silver Dichotomy for Generalised Baire Space

Classical Silver Dichotomy: If E is a Borel (or even co-analytic) equivalence relation on ω^{ω} with uncountably many classes, then E has a perfect set of classes.

The Generalised Baire space κ^{κ} has basic open sets

$$N_{\sigma} = \{\eta : \kappa \to \kappa \mid \eta \text{ extends } \sigma\}$$

where σ belongs to $\kappa^{<\kappa}$.

We assume $\kappa^{<\kappa} = \kappa$, so there is a dense set of size κ .

Borel sets: Close the basic open sets under complements and intersections of size κ .

The Silver Dichotomy for Generalised Baire Space

 $T \subseteq \kappa^{<\kappa}$ is a *perfect* tree iff T is $< \kappa$ -closed and every node extends to a splitting node.

 $X \subseteq \kappa^{\kappa}$ is *perfect* if X = [T] for some perfect tree T.

Silver Dichotomy for κ^{κ} : If E is a Borel equivalence relation on κ^{κ} with more than κ classes then E has a perfect set of classes.

An equivalent form:

Silver Dichotomy for κ^{κ} : If E is a Borel equivalence relation on κ^{κ} with more than κ classes then id is Borel-reducible to E, where id is equality on 2^{κ} .

The Generalised Silver Dichotomy: A negative result

Theorem

(SDF-Hyttinen-Kulikov) Assume V = L. Then the Silver dichotomy for κ^{κ} fails for all uncountable regular κ . There are Borel equivalence relations with more than κ classes which lie strictly below id and also ones which are incomparable with id (with respect to Borel-reducibility).

The problem in L is caused by weak Kurepa trees.

 $T \subseteq 2^{<\kappa}$ is weak Kurepa if every node of T splits, T has more than κ branches but T_{α} (the set of nodes in T of length α) has size at most card(α) for stationary-many $\alpha < \kappa$.

T is Kurepa if the previous holds for all infinite $\alpha < \kappa$.

The Generalised Silver Dichotomy: A negative result

Fact. If $T \subseteq 2^{<\kappa}$ is perfect then for some (infinite) α , T_{α} has size greater than card(α); if κ is inaccessible then this holds for club-many $\alpha < \kappa$.

It follows that Kurepa trees do not contain perfect subtrees and if κ is inaccessible then weak Kurepa trees do not contain perfect subtrees.

Now for any tree T define: xE_Ty iff x, y are not branches of T or x = y. If T has more than κ branches then the Silver Dichomomy would yield a perfect subtree of T.

It follows that Kurepa trees kill the Silver Dichotomy and weak Kurepa trees kill the Silver Dichotomy at inaccessibles.

The Generalised Silver Dichotomy: A negative result

Lemma

(Jensen, essentially) Suppose V = L and κ is regular and uncountable. Then there exists a weak Kurepa tree on κ . If κ is a successor cardinal then there exists a Kurepa tree on κ .

Corollary

If V = L then the Silver Dichotomy fails at all uncountable κ .

The Generalised Silver Dichotomy: Silver's hint

Fortunately Silver showed us how to get rid of Kurepa trees.

If $\kappa < \lambda$, λ regular then $\operatorname{Coll}(\kappa, < \lambda)$ is the partial order that forces $\lambda = \kappa^+$ using conditions of size $< \kappa$.

Silver: If $\kappa < \lambda$, λ inaccessible then $\operatorname{Coll}(\kappa, < \lambda)$ forces that there are no Kurepa trees on κ .

The same proof shows:

If $\kappa < \lambda$ are both inacessible then $Coll(\kappa, < \lambda)$ forces that there are no weak Kurepa trees on κ .

So maybe if $\kappa < \lambda$, λ inaccessible then $Coll(\kappa, < \lambda)$ forces the Silver Dichotomy at κ ?

I will return to this question later.

The Generalised Silver Dichotomy: Another worry

More bad news about the Silver Dichotomy at an uncountable κ .

Fact. The Silver Dichotomy provably fails at uncountable κ for Δ_1^1 equivalence relations: Define $xE^{\operatorname{rank}}y$ iff x, y do not code wellorders of κ or they code wellorders of the same length. Then E^{rank} is Δ_1^1 , has more than κ classes but no perfect set of classes.

 E^{rank} is Δ_1^1 because wellfoundedness is Δ_1^1 (indeed closed: x codes a wellorder iff $x \upharpoonright \alpha$ codes a wellorder for all $\alpha < \kappa$).

If T were a perfect set of codes for wellorders of distinct lengths then let x be a sufficiently generic branch through T and let $\beta < \kappa$ be the length of the wellorder coded by x. Then for some $\alpha < \kappa$, all sufficiently generic branches through Textending $x \upharpoonright \alpha$ code a wellorder of length β , contradiction.

