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Abstract. In the author’s 2012 paper, the V -definable Stable Core S = (L[S], S)
was introduced. It was shown that V is generic over S (for S-definable dense classes),
each V -definable club contains an S-definable club, and the same holds with S replaced
by (HOD, S), where HOD denotes Gödel’s inner model of hereditarily ordinal-definable
sets. In the present article we extend this to models of class theory by introducing the
V -definable Enriched Stable Core S∗ = (L[S∗], S∗). As an application we obtain the
rigidity of S∗ for all embeddings which are “constructible from V ”. Moreover, any “V -
constructible” club contains an “S∗-constructible” club. This also applies to the model
(HOD, S∗), and therefore we conclude that, relative to a V -definable predicate, HOD is
rigid for V -constructible embeddings.

In this article we introduce the Enriched Stable Core, a generalisation
of the Stable Core of [2], and use it to study the rigidity of HOD, Gödel’s
universe of hereditarily ordinal-definable sets. We begin with a review of the
Stable Core (taking the opportunity to correct an error in the presentation
of [2]).

For an infinite cardinal α, H(α) consists of those sets whose transitive
closures have size less than α. Let C denote the closed unbounded class of
all infinite cardinals β such that H(α) has cardinality less than β whenever
α is an infinite cardinal less than β.

Definition 1. For a finite n > 0, we say that α is n-Admissible if α is
a limit point of C and (H(α), C ∩ α) satisfies Σn replacement (with C ∩ α
as an additional unary predicate). We say that α is n-Stable in β if α < β
and (H(α), C ∩ α) is Σn-elementary in (H(β), C ∩ β).
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The Stability predicate S consists of all triples (α, β, n) such that α is n-
Stable in β and β is n-Admissible (1). The ∆2-definable predicate S describes
the “core” of V , in the following sense.

Theorem 2. V is generic over (L[S], S) for an (L[S], S)-definable forc-
ing. The same is true with (L[S], S) replaced by (M [S], S) for any definable
inner model M .

Corollary 3. V is generic over HOD via a forcing which is definable
in V .

In general, the inner model L[S] may be strictly smaller than HOD; it
also obeys more absoluteness than that exhibited by HOD. See [2] for more
about this.

The proof of Theorem 2 comes in two parts. First it is shown that V
can be written as L[F ] where F is a function from the ordinals to 2 which
“preserves” the Stability predicate S, in the sense that if α is n-Stable in β
and β is n-Admissible then α is also n-Stable in β relative to F (2). Then
the function F is used to prove the genericity of V over (M [S], S) for any
definable inner model M .

To obtain F we first define by induction on β ∈ C a collection P(β) of
functions from β to 2. If β is not a limit point of C then P(β) consists of
all functions p : β → 2 such that p�α belongs to P(α) for all α ∈ C ∩ β.
Suppose that β is a limit point of C and let P(<β) denote the union of the
P(α), α ∈ C ∩ β, ordered by extension. Assuming extendibility for P(<β),
i.e. the statement that for α0 < α1 < β in C, each q0 in P(α0) can be
extended to some q1 in P(α1), this forcing adds a generic function which
we denote by ḟ : β → 2. We say that p : β → 2 is n-generic for P(<β) if
G(p) = {p�α | α ∈ C ∩ β} meets every dense subset of P(<β) of the form
{q ∈ P(<β) | q  ϕ or q  ∼ϕ}, where ϕ is a Πn(H(β), C ∩ β, ḟ) sentence
with parameters from H(β). We then take P(β) to consist of all p : β → 2
which are n-generic for P(<β) for all n such that β is n-Admissible.

Let P be the union of all of the P(β)’s, ordered by extension. The fol-
lowing are proved as Lemmas 7 and 6 in [2], respectively:

Lemma 4. Suppose that α < β belong to C and p belongs to P(α). Then
p has an extension q in P(β).

Lemma 5. Suppose that G is P-generic over V and let F be the union of
the functions in G. Then V = L[F ] and F preserves the Stability predicate.
Moreover, V satisfies replacement with F as an additional predicate.

(1) The requirement that β be n-Admissible was missing in [2].

(2) We do not require that the n-Admissibility of β be preserved by F , although this
could be achieved with a more complicated argument.
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In [2] there was an error in the proof of Lemma 6 of that paper (which
corresponds to Lemma 5 above): To obtain the “n-genericity of F �β” on
line 14 of that proof, one needs the n-Admissibility of β. To fix this we have
now built n-Admissibility into the definition of the Stability predicate S.

