Genericity and Large Cardinals

Sy D. Friedman

September 15, 2005

A result of great significance in the theory of forcing is the following.
Theorem 1 (Corollary to Jensen's Coding Theorem) There is an L-definable class forcing P such that if G is P-generic over L then:
(a) $\langle L[G], G\rangle$ is a model of ZFC, and cofinalities are the same in L as in $L[G]$.
(b) Some real in $L[G]$ is not set-generic over L.

A natural question to ask is whether this result has an analogue in the context of large cardinals. The purpose of this article is to provide such an analogue, taking into account difficulties raised by the existence of Woodin cardinals.

To describe the latter difficulties we consider the forcing P, described as follows. Let δ be inaccessible and consider the language $\mathcal{L}(\delta)$:
(a) $n \in \mathbf{R}$ belongs to $\mathcal{L}(\delta)$, where $n \in \omega$ and \mathbf{R} denotes a real.
(b) $\varphi \in \mathcal{L}(\delta) \rightarrow \sim \varphi \in \mathcal{L}(\delta)$.
(c) $\Phi \subseteq \mathcal{L}(\delta)$, Card $\Phi<\delta \rightarrow \wedge \Phi \in \mathcal{L}(\delta)$.

Of course $\wedge \Phi$ is to be interpreted as the conjunction of the sentences in Φ. A set of sentences $\Phi \subseteq \mathcal{L}(\delta)$ is consistent iff in some (set-generic) extension of V, some real R satisfies each sentence in Φ. A single sentence $\varphi \in \mathcal{L}(\delta)$ is consistent iff $\{\varphi\}$ is consistent. We endow $\mathcal{L}(\delta)$ with the ordering: $\varphi \leq \psi$ iff $\wedge\{\varphi, \sim \psi\}$ is not consistent. Then P is the pre-ordering $\left(\mathcal{L}^{+}(\delta), \leq\right)$ where $\mathcal{L}^{+}(\delta)=\{\varphi \in \mathcal{L}(\delta) \mid \varphi$ is consistent $\}$.

In a weak sense, every real outside of V is P-generic over V : Let R be a real and let $G(R)$ be $\left\{\varphi \in \mathcal{L}^{+}(\delta) \mid R\right.$ satisfies $\left.\varphi\right\}$.

Lemma 2 (a) $\varphi, \psi \in G(R) \rightarrow \varphi, \psi$ are compatible in $P=\left\langle\mathcal{L}^{+}(\delta), \leq\right\rangle$.
(b) $\varphi \leq \psi, \varphi \in G(R) \rightarrow \psi \in G(R)$.
(c) Suppose that $A \subseteq \mathcal{L}^{+}(\delta)$ is predense (i.e., every $\varphi \in \mathcal{L}^{+}(\delta)$ is compatible with some element of A). If Card $A<\delta$ then $G(R) \cap A \neq \emptyset$.

Proof. (a) and (b) are clear. For (c), note that as Card $A<\delta$ we may form the sentence $\varphi=\wedge\{\sim \psi \mid \psi \in A\} \in \mathcal{L}(\delta)$. If $G(R) \cap A=\emptyset$ then R satisfies φ and hence φ is an element of $\mathcal{L}^{+}(\delta)$ incompatible with each element of A. This contradicts our assumption that A is predense.

Of course full P-genericity over V would require that (c) hold without the assumption Card $A<\delta$. If P is δ-cc (i.e., antichains in P have cardinality $<\delta)$ then we do achieve full P-genericity, as this cardinality assumption becomes superfluous. We next show how to modify P to a δ-cc forcing, following an idea of Woodin.

Definition. Suppose that $A \subseteq V_{\delta}$ and $\kappa<\delta$. Then κ is A-strong below δ iff for all $\alpha<\delta$ there is an elementary embedding $j: V \rightarrow M$ with critical point κ such that $\alpha<j(\kappa)$ and $A \cap V_{\alpha}=j(A) \cap V_{\alpha}$.

For any $A \subseteq V_{\delta}$ in V and $\kappa<\delta$ let $T(\kappa, A)$ consist of all sentences

$$
\wedge\left\{\sim \varphi \mid \varphi \in A \cap V_{\kappa}\right\} \rightarrow \wedge\left\{\sim \varphi \mid \varphi \in A \cap V_{\alpha}\right\}
$$

as α varies over the ordinals less than δ. Now suppose that R is a real (outside of V) and κ is A-strong below δ in $V[R]$. Then $T(\kappa, A)$ is contained in $G(R)$ and hence $T(\kappa, A)$ is consistent. More generally, suppose that R preserves A-strength below δ over V for every $A \subseteq V_{\delta}$ in V, in the sense that whenever $\kappa<\delta$ and κ is A-strong below δ in V, then κ is A-strong below δ in $V[R]$. Then $T=\bigcup\left\{T(\kappa, A) \mid A \subseteq V_{\delta}, A \in V, \kappa\right.$ is A-strong below $\left.\delta\right\}$ is contained in $G(R)$ and hence T is consistent. Let $P_{T}=\left\langle\mathcal{L}_{T}^{+}(\delta), \leq_{T}\right\rangle$ where $\mathcal{L}_{T}^{+}(\delta)=\{\varphi \in \mathcal{L}(\delta) \mid T \cup\{\varphi\}$ is consistent $\}$ and $\varphi \leq_{T} \psi$ iff $T \cup\{\varphi, \sim \psi\}$ is not consistent.

Claim. Suppose that for every $A \subseteq V_{\delta}$ there is $\kappa<\delta$ such that κ is A-strong below δ. Then P_{T} is δ-cc.

Proof. Suppose that $A \subseteq \mathcal{L}_{T}^{+}(\delta)$ is predense in P_{T} and choose $\kappa<\delta$, κ A-strong below δ. We assert that $A \cap V_{\kappa}$ is predense in P_{T} : If not, then some $\psi \in P_{T}$ is P_{T}-incompatible with each $\varphi \in A \cap V_{\kappa}$; but as $T(\kappa, A) \subseteq T$, we
then have that ψ is P_{T}-incompatible with every $\varphi \in A$, contradicting the predensity of A. It follows that P_{T} has no antichain of cardinality δ.

Definition. δ is a Woodin cardinal if for every $A \subseteq V_{\delta}$ there is $\kappa<\delta$ such that κ is A-strong below δ.

We have shown:
Theorem 3 (Woodin) Suppose that R is a real, V is an inner model, δ is a Woodin cardinal in V and R preserves A-strength below δ over V for every $A \subseteq V_{\delta}$ in V. Then R is set-generic over V.

The previous result would appear to raise a serious obstacle to extending Jensen's Theorem past the level of a Woodin cardinal. Fortunately, the notion of Woodin cardinal has an alternative definition, which can be used to overcome this obstacle. Let C be a CUB subset of κ and for α in C, let α_{C}^{+}denote the C-successor to α. We say that κ is C-strong iff there is an elementary embedding $j: V \rightarrow M$ with critical point κ such that all subsets of $\kappa_{j(C)}^{+}$belong to M. Then δ is Woodin iff for every CUB subset C of δ there is a $\kappa<\delta$ in $\operatorname{Lim} C$ which is $C \cap \kappa$-strong. (See [3].) We can additionally require that some j witnessing the $C \cap \kappa$-strength of κ satisfy $\kappa_{j(C)}^{+}<\delta$, and that the set of such κ be stationary in δ.

Using this second definition of Woodinness we establish the following large-cardinal analogue of Theorem 1.

Theorem 4 Suppose that V is an "L-like" model. There is a V-definable class-forcing P such that if G is P-generic over V then:
(a) $\langle V[G], G\rangle$ is a model of ZFC, and cofinalities are the same in V as in $V[G]$.
(b) If κ is Woodin in V then κ is Woodin in $V[G]$.
(c) Some real in $V[G]$ is not set-generic over V.

This result is proved by constructing a class-forcing which "preserves" a witness in V to the second definition of Woodinness. Witnesses to the first definition of Woodinness in $V[G]$ cannot be definable in V, by Theorem 3.

We next clarify the above hypothesis on V.

Condensation, \square and Extenders

" L-like" models obey suitable forms of Gödel's Condensation Principle and Jensen's \square Principle. As essentially the only known examples of such models are in fact models built from extenders, we begin with a definition of good extender model.

An inner model M is rigid if there is no elementary embedding from M to itself, other than the identity. Extender models arise naturally when one attempts to construct an " L-like" rigid model.

Suppose that L is not rigid and $j: L \rightarrow L$ (i.e., j is a nontrivial elementary embedding from L to L). We may hope to move one step closer to rigidity by replacing L by $L\left[j \upharpoonright L_{\alpha}\right]$, where α is least so that $j \upharpoonright L_{\alpha} \notin L$. A useful fact is that α is the ordinal $\left(\kappa^{+}\right)^{L}$, where κ is the critical point of j.

The function $j \upharpoonright L_{\alpha}$, where $\alpha=\left(\kappa^{+}\right)^{L}$ is called the extender derived from j. Thus one hopes to successively add extenders until the process converges upon a model that is either rigid or contains the extender derived from some embedding of it to itself. In the latter case this model has a "superstrong cardinal", a property much stronger than Woodinness.

The models that arise in this construction are called extender models.
Definition. An extender sequence is a sequence $E=\left\langle E_{\nu} \mid \nu \in \mathrm{ORD}\right\rangle$ such that for all ν, E_{ν} is either empty or:

$$
E_{\nu}: L_{\kappa^{+}}^{E} \rightarrow L_{\nu}^{E}
$$

is cofinal and Σ_{1}-elementary, where κ is the critical point of E_{ν}, κ^{+}denotes κ^{+}of L_{ν}^{E} and for any η, L_{η}^{E} denotes the structure $\left\langle L_{\eta}[E], E \upharpoonright \eta\right\rangle$.

Definition. An extender model is a model $L^{E}=\langle L[E], E\rangle$ where E is an extender sequence. An initial segment of L^{E} is a structure of the form $L_{\leq \alpha}^{E}=$ $\left\langle L_{\alpha}^{E}, E_{\alpha}\right\rangle, \alpha \in \mathrm{ORD}$.

We cannot expect extender models to obey the following analogue of the strong form of condensation which holds in L : If H is Σ_{1}-elementary in $L_{\leq \alpha}^{E}$ then H is isomorphic to an initial segment of L^{E}. Indeed this fails whenever L^{E} contains a measurable cardinal. However one can have the weaker form of condensation stated next. For $0<n<\omega$, the Σ_{n} projectum of $L_{\leq \alpha}^{E}$ denotes the least ordinal γ such that for some $x \in L_{\leq \alpha}^{E}, L_{\leq \alpha}^{E}$ is the Σ_{n} Skolem hull in itself of $\gamma \cup\{x\}$.