The Generalised Silver Dichotomy: Another worry

Fortunately, not every Δ_1^1 set is Borel: There is a Δ_1^1 set D(x, y) such that the D_x 's are exactly the Borel sets. By diagonalisation, D is not Borel.

In fact:

Theorem E^{rank} is not Borel.

The proof of this result points the way toward a consistency proof for the Silver Dichotomy.

The Generalised Silver Dichotomy: The second hint

Theorem

E^{rank} is not Borel.

Proof. For $\alpha < \kappa^+$, $Coll(\kappa, \alpha)$ denotes the forcing to collapse α to κ using conditions of size less than κ .

If $g : \kappa \to \alpha$ is $Coll(\kappa, \alpha)$ -generic then g^* denotes the subset of κ defined by $i \in g^*$ iff $g((i)_0) \leq g((i)_1)$ where $i \mapsto ((i)_0, (i)_1)$ is a bijection between κ and $\kappa \times \kappa$.

By induction on Borel rank we show that if B is Borel then there is a club C in κ^+ such that:

(*) For $\alpha \leq \beta$ in *C* of cofinality κ and (p_0, p_1) a condition in Coll $(\kappa, \alpha) \times$ Coll (κ, α) , (p_0, p_1) forces that (g_0^*, g_1^*) belongs to *B* in the forcing Coll $(\kappa, \alpha) \times$ Coll (κ, α) iff it forces this in the forcing Coll $(\kappa, \alpha) \times$ Coll (κ, β) .

It follows that E^{rank} is not Borel, as otherwise we have $g_0^* E^{\operatorname{rank}} g_1^*$ where g_0, g_1 are sufficiently generic for $\operatorname{Coll}(\kappa, \alpha) \times \operatorname{Coll}(\kappa, \beta)$ with $\alpha < \beta$. \Box

We now return to the earlier question:

Question. If $\kappa < \lambda$, λ inaccessible then does Coll $(\kappa, < \lambda)$ force the Silver Dichotomy at κ ?

I don't know the answer.

But if we require more of λ we get a positive result:

Theorem

(Main Theorem) Suppose that $0^{\#}$ exists, κ is regular in L and $\kappa < \lambda$ where λ is a Silver indiscernible. Then after forcing over L with $Coll(\kappa, < \lambda)$ the Silver Dichotomy holds for the Generalised Baire Space κ^{κ} .

Silver indiscernibles are very large in L, indeed much more than inaccessible. Indeed any conceivable large cardinal property consistent with V = L holds for the Silver indiscernibles.

Note that to show that $Coll(\kappa, < \lambda)$ forces the Silver Dichotomy for *all* Silver indiscernible $\lambda > \kappa$, it suffices to verify it for *some* Silver indiscernible $\lambda > \kappa$, by indiscernibility.

We verify it when λ is κ^+ of V. The proof works as long as λ is a fixed point in the enumeration of the Silver indiscernibles.

Let G be $Coll(\kappa, < \lambda)$ -generic.

We assume that our Borel equivalence relation in L[G] has a Borel code in L and therefore has Borel rank less than $(\kappa^+)^L$.

Suppose that *E* has λ classes in *L*[*G*] and let *p* force that the names $(\sigma_{\alpha} \mid \alpha < \lambda)$ are pairwise *E*-inequivalent. We can assume that the σ_{α} 's have size $< \lambda$ and choose $f : \lambda \rightarrow \lambda$ in *L* so that σ_{α} is a Coll($\kappa, < f(\alpha)$)-name for each $\alpha < \lambda$. To simplify notation let \mathcal{L}_{γ} denote Coll($\kappa, < \gamma$) for any ordinal γ .

We may also assume that for each $\alpha < \lambda$, the *E*-equivalence class of σ_{α} does not depend on the choice of $\mathcal{L}_{f(\alpha)}$ -generic, as otherwise we get a perfect set of *E*-equivalence classes by building a perfect set of mutual generics.

Let I consist of the Silver indiscernibles between κ and λ and for i < j in I let π_{ij} be an elementary embedding from L to L with critical point i, sending i to j.

In vague analogy to the previous proof we show that for each Borel *B* there is a club *C* contained in *I* such that:

(*) Suppose that $i_0 < i_1 < \cdots < i_n = j < i_{n+1} = k$ belong to C, $(p_0, p_1) \leq (p, p)$ belongs to $\mathcal{L}_{f(j)} \times \mathcal{L}_{f(j)}$ and is *L*-definable from parameters in $i_0 \cup \{i_0, i_1, \dots, i_n\}$ together with indiscernibles > j. Then (p_0, p_1) forces that $(\sigma_j^{g_0}, \sigma_j^{g_1})$ belongs to *B* in the forcing $\mathcal{L}_{f(j)} \times \mathcal{L}_{f(j)}$ iff $(p_0, \pi_{i_0 i_1} \pi_{i_1 i_2} \cdots \pi_{i_{n-1} i_n} \pi_{i_n i_{n+1}}(p_1))$ forces that $(\sigma_j^{g_0}, \sigma_k^{g_1})$ belongs to *B* in the forcing $\mathcal{L}_{f(j)} \times \mathcal{L}_{f(k)}$.