To obtain the genericity of V over (L[S], S), a forcing Q is defined con-
sisting of sentences in an infinitary propositional logic (with arbitrary con-
junctions and disjunctions in L[S]) which are consistent with a theory T
which captures the n-Stability relationships specified by the predicate S
(see [2, p. 265]; the new definition of S requires the added requirement that
β be n-Admissible in clause (b) on that page). A similar but more complex
argument is given in the proof of Theorem 10 below. The same argument
works with (L[S], S) replaced by (M [S], S) for any definable inner model M .

With these modifications of the treatment in [2], Theorem 2 is estab-
lished.

Rigidity. As V is generic over the Stable Core S = (L[S], S) (where S
is the Stability predicate) for a definable forcing whose definable antichains
are sets, we obtain as a consequence:

Corollary 6. Any V -definable club contains an S-definable club. And
S is rigid for V -definable embeddings, i.e., there is no V -definable elementary
embedding of S to itself other than the identity.

Proof. The statement about clubs follows immediately from the fact that
V is generic over S for a definable forcing whose definable antichains are sets.

We give two proofs of rigidity for V -definable embeddings, as both are
useful for generalisations, such as the second conclusion of Theorem 10 be-
low. In that argument, the analogous first proof is simpler, however the anal-
ogous second proof can be applied to theories weaker than Morse–Kelley.

First proof. Suppose that V is P-generic over S for the S-definable forcing
P and that there were an elementary (equivalently, Σ1-elementary) embed-
ding of S to itself which is Σn-definable over V . Let κ be the least ordinal
which is forced to be the critical point of such a Σn-definable embedding by
some condition in P. Then κ is S-definable and therefore cannot be moved
by any elementary embedding from S to itself, a contradiction.

Second proof. We first claim that there is an S-definable ♦-sequence for
S that concentrates on ordinals of cofinality ω and guesses S-definable classes
on S-definably stationary classes (3). More precisely, there is an S-definable
sequence (Xα | α of S-cofinality ω) such that Xα ⊆ α for each α and
whenever X is an S-definable class of ordinals and D is an S-definable club
there is α in D such that X ∩ α = Xα. To see this, define Xα inductively

(3) There is nothing special about the predicate S in this argument.
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as follows: Let n be least such that some pair (Xα, Dα) is Σn-definable over
(Lα[S], S ∩Lα[S]) and such that Xα ⊆ α, Dα is club in α and Xα ∩ ᾱ 6= Xᾱ

for all ᾱ ∈ Dα. If α does not have S-cofinality ω or if there is no such
pair, then we set Xα = ∅; otherwise we let (Xα, Dα) be the least such pair
(where Σn sets are ordered by the formulas which define them and for a
fixed formula by the parameters used). We claim that the sequence (Xα |
α of S-cofinality ω) is as desired. If not, let n be least such that some
X ⊆ Ord which is Σn-definable over S is not guessed correctly anywhere on
some Σn-definable club D ⊆ Ord; fix the least such pair (X,D), and notice
that by reflection there is an α of S-cofinality ω such that X ∩ α = Xα,
D ∩ α = Dα. But this is a contradiction because α belongs to D.

Now use the♦-sequence to produce an S-definable partition (Xi | i ∈ Ord)
of the ordinals of S-cofinality ω into pieces which are S-definably stationary
(i.e. which intersect each S-definable club). (For example, choose Xi to con-
sist of those α of S-cofinality ω such that Dα = {i} for i > 0, and X0 to con-
sist of the remaining α’s.) Suppose that j : S→ S were elementary with crit-
ical point κ with j definable in V . Now D = {α | j[α] ⊆ α} is a V -definable
club and therefore contains an S-definable club; it follows that there is an
ordinal α of S-cofinality ω in j((Xi | i ∈ Ord))κ such that j[α] ⊆ α, and
therefore j(α) = α. But then as j(α) belongs to j((Xi | i ∈ Ord))i for
some i < j(κ), it follows that α belongs to Xi for some i < κ and therefore
j(α) = α belongs to j((Xi | i ∈ Ord))i for some i < κ; this contradicts the
fact that j((Xi | i ∈ Ord)) is a partition into disjoint pieces (4).

