
Cantor’s Set Theory

from a Modern Point of View

Georg Ferdinand Ludwig Philipp Cantor

Berlin doctorate 1867 (number theory)

Halle habilitation 1870 (number theory)

Heine → Study of trigonometric series →

Set theory

Theory of transfinite numbers and cardinality

Algebraic numbers are countable

Real numbers are not countable

1-1 correspondence between n-dimensional space

and the real line

Halle Chair 1879

Founder of the DMV 1890

Opposition from Kronecker

Support from Dedekind

Mittag-Leffler: “100 years too soon”



Transfinite counting

C closed set of reals

C′ = limit points of C (Cantor derivative)

C ⊇ C′ ⊇ C′′ ⊇ · · ·

C∞ = the intersection

C∞ ⊇ (C∞)′, maybe strict!

Keep counting: C∞ ⊇ C∞+1 ⊇ C∞+2 ⊇ · · · !

What is 0,1, ...,∞,∞ + 1, ...?

Wellordering: Linear ordering with no infinite

descending sequence

Cantor: Any 2 wellorderings are comparable

Each wellordering isomorphic to an ordinal, a

special wellordering ordered by ∈

0 = ∅,1 = {0},2 = {0,1}, ..., ω = {0,1,2, ...},

ω+ 1 = ω ∪ {ω}, . . .



Cantor’s assumption: Every set can be

wellordered

Therefore every set bijective with an ordinal

(not unique)

Cardinal = Ordinal not bijective with a smaller

ordinal

Every set bijective with a unique cardinal, its

cardinality

Zermelo: Cantor’s assumption follows from the

Axiom of Choice

So Cantor’s theory of cardinality applies to

arbitrary sets

One major gap!

What is the cardinality of the continuum?

Continuum Hypothesis (CH):

Every uncountable set of reals has the same

cardinality as the set of all reals



Paradoxes

Cantor, Burali-Forti, Russell

x = all y such that y /∈ y

x ∈ x↔ x /∈ x!

Zermelo’s proposal

Only use established principles of set-formation

Axiomatic theory: Zermelo set theory

ZFC = Zermelo-Fraenkel set theory with the

Axiom of Choice

The Universe of Sets V

ZFC gives the following picture:



First picture of V

Reduces V to ordinals and power set operation

Not a clear description

The Vagueness of Power Set

Approach 1

Definable sets: descriptive set-theory

Borel sets = smallest σ-algebra containing all

open sets

Σ1
1 = continuous image of a Borel set

Π1
1 set = complement of Σ1

1 set

Σ1
n+1 set = continuous image of Π1

n set

Π1
n+1 set = complement of Σ1

n+1 set

Projective = Σ1
n or Π1

n for some n



1930s

Σ1
1 sets satisfy CH: an uncountable Σ1

1 set has

the cardinality of the reals

Π1
1 sets?

Approach 2

Constructibility (Gödel, late 1930’s)

Replace power set operation by a weak power

set operation:

Vα+1 = all subsets of Vα

Lα+1 = all “simple” subsets of Lα

L = union of the Lα’s

L satisfies ZFC

First clearly-described model of ZFC

CH holds in L!

Gödel:

L is not the correct intepretation of ZFC

Only a tool for showing that statements are

consistent with ZFC



There are other interpretations of ZFC:

Cohen’s Forcing method

Add new sets to L, preserving ZFC

R is Cohen over L iff

R belongs to every open dense set of reals

which L can “describe”

Add many Cohen reals to L, obtain model

where CH fails

Another use of forcing: R in [0,1] is random

over L iff

R belongs to every measure one subset of [0,1]

which L can “describe”

Using random reals: Model where every projec-

tive set of reals is Lebesgue measurable

Thus CH and Projective sets measurable are

undecidable using the ZFC axioms



Dilemma: Different universes with different kinds

of mathematics?

Why not V = L?

Con(T): T is consistent

Gödel’s 2nd Incompleteness Theorem:

T does not prove Con(T)!

Con(ZFC+CH) ↔ Con(ZFC+ ∼ CH) ↔ Con(ZFC)

Con(ZFC + V = L) ↔ Con(ZFC)

But:

ZFC+ Projective sets measurable → Con(ZFC)

and therefore by Gödel:



Con(ZFC) 9

Con(ZFC+ Projective sets measurable)

ZFC + V = L is too weak for proving consi-

stency

How do we extend ZFC to make it strong for

consistency?



Example from measure theory

Countably additive extension of Lebesgue

measure to all sets of reals → V is not L

Model of ZFC with such a measure ↔

Model of ZFC with a measurable cardinal

Measurable cardinal: example of a “large car-

dinal hypothesis”

These hypotheses have a crucial role in set

theory:



ϕ is consistency-equivalent to ψ:

Con(ZFC + ϕ) ↔ Con(ZFC + ψ)

Empirical fact:

For any natural set-theoretic assertion ϕ, ϕ is

consistency-equivalent to 0 = 0, 0 = 1 or to a

large cardinal hypothesis

Large cardinal hypotheses measure the consi-

stency strength of set-theoretic assertions

More than a measurable cardinal is needed to

measure strength:

A is Wadge reducible to B iff

For some continuous f , x ∈ A iff f(x) ∈ B

WPn: If A,B are Σ1
n but not Π1

n then

A is Wadge reducible to B and vice-versa

We have:



WP1 is consistency equivalent to #’s, a large

cardinal hypothesis below a measurable cardi-

nal.

WP2 is consistency equivalent to the existence

of a Woodin cardinal, much larger than a mea-

surable cardinal!

WPn requires n− 1 Woodin cardinals

Why should Woodin cardinals be consistent?

Maybe WPn is simply false for n > 1!



Gödel again

Maximum principles: The universe V is large

Gödel:

“I believe that the basic problems of abstract

set theory, such as Cantor’s continuum

problem, will be solved satisfactorily only with

the help of axioms of this kind.”

The inner model hypothesis

If a sentence holds in an inner model of some

outer model of V (i.e., in some model com-

patible with V ), then it already holds in some

inner model of V .

The IMH implies that there are no inaccessible

cardinals in V

The IMH implies however that there are

measurable cardinals in inner models



The IMH is consistent relative to Woodin

cardinals

The strong inner model hypothesis

If a sentence with an absolute parameter p

holds in an inner model of some outer mo-

del of V which respects the size of p, then it

already holds in some inner model of V .

The SIMH solves the continuum problem

negatively

The SIMH implies that there are strong

cardinals in inner models

Q: Is the SIMH consistent relative to large

cardinals?



In summary:

1. Cantor’s set theory was highly successful,

but suffered from paradoxes and left CH unre-

solved.

2. The paradoxes were resolved by the deve-

lopment of axiomatic set theory, ZFC.

3. Gödel revealed the weakness of ZFC for pro-

ving consistency.

4. Gödel and Cohen showed that ZFC does not

resolve CH.

5. Large cardinals resolve the consistency weak-

ness of ZFC.

6. Maximum principles show promise both for

justifying the consistency of large cardinals and

for resolving CH.

Will set theory reach a definitive picture of the

universe of sets?

Time will tell ...