Condensation. (a) Suppose that κ is a cardinal of L^{E}, κ is the Σ_{1} projectum of $L_{\leq \alpha}^{E}, x$ belongs to L_{α}^{E} and $L_{\leq \alpha}^{E}$ is the Σ_{1} Skolem hull in itself of $\kappa \cup\{x\}$. For $\gamma<\kappa$ let $H(\gamma, x)$ denote the Σ_{1} Skolem hull of $\gamma \cup\{x\}$ in $L_{\leq \alpha}^{E}$ and $\bar{H}(\gamma, x)$ its transitive collapse. Then for sufficiently large $\gamma<\kappa$, if γ is the Σ_{1} projectum of $\bar{H}(\gamma, x)$ then $\bar{H}(\gamma, x)$ is an initial segment of L^{E}. (b) If $\gamma<\kappa$ are cardinals of $L^{E}, 0<n \in \omega$ and H is the Σ_{n} Skolem hull of γ in $L_{\leq \kappa}^{E}$ then the transitive collapse of H is an initial segment of L^{E}.

For an uncountable L^{E}-cardinal κ, the set of γ less than κ such that γ equals the Σ_{1} projectum of $\bar{H}(\gamma, x)$ is a CUB subset of κ (containing all uncountable cardinals less than κ). Thus Condensation implies GCH via the Gödel property: If $x \subseteq \kappa$ and x belongs to L^{E}, then x belongs to L_{α}^{E} for some α less than κ^{+}of L^{E}.

Good extender models also obey a suitable form of Jensen's \square Principle. A good \square-sequence at singular cardinals for L^{E} is an L^{E}-definable sequence $\left\langle C_{\alpha}\right| \alpha$ a singular cardinal of $\left.L^{E}\right\rangle$ such that for each singular cardinal α of L^{E} :

1. C_{α} is CUB in α of ordertype less than α.
2. If $\bar{\alpha}$ is a limit point of C_{α} then $C_{\bar{\alpha}}=C_{\alpha} \cap \bar{\alpha}$.
3. C_{α} is definable over $L_{\leq \beta(\alpha)}^{E}$ via a definition independent of α, where $\beta(\alpha)$ is the least ordinal β such that α is singular in $L_{\beta+1}^{E}$.
4. Suppose that $\beta \leq \beta(\alpha), x \in L_{\beta}^{E}$ and $L_{\leq \beta}^{E}$ is the Σ_{1} Skolem hull in itself of $\alpha \cup\{x\}$. If unboundedly many $\bar{\alpha}<\alpha$ satisfy $\bar{\alpha}=\alpha \cap$ the Σ_{1} Skolem hull of $\bar{\alpha} \cup\{x\}$ in $L_{\leq \beta}^{E}$ then sufficiently large elements of C_{α} have this property.

In summary, an extender model is good iff it obeys Condensation and possesses a good \square-sequence at singular cardinals.

By combining work of [2], [4] and [5], we have:
Fact. If there is a Woodin limit of Woodin cardinals then there is a good extender model with a Woodin limit of Woodin cardinals.

An L-like model is a model with the above goodness properties, but which is not necessarily built from extenders. Such a model is of the form $L^{A}=$ $L\left[\left\langle A_{\alpha} \mid \alpha \in \mathrm{ORD}\right\rangle\right]$, where the structure $L_{\leq \alpha}^{A}=\left\langle L_{\alpha}^{A}, A_{\alpha}\right\rangle$ is amenable for each α, such that Condensation and \square at Singulars hold precisely as above,
with E replaced everywhere by A. By relativising the above Fact to a real R, we obtain L-like models containing R with Woodin cardinals.

Suppose that L^{A} is L-like. The extender E derived from the embedding $j: L^{A} \rightarrow M$ is the restriction of j to L_{α}^{A}, where $\alpha=\kappa^{+}$of L^{A} and κ is the critical point of j. We also write $\kappa(E)=\kappa$. An extender in L^{A} is an extender derived from some embedding $L^{A} \rightarrow M$ which belongs to L^{A}. Let E be an extender in L^{A} as above and let ν be the supremum of the range of E on α. Suppose that $\kappa^{+} \leq \sigma \leq E(\kappa)$. Then we can form a new extender $F=E \downarrow \sigma$ as follows: Let $\pi: H(\sigma) \simeq L_{\bar{\nu}}^{\bar{A}}$ where $H(\sigma)$ is the Σ_{1} Skolem hull of $\sigma \cup$ Range (E) in L_{ν}^{A}. Then $F: L_{\alpha}^{A} \rightarrow L_{\bar{\nu}}^{\bar{A}}$ is the composition πE. Clearly F is cofinal and Σ_{1} elementary, and κ is the critical point of F. The true length of E is the least σ such that $E \downarrow \sigma=E$. Note that if $\sigma=E(\kappa)$ then $E \downarrow \sigma=E$, so true length is always defined. For a set T of extenders, we define $T \downarrow \sigma$ to be the set of all $E \downarrow \sigma, E \in T$.

If E is an extender in L^{A} derived from some $j: L^{A} \rightarrow M$, then there is a canonical extension E^{*} of E to L^{A} (possibly differing from j): Let κ be the critical point of E and consider $U=\left\{(f, a) \mid f: L_{\kappa}^{A} \rightarrow L^{A}, a \in L_{E(\kappa)}^{A}\right\}$. Set $(f, a)=^{*}(g, b)$ iff $(a, b) \in E(\{(u, v) \mid f(u)=g(v)\})$ and $(f, a) \in^{*}(g, b)$ iff $(a, b) \in E(\{(u, v) \mid f(u) \in g(v)\})$. Then $\operatorname{Ult}\left(L^{A}, E\right)=\left(U /=^{*}, \in^{*}\right)$ is well-founded and set-like, so we identify it with its transitive collapse. The desired extension E^{*} of E is defined by $E^{*}(x)=\left[f_{x}, 0\right]$ where f_{x} is the constant function with value x and $[f, a]$ denotes the $=^{*}$ equivalence class of (f, a). A useful fact is: $[f, a]=E^{*}(f)(a)$. In the sequel we shall identify E with E^{*}, and therefore write $E(x)$ instead of $E^{*}(x)$ for arbitrary elements x of L^{A}.

Class Forcing in the Presence of Woodin Cardinals

We prove Theorem 4. Suppose that $V=L^{A}$ is an L-like model and fix a good \square-sequence at singular cardinals $\left\langle C_{\alpha}\right| \alpha$ a singular cardinal \rangle.

For a cardinal α we define an α-extender to be an extender E (derived from some embedding $V \rightarrow M$) of true length α such that all bounded subsets of α belong to $\mathrm{Ult}_{E}=\operatorname{Ult}(V, E)$, and A agrees with $E[A]$ below α (where $E[A]$ denotes $\bigcup\{E(A \upharpoonright \alpha) \mid \alpha \in \mathrm{ORD}\})$. We write $\alpha(E)=\alpha$. An extender
is tight iff it is an α-extender for some cardinal α and its critical point is not Woodin.

Steering Ordinals. Fix an uncountable cardinal α. By induction on η in [α, α^{+}) we define ordinals $\mu^{<\eta}, \mu_{k}^{\eta}, k \in \omega$ and μ^{η} as follows: $\mu^{<\alpha}=\alpha$, and for $\eta>\alpha, \mu^{<\eta}$ is the supremum of the $\mu^{\eta^{\prime}}, \alpha \leq \eta^{\prime}<\eta$. We define μ_{0}^{η} to be the least μ greater than $\mu^{<\eta}$ such that μ is a multiple of α and α is the largest cardinal of $L_{\mu}^{A} \cdot \mu_{k}^{\eta}=\mu_{0}^{\eta}+\alpha \cdot k$ for $k \in \omega$ and $\mu^{\eta}=\mu_{0}^{\eta}+\alpha \cdot \omega$.

Canonical CUB Sets. Suppose that α is an uncountable limit cardinal, $\eta \in$ [α, α^{+}) is a multiple of α and $k \in \omega$. We define the canonical CUB subset $C_{\alpha}^{\eta, k}$ of α to be $\left\{\bar{\alpha}<\alpha \mid \bar{\alpha}=\alpha \cap\right.$ the Σ_{1} Skolem hull of $\bar{\alpha} \cup\{\eta\}$ in $\left.L_{\leq \mu_{k}^{\eta}}^{A}\right\}$ if this set is unbounded in α : otherwise we take $C_{\alpha}^{\eta, k}$ to be C_{α}. The canonical CUB subsets of α carry the natural ordering: $C_{\alpha}^{\eta_{0}, k_{0}} \leq C_{\alpha}^{\eta_{1}, k_{1}}$ iff $\eta_{0}<\eta_{1}$ or ($\eta_{0}=\eta_{1}$ and $k_{0} \leq k_{1}$). If this holds, then a final segment of $C_{\alpha}^{\eta_{1}, k_{1}}$ is contained in $C_{\alpha}^{\eta_{0}, k_{0}}$ (using property 4 of the good \square-sequence $\left\langle C_{\alpha}\right| \alpha$ a singular cardinal \rangle when $C_{\alpha}^{\eta_{1}, k_{1}}$ equals C_{α}).

We consider the following class T of tight extenders. By induction on the uncountable cardinal α define E_{α} and D_{α} as follows. For α a limit cardinal, D_{α} is the least canonical CUB subset D of α, if it exists, such that $D \neq C_{\alpha}$ and for some $\alpha_{0}<\alpha$, no $E_{\beta}, \alpha_{0}<\beta<\alpha$ witnesses the $D \cap \kappa\left(E_{\beta}\right)$-strength of $\kappa\left(E_{\beta}\right)$. For α a successor cardinal, E_{α} is the L^{A}-least tight extender E, if it exists, such that $\alpha(E)=\alpha$ and:

1. $\kappa(E)<\beta<\alpha, E_{\beta}$ defined $\rightarrow \kappa(E)<\kappa\left(E_{\beta}\right)$.
2. E witnesses the $D_{\kappa(E) \text {-strength }} \kappa(E)$.

Let T be the class of all E_{α}, α an uncountable successor cardinal, as defined above. Then we claim that the Woodinness of each Woodin cardinal δ is witnessed by extenders in T (via the second definition of Woodinness). If not, then let C be the least canonical CUB subset of δ such that for some $\delta_{0}<\delta$, no $E_{\beta}, \delta_{0}<\beta<\delta$ witnesses the $C \cap \kappa\left(E_{\beta}\right)$-strength of $\kappa\left(E_{\beta}\right)$. Clearly C exists by the failure of T to witness the Woodinness of δ and the fact that any CUB subset of δ contains a final segment of a canonical one. By Condensation (a), $\left\{\alpha \mid \alpha<\delta, \alpha<\beta<\delta \rightarrow \kappa\left(E_{\beta}\right) \geq \alpha\right.$ (when E_{β} is defined) and $\left.C \cap \alpha=D_{\alpha}\right\}$ contains a CUB set. As δ is Woodin, this CUB set contains a $\kappa>\delta_{0}$ which is $C \cap \kappa$-strong (via an extender preserving A),
and clearly the least such κ is not Woodin (as witnessed by $C \cap \kappa$). Moreover $\kappa<\beta<\delta \rightarrow \kappa \neq \kappa\left(E_{\beta}\right)$ (when E_{β} is defined), else E_{β} witnesses the $D_{\kappa^{-}}$ strength of $\kappa=\kappa\left(E_{\beta}\right)$, contrary to the choice of C. Let E be tight and witness the $C \cap \kappa$-strength of κ. Then E is a candidate for $E_{\alpha(E)}$, which therefore is defined and witnesses the $C \cap \kappa$-strength of κ, contradicting the choice of C and δ_{0}.