But what about embeddings that are not V -definable?
From now on we work in Gödel–Bernays class theory, whose models

look like (V, C) where V consists of the sets and C consists of the classes.
A reformulation of the previous corollary is:

Corollary 7. Suppose (V, C) is the least model of Gödel–Bernays built
over V (i.e., C consists only of the V -definable classes). Also let (L[S], CS)
be the least model of Gödel–Bernays built over L[S] which has S as a class
(i.e. CS consists only of the S-definable classes). Then any club in C contains
a club in CS, and S is rigid for embeddings in C.

To obtain rigidity of the Stable Core in larger models of Gödel–Bernays
we put more information into the Stability predicate.

The Enriched Stable Core. We define the Enriched Stability pred-
icate S∗ as follows. For β in C, i < β+ of L(H(β)) and 0 < n < ω we
say that β is (i, n)-Admissible if β is a limit point of C and β is regular
with respect to functions which are Σn(Li(H(β)), C ∩ β) with parameters

(4) This argument traces back to Woodin’s proof of Kunen’s rigidity theorem (see [3]).
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from H(β) ∪ {H(β)} (just H(β) if i = 0). If α < β are both limit points
of C, i < β+ of L(H(β)) and 0 < n, then we say that α is (i, n)-Stable in
β if there is an H ≺Σn (Li(H(β)), C ∩ β) such that H(β) ∈ H (if i > 0)

and H ∩ H(β) = H(α). In this case we let Hβ,i
n (α) denote the ⊆-smallest

such H (5).
Note that α is (0, n)-Stable in β (β is (0, n)-Admissible) iff α is n-Stable

in β (β is n-Admissible) via the earlier definition. We set:

S∗ = {(α, β, i, n) | α is (i, n)-Stable in β and β is (i, n)-Admissible}.
S∗ = (L[S∗], S∗), the Enriched Stable Core.

Definition 8. Let (M,A) be an inner model of ZFC. Then a subclass Y
of M is (M,A)-constructible if there exists a formula ϕ, parameter p ∈ M ,
club D ⊆ Ord and class X ⊆ Ord such that for α in D, X ∩ α codes an
ordinal iα and Y ∩H(α)M is definable over (Liα(H(α)M ), A∩H(α)M ) via the
formula ϕ with parameter p. If A is empty then we just say M -constructible.

Remark. If (V, C) is a set model of Morse–Kelley and every linear order
in C which (V, C) thinks is a wellorder is really a wellorder, then the V -
constructible classes in the sense of (V, C) are exactly those subsets of V
which belong to Lα(V ) for some ordinal α which is the length of a wellorder
in C (6). Moreover, if C0 consists of these classes then (V, C0) is a model of
Morse–Kelley which satisfies “every class is V -constructible”.

Lemma 9 (Main Lemma). Working in Gödel–Bernays, let V denote the
sets and C denote the classes. Assume that every class is V -constructible.
Then there is a (V, S∗)-definable class forcing P∗ which adds a function from
Ord to 2 such that, for P∗-generic F ∗ : Ord→ 2, (V [F ∗], C[F ∗]) is a model
of Gödel–Bernays minus Power (where C[F ∗] consists of those classes which
are definable in (V [F ∗], X, F ∗) for some X ∈ C), V is a definable inner

(5) To see that there is a smallest such H argue as follows. If i = 0 then of course H(α)
itself is the smallest such H. Otherwise note that every element of Li(H(β)) is Σ1-definable
in Li(H(β)) from an ordinal less than i and parameters in H(β) ∪ {H(β)}. Suppose that
ϕ is a Σn formula with parameters from H(α) ∪ {H(β)} and one free variable that has a
solution in (Li(H(β)), C∩β); we can choose a solution which is definable from parameters
in H(α) ∪ {H(β)} and an ordinal parameter i0 < i where the ordinal parameter i0 has
been minimised. But then i0 belongs to any H which witnesses the (i, n)-Stability of α.
Thus the ⊆-smallest such H is the set of elements of Li(H(β)) which arise in this way for
some Σn formula ϕ with parameters from H(α) ∪ {H(β)}.

