The Silver Dichotomy for Generalised Baire Space

Classical Silver Dichotomy: If E is a Borel (or even co-analytic)
equivalence relation on w* with uncountably many classes, then E
has a perfect set of classes.

The Generalised Baire space k" has basic open sets
Ny, ={n:k — k| n extends o}

where o belongs to K<".
We assume k<% = Kk, so there is a dense set of size k.

Borel sets: Close the basic open sets under complements and
intersections of size k.



The Silver Dichotomy for Generalised Baire Space

T C k<" is a perfect tree iff T is < r-closed and every node
extends to a splitting node.

X C k" is perfect if X = [T] for some perfect tree T.

Silver Dichotomy for k" If E is a Borel equivalence relation on k"
with more than « classes then E has a perfect set of classes.

An equivalent form:
Silver Dichotomy for k" If E is a Borel equivalence relation on k"

with more than k classes then id is Borel-reducible to E, where id is
equality on 2.



The Generalised Silver Dichotomy: A negative result

Theorem

(SDF-Hyttinen-Kulikov) Assume V = L. Then the Silver dichotomy
for k" fails for all uncountable regular k. There are Borel
equivalence relations with more than k classes which lie strictly
below id and also ones which are incomparable with id (with
respect to Borel-reducibility).

The problem in L is caused by weak Kurepa trees.

T C 2<% is weak Kurepa if every node of T splits, T has more
than k branches but T, (the set of nodes in T of length a) has
size at most card(«) for stationary-many a < k.

T is Kurepa if the previous holds for all infinite a < k.



The Generalised Silver Dichotomy: A negative result

Fact. If T C 2<% is perfect then for some (infinite) o, T, has size
greater than card(«); if k is inaccessible then this holds for
club-many a < k.

It follows that Kurepa trees do not contain perfect subtrees and if
is inaccessible then weak Kurepa trees do not contain perfect
subtrees.

Now for any tree T define:

xETy ff x, y are not branches of T or x = y.

If T has more than x branches then the Silver Dichomomy would
yield a perfect subtree of T.

It follows that Kurepa trees kill the Silver Dichotomy and weak
Kurepa trees kill the Silver Dichotomy at inaccessibles.



The Generalised Silver Dichotomy: A negative result

Lemma

(Jensen, essentially) Suppose V = L and k is regular and
uncountable. Then there exists a weak Kurepa tree on k. If k Is a
successor cardinal then there exists a Kurepa tree on k.

Corollary

If V = L then the Silver Dichotomy fails at all uncountable k.



The Generalised Silver Dichotomy: Silver's hint

Fortunately Silver showed us how to get rid of Kurepa trees.

If & < A, A regular then Coll(x, < A) is the partial order that forces
A = k™ using conditions of size < k.

Silver: If K < A, X inaccessible then Coll(x, < \) forces that there
are no Kurepa trees on k.

The same proof shows:

If k < A are both inacessible then Coll(x, < ) forces that there are
no weak Kurepa trees on k.

So maybe if kK < A, X inaccessible then Coll(x, < \) forces the
Silver Dichotomy at 7

| will return to this question later.



The Generalised Silver Dichotomy: Another worry

More bad news about the Silver Dichotomy at an uncountable k.

Fact. The Silver Dichotomy provably fails at uncountable « for Al
equivalence relations: Define xE™"*y iff x, y do not code wellorders
of x or they code wellorders of the same length. Then E=" is Al,
has more than k classes but no perfect set of classes.

Erk is Al because wellfoundedness is Al (indeed closed: x codes a
wellorder iff x [ « codes a wellorder for all o < k).

If T were a perfect set of codes for wellorders of distinct lengths
then let x be a sufficiently generic branch through T and let 8 < &
be the length of the wellorder coded by x.

Then for some a < &, all sufficienitly generic branches through T
extending x [ o code a wellorder of length 3, contradiction.



The Generalised Silver Dichotomy: Another worry

Fortunately, not every Al set is Borel: There is a Al set D(x, y)
such that the D,’s are exactly the Borel sets. By diagonalisation, D
is not Borel.

In fact:

Theorem

Er"¢ s not Borel.

The proof of this result points the way toward a consistency proof
for the Silver Dichotomy.



The Generalised Silver Dichotomy: The second hint

Theorem

E"k s not Borel.

Proof. For a < k™, Coll(x, ) denotes the forcing to collapse a to
K using conditions of size less than k.

If g:x — ais Coll(k, a)-generic then g* denotes the subset of x
defined by i € g* iff g((i)o) < g((i)1) where i — ((1)o, ()1) is a
bijection between k and k X k.



The Generalised Silver Dichotomy: The second hint

By induction on Borel rank we show that if B is Borel then there is
aclub Cin k™ such that:

(%) For @ < 8 in C of cofinality x and (po, p1) a condition in
Coll(k, ) x Coll(k, ), (po, p1) forces that (g;, g;) belongs to B in
the forcing Coll(k, @) x Coll(x, «) iff it forces this in the forcing
Coll(k, @) x Coll(k, B).

It follows that E™" is not Borel, as otherwise we have gjE™" gy
where go, g1 are sufficiently generic for Coll(k, ) x Coll(k, 5) with
a<pg.Od



The Generalised Silver Dichotomy: Main Result

We now return to the earlier question:

Question. If kK < A, X inaccessible then does Coll(k, < ) force the
Silver Dichotomy at k7

| don't know the answer.
But if we require more of A\ we get a positive result:

Theorem

(Main Theorem) Suppose that 07 exists, k is regular in L and

Kk < X where X is a Silver indiscernible. Then after forcing over L
with Coll(k, < \) the Silver Dichotomy holds for the Generalised
Baire Space k".