Note that T is uniform in the sense that $E \in T \rightarrow T$ and $E[T](=T$ as defined in Ult_{E}) have the same extenders of true length less than $\alpha(E)$, and is nested in the sense that $E_{0} \neq E_{1}$ in $T, \kappa\left(E_{0}\right) \leq \kappa\left(E_{1}\right) \rightarrow$ either $\kappa\left(E_{0}\right)<\alpha\left(E_{0}\right)<\kappa\left(E_{1}\right)<\alpha\left(E_{1}\right)$ or $\kappa\left(E_{0}\right)<\kappa\left(E_{1}\right)<\alpha\left(E_{1}\right)<\alpha\left(E_{0}\right)$.

If α is a cardinal then α is overlapped by the tight extender E iff $\kappa(E)<$ $\alpha<\alpha(E)$. For each α there are at most finitely many $E \in T$ which overlap α, as T is nested. If E overlaps α then we define α_{E}^{+}to be $\bigcup\{E(f)(\alpha) \mid$ $f: \kappa(E) \rightarrow \kappa(E), f(\gamma)<\gamma^{+}$for each $\left.\gamma<\kappa(E)\right\}$, an ordinal less than α^{+}, and $\alpha_{E}^{*}=\bigcup\left\{E(f)(\alpha) \mid f: \kappa(E) \rightarrow L_{\kappa(E)}^{A}, f(\gamma)\right.$ a subset of $\left[\gamma^{+}, \gamma^{++}\right)$of cardinality $\leq \gamma$ for each $\gamma<\kappa(E)\}$, a subset of α^{++}of cardinality α. We say that α is overlapped by T iff α is overlapped by some $E \in T$. (Note: Although α_{C}^{+}was already defined for a CUB set C, there is little danger of confusion with the notation α_{E}^{+}for an extender E.)

For α an uncountable limit cardinal, let C_{α}^{T} denote the set of cardinals $\bar{\alpha}$ less than α which are overlapped by the same extenders in T as α; using the nestedness of T, this is a CUB subset of α whose successor elements are successor cardinals. Note that as $T \cap L_{\alpha}^{A}$ is definable over L_{α}^{A}, a final segment of $C_{\alpha}^{\alpha, 0}$ is contained in C_{α}^{T}, unless α is singular and $C_{\alpha}^{\alpha, 0}=C_{\alpha}$. In the latter case we redefine C_{α} by replacing the current C_{α} by $C_{\alpha} \cap C_{\alpha}^{T}$, if this is unbounded in α, and otherwise by the L^{A}-least unbounded subset of C_{α}^{T} of ordertype ω consisting of successor cardinals. This new definition of C_{α} does not alter our above definition of T, satisfies the goodness properties 1-3 and has the additional property that a final segment of C_{α} is contained in C_{α}^{T} for each singular cardinal α. (Goodness property 4 is not needed in the special case $C_{\alpha}^{\alpha, 0}=C_{\alpha}$.)

Coding Apparatus. Fix an uncountable cardinal α. For $\eta \in\left[\alpha, \alpha^{+}\right)$the coding structure \mathcal{A}^{η} is defined to be $L_{\leq \mu^{\eta_{0}+\eta}}^{A}$, where η_{0} is least so that E_{α},
if defined, belongs to $L_{\mu^{\eta_{0}}}^{A}$. For $\eta \in\left[\alpha, \alpha^{+}\right)$a multiple of α and $i<\alpha$ set $H^{\eta}(i)=$ the Σ_{1} Skolem Hull of $i \cup\{\eta\}$ in \mathcal{A}^{η} and $f^{\eta}(i)=$ the ordertype of $H^{\eta}(i) \cap$ ORD. For α a successor cardinal: $B^{\eta}=\left\{i<\alpha \mid i=H^{\eta}(i) \cap \alpha\right\}$, $b^{\eta}=$ Range $f^{\eta} \upharpoonright B^{\eta}$ and for $\alpha \leq \eta=\bar{\eta}+\delta$, where $\bar{\eta}$ is a multiple of α and $\delta<\alpha, b^{\eta}=\left\{\gamma+\delta \mid \gamma \in b^{\bar{\eta}}\right\}$.

For an uncountable limit cardinal $\alpha, \eta \in\left[\alpha, \alpha^{+}\right)$a multiple of α and $k \in \omega$ we define the coding domain $B_{\alpha}^{\eta, k}$: If D_{α} is of the form $C_{\alpha}^{\eta_{0}, k_{0}}<C_{\alpha}^{\eta, k}$ then $B_{\alpha}^{\eta, k}$ consists of all $\left(\bar{\alpha}_{D_{\alpha}}^{+}\right)_{C_{\alpha}^{T}}^{+}, \bar{\alpha} \in C_{\alpha}^{\eta, k}$. Otherwise $B_{\alpha}^{\eta, k}$ consists of all $\bar{\alpha}_{C_{\alpha}^{T}}^{+}, \bar{\alpha} \in C_{\alpha}^{\eta, k}$. Using the fact that D_{α} is canonical, it follows that if $\eta_{0}<\eta_{1}$ or ($\eta_{0}=\eta_{1}$ and $k_{0}<k_{1}$) then a final segment of $B_{\alpha}^{\eta_{1}, k_{1}}$ is contained in $B_{\alpha}^{\eta_{0}, k_{0}}$.

Strings. Strings at an infinite cardinal α are functions $s:|s| \rightarrow 2$, where $\alpha \leq|s|<\alpha^{+},|s|$ is a multiple of α, s belongs to $\mathcal{A}^{|s|}$ and for each η, $\alpha \leq \eta<|s|$, either $s \upharpoonright \eta$ belongs to \mathcal{A}^{η} or $s(\eta)=0$. We write $\mu^{s}, \mu^{<s}, \mathcal{A}^{s}$, $\mathcal{A}^{<s}, \ldots$ for $\mu^{\eta}, \mu^{<\eta}, \mathcal{A}^{\eta}, \mathcal{A}^{<\eta}, \ldots$ where $\eta=|s|$. Let S_{α} denote the collection of strings at α.

A Partition of the Ordinals. Let B, C and D denote the classes of ordinals congruent to 0,1 and $2 \bmod 3$, respectively. For any ordinal α and $X=B$, C or D we write α^{X} for the α-th element of X, when X is listed in increasing order. For S a set of ordinals, $S^{X}=\left\{\alpha^{X} \mid \alpha \in S\right\}$.

The Successor Coding. Suppose α is an infinite cardinal, $s \in S_{\alpha^{+}} . R^{s}$ consists of all pairs $\left(t, t^{*}\right)$ where t belongs to S_{α} and t^{*} is a subset of $\left[\alpha^{+},|s|\right)$ of cardinality at most α. Write $t^{*, i}=\left\{\eta \in t^{*} \mid s(\eta)=i\right\}$. (The ordering of R^{s} is not specified here, but is embedded into our later definition of extension for the class P of forcing conditions.)

We come next to the definition of the limit coding, which makes use of "coding delays".

Limit Precoding. Suppose that α is an uncountable limit cardinal and s belongs to S_{α}. Let k be least so that s belongs to $L_{\mu_{k}^{s}}^{A}$. Write $\widetilde{\mathcal{A}}^{s}=L_{\mu_{k}^{s}}^{A}$. Now X precodes s if X is the Σ_{1} theory of $\tilde{\mathcal{A}}^{s}$ with parameters from $\alpha \cup\{s\}$, viewed as a subset of α.

Limit Coding. Suppose $s \in S_{\alpha}, \alpha$ is an uncountable limit cardinal and $p=\left\langle\left(p_{\beta}, p_{\beta}^{*}\right) \mid \beta \in \operatorname{Card} \cap \alpha\right\rangle$, where $p_{\beta} \in S_{\beta}$ for each $\beta \in \operatorname{Card} \cap \alpha$ and

Card denotes the class of infinite cardinals. We wish to define " p codes s ". First we define a sequence $\left\langle s_{\gamma} \mid \gamma \leq \gamma_{0}\right\rangle$ of elements of S_{α} as follows. Let $s_{0}=\emptyset$. For limit $\gamma \leq \gamma_{0}, s_{\gamma}=\bigcup\left\{s_{\delta} \mid \delta<\gamma\right\}$. Now suppose s_{γ} is defined. Then for $\beta \in$ Card $\cap \alpha$ consider $f_{p}^{s_{\gamma}}(\beta)=$ least $\delta \geq f^{s_{\gamma}}(\beta)$ such that $p_{\beta}\left(\delta^{C}\right)=1$; if the latter is defined, then also define $X_{\beta} \subseteq \beta$ by: $\xi \in X_{\beta}$ iff $p_{\beta}\left(\left(f_{p}^{s \gamma}(\beta)+1+\xi\right)^{C}\right)=1$. Now set $\gamma_{0}=\gamma$ unless there is an $\eta>\left|s_{\gamma}\right|$ and $k \in \omega$ such that for some final segment B of $B_{\alpha}^{\eta, k}, f_{p}^{s_{\gamma}}$ is defined on $B, f_{p}^{s_{\gamma}} \upharpoonright B \in \mathcal{A}^{\eta}$ and for some $X \subseteq \alpha$ in $\mathcal{A}^{\eta}, X_{\beta}=X \cap \beta$ for $\beta \in B$. There can be at most one such X, using the fact that if $\eta_{0}<\eta_{1}$ or $\left(\eta_{0}=\eta_{1}\right.$ and $k_{0}<k_{1}$) then a final segment of $B_{\alpha}^{\eta_{1}, k_{1}}$ is contained in $B_{\alpha}^{\eta_{0}, k_{0}}$. If Even $(X)=\{\xi \mid 2 \xi \in X\}$ precodes an element t of S_{α} extending s_{γ} of length η then set $s_{\gamma+1}=t$. Otherwise let $s_{\gamma+1}$ be $s_{\gamma} * \overrightarrow{0}$, with $\overrightarrow{0}$ of length $\eta-\left|s_{\gamma}\right|$. (The notation $s_{\gamma+1}=s_{\gamma} * \overrightarrow{0}$ means that $s_{\gamma+1}$ extends s_{γ} and $s_{\gamma+1}(\eta)=0$ for $\left|s_{\gamma}\right| \leq \eta<\left|s_{\gamma+1}\right|$.) Now p codes s iff $s=s_{\gamma}$ for some $\gamma \leq \gamma_{0}$.

A real preserves the extender E iff the canonical embedding $V \rightarrow \mathrm{Ult}_{E}$ extends to an elementary embedding $V[R] \rightarrow \mathrm{Ult}_{E}[R]$. We show that there is a definable ZFC-preserving class forcing which adds a non set-generic, cofinality-preserving real R preserving the extenders in T. Moreover, for δ inaccessible in V, every CUB subset of δ in $V[R]$ contains a CUB subset in V. It follows that Woodinness is preserved by R.