(6) To see this, let Y be such a subset of V and suppose that Y is definable over Li(V )
by the formula ϕ with parameters p and V ; we may assume that p belongs to V by taking
i to be least (if i = 0 then drop the parameter V ). Choose D to be a club of (i, n)-Stables
in Ord(V ) such that p belongs to H(α) for α in D, and let X be a subset of Ord(V ) that
codes the ordinal i. Then ϕ, p, D and X witness the V -constructibility of Y . The converse
follows by considering the structure Li(V ) where X codes the ordinal i; by hypothesis X
does indeed code an ordinal.
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model of (L[F ∗], F ∗) and, for any α < β, i < β+ of L(H(β)) and 0 < n, if
α is (i, n)-Stable in β and β is (i, n)-Admissible then α is (i, n)-Stable in β
relative to F ∗ (i.e. there is an H ≺Σn (Li(H(β)[F ∗�β]), C ∩ β, F ∗�β) such
that H(β)[F ∗�β] ∈ H (if i > 0) and H ∩H(β)[F ∗�β] = H(α)[F ∗�α]).

Remarks. (i) We do not expect L[F ∗] to satisfy the Power Set Axiom in
general, and therefore in the above it is important to distinguish H(β)[F ∗�β]
from H(β)L[F ∗]; indeed the latter may fail to exist.

(ii) We do not require that if β is (i, n)-Admissible then this remains true
relative to F ∗, as we do not need it. However with some small modifications
this could have been arranged as well.

Before proving the Main Lemma we describe its implications for the
rigidity of HOD.

Theorem 10. Let C∗ consist of the (L[S∗], S∗)-constructible classes,
where S∗ is the Enriched Stability predicate. Then:

(1) (L[S∗], C∗) has an outer model (L[F ∗], C∗[F ∗]) of Gödel–Bernays mi-
nus Power which is generic over (L[S∗], C∗) for an S∗-definable forc-
ing which is ∞-cc (i.e. whose antichains in C∗ are sets) such that V
is a definable inner model of (L[F ∗], F ∗).

(2) S∗ is rigid in C∗[F ∗].
Corollary 11. Assuming Morse–Kelley, any V -constructible club con-

tains an (L[S∗], S∗)-constructible club and S∗ = (L[S∗], S∗) is rigid for
V -constructible embeddings. (It follows that also (HOD, S∗) is rigid for
V -constructible embeddings.)

Proof of Corollary 11 from Theorem 10. It suffices to show that as-
suming Morse–Kelley, any V -constructible class belongs to the C∗[F ∗] of
Theorem 10. Any such class belongs to a model AV of KP + “every set
is constructible from V ” which is an end-extension of V , as Morse–Kelley
is strong enough to produce such models (see for example [1]). Then AV
has an inner model AL[S∗] = (L[S∗])AV which is a model of KP + “every
set is constructible from L[S∗]” which is an end-extension of L[S∗]. As V
is a definable inner model of (L[F ∗], F ∗) it follows that AV is contained in
AL[S∗][F

∗]. But any class in AL[S∗] is L[S∗]-constructible and so the classes
of AL[S∗][F

∗] belong to C∗[F ∗].
Proof of Theorem 10 from the Main Lemma. For conclusion (1) of the

theorem of course we take F ∗ to be as in the Main Lemma and need to
define an ∞-cc S∗-definable forcing Q∗ for which F ∗ is generic. In analogy
to the case of the (unenriched) Stable Core we build the forcing Q∗ out
of quantifier-free infinitary sentences which belong to L[S∗]. Such sentences
are obtained by closing the atomic sentences “Ḟ (α) = 0”, “Ḟ (α) = 1”
under infinitary conjunctions and disjunctions in L[S∗]. We let L∗ denote
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the collection of such sentences which are consistent, i.e., which are true for
some interpretation of Ḟ in a set-generic extension of L[S∗]; this notion of
consistency is definable in L[S∗].

Now we introduce a certain theory T ∗, consisting of sentences of L∗. For
each α < β, i < β+ of L(H(β)) and n > 0 such that α is (i, n)-Stable in β
and β is (i, n)-Admissible, and each set Φ of sentences of L∗ ∩H(β) which
is Σn-definable over Li(H(β)L[S∗]) with parameter p in H(α)L[S∗], we insert
the sentence ∧

(Φ ∩H(α))→
∧

Φ

into T ∗. The forcing Q∗ consists of all sentences ϕ of L∗ which are consistent
with T ∗ (i.e.

∧
(T ∗0 ∪ {ϕ}) is consistent for each T ∗0 ⊆ T ∗, T ∗0 ∈ L[S∗]). We

order Q∗ by ϕ ≤ ψ iff ϕ ∧ ∼ψ is not consistent with T ∗.
The sentences in T ∗ are all true when Ḟ is interpreted as F ∗, thanks to

the fact that F ∗ preserves instances of (i, n)-Stability.