Now apply (*) to the Borel set *E*, producing a club *C*. We know that $(p, p) \mathcal{L}_{f(i)} \times \mathcal{L}_{f(i)}$ -forces $\sigma_i^{\dot{g}_0} E \sigma_i^{\dot{g}_1}$. It follows from (*) that for i < j in *C*, (p, p) also $\mathcal{L}_{f(i)} \times \mathcal{L}_{f(j)}$ -forces $\sigma_i^{\dot{g}_0} E \sigma_j^{\dot{g}_1}$.

But this contradicts the fact that $\sigma_{\alpha}^{g_0}$, $\sigma_{\beta}^{g_1}$ are forced by (p, p) in $\mathcal{L}_{\alpha} \times \mathcal{L}_{\beta}$ to be *E*-inequivalent when *p* belongs to \mathcal{L}_{α} and $\alpha < \beta$. \Box

Another important dichotomy from the classical setting is:

Harrington-Kechris-Louveau Dichotomy: If E is Borel and not smooth then E_0 Borel-reduces to E.

This is *provably false* for uncountable κ :

Theorem

(SDF-Hyttinen-Kulikov) In κ^{κ} for uncountable κ there is a Borel equivalence relation E'_0 which is strictly above id and strictly below E_0 with respect to Borel reducibility.

 E'_0 is defined as follows:

 xE'_0y iff xE_0y and $\{i < \kappa \mid x(i) \neq y(i)\}$ is a finite union of intervals.

But maybe there is still some hope; the following is open:

Question. Suppose that a Borel equivalence relation E is not Borel reducible to id. Then is E'_0 Borel reducible to E?

Thanks for your attention!

Claim 1. id $\leq_B E'_0 \leq_B E_0$. For the first reduction use f(x) = the set of codes for proper initial segments of x; then $x = y \rightarrow f(x)E'_0f(y)$ and $x \neq y \rightarrow \sim f(x)E_0f(y) \rightarrow \sim f(x)E'_0f(y)$. For the second reduction: for each $\alpha < \kappa$ choose $f_\alpha : 2^\alpha \rightarrow 2^\alpha$ such that for $x, y \in 2^\alpha$, $\{i < \kappa \mid x(i) \neq y(i)\}$ is a finite union of intervals iff $f_\alpha(x) = f_\alpha(y)$ and for $x \in 2^\kappa$ define f(x) = the set of codes for the pairs $(f_\alpha(x|\alpha), x(\alpha)), \alpha < \kappa$; then $xE'_0y \rightarrow f(x)E_0f(y)$ and $\sim xE'_0y \rightarrow \sim f(x)E_0f(y)$.

Claim 2. $E'_0 \not\leq_B$ id.

Otherwise let M be a transitive model of ZFC⁻ of size κ containing all bounded subsets of κ as well as a code for the Borel reduction f. Let $x \in 2^{\kappa}$ be κ -Cohen generic over M and define $\bar{x}(i) = 1 - x(i)$ for each $i < \kappa$.

Then as $\sim xE_0\bar{x}$ there is $\alpha < \kappa$ such that $f(x) \neq f(y)$ whenever y is κ -Cohen generic over M and extends $\bar{x}|\alpha$. But then $f(x) \neq f((\bar{x}|\alpha) * (x|[\alpha, \kappa)))$, contradicting $xE'_0((\bar{x}|\alpha) * (x|[\alpha, \kappa)))$.

Claim 3. $E_0 \not\leq_B E'_0$.

As in the previous argument choose a reduction f, a transitive model M of ZFC⁻ of size κ containing all bounded subsets of κ as well as a Borel code for f and $x \in 2^{\kappa}$ which is κ -Cohen over M. Choose α_0 so that $\sim f(x)E'_0f(y)$ whenever y is κ -Cohen over M and extends $\bar{x}|\alpha_0$; we can further demand that for some ordinal $i_0 < \alpha_0, f(x)(i_0) \neq f(y)(i_0)$ for such y. Then choose $\alpha_1 > \alpha_0$ so that $f(x)E'_0f(y)$ whenever y is κ -Cohen over *M* and extends $(\bar{x}|\alpha) * (x|[\alpha_0, \alpha_1))$; we can further demand that for some ordinal $i_1 \in [\alpha_0, \alpha_1)$, $f(x)(i_1) = f(y)(i_1)$ for such y. After ω steps we obtain $\sim f(x)E'_0f(y)$ whenever y is κ -Cohen over *M* and extends $(\bar{x}|\alpha_0) * (x|[\alpha_0, \alpha_1]) * (\bar{x}|[\alpha_1, \alpha_2]) * \cdots$

contradicting the fact that there is such a y which is E_0 equivalent to x. \Box