We are about to define P, the class of forcing conditions. To ensure that extenders in T are preserved, we impose a strong Preservation Requirement on conditions in P. To accomodate this Requirement, we must use a special notion of extension, in which values not "fixed" by a condition are allowed to change when the condition is extended. However, making use of the fact that the critical points of extenders in T are not Woodin, we can demand that values in the interval $\left[\alpha, \alpha^{+}\right.$) will not change if the condition "recognizes" that the critical points of all extenders in T overlapping α are non-Woodin. This restriction is needed to show that conditions in the generic converge.

The Conditions. Let Card ' denote the class of all uncountable limit cardinals. A condition in P is a sequence $p=\left\langle\left(p_{\alpha}, p_{\alpha}^{*}\right) \mid \alpha \in \operatorname{Card}, \alpha \leq \alpha(p)\right\rangle$ where $\alpha(p) \in$ Card is not overlapped by T and:
(a) $p_{\alpha(p)} \in S_{\alpha(p)}$ and $p_{\alpha(p)}^{*}=\emptyset$.
(b) For $\alpha \in \operatorname{Card} \cap \alpha(p): p(\alpha)=\left(p_{\alpha}, p_{\alpha}^{*}\right) \in R^{p_{\alpha}+}$.
(c) For $\alpha \in \operatorname{Card}^{\prime}, \alpha \leq \alpha(p): p \upharpoonright \alpha$ codes p_{α} and belongs to $\mathcal{A}^{p_{\alpha}}$.
(d) (Restraint Requirement) For $\alpha \leq \alpha(p), \alpha$ inaccessible in $\mathcal{A}^{p_{\alpha}}$: There exists a CUB $C \subseteq \alpha, C \in \mathcal{A}^{p_{\alpha}}$ such that $\beta \in C \rightarrow p_{\beta}^{*}=\emptyset$.
(e) (Preservation Requirement) Suppose that E belongs to $T, \alpha \leq \alpha(p)$ and α is overlapped by E.
(e0) p_{α} extends $E(p)_{\alpha}$.
(e1) If $\left|E(p)_{\alpha}\right| \leq \gamma<\left|p_{\alpha}\right|$ where for some $\xi \in \alpha_{E}^{*}, \gamma$ belongs to $b_{E}^{\xi}\left(=b^{\xi}\right.$ as defined in Ult_{E}), then $p_{\alpha}\left(\gamma^{B}\right)=0$, unless $E(p)_{\alpha^{+}}(\xi)=1$ and α^{+}is p-stable.

We define p-stability as follows: An ordinal $\gamma \in\left[\alpha, \alpha^{+}\right)$is α-large iff $\gamma \geq \alpha_{E}^{+}$for each $E \in T$ overlapping α. p is large up to α iff $\left|p_{\beta}\right|$ is β-large for all $\beta \in$ Card $\cap \alpha^{+}$. Then $\alpha \in$ Card $\cap \alpha(p)^{+}$is p-stable iff p is large up to α and $\kappa(E)$ is not Woodin in $\mathcal{A}^{p_{\kappa(E)}}$ for all $E \in T$ overlapping α.

Extension of conditions is defined as follows. An inaccessible cardinal $\alpha \leq \alpha(p)$ is p-Woodin iff it is Woodin in $\mathcal{A}^{p_{\alpha}}$. Then $p \leq q$ iff $\alpha(p) \geq \alpha(q)$ and for $\alpha \in$ Card $\cap \alpha(q)^{+}$:
$(*)_{0}\left|p_{\alpha}\right| \geq\left|q_{\alpha}\right|, p_{\alpha}^{*} \supseteq q_{\alpha}^{*}$.
$(*)_{1} \gamma \in\left[\alpha,\left|q_{\alpha}\right|\right) \rightarrow p_{\alpha}(\gamma)=q_{\alpha}(\gamma)$, unless $\gamma<\left|E(p)_{\alpha}\right|$ for some $E \in T$ overlapping α.
$(*)_{2} \gamma \in b^{\eta}, \eta \in q_{\alpha}^{*, 0}, \alpha q$-stable, $\left|q_{\alpha}\right| \leq \gamma<\left|p_{\alpha}\right|, \gamma \alpha$-large $\rightarrow p_{\alpha}\left(\gamma^{B}\right)=0$.
$(*)_{3}$ Suppose that α is inaccessible but not q-Woodin and q is large up to α. Then there exists a CUB $C \subseteq \alpha$ in $\mathcal{A}^{p_{\alpha}}$ such that $\left|p_{\beta}\right|=\left|q_{\beta}\right|, p_{\beta}^{*}=q_{\beta}^{*}$ for $\beta \in \bigcup\left\{\left(\bar{\alpha}, \bar{\alpha}_{D_{\alpha}}^{+}\right] \mid \bar{\alpha} \in C\right\}$.

Lemma 5 Suppose that $\alpha \in$ Card $\cap \alpha(q)^{+}$is q-stable and p extends q. Then p_{α} extends q_{α}.

Proof. It suffices to show that $E(p)_{\alpha}=E(q)_{\alpha}$ for all $E \in T$ overlapping α. Requirement $(*)_{3}$ from the definition of extension implies that $E(p)_{\alpha}$ and $E(q)_{\alpha}$ have the same length. So $E(p)_{\alpha}, E(q)_{\alpha}$ can only differ if $F(E(p))_{\alpha}$, $F(E(q))_{\alpha}$ are incompatible for some $F \in E[T]$ overlapping α. But by induction we may assume that $F(p)_{\alpha}=F(q)_{\alpha}$ for all $F \in T$ overlapping α which satisfy $\alpha(F)<\alpha(E)$. Therefore $F(E(p))_{\alpha}, F(E(q))_{\alpha}$ are compatible for all $F \in E[T]$ overlapping α, as $F(p)_{\alpha}, F(q)_{\alpha}$ extend $F(E(p))_{\alpha}, F(E(q))_{\alpha}$, respectively, and F belongs to T by the uniformity of T.

Lemma 6 The ordering of conditions is transitive.

Proof. Suppose that $p \leq q \leq r$. Then $(*)_{0}$ is clear for the pair p, r. Note that $p \leq q \rightarrow$ every q-stable cardinal is p-stable and $\left|E(p)_{\alpha}\right| \geq\left|E(q)_{\alpha}\right|$ whenever $\alpha \in \operatorname{Card} \cap \alpha(q)^{+}$and $E \in T$ overlaps α, since $\left|p_{\alpha}\right| \geq\left|q_{\alpha}\right|$ for all $\alpha \in \operatorname{Card} \cap \alpha(q)^{+}$. Thus $(*)_{1}$ holds for p, r. Using Lemma $5, q_{\alpha}^{*, 0} \supseteq r_{\alpha}^{*, 0}$ for r-stable α and therefore $(*)_{2}$ holds for p, r. Finally, $(*)_{3}$ holds for p, r since the intersection of CUB sets is CUB.

To state the proper form of extendibility for P we must take into account requirement $(*)_{3}$ and therefore introduce the notion of a p-witness. This is a function w with the following properties:

1. The domain of w consists of all inaccessible $\alpha \leq \alpha(p)$ such that α is not p-Woodin and p is large up to α.
2. $w(\alpha)$ is a CUB subset of $\left\{\beta \in D_{\alpha} \mid \beta\right.$ is not p-Woodin $\}$ for each $\alpha \in$ Dom w.
3. For all $\alpha \in$ Card $\cap \alpha(p)^{+}, w \upharpoonright \alpha^{+} \in \mathcal{A}^{p_{\alpha}}$.

The support of a p-witness w, written $\operatorname{supp}(w)$, is the union of all intervals $\left(\bar{\alpha}, \bar{\alpha}_{D_{\alpha}}^{+}\right]$, where $\bar{\alpha}$ belongs to $w(\alpha)$ and α is in the domain of w.

Lemma 7 (Extendibility) Suppose that p belongs to $P, \beta \in \operatorname{Card} \cap \alpha(p)^{+}$ and $s \in S_{\beta}$ extends p_{β}. Also suppose that $|s|$ is β-large, $X \subseteq \beta$ belongs to \mathcal{A}^{s}, w is a p-witness and for $\left|p_{\beta}\right| \leq \gamma<|s|$:
(a) If β is overlapped by $E \in T$ and γ belongs to b_{E}^{ξ} where $\xi \in \beta_{E}^{*}$ then $s\left(\gamma^{B}\right)=0$, unless $E(p)_{\beta^{+}}(\xi)=1$ and β^{+}is p-stable.
(b) $\gamma \in b^{\eta}, \eta \in p_{\beta}^{*, 0}, \beta^{+} p$-stable, $\gamma \beta$-large $\rightarrow s\left(\gamma^{B}\right)=0$.

Then there exists $q \leq p$ in P such that $\left|q_{\beta}\right|=|s|, X \cap \gamma \in \mathcal{A}^{q_{\gamma}}$ for all $\gamma \in$ Card $\cap \beta^{+}$not in supp $\left(w \upharpoonright \beta^{+}\right)$, q_{β} and s are the same above the maximum of $\left\{\left|E(q)_{\beta}\right| \mid E \in T\right.$ overlaps $\left.\beta\right\}$ and for all $\alpha \in \operatorname{Card} \cap(\beta, \alpha(p)]$, q_{α} and p_{α} are the same above the maximum of $\left\{\left|E(q)_{\alpha}\right| \mid E \in T\right.$ overlaps $\left.\alpha\right\}$. Moreover we can require that q be large up to β.

Proof. By induction on $\beta \in$ Card $\cap \alpha(p)^{+}$. The result is clear if β equals ω, as ω is not overlapped in T and (b) guarantees that we can extend p_{ω} to s without violating $(*)_{2}$ from the definition of extension. If β is an uncountable successor cardinal then let $\bar{\beta}$ be the cardinal predecessor to β and choose $\bar{s}=p_{\bar{\beta}} * \overrightarrow{0} \in S_{\bar{\beta}}$ of $\bar{\beta}$-large length so that $X \cap \bar{\beta} \in \mathcal{A}^{\bar{s}}$. Apply induction to $p, \bar{s}, X \cap \bar{\beta}, w$ to obtain $\bar{q} \leq p$. Then obtain q from \bar{q} by redefining \bar{q}_{β}
to be the same as s above the maximum of $\left\{\left|E(\bar{q})_{\beta}\right| \mid E \in T\right.$ overlaps $\left.\beta\right\}$. The hypotheses on s guarantee that the resulting q is the desired condition extending p.