Fact 1. The forcing Q∗ is ∞-cc in C∗.
Proof. Let A be a maximal antichain on Q∗ which is L[S∗]-constructible

and choose a wellorder <, club D, parameter p and ϕ that witness the
L[S∗]-constructibility of A. Let ϕ be Σn. Let α be the least element of D;
we claim that A = A ∩H(α) and therefore A is a set in L[S∗]. Indeed, for
any β in D, the axioms of T yield

∨
(A ∩H(β))→

∨
(A ∩H(α)) by virtue

of the (i, n)-Stability of α in β where i = ot(<�β). As A is an antichain,
A∩H(α) must equal all of A∩H(β) for each β in D, and as D is unbounded,
A ∩H(α) equals all of A.

Let G∗ consist of all sentences of L∗ which are true when Ḟ is interpreted
as F ∗. Clearly G∗ intersects each maximal antichain A of Q∗ which is a set
in L[S∗], as otherwise

∧
ϕ∈A∼ϕ would be a sentence consistent with T (and

therefore in L∗) violating the maximality of A. But by Fact 1, all antichains
of Q∗ in C∗ are sets in L[S∗] and so G∗ is fully Q∗-generic over (L[S∗], C∗).
This establishes conclusion (1) of the theorem.

For (2) we give two proofs. The first is simpler, but appears to need
Morse–Kelley in (V, C) as the background theory. (It is sufficient for estab-
lishing Corollary 11, but not for the more general results mentioned in the
Abstract.)

First proof. Suppose that j : S∗ → S∗ is not the identity and j be-
longs to C∗[F ∗]. Assuming Morse–Kelley in (V, C) (and therefore Morse–
Kelley minus Power in (L[F ∗], C∗[F ∗])), we show that j can be extended
to j∗ : (L[S∗], C∗) → (L[S∗], C∗). Indeed, for each ordinal α, each class
X ∈ C∗ which codes a sequence of classes (Xi | i ∈ Ord) and each i ∈ Ord
let H(α,X, i) consist of all elements of the structure (L[S∗], {Xi | i ∈ Ord})
which are definable with parameters from α ∪ {i}. We write (β, Y, j) >
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(α,X, i) iff β > α, X = Yk for some k < β and i < β; this implies that
H(β, Y, j) contains H(α,X, i) as a substructure. The structures H(α,X, i)
ordered by < form a direct system which is isomorphic to a direct system
whose elements and maps belong to L[S∗]. We can apply j to the elements
of maps of this system Π to obtain a system j[Π] whose limit is isomorphic
to (L[S∗], C∗), using the fact that C∗ consists only of the S∗-constructible
classes. This yields an elementary embedding j∗ : (L[S∗], C∗) → (L[S∗], C∗)
as desired. Note that j∗ can be simply defined by setting j∗(X) =⋃
α∈Ord j(X ∩ Lα[S∗]). However to establish the elementarity of this j∗ we

appear to need the argument with direct limit systems given.

But now we can proceed as in the first proof of Corollary 6: The embed-
ding j∗ is definable over (L[F ∗], C∗[F ∗]) and therefore generic over (L[S∗], C∗)
for an ∞-cc definable forcing. The least ordinal forced by some condition
in this forcing to be the critical point of such an embedding is (L[S∗], C∗)-
definable and therefore cannot be moved by such an embedding, a contra-
diction.

Second proof. We only assume that (V, C) models Gödel–Bernays, and
need two facts.

Fact 2. There is an (L[S∗], S∗)-definable ♦-sequence (Sα | α ∈ Ord)
for (L[S∗], C∗) which concentrates on strong limit cardinals of cofinality ω
of L[S∗]; that is, if X belongs to C∗ and D is a club in C∗ then there is a
strong limit cardinal α of cofinality ω of L[S∗] such that X ∩ α = Sα.