Silver indiscernibles are very large in L, indeed much more than
inaccessible. Indeed any conceivable large cardinal property
consistent with V' = L holds for the Silver indiscernibles.



The Generalised Silver Dichotomy: Main Result

Note that to show that Coll(x, < \) forces the Silver Dichotomy for
all Silver indiscernible \ > &, it suffices to verify it for some Silver
indiscernible A > &, by indiscernibility.

We verify it when X is k™ of V. The proof works as long as \ is a
fixed point in the enumeration of the Silver indiscernibles.

Let G be Coll(k, < A)-generic.

We assume that our Borel equivalence relation in L[G] has a Borel
code in L and therefore has Borel rank less than (k)L

Suppose that E has A classes in L[G] and let p force that the
names (0, | @ < \) are pairwise E-inequivalent.

We can assume that the o,'s have size < X and choose f : A — A
in L so that o, is a Coll(k, < f(«))-name for each o < .

To simplify notation let £, denote Coll(x, < 7) for any ordinal .



The Generalised Silver Dichotomy: Main Result

We may also assume that for each o < )\, the E-equivalence class
of o, does not depend on the choice of L¢(,)-generic, as otherwise
we get a perfect set of E-equivalence classes by building a perfect
set of mutual generics.

Let / consist of the Silver indiscernibles between s and )\ and for

i < jin [ let mj be an elementary embedding from L to L with
critical point 7, sending i to j.



The Generalised Silver Dichotomy: Main Result

In vague analogy to the previous proof we show that for each Borel
B there is a club C contained in / such that:

() Suppose that iy < iy < -+ < ip =j < int1 = k belong to C,
(Po; p1) < (p, p) belongs to L¢(jy x L¢(j) and is L-definable from
parameters in ig U {iy, i1, ..., in} together with indiscernibles > ;.
Then (po, p1) forces that (ajg",ajgl) belongs to B in the forcing
Ef(j) X £f(j) iff (p(),ﬂ','o,'l?T,'l,'2 T tin Minins1 (pl)) forces that
(ajg°,afl) belongs to B in the forcing L¢(jy X Lf(k).-

Now apply (*) to the Borel set E, producing a club C.

We know that (p, p) L¢(iy x Lr(j)-forces o8 Ecft.

It follows from (x) that for i < j in C, (p,p) also

Ef(,') X Ef(j)—forces O'Ig0 EO'ng. . -

But this contradicts the fact that o0&, o%' are forced by (p, p) in
Lo % L3 to be E-inequivalent when p belongs to £, and a < 5. O



Final remark

Another important dichotomy from the classical setting is:

Harrington-Kechris-Louveau Dichotomy: If E is Borel and not
smooth then Ey Borel-reduces to E.

This is provably false for uncountable «:

Theorem

(SDF-Hyttinen-Kulikov) In k" for uncountable k there is a Borel
equivalence relation E§ which is strictly above id and strictly below
Ey with respect to Borel reducibility.

E{ is defined as follows:

xEly iff
xEoy and {i < k| x(i) # y(i)} is a finite union of intervals.



Final remark

But maybe there is still some hope; the following is open:

Question. Suppose that a Borel equivalence relation E is not Borel
reducible to id. Then is Ej Borel reducible to E?

Thanks for your attention!



Final remark

Claim 1. id gB Eé SB Eo.

For the first reduction use f(x) = the set of codes for proper initial
segments of x; then x = y — f(x)Esf(y) and

x 7y —~ FOB(y) —~ F()ELF(Y).

For the second reduction: for each o < k choose £, : 2% — 2% such
that for x,y € 2%, {i < k| x(i) # y(i)} is a finite union of
intervals iff f,(x) = fo(y) and for x € 2" define f(x) = the set of
codes for the pairs (7, (x|a), x(«)), o < k; then

xEly — f(x)Eof(y) and ~ xEjy —~ f(x)Eof(y).



Final remark

Claim 2. E} 5 id.
Otherwise let M be a transitive model of ZFC™ of size x containing
all bounded subsets of « as well as a code for the Borel reduction f.
Let x € 2 be k-Cohen generic over M and define x(i) = 1 — x(/)
for each i < k.

Then as ~ xEgX there is @ < & such that f(x) # f(y) whenever y
is k-Cohen generic over M and extends X|«. But then

f(x) # f((x]a) * (x|[a, k))), contradicting xEj((X|cv) * (x|[c, k))).



Final remark

Claim 3. EO ﬁB Eé

As in the previous argument choose a reduction f, a transitive
model M of ZFC™ of size k containing all bounded subsets of & as
well as a Borel code for f and x € 2% which is x-Cohen over M.
Choose ayg so that ~ f(x)Egf(y) whenever y is k-Cohen over M
and extends x|ap; we can further demand that for some ordinal

o < ag, f(x)(i) # f(y)(io) for such y.

Then choose o > g so that f(x)Ejf(y) whenever y is k-Cohen
over M and extends (x|a) * (x|[cw, 1)); we can further demand
that for some ordinal i € [ag, 1), f(x)(i1) = f(y)(i1) for such y.
After w steps we obtain ~ f(x)Eyf(y) whenever y is x-Cohen over
M and extends (x|ag) * (x|[ao, 1)) * (X|[a1, a2)) % - - -,
contradicting the fact that there is such a y which is Ey equivalent
to x. U