Now suppose that β is an uncountable limit cardinal not overlapped by T. Let k be large enough so that $p \upharpoonright \beta, s, X \cap \beta, C_{\beta}$ (if β is singular in \mathcal{A}^{s}), D_{β} (if β is not Woodin in \mathcal{A}^{s}) and $w \upharpoonright \beta^{+}$belong to $\mathcal{A}=L_{\mu_{k}^{s}}^{A}$. Choose $Y \subseteq \beta$ such that Even $(Y)=\{\xi \mid 2 \xi \in Y\}$ precodes s and $\operatorname{Odd}(Y)=\{\xi \mid 2 \xi+1 \in Y\}$ is the Σ_{1} theory of \mathcal{A} with parameters from $\beta \cup\{s\}$, viewed as a subset of β. For $\gamma \in$ Card $\cap \beta^{+}$, let $\overline{\mathcal{A}}_{\gamma}$ be the transitive collapse of $H(\gamma)=\Sigma_{1}$ Hull of $\gamma \cup\{s\}$ in \mathcal{A} and let $g(\gamma)=\gamma^{+}$of $\overline{\mathcal{A}}_{\gamma}$. (If $\overline{\mathcal{A}}_{\gamma} \vDash \gamma^{+}$does not exist, then $g(\gamma)=\operatorname{ORD}\left(\overline{\mathcal{A}}_{\gamma}\right)$. When $\gamma=\beta$, we have $\overline{\mathcal{A}}_{\gamma}=H(\gamma)=\mathcal{A}$.) Using Condensation (a), choose $\beta_{0}<\beta$ large enough so that $\overline{\mathcal{A}}_{\gamma}$ is an initial segment of L^{A} for $\gamma \in C_{\beta}^{s, k} \cap\left(\beta_{0}, \beta\right]$. Also suppose that $p \upharpoonright \beta, s, X \cap \beta, w \upharpoonright \beta^{+}$ belong to $H\left(\beta_{0}\right)$ and if $C_{\beta}^{s, k}=C_{\beta}$ then $\beta_{0}>$ ordertype C_{β}.

We first define \bar{q}, a preliminary version of q. Set $\bar{q}_{\beta}=s$. For $\gamma \in$ Card $\cap\left[\beta_{0}^{+}, \beta\right)$: If $C_{\beta}^{s, k} \neq C_{\beta}$ and $\gamma \in \operatorname{Lim} C_{\beta}^{s, k}$ then $\bar{q}_{\gamma}=s_{\gamma}$ where Even $(Y \cap \gamma)$ precodes $s_{\gamma} \in S_{\gamma}$; if $C_{\beta}^{s, k}=C_{\beta}$ and $\gamma \in \operatorname{Lim} C_{\beta}$ then $\bar{q}_{\gamma}=p_{\gamma} * \overrightarrow{0}$ with $\overrightarrow{0}$ of length $g(\gamma)$; and if $\gamma \in B_{\beta}^{s, k}$ then $\bar{q}_{\gamma}=p_{\gamma} * \overrightarrow{0} * 1 *(Y \cap \gamma)^{C}$ where $\overrightarrow{0}$ has length $g(\gamma)+1$ (and $(Y \cap \gamma)^{C}$ has length γ). For $\gamma \in \operatorname{Card} \cap \alpha(p)^{+}$not falling under the above cases, $\bar{q}_{\gamma}=p_{\gamma}$. Also set $\bar{q}_{\gamma}^{*}=p_{\gamma}^{*}$ for all $\gamma \in \operatorname{Card} \cap \alpha(p)^{+}$.

We claim that \bar{q} obeys the requirements for being a condition, with the exception of the Preservation Requirement (e 0). We need only check that $\bar{q} \upharpoonright \gamma$ belongs to $\mathcal{A}^{\bar{q}_{\gamma}}$ and codes \bar{q}_{γ} for $\gamma \in \operatorname{Card}^{\prime} \cap \alpha(p)^{+}$. We may assume that γ belongs to $\operatorname{Lim} C_{\beta}^{s, k} \cap\left[\beta_{0}^{+}, \beta\right]$. Note that $g \upharpoonright \gamma, Y \cap \gamma$ and therefore $\bar{q} \upharpoonright \gamma$ are definable over $\overline{\mathcal{A}}_{\gamma}$ for $\gamma \in \operatorname{Card} \cap \beta^{+}$, so for the first of these properties it suffices to show $\overline{\mathcal{A}}_{\gamma} \in \mathcal{A}^{\bar{q}_{\gamma}}$. But by choice of $\beta_{0}, \overline{\mathcal{A}}_{\gamma}$ is a proper initial segment of $\mathcal{A}^{g(\gamma)}=\mathcal{A}^{\bar{q}_{\gamma}}$. Thus we have established the first of these properties. For the second property, we must verify that there is $\eta_{\gamma}>\left|p_{\gamma}\right|$ and $k_{\gamma} \in \omega$ such that for some final segment B_{γ} of $B_{\gamma}^{\eta_{\gamma}, k_{\gamma}}, f_{\bar{q} \mid \gamma}^{p_{\gamma}}$ is defined on $B_{\gamma}, f_{\bar{q} \mid \gamma}^{p_{\gamma}} \upharpoonright B_{\gamma} \in \mathcal{A}^{\eta_{\gamma}}$ and for some $X_{\gamma} \subseteq \gamma$ in $\mathcal{A}^{\eta_{\gamma}}, X_{\delta}=X_{\gamma} \cap \delta$ for $\delta \in B_{\gamma}$, where for $\delta<\gamma, X_{\delta}$ is defined by $\xi \in X_{\delta}$ iff $\bar{q}_{\delta}\left(\left(f_{\bar{q} \mid \gamma}^{p_{\gamma}}(\delta)+1+\xi\right)^{C}\right)=1$. If $\gamma=\beta$ then we may take $\eta_{\gamma}, k_{\gamma}, B_{\gamma}$ and X_{γ} to be $|s|, k, B_{\beta}^{s, k}-\beta_{0}^{+}$and Y, respectively, and in this case $\operatorname{Even}(Y)$ precodes s, implying that $\bar{q} \upharpoonright \beta$ codes s. Suppose that γ is less than β. If $C_{\beta}^{s, k} \neq C_{\beta}$ then we can similarly take $\left|s_{\gamma}\right|$,
$k, B_{\gamma}^{s_{\gamma}, k}-\beta_{0}^{+}$and $Y \cap \gamma$, respectively, and in this case $\operatorname{Even}(Y \cap \gamma)$ precodes s_{γ}, implying that $\bar{q} \upharpoonright \gamma$ codes $s_{\gamma}=\bar{q}_{\gamma}$. Finally if $C_{\beta}^{s, k}=C_{\beta}$ note that γ is singular in $\mathcal{A}^{g(\gamma)}$ and therefore we can choose k^{\prime} so that $C_{\gamma}^{g(\gamma), k^{\prime}}=C_{\gamma}$; then we may take $\eta_{\gamma}, k_{\gamma}, B_{\gamma}$ and X_{γ} to be $g(\gamma), k^{\prime}, C_{\gamma}-\beta_{0}^{+}$and $Y \cap \gamma$, respectively, and in this case $\operatorname{Even}(Y \cap \gamma)$ does not precode an element of S_{γ}. It follows that $\bar{q} \upharpoonright \gamma$ codes $p_{\gamma} * \overrightarrow{0}$, with $\overrightarrow{0}$ of length $g(\gamma)=g(\gamma)-\left|p_{\gamma}\right|$, as desired.

Let $B \subseteq \beta$ be the closure of $B_{\beta}^{s, k} \cap\left[\beta_{0}^{+}, \beta\right.$) (i.e., B is the union of $B_{\beta}^{s, k}$ and $\operatorname{Lim} C_{\beta}^{s, k} \cap\left(\beta_{0}, \beta\right)$). To obtain the desired $q \leq p$, we inductively modify $\bar{q} \upharpoonright \gamma^{+}$for $\gamma \in B$ to $q \upharpoonright \gamma^{+}$such that $q(\gamma)=\bar{q}(\gamma)$ and $\left.q \upharpoonright \gamma^{+} \cup p \upharpoonright\left[\gamma^{+}, \alpha(p)\right]\right)$ is a condition satisfying the Growth Requirement up to γ : For δ in Card $\cap \gamma^{+}$, $\left|q_{\delta}\right|$ is δ-large, and either δ belongs to $\operatorname{supp}\left(w \upharpoonright \gamma^{+}\right)$or $X \cap \delta \in \mathcal{A}^{q_{\delta}}$. If $\gamma=$ $\min B$ then we apply induction to $p, \bar{q}_{\gamma}, X \cap \gamma, w_{0}$, where $w_{0}(\alpha)=w(\alpha)$ for $\alpha \in \operatorname{Dom} w \cap \gamma^{+}$and $w_{0}(\alpha)=w(\alpha)-\gamma^{+}$for $\alpha \in \operatorname{Dom} w-\gamma^{+}$, to ensure the Growth Requirement up to γ. Suppose that γ is a successor element of B and γ_{0} is its B-predecessor. It is possible that γ_{0} is the critical point of an extender $E \in T . E$ is unique and must satisfy $\alpha(E)<\gamma$. In this case we modify $\bar{q} \upharpoonright\left(\gamma_{0}, \alpha(E)\right]=p \upharpoonright\left(\gamma_{0}, \alpha(E)\right]$ to $q^{\prime} \upharpoonright\left(\gamma_{0}, \alpha(E)\right]$ by requiring q_{δ}^{\prime} to extend $E\left(q \upharpoonright \gamma_{0}\right)_{\delta}$ for $\delta \in \operatorname{Card} \cap\left(\gamma_{0}, \alpha(E)\right]$, thereby ensuring the Preservation Requirement (e0) with respect to E. As by induction our modified $q \upharpoonright \gamma_{0}^{+}$ satisfies the Preservation Requirement with respect to all $E \in T$, it follows that $E\left(q \upharpoonright \gamma_{0}^{+}\right)$satisfies the Preservation Requirement with respect to all $F \in E[T]$, and therefore by the uniformity of T, with respect to all $F \in T$, $\alpha(F)<\alpha(E)$. As \bar{q} agrees with p on the interval $\left(\gamma_{0}, \alpha(E)\right]$ and p satisfies the Preservation Requirement, it follows that Preservation Requirement (e0) will hold for $q \upharpoonright \gamma_{0}^{+} \cup q^{\prime} \upharpoonright\left(\gamma_{0}, \alpha(E)\right]$ with respect to all extenders in T. Preservation Requirement (e1) also holds for $q \upharpoonright \gamma_{0}^{+} \cup q^{\prime} \upharpoonright\left(\gamma_{0}, \alpha(E)\right]$ as it holds for \bar{q}, and the modifications for the purpose of ensuring Preservation Requirement (e0) do not affect Preservation Requirement (e1). Now apply induction to $q \upharpoonright \gamma_{0}^{+} \cup q^{\prime} \upharpoonright\left(\gamma_{0}, \alpha(E)\right] \cup p \upharpoonright(\alpha(E), \alpha(p)], \bar{q}_{\gamma}, X \cap \gamma$, w_{0}, where $w_{0}(\alpha)=w(\alpha)$ for $\alpha \in \operatorname{Dom} w \cap \gamma^{+}$and $w_{0}(\alpha)=w(\alpha)$ for $\alpha \in \operatorname{Dom} w-\gamma^{+}$, to obtain the desired $q \upharpoonright \gamma^{+}$satisfying the Growth Requirement up to γ, without changing $q \upharpoonright \gamma_{0}^{+} \cup q^{\prime} \upharpoonright\left(\gamma_{0}, \alpha(E)\right] \cup p \upharpoonright(\alpha(E), \alpha(p)]$ at a cardinal $\delta \in\left(\gamma_{0},\left(\gamma_{0}\right)_{D_{\beta}}^{+}\right]$, if $\gamma_{0} \in w(\beta)$ and $\left|p_{\bar{\delta}}\right|$ is $\bar{\delta}$-large for all $\bar{\delta} \in \operatorname{Card} \cap \delta^{+}$. Finally, if $\gamma \in \operatorname{Lim} B$ and we have inductively modified $\bar{q} \upharpoonright \delta^{+}, \delta \in B \cap \gamma$ in the L^{A}-least way to the desired $q \upharpoonright \delta^{+}$, it follows that the resulting $q \upharpoonright \gamma^{+}=$ $\bigcup\left\{q \upharpoonright \delta^{+} \mid \delta \in B \cap \gamma\right\} \bigcup\{\langle\gamma, \bar{q}(\gamma)\rangle\}$ is as desired, since the definition of \bar{q}
guarantees that $Y \cap \gamma$, and therefore the new $q \upharpoonright \gamma$, belongs to $\mathcal{A}^{q_{\gamma}}$.
At the end of the above construction either we obtain a condition q or some $E \in T$ has critical point β; in the latter case we modify once more on Card $\cap(\beta, \alpha(E)$] to ensure the Preservation Requirement. The resulting q is a condition such that $\left|q_{\beta}\right|=|s|,\left|q_{\alpha}\right|$ is α-large for all $\alpha \in$ Card $\cap \beta^{+}$, $X \cap \gamma \in \mathcal{A}^{q_{\gamma}}$ for all $\gamma \in$ Card $\cap \beta^{+}$not in $\operatorname{supp}\left(w \upharpoonright \beta^{+}\right), q_{\beta}$ and s are the same above the maximum of $\left\{\left|E(q)_{\beta}\right| \mid E \in T\right.$ overlaps $\left.\beta\right\}$ and for all $\alpha \in$ Card $\cap(\beta, \alpha(p)], q_{\alpha}$ and p_{α} are the same above the maximum of $\left\{\left|E(q)_{\alpha}\right| \mid E \in T\right.$ overlaps $\left.\alpha\right\}$.