Proof. Let Sα be empty if α is not a limit point of C which in addition
is a strong limit cardinal of cofinality ω of L[S∗]. Otherwise, assuming that
Sβ is defined for β < α we take (Sα, Cα) to be the least pair in L(H(α)L[S∗])
such that Cα is closed unbounded in α and Sα ∩ ᾱ 6= Sᾱ for ᾱ in Cα,
if it exists, (∅, ∅) otherwise. (Note that even though α has cofinality ω,
we can still talk about closed unbounded subsets of α, which indeed may
appear at a level of L(H(α)L[S∗]) before it is recognised that α is singular.)
Suppose that the resulting sequence is not the desired ♦-sequence and let
(S,D) in C∗ be a counterexample, i.e., D is a club and for limit points α
of C which are strong limit cardinals of cofinality ω of L[S∗] in D, S ∩ α
6= Sα. Then for each α in D (which is a limit point of C and a strong
limit cardinal of cofinality ω of L[S∗]), the pair (Sα, Cα) was chosen as the
least pair such that Sα ∩ ᾱ 6= Sᾱ for ᾱ in Cα. But this choice of Sα is
Σ1-definable in Lot(<�α)(H(α)L[S∗]) for a club E of α’s, where <, E belong
to C∗ and witness the L[S∗]-constructibility of (S,D); moreover, E can be
chosen so that there is a Σ1-elementary embedding of Lot(<�α)(H(α)L[S∗])

into Lot(<�β)(H(β)L[S∗]) for α < β in E. It follows that Sβ∩α = Sα, Cβ∩α =
Cα for α < β in E. This is a contradiction as we can choose α < β in E∩D to
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be limit points of C which are strong limit cardinals of cofinality ω of L[S∗],
yielding Sβ ∩ α = Sα with α in Cβ.

Fact 3. Any club in C∗[F ∗] contains a club in C∗.

Proof. This is because, by Fact 1, (L[F ∗], C∗[F ∗]) is an ∞-cc generic
extension of (L[S∗], C∗).

Now for the rigidity of S∗ in C∗[F ∗] we argue as before: Using Fact 2
we can obtain an S∗-definable partition (Tα | α ∈ Ord) of the ordinals of
cofinality ω into pieces which are C∗-stationary, i.e., which intersect any
club in C∗. By Fact 3 any club in C∗[F ∗] contains a club in C∗. But now
there can be no nontrivial elementary embedding j : S∗ → S∗ in C∗[F ∗]:
otherwise we can choose α in j((Tα | α ∈ Ord))κ to be a fixed point of j
and derive the contradiction that α belongs to both j((Tα | α ∈ Ord))κ and
j((Tα | α ∈ Ord))γ for some γ < κ. This completes the second proof of
Theorem 10(2).

Proof of the Main Lemma. The desired forcing P∗ is the final stage Q∗∞
of a finite support iteration (P∗β,Q∗β | β ∈ C ∪ {∞}). The βth stage Q∗β of
the iteration will add a function p∗ : β → 2. If β = ω is the minimum of C
then Q∗β is the atomic forcing whose conditions are functions p∗ : ω → 2. If
β is a successor point of C and β0 is its C-predecessor then Q∗β is an atomic
forcing, whose conditions consist of all p∗ : β → 2 in V [G∗β0 , G

∗(β0)] such
that p∗�β0 is Q∗β0-generic over V [G∗β0 ] (where G∗α, G∗(α) denote the generics
for P∗α, Q∗α respectively for each α in C); we also require that p∗�[β0, β)
belong to V , p∗(β0) = 1 and p∗(2γ) = 0 for all γ in (β0, β). (These latter
requirements ensure that both V and C are definable over (L[F ∗], F ∗) when
F ∗ : Ord→ 2 is P∗-generic.)

Suppose that β is a limit point of C. Let Q∗,0β denote the set (or class if

β =∞) of all p∗ : α→ 2 in V [G∗α, G
∗(α)] where α ∈ C ∩ β and p∗�α is Q∗α-

generic over V [G∗α]; Q∗,0β is ordered by extension. If β is regular in L(H(β))

or β = ∞ then Q∗β is equal to Q∗,0β . Otherwise, proceed as follows. We say

that p∗ : β → 2 is (i, n)-generic for Q∗,0β if G∗(p∗) = {p∗�α | α ∈ C∩β}meets

every dense subset of Q∗,0β of the form {q∗ ∈ Q∗,0β | q
∗  ϕ or q∗  ∼ϕ}, where

ϕ is a Πn(Li(H(β)), C∩β, ḟ) sentence with parameters from H(β)∪{H(β)}
(just parameters from H(β) if i = 0; here ḟ denotes the generic function
with domain β). Then we take Q∗β to be the atomic forcing whose conditions

are functions p∗ : β → 2 in V [G∗β] which are (i, n)-generic for Q∗,0β for the

(fewer than β+ of L(H(β))-many) (i, n) such that β is (i, n)-Admissible.

For notational convenience, we define Q∗,0β to be Q∗β0 when β is a successor
point of C and β0 is its C-predecessor.
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Lemma 12. Suppose that β belongs to C and β is either a successor
point of C or not regular in L(H(β)). Then, in V [G∗β], each p∗ in Q∗,0β has
an extension in Q∗β.

Proof. We use induction on β. Suppose that β is a successor point of C
and let β0 be its C-predecessor. If β0 = ω is the minimum of C then it is
easy to extend any element of Q∗β0 to an element of Q∗β. If β0 is a successor
point of C or not regular in L(H(β0)) then by induction, in V [G∗β0 ], each

p∗ in Q∗,0β0 has an extension p∗∗ in Q∗β0 ; it is then easy to extend p∗∗ further
to an element of Q∗β. If β0 is a limit point of C and is regular in L(H(β0))

then by induction any p∗ in Q∗,0β0 has extensions in Q∗γ for arbitrarily large
γ ∈ C ∩ β0; it follows that any Q∗β0-generic p∗∗ has domain β0 and it then

follows that each p∗ in Q∗,0β0 can be extended to some Q∗β0-generic p∗∗ in V [G∗β]

(the forcing Q∗β0 is homogeneous). It is then easy to extend p∗∗ further to
an element of Q∗β in V [G∗β].

Suppose that β is a limit point of C and is not regular in L(H(β)). Let
(i, n+1) be least so that β is not (i, n+1)-Admissible (7). First suppose that
n = 0. If i = 0 then β is not 1-Admissible and there is a closed unbounded
subset D of C ∩β of ordertype less than β whose successor points γ are not
regular in L(H(γ)) and whose intersection with each of its limit points γ < β

is ∆1-definable over (H(γ), C∩γ). Given α ∈ C∩β and a p∗ in Q∗,0β that we
want to extend into Q∗β, we can assume that both α and the ordertype of D
are less than the minimum of D. Now enumerate D as β0 < β1 < · · · and us-
ing the induction hypothesis, successively extend p∗ to q∗0 ⊆ q∗1 ⊆ · · · with q∗j
in Q∗βj , taking unions at limits. Note that for limit j, q∗j is indeed a condition

because βj is not 1-Admissible. The union of the qj ’s is the desired extension
of p∗ in Q∗β. If i = i0+1 is a successor ordinal then we instead choose D to be
a closed unbounded subset of C∩β of ordertype less than β whose successor
points γ are not regular in L(H(γ)) and such that for limit points γ < β

of D, D ∩ γ is ∆1-definable over the transitive collapse of the hull Hβ,i0
ω (γ)

(= the ⊆-least Σω-elementary submodel H of (Li0(H(β)), C ∩β) containing
H(β) as an element (if i0 > 0) such that H∩H(β) = H(γ)). Again we make
successive extensions of p∗ to q∗0 ⊆ q∗1 ⊆ · · · with q∗j in Q∗βj , taking unions at

limits, where the βj ’s increasingly enumerate D. We get a condition at limit
stages using the fact that γ is not Σ1-regular over the transitive collapse of
Hβ,i0
ω (γ) when it is a limit point of D (and using reflection to infer that the

associated limit q∗j is indeed sufficiently generic for the forcing Q∗,0γ ).

Now suppose that n > 0.

(7) Note that if i is least so that β is not Σω(Li(H(β)))-regular then β is not (i, n+1)-
Admissible for some n.
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If β is a limit of α which are (i, n)-Stable in β then proceed as in the
previous paragraph: Choose a closed unbounded subset D of C ∩β of order-
type less than β consisting of α which are (i, n)-Stable in β, whose successor
points γ are not regular in L(H(γ)) and whose intersection with each of its

limit points γ < β is ∆n+1-definable over the transitive collapse of H
(i,β)
n (γ).

Assume that the ordertype of D as well as the domain of the given p∗ ∈ Q∗,0β
that we wish to extend are less than the minimum of D, enumerate D as
β0 < β1 < · · · and, using the induction hypothesis, successively extend p
to q0 ⊆ q1 ⊆ · · · with qj in Q∗βj , taking unions at limits. For limit j, qj is

indeed a condition because βj is not (̄i, n + 1)-Admissible, where ī is the

height of the transitive collapse of H
(i,β)
n (βj), and as it is a limit of ordinals

which are (i, n)-Stable in β, qj is (̄i, n)-generic for Q∗,0βj . The union of the
qj ’s is the desired extension of p∗ in Q∗β.