We must verify that the extension $q \leq p$ obeys property $(*)_{3}$. If α is from the statement of $(*)_{3}$, we may assume that α belongs to Lim B. The desired property for the pair p, \bar{q} is witnessed by the CUB set $B \cap \alpha$, as for $\delta \in B \cap \alpha, \delta_{D_{\beta}}^{+}=\delta_{D_{\alpha}}^{+}$is less than δ_{B}^{+}, and therefore the extensions on B avoid the intervals ($\delta, \delta_{D_{\alpha}}^{+}$], δ in $B \cap \alpha$. Then to verify the result when α belongs to $\operatorname{Lim} B$ for the pair p, q, note that α belongs to $w(\beta) \cup\{\beta\}$ and by construction $\left|p_{\gamma}\right|=\left|q_{\gamma}\right|$ for $\gamma \in\left(\bar{\alpha}, \bar{\alpha}_{D_{\beta}}^{+}\right], \bar{\alpha} \in B \cap \alpha$, so $B \cap \alpha$ is again a witness to $(*)_{3}$.

Thus the only possible problem in verifying that q extends p is that as a result of $(*)_{2}$, the restraint p_{γ}^{*} may prevent us from making the extension from p_{γ} to q_{γ} when $q_{\gamma}=s_{\gamma}$ and Even $(Y \cap \gamma)$ precodes s_{γ}. However if there are unboundedly many such $\gamma<\beta$ then β is inaccessible in $\mathcal{A}^{p_{\beta}}$ and therefore by the Restraint Requirement, $p_{\gamma}^{*}=\emptyset$ for γ in a CUB subset of β in $\mathcal{A}^{p_{\beta}}$, which we may assume belongs to \mathcal{A}. Thus for sufficiently large γ such that $Y \cap \gamma$ precodes s_{γ}, γ belongs to C and hence $p_{\gamma}^{*}=\emptyset$. So $q \leq p$ on a final segment of Card $\cap \beta$, and by induction we may arrange that this holds on all of Card $\cap \beta$.

Finally, suppose that β is an uncountable limit cardinal overlapped by T. Let κ be the largest critical point of an extender in T overlapping β. By induction we can assume that p satisfies the Growth Requirement up to κ, without altering p_{α} above the maximum of $\left\{\alpha_{E}^{+} \mid E \in T\right.$ overlaps $\left.\alpha\right\}$ for $\alpha \in$ Card $\cap(\kappa, \alpha(p)]$. Now apply the argument from the previous case to extend p to q on Card $\cap\left[\kappa^{+}, \beta\right]$ (and on Card $\cap(\beta, \alpha(E)]$, if some $E \in T$ has critical point β) to ensure the Growth Requirement up to β as well as $\left|q_{\beta}\right|=|s|$ (with q_{β} the same as s above the maximum of $\left\{\beta_{E}^{+} \mid E \in T\right.$ overlaps $\beta\}$ and q_{α} the same as p_{α} above the maximum of $\left\{\alpha_{E}^{+} \mid E \in T\right.$ overlaps $\left.\alpha\right\}$ for $\alpha \in \operatorname{Card}, \beta<\alpha \leq \alpha(p))$.

Lemma 8 Suppose that G is P-generic and let G_{ω} denote $\bigcup\left\{p_{\omega} \mid p \in G\right\}$. Then G_{ω} is not set-generic over V.

Proof. For each infinite cardinal α, G converges on $\left[\alpha, \alpha^{+}\right)$in the sense that for some $p \in G$, every extension q of p satisfies $q_{\alpha} \supseteq p_{\alpha}$. This follows from Lemma 5 , as only finitely many $E \in T$ overlap α and by Lemma 7 we can choose $p \in G$ so that p_{β} is β-large for each $\beta \in \operatorname{Card} \cap \alpha(p)^{+}$ and the critical point $\kappa(E)$ of each $E \in T$ overlapping α is not Woodin in $\mathcal{A}^{p_{\kappa(E)}}$. Let G_{α} denote $\bigcup\left\{p_{\alpha} \mid p \in G\right.$ and α is p-stable $\}$. We claim that $G_{\alpha^{+}}$is coded by G_{α} and for uncountable limit cardinals α, G_{α} is coded by $\bigcup\left\{G_{\beta} \mid \beta \in \operatorname{Card} \cap \alpha\right\}$. The first statement follows immediately from Lemma 7. The second statement follows from Lemma 7 together with the fact that for uncountable limit cardinals α, the coding of p_{α} by $p \upharpoonright \alpha$ takes place at cardinals in C_{α}^{T} and the collection of conditions $q \in P$ such that each $\beta \in C_{\alpha}^{T}$ is q-stable is dense in P. Thus G can be decoded from G_{ω}. As G_{α} adds an α^{+}-Cohen set to V, it follows that G_{ω} is not set-generic over V.

To establish cofinality-preservation for P we must consider nested witnesses. A p-witness w is nested iff whenever $\bar{\alpha} \in w(\alpha), \bar{\beta} \in w(\beta), \alpha \leq \beta$ and $\bar{\alpha} \leq \bar{\beta}<\alpha$ then $w(\alpha)=w(\beta) \cap \alpha$.

Lemma 9 For every condition p there exists a nested p-witness. Moreover, if w is a nested p-witness and q extends p, then there is a nested q-witness extending w.

Proof. We begin with the first statement. For $\alpha \leq \alpha(p)$, a (nested) p, α witness is a function satisfying the requirements of a nested p-witness, but only defined on cardinals $\leq \alpha$. We show that if $\alpha<\beta \leq \alpha(p)$ then each p, α witness w can be extended to a p, β-witness w^{*}. This is proved by induction on β. We may assume that p is large up to β. If β is not the limit of inaccessibles then by induction we extend w up to the supremum γ of α and the inaccessibles less than β and then, if β is non p-Woodin and inaccessible, extend up to β itself with a witness w^{*} such that $w^{*}(\beta)$ only includes cardinals greater than γ. Now assume that β is a limit of inaccessibles. If β is singular then we can inductively choose end-extending p, γ-witnesses for $\gamma \in C_{\beta}$ above α and take the union. If β is inaccessible and p-Woodin then we similarly use a canonical CUB subset C of β consisting of p-Woodins. Finally, if β is non p-Woodin and inaccessible, then choose a CUB $D \subseteq D_{\beta}-\alpha$ such that
$\bar{\beta} \in D \rightarrow \bar{\beta}$ is not p-Woodin and $D \cap \beta \in \mathcal{A}^{p_{\beta}}$, using the inaccessibility of β. Then successively extend w to elements of D, modifying choices if necessary so that for $\bar{\beta} \in D$, the chosen witness between $\bar{\beta}$ and $\bar{\beta}_{D}^{+}$only include cardinals strictly greater than $\bar{\beta}$. At inaccessible limit elements $\bar{\beta}$ of D, define $w^{*}(\bar{\beta})$ to be $D \cap \bar{\beta}$. In this way we obtain the nestedness of the resulting witness w^{*}.

Now suppose that w is a nested p-witness, q extends p and we wish to define a nested q-witness w^{*} extending w. If every inaccessible $\alpha \leq \alpha(q)$ which is not q-Woodin with q large up to α is already in the domain of w then we take $w^{*}=w$. Otherwise let α be the least exception. Sufficiently large elements of D_{α} are p-Woodin, using the fact that α is a p-Woodin inaccessible which is not Woodin. Thus sufficiently large elements of D_{α} do not belong to any $w(\beta)$. Also note that sufficiently large $\gamma<\alpha$ do not belong to $w(\beta)$ for any $\beta \geq \alpha$, because α is p-Woodin and w is nested. And for each $\bar{\beta}<\alpha$, the set of $\beta<\alpha$ such that $\bar{\beta}$ belongs to $w(\beta)$ is bounded in α, else by the nestedness of w, there would be a CUB subset of α consisting of non p-Woodins. Thus as $w \upharpoonright \alpha$ belongs to $\mathcal{A}^{p_{\alpha}}$, it follows that sufficiently large elements $\bar{\alpha}$ of D_{α} are closure points of $w \upharpoonright \alpha$, in the sense that for some fixed $\alpha_{0}<\alpha$ (independent of $\bar{\alpha}$), if $\bar{\beta}$ belongs to $w(\beta) \cap\left(\alpha_{0}, \bar{\alpha}\right)$ for some β then β is less than $\bar{\alpha}$. We therefore achieve the nestedness of w^{*} up to α by choosing $w^{*}(\alpha)$ to be a CUB subset D of D_{α} with sufficiently large minimum such that $\bar{\alpha} \in D \rightarrow \bar{\alpha}$ is not q-Woodin and $D \cap \bar{\alpha} \in \mathcal{A}^{p_{\bar{\alpha}}}$. Finally, combine this argument with the argument used in the first part of this proof to show that for $\alpha<\beta \leq \alpha(q)$, each q, α-witness can be extended to a q, β-witness, compatibly with w.

Definition. Suppose that γ is an infinite successor cardinal and $D \subseteq P$ is open dense. A condition $p \in P$ reduces D below γ iff for every $q \leq p$ there exists $r \leq q$ such that r belongs to $D, \alpha(r)=\alpha(q)$ and $r(\alpha)=q(\alpha)$ for all $\alpha \in \operatorname{Card} \cap[\gamma, \alpha(q)]$.

Lemma 10 (Density Reduction) (a) If D_{i} is open and dense on P for each $i<\omega$ then for each $p \in P$ there is a $q \leq p$ which belongs to each D_{i}.
(b) If D_{i} is open and dense on P for each $i<\gamma$ where γ is an infinite successor cardinal then for each $p \in P$ there is a $q \leq p$ which reduces each D_{i} below γ.
(c) If D_{i} is open and dense on P for each $i<\gamma$, where γ is inaccessible and
not Woodin, then for each $p \in P$ there are $q \leq p$ and a CUB $D \subseteq \gamma$ such that q reduces D_{i} below $\left(\bar{\gamma}_{D_{\gamma}}^{+}\right)^{+}$for $\bar{\gamma} \in D$ and $i<\left(\bar{\gamma}_{D_{\gamma}}^{+}\right)^{+}$. (Note that D_{γ} is the canonical CUB subset of γ defined earlier, and is unrelated to the D_{i} 's.) (d) If D_{i} is open and dense on P for each $i<\gamma$ where γ is Woodin then for each $p \in P$ there are $q \leq p$ and a CUB $D \subseteq \gamma$ such that q reduces D_{i} below $\bar{\gamma}^{+}$for $\bar{\gamma} \in D$ and $i<\bar{\gamma}^{+}$.

Proof. In the statement of this Lemma, we intend that the sequence of D_{i} 's in each case be L^{A}-definable. Choose $n>1$ so that this sequence is Σ_{n} definable over L^{A} and let θ be a cardinal of cofinality greater than γ (greater than ω in part (a)) such that L_{θ}^{A} is Σ_{n+1}-elementary in L^{A}. Let X be the Σ_{n} theory of $\left\langle L_{\theta}^{A}, y\right\rangle_{y \in L_{\theta}^{A}}$, viewed as a subset of θ. Assume first that $\{p\}$ is Σ_{n}-definable in L^{A} and the defining parameter for the sequence of D_{i} 's is 0 .
(a) Define a sequence of conditions $p^{i} \in P$ with associated nested p^{i}-witnesses w_{i} and $w_{i}^{*}, i \in \omega$ as follows:

1. $p^{0}=1^{P}, w_{0}=w_{0}^{*}$ is any nested p-witness.
2. For $i \in \omega, p^{i+1}$ is the L^{A}-least extension q of p^{i} belonging to D_{i} such that $L_{\alpha(q)}^{A}$ is Σ_{n}-elementary in L^{A} and $X \cap \gamma \in \mathcal{A}^{q_{\gamma}}$ for each $\gamma \in \operatorname{Card} \cap \alpha(q)^{+}$not in supp $\left(w_{i}^{*}\right) . w_{i+1}$ is the L^{A}-least nested p^{i+1}-witness extending w_{i} and w_{i+1}^{*} is obtained from w_{i+1} by choosing $w_{i+1}^{*}(\alpha)$ to be a CUB subset C of $w_{i+1}(\alpha)$ with the property that $\left|p_{\beta}^{i+1}\right|=\left|p_{\beta}^{i}\right|, p_{\beta}^{i+1^{*}}=p_{\beta}^{i *}$ for $\beta \in\left(\bar{\alpha}, \bar{\alpha}_{D_{\alpha}}^{+}\right]$and $\bar{\alpha} \in C$, for each α in the domain of w_{i+1}.

We claim that the sequence of p^{i},s has a lower bound $q \in P$. Define q as follows: $\alpha(q)=\bigcup_{i} \alpha\left(p^{i}\right), q_{\beta}=\bigcup_{i} p_{\beta}^{i}$ above $\max \left\{\left|E(q \upharpoonright \kappa(E))_{\beta}\right| \mid E \in T\right.$ overlaps $\beta\}$, q_{β} agrees with $E(q \upharpoonright \kappa(E))_{\beta}$ below $\left|E(q \upharpoonright \kappa(E))_{\beta}\right|$ when $E \in T$ overlaps $\beta, q_{\beta}^{*}=\bigcup_{i} p_{\beta}^{i *}$ for $\beta \in \operatorname{Card} \cap \alpha(q)$ and $\left(q_{\alpha(q)}, q_{\alpha(q)}^{*}\right)=(\emptyset, \emptyset)$. We must verify that q_{β} belongs to S_{β} and $q \upharpoonright \beta$ belongs to $\mathcal{A}^{q_{\beta}}$ for $\beta \in$ Card $\cap \alpha(q)$. Let $H(\beta)$ denote the Σ_{n+1} Skolem hull of β in $L_{\leq \alpha(q)}^{A}$ and $\bar{H}(\beta)$ its transitive collapse. By the definition of the p^{i} 's, $\left|q_{\beta}\right|$ either is β^{+}of $\bar{H}(\beta)$ or belongs to the support of w_{i}^{*} for sufficiently large i. In the former case, as $q \upharpoonright \beta^{+}$is definable over $\bar{H}(\beta)$, which by Condensation (b) is an initial segment of $\mathcal{A}^{q_{\beta}}$, it follows that q_{β} belongs to S_{β} and $q \upharpoonright \beta$ belongs to $\mathcal{A}^{q_{\beta}}$. In the latter case, the nestedness of the w_{i} 's implies that β belongs to a fixed left-open interval I contained in the support of w_{i}^{*} for sufficiently large i;
thus for some $i_{0} \in \omega,\left|p_{\bar{\beta}}^{i}\right|$ is constant for $i \geq i_{0}$, not only for $\bar{\beta}=\beta$, but for all sufficiently large $\bar{\beta}<\beta$ (if β is a limit cardinal). Thus q_{β} belongs to S_{β} and $q \upharpoonright \beta$ belongs to $\mathcal{A}^{q_{\beta}}$ as these properties hold for $p^{i_{0}}$.

The Preservation Requirement clearly holds for q, given the way q was defined and the fact that it holds for each p^{i}. The Restraint Requirement holds for q : Suppose that γ is inaccessible in $\mathcal{A}^{q_{\gamma}}, \gamma \leq \alpha(q)$ and for $i \in \omega$ let C^{i} be the least CUB subset of γ in $\mathcal{A}^{p_{\gamma}^{i}}$ such that $p_{\bar{\gamma}}^{i}=\emptyset$ for sufficiently large $\bar{\gamma} \in C^{i}$. Then $\bigcap\left\{C^{i} \mid i<\omega\right\}$ witnesses the Restraint Requirement for q at γ, either because the C^{i} 's stabilise or because q_{γ} has length γ^{+}of $\bar{H}(\gamma)$ and hence $\left\langle C^{i} \mid i \in \omega\right\rangle$ belongs to $\mathcal{A}^{q_{\gamma}}$. By a similar argument, $q \leq p$ satisfies $(*)_{3}$ from the definition of extension.
(b) By Lemma 7 we may assume that γ is p-stable. Let $\delta \in$ Card, $\gamma=\delta^{+}$. For any $r \leq p$ let $r \downarrow \gamma$ denote the function with domain Card $\cap \gamma$ defined by $(r \downarrow \gamma)(\bar{\gamma})=r(\bar{\gamma})$ for $\bar{\gamma} \in \operatorname{Card} \cap \delta,(r \downarrow \gamma)(\delta)=\left(r_{\delta}, \emptyset\right)$. Now let $\left\langle\left(D_{i}^{*}, \bar{q}_{i}\right) \mid i<\gamma\right\rangle$ be a list of all pairs $\left(D^{*}, \bar{q}\right)$ where $D^{*}=D_{j}$ for some $j<\gamma$ and $\bar{q}=r \downarrow \gamma$ for some $r \leq p$.

Define a sequence of conditions p^{i} with associated nested p^{i}-witnesses w_{i} and $w_{i}^{*}, i<\gamma$ as follows:

1. $p^{0}=p, w_{0}=w_{0}^{*}$ is any nested p-witness.
2. For $i<\gamma, p^{i+1}$ is the L^{A}-least extension q of p^{i} such that $q \upharpoonright \gamma=p \upharpoonright \gamma$, for some $q^{*} \in D_{i}, q^{*} \downarrow \gamma=\bar{q}_{i}, \alpha\left(q^{*}\right)=\alpha(q), q^{*} \mid \operatorname{Card} \cap[\gamma, \alpha(q)]=$ $q \upharpoonright$ Card $\cap[\gamma, \alpha(q)], L_{\alpha(q)}^{A}$ is Σ_{n}-elementary in L^{A} and $X \cap \mu \in \mathcal{A}^{q_{\mu}}$ for each $\mu \in$ Card $\cap[\gamma, \alpha(q)]$ not in $\operatorname{supp}\left(w_{i}^{*}\right)$. (If no such q exists, then set $p^{i+1}=p^{i}$.) w_{i+1} is the L^{A}-least nested p^{i+1}-witness extending w_{i} and w_{i+1}^{*} is obtained from w_{i+1} by choosing $w_{i+1}^{*}(\alpha)$ to be a CUB subset C of $w_{i+1}(\alpha)$ with the property that $\left|p_{\beta}^{i+1}\right|=\left|p_{\beta}^{i}\right|, p_{\beta}^{i+1^{*}}=p_{\beta}^{i}{ }^{*}$ for $\beta \in\left(\bar{\alpha}, \bar{\alpha}_{D_{\alpha}}^{+}\right]$and $\bar{\alpha} \in C$, for each α in the domain of w_{i+1}.
3. For limit $\lambda \leq \gamma, p^{\lambda}$ is the condition q defined by: $\alpha(q)=\bigcup_{i<\lambda} \alpha\left(p^{i}\right)$, $q(\beta)=p(\beta)$ for $\beta \in \operatorname{Card} \cap \gamma, q_{\beta}=\bigcup_{i<\lambda} p_{\beta}^{i}$ above $\max \left\{\left|E(q \upharpoonright \kappa(E))_{\beta}\right| \mid\right.$ $E \in T$ overlaps $\beta\}$ and q_{β} agrees with $E(q \upharpoonright \kappa(E))_{\beta}$ below $\left|E(q \upharpoonright \kappa(E))_{\beta}\right|$ when $E \in T$ overlaps β for $\beta \in \operatorname{Card} \cap[\gamma, \alpha(q)), q_{\beta}^{*}=\bigcup_{i<\lambda} p_{\beta}^{i *}$ for $\beta \in$ Card $\cap[\gamma, \alpha(q))$ and $\left(q_{\alpha(q)}, q_{\alpha(q)}^{*}\right)=(\emptyset, \emptyset)$.