If β is not a limit of α which are (i, n)-Stable in β then β must have
cofinality ω (else by (i, n)-Admissibility, we could find cofinally many (i, n)-
Stables in β, for i > 0 using the fact that the subsets of H(β) which are
Σn-definable over (Li(H(β)), C ∩ β) with parameters from H(β) ∪ {H(β)}
are those which are Σ1-definable over (H(β), Tn−1) where Tn−1 is the Σn−1

theory of (Li(H(β)), C∩β) with parameters from H(β)∪{H(β)}). It suffices

to show that any condition p∗ in Q∗,0β can be extended to decide (i.e. force

or force the negation of) each of fewer than β-many Πn(Li(H(β)), C ∩ β)
sentences with parameters from H(β)∪{H(β)} (just H(β) if i = 0). (Given
this, we can extend p∗ in ω steps to a condition in Q∗β which is (i, n)-generic
for P∗β.) To show this, let (ϕj | j < δ) ∈ H(β) enumerate the given collection
of Πn(Li(H(β)), C ∩ β) sentences (by explicitly listing the sentences with
their parameters from H(β), treating the parameter H(β) as implicit, if
i > 0), and if n > 1, let D consist of all γ which are limits of (i, n−1)-Stables

in β and large enough so that H(γ) contains p∗ and H i,β
n−1(γ) contains this

enumeration. (If n = 1 then let D consist of all γ which are limit points of
C and large enough so that H(γ) contains p∗ and this enumeration.) Now
extend p∗ successively to elements qj of Q∗γj , where γj+1 ≥ γj is the least

element γ of D so that γ is not regular in L(H(γ)) and either qj forces ϕj or
qj+1 forces ψj = the negation of ϕj (with corresponding witness to the Σn

sentence ψj), taking unions at limits. For limit j, qj is a condition because

γj is not (̄i, n)-Admissible but (in case n > 1) is a limit of (̄i, n− 1)-Stables,

where ī is the height of the transitive collapse of H
(i,β)
n−1 (γj). (The failure

of γj to be (̄i, n)-Admissible uses the fact that the set of j0 < j such that
qj0+1 forces the negation of ϕj0 can be treated as a parameter in H(γj).)
As β is (i, n)-Admissible, this construction results in a sequence of qj ’s of
length δ, whose union is the desired extension of p∗ deciding all of the given
Πn(Li(H(β)), C ∩ β) sentences.
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Lemma 13. Suppose that G∗ is Q∗∞-generic where Q∗∞ is the class of
p∗ : α → 2 in V [G∗∞] such that α belongs to C and p∗ is Q∗α-generic. Let
F ∗ : Ord → 2 be the union of the functions in G∗. Then V is a definable
inner model of L[F ∗] and, for any α < β, i < β+ of L(H(β)) and 0 < n < ω,
if α is (i, n)-Stable in β and β is (i, n)-Admissible then α is (i, n)-Stable in
β relative to F ∗.

Proof. It is easy to define V from F ∗, as from F ∗ we can first identify
the elements of C and then V consists of those sets coded by F ∗ restricted
to some adjacent interval of C. Suppose that α is (i, n)-Stable in β and
β is (i, n)-Admissible. Then by the definition of Q∗∞, F ∗�β is (i, n)-generic

for Q∗,0β and F ∗�α is (̄i, n)-generic for Q∗,0α where H
(i,β)
n (α) has transitive

collapse of height ī, as α is (̄i, n)-Admissible. But as the forcing relation for
Πn formulas is Πn-definable, this implies that α is (i, n)-Stable in β relative
to F ∗, as desired.

Now notice that since we iterate with finite support, the forcing P∗∞ is
∞-cc, i.e., all antichains for this forcing which belong to C are sets in V . It
follows that Gödel–Bernays minus Power is preserved. This completes the
proof of the Main Lemma and therefore of Theorem 10.

Open questions. Can one prove in Morse–Kelley (or even in Gödel–
Bernays) that HOD is relatively rigid for arbitrary class embeddings? Is
HOD rigid (not just relatively rigid) for V -constructible classes?
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