In 3. above, we must verify that q is a condition. First we show that q_{β} belongs to S_{β} and $q \upharpoonright \beta$ belongs to $\mathcal{A}^{q_{\beta}}$ for $\beta \in \operatorname{Card} \cap[\gamma, \alpha(q))$. Let $H(\beta)$
denote the Σ_{n+1} Skolem hull of β in $L_{\alpha(q)}^{A}$ and $\bar{H}(\beta)$ its transitive collapse. By the definition of the p^{i} 's, $\left|q_{\beta}\right|$ either is β^{+}of $\bar{H}(\beta)$ or belongs to the support of w_{i}^{*} for sufficiently large i. In the former case, as $q \upharpoonright \beta^{+}$is definable over $\bar{H}(\beta)$, which by Condensation (b) is an initial segment of $\mathcal{A}^{q_{\beta}}$, it follows that q_{β} belongs to S_{β} and $q \upharpoonright \beta$ belongs to $\mathcal{A}^{q_{\beta}}$. In the latter case, the nestedness of the w_{i} 's implies that β belongs to a fixed left-open interval I contained in the support of w_{i}^{*} for sufficiently large i; thus for some $i_{0} \in \omega,\left|p_{\bar{\beta}}^{i}\right|$ is constant for $i \geq i_{0}$, not only for $\bar{\beta}=\beta$, but for all sufficiently large $\bar{\beta}<\beta$ (if β is a limit cardinal). Thus q_{β} belongs to S_{β} and $q \upharpoonright \beta$ belongs to $\mathcal{A}^{q_{\beta}}$ as these properties hold for $p^{i_{0}}$.

The Preservation Requirement clearly holds for q, given the way q was defined and the fact that it holds for each p^{i}. The Restraint Requirement holds for q : Suppose that μ is inaccessible in $\mathcal{A}^{q_{\mu}}, \mu \in \operatorname{Card} \cap(\gamma, \alpha(q))$ and for $i<\lambda$ let C^{i} be the least CUB subset of μ in $\mathcal{A}^{p_{\mu}^{i}}$ such that $p_{\bar{\mu}}^{i *}=\emptyset$ for sufficiently large $\bar{\mu} \in C^{i}$. Then $\bigcap\left\{C^{i} \mid i<\lambda\right\}$ witnesses the Restraint Requirement for q at μ, either because the C^{i} 's stabilise or because q_{μ} has length μ^{+}of $\bar{H}(\mu)$ and hence $\left\langle C^{i} \mid i<\lambda\right\rangle$ belongs to $\mathcal{A}^{q_{\mu}}$. By a similar argument, $q \leq p$ satisfies $(*)_{3}$ from the definition of extension.

Now note that q_{γ} reduces each D_{i} below γ because if $r \leq q$ then we may choose $s \leq r$ in D_{i}, and $j<\gamma$ such that $\left(D_{i}, s \downarrow \gamma\right.$) equals (D_{j}^{*}, \bar{q}_{j}), in which case p^{j+1} is chosen so that for some $s^{*}, \alpha\left(s^{*}\right)=\alpha\left(p^{j+1}\right), p^{j+1}$ agrees with s^{*} on Card $\cap\left[\gamma, \alpha\left(p^{j+1}\right)\right]$; but then using the p-stability of γ, r has the extension $s^{*} \upharpoonright \gamma \cup r \upharpoonright[\gamma, \alpha(r)]$, which agrees with r on $[\gamma, \alpha(r)]$ and which belongs to D_{i}, as it extends s^{*}.
(c) Again by Lemma 7 we may assume that γ is p-stable. As a final segment of D_{γ} is contained in C^{T}, it follows that sufficiently large elements of D_{γ} are p-stable as well. Suppose that δ belongs to D_{γ} and all elements of D_{γ} above δ are p-stable. Then by the construction of case (b), we may extend p to q so that q reduces each $D_{i}, i<\left(\delta_{D_{\gamma}}^{+}\right)^{+}$below $\left(\delta_{D_{\gamma}}^{+}\right)^{+}$and $q \upharpoonright\left(\delta_{D_{\gamma}}^{+}\right)^{+}=p \upharpoonright\left(\delta_{D_{\gamma}}^{+}\right)^{+}$. Note that by the definition of extension, there is a CUB $D \subseteq \gamma$ such that $\left|q_{\beta}\right|=\left|p_{\beta}\right|, q_{\beta}^{*}=p_{\beta}^{*}$ for $\beta \in \operatorname{Card} \cap\left(\bar{\gamma}, \bar{\gamma}_{D_{\gamma}}^{+}\right], \bar{\gamma} \in D$. By repeating this successively for each such δ, we obtain a γ-sequence of conditions p^{i} with associated CUB subsets of γ whose limit q reduces D_{i} below $\left(\bar{\gamma}_{D_{\gamma}}^{+}\right)^{+}$for $\bar{\gamma}$ in the diagonal intersection D of the associated CUB sets. Note that $q \leq p$ obeys $(*)_{3}$ from the definition of extension since $\left|q_{\beta}\right|=\left|p_{\beta}\right|, q_{\beta}^{*}=p_{\beta}^{*}$ for $\beta \in\left(\bar{\gamma}, \bar{\gamma}_{D}^{+}\right], \bar{\gamma} \in D$.
(d) This is just like (c), except to each condition p^{i} we associate a CUB subset of γ consisting of cardinals which are p^{i}-Woodin, and for $\bar{\gamma}$ in the diagonal intersection of these sets, reduce D_{i} below $\bar{\gamma}^{+}$for $i<\bar{\gamma}^{+}$.

This completes the proof of (a)-(d) when $\{p\}$ is Σ_{n}-definable in L^{A} and the defining parameter for the sequence of D_{i} 's is 0 . Now argue as follows: If the Lemma fails, then choose n so that it fails for some condition p and some Σ_{n}-definable sequence of D_{i} 's. Let (p, x) be least so that the Lemma fails for p and some sequence of D_{i} 's which is Σ_{n}-definable with parameter x. Then the pair (p, x) is Σ_{m}-definable for some $m>n$. For this $m,\{p\}$ is Σ_{m}-definable and the the Lemma fails for a sequence of D_{i} 's which is $\Sigma_{m^{-}}$ definable with parameter 0 . This contradicts what has been proven above.

Immediate consequences of this Lemma are that P preserves cofinalities as well as the axioms of ZFC, and every CUB subset of an inaccessible cardinal in a P-generic extension contains one in V (see Proposition 4.14 of [1]). If G is P-generic over V then by Lemma $8, V[G]=V\left[G_{\omega}\right]$ where G_{ω} can be viewed as a subset of ω_{1}^{V}. Then by a simple ccc almost disjoint coding, G_{ω} can be further coded into $V[R]$ for some real R. As G_{ω} is not set-generic over V, neither is R.

Finally we show that the extenders E in T are preserved, i.e., that the canonical embedding $E^{*}: V \rightarrow \mathrm{Ult}_{E}$ can be extended to an elementary embedding $V[G] \rightarrow \mathrm{Ult}_{E}\left[G^{*}\right]$ for P-generic G. Thus we must define G^{*} which is P^{*}-generic over Ult_{E}, where $P^{*}=E^{*}[P]$, and which contains each condition $E^{*}(p), p \in G$. By the Preservation Requirement, any two conditions of the form $E^{*}(p) \upharpoonright\left[\gamma, \alpha\left(E^{*}(p)\right)\right] \cup q \upharpoonright \gamma$ are compatible for $p, q \in G$, $\gamma \in$ Card $\cap \alpha(E)^{+}$, using the fact that when α is overlapped by E, α_{E}^{*} contains $E(p)_{\alpha}^{*}$. Let H^{*} denote the class of all such conditions. We claim that $G^{*}=\left\{q \in P^{*} \mid q\right.$ is extended by some element of $\left.H^{*}\right\}$ is the desired P^{*}-generic. Indeed suppose that $D^{*} \subseteq P^{*}$ is open dense, and is definable over Ult_{E} via some formula φ with parameter x. Then x can be written in the form $E^{*}(f)(a)$ where $f: L_{\kappa}^{A} \rightarrow L^{A}, \kappa=$ crit E and a is an element of $L_{\alpha(E)}^{A}$. Now enumerate the elements of L_{κ}^{A} in L^{A}-increasing order as a sequence $\left\langle b_{i} \mid i<\kappa\right\rangle$ and let D_{i} for $i<\kappa$ be defined in L^{A} by the formula φ, using parameter $f\left(b_{i}\right)$. We may assume that D_{i} is open dense on
P for each $i<\kappa$. By Density Reduction for P there exists $p \in G$ which reduces D_{i} below $\left(\bar{\kappa}_{D_{\kappa}}^{+}\right)^{+}$for each $i<\left(\bar{\kappa}_{D_{\kappa}}^{+}\right)^{+}$, for CUB-many $\bar{\kappa}<\kappa$. Thus $E^{*}(p) \in H^{*}$ reduces D_{i}^{*} below $\left(\kappa_{E\left(D_{\kappa}\right)}^{+}\right)^{+}$for each $i<\left(\kappa_{E\left(D_{\kappa}\right)}^{+}\right)^{+}$, where if $E\left(\left\langle b_{i} \mid i<\kappa\right\rangle\right)=\left\langle a_{i} \mid i<E(\kappa)\right\rangle, D_{i}^{*}$ is defined in Ult_{E} via φ using the parameter $E^{*}(f)\left(a_{i}\right)$. But $a=a_{i}$ for some $i<\alpha(E)$ and therefore $E^{*}(p)$ reduces the original D^{*} below $\left(\kappa_{E\left(D_{k}\right)}^{+}\right)^{+}=\alpha(E)$ for such an i. Then the genericity of G implies that $\{q \upharpoonright \alpha(E) \mid q \in G\}$ generically codes $t=E^{*}(p)_{\alpha(E)}$ over \mathcal{A}^{t} in the sense of Ult_{E} (using the fact that E belongs to \mathcal{A}^{\natural}; see Lemma 4.8 of [1]). Therefore H^{*} intersects D^{*}. We have shown that G^{*} intersects all Ult_{E}-definable open dense classes on P^{*}, and is therefore P^{*}-generic over Ult_{E}, as desired.

References

[1] Friedman, S., Fine structure and class forcing, de Gruyter Series in Logic and its Applications, Vol. 3, 2000.
[2] Jensen, R., A new fine structure theory for higher core models, handwritten notes, Berlin, 1997.
[3] Martin, D.A. and Steel, J., A proof of projective determinacy, J. Amer. Math. Soc., 2(1), pp. 71-125, 1989.
[4] Neeman, I., Inner models in the region of Woodin limits of Woodin cardinals, Ann. Pure Appl. Logic 116 (1-3), pp. 67-155.
[5] Schimmerling, E. and Zeman, M., Square in Core Models, Bulletin of Symbolic Logic 7, pp. 305-314, 2001.
[6] Steel, J., The core model iterability problem, Lecture Notes in Logic 8, Springer-Verlag, 1996.

