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As we see in the Godel Lectures, by applying logical reasoning to precisely
defined concepts, mathematics leads to remarkable results, both of theoretical
and practical importance. But what is the nature of mathematical reasoning?
What does it mean for a statement of mathematics to “follow logically” from
others? Is it possible that the techniques of mathematics are powerful enough
to answer all questions which can be formulated in mathematical terms? And
can we be sure that mathematics will not lead us to contradictions?

Surprisingly, Godel showed that these questions about mathematical re-
asoning, sometimes called questions of metamathematics, can be formulated
as questions within mathematics itself and be given definitive answers!

To give some idea of how Go6del turned metamathematics into mathema-
tics, consider Aristotelian Logic. Here we have letters A,B,C ..., which stand
for statements which can be either true or false, and we have logical connec-
tives, such as AND, OR, NOT and IMPLIES. If someone says to you “If you
give me 20 Euro I will not invite your girlfriend for coffee”, he is saying A
IMPLIES (NOT B), a statement of Aritotelian Logic, where A = “You give
me 20 Euro” and B — “I will invite your girlfriend for coffee”. Is your friend
telling the truth? Well, either you give your friend 20 Euro or you do not,
that is, either A is true or false. Similarly, either B is true or false. There
are therefore a total of four possible ways of assigning a value T (true) or
F (false) to A and B. In only one case is your friend not telling the truth,
namely, the case where both A and B are true. So we see that your friend’s
statement follows logically from the statement NOT (A AND B). In a similar
way, we can determine in finitely-many steps if any particular statement of
Aristotelian Logic follows logically from finitely-many other statements, by
listing all possible ways of assigning T or F to the letters A,B,C, ... which
makes the other statements all true, and checking if the given statement in
each case also comes out true.

Mathematics requires more than Aristotelian Logic. Indeed even a simple
statement like “Everybody loves somebody sometime” requires more. We can
express this statement as

ALL p EXISTS q EXISTS t (PERSON(p) AND PERSON (q) AND TIME(t)
AND LOVE(p,q,t))



where

ALL = “for all”, EXISTS = “there exists”, PERSON(x) = “x is a person”,
TIME(t) = “t is a point in time” and LOVE(p,q,t) = “p loves q at time t".

This kind of logic is called Predicate Logic, and is sufficient to express not
only the statement above, but in fact any statement of mathematics. There
is also a definition of “follows logically” for Predicate Logic, which instead of
simple truth values T, F makes use of interpretations or models.

We come now to the key question, crucial for our understanding of ma-
thematical proof: As for Aristotelian Logic, can we determine if a particular
statement of Predicate Logic follows logically from other statements? If the
answer is YES, then this means that with a single method or algorithm, we
can decide whether or not an arbitrary mathematical statement follows from
any given set of axioms. Now there is a special set of axioms for mathematics,
the Zermelo-Fraenkel axioms for set theory, which are sufficient to represent
the techniques used in mathematics. Thus we may have reduced mathematics
to simple calculation: To determine whether or not the Goldbach Conjecture
can be proved, we simply apply our universal algorithm to determine whether
or not it follows logically from the Zermelo-Fraenkel axioms!

Godel showed that the answer to our question is “almost” YES, but in
fact NO. The idea is the following: Statements of mathematics can be ex-
pressed in Predicate Logic, where they can be expressed as a finite sequence
of symbols. By coding each symbol by a natural number 0,1,2,... we can
therefore think of each statement as a finite sequence of natural numbers.
And finite sequences of natural numbers can then be coded by single natural
numbers: for example, the sequence (3,2,6,1,2) can be coded as 23325971112
The result is that each statement of mathematics now has a code number or
Godel number in the natural numbers (turning metamathematics into ma-
thematics). A consequence of Godel’s work is that there is a precise definition
of what it means for a set of natural numbers to be recursive, which means
that with an algorithm we can test whether or not a given natural number
belongs to the set. Similarly, there is a precise definition of recursively enu-
merable, which means that the elements of the set can be listed by some
algorithm. Gédel’s fundamental result is this: Suppose that S is a system of
axioms, like Zermelo-Fraenkel, which is sufficient to carry out the calculati-
ons of elementary arithmetic. Then the set of Gddel numbers of statements
of mathematics which follow from the axioms of S is recursively enumerable
but not recursive. Applying this to the Zermelo-Fraenkel system, we see that



there is an algorithm to list the theorems of mathematics (Godel’s Comple-
teness Theorem), but none to decide whether or not a given statement is
provable within mathematics.

This work also implies that mathematics is fundamentally incomplete,
in the sense that there will always be statements of mathematics which we
cannot prove or disprove (Godel’s First Incompleteness Theorem). Otherwise
there would be an algorithm to decide whether or not a given statement A
is provable within mathematics, as we can list the theorems of mathematics
by an algorithm and wait until either the given statement A or its negation
(NOT A) appears in this list; in the former case A is a theorem and the
latter case it is not. A finer analysis of Godel’s proof results in his Second
Incompleteness Theorem, which says that the metamathematical statement
that mathematics is free of contradiction, which by Gédel’s work can also be
expressed mathematically, is not a theorem of mathematics.

Godel’s best-known work, on incompleteness, is negative in character: it
tells us what mathematics cannot do. Despite its unparalleled significance
for the history and foundations of mathematics, its impact on modern ma-
thematics is limited. Indeed, as the Godel Lectures show, the phenomenal
progress of mathematics has not been significantly hindered by Gdédel’s in-
completeness results.

Of greater importance for modern mathematics are Godel’s positive re-
sults, expressed by his Completeness Theorem and his later work in set theo-
ry. The Completeness Theorem shows that a notion which is on the surface
highly abstract, the notion of logical implication, is in fact captured by the
much more concrete notion of recursively enumerable set. This is the proto-
type of a wide variety of completeness results throughout mathematics. G6-
del’s work in set theory is surely his greatest mathematical contribution, and
its impact continues to be felt today. After demonstrating the fundamental
incompleteness of mathematics, Godel provided us with an important pro-
posal for how to overcome it: First, he isolated a particular interpretation of
the Zermelo-Fraenkel axioms for mathematics, called the universe L of con-
structible sets, and provided techniques for determining what is true in this
universe. Then he proposed the addition of new axioms of “large infinity” to
the axioms of mathematics, suggesting that these axioms may resolve many
questions that are not answered otherwise. Subsequent work has verified the
correctness of Godel’s proposal, as it has developed universes similar to Go-
del’s universe of constructible sets which satisfy his axioms of large infinity,



and which therefore go a long way toward resolving the failures of comple-
teness exhibited by the usual axioms for mathematics. There is even now the
hope that the axioms of large infinity, together with the assumption that the
universe of sets resembles Godel’s constructible universe, will be sufficient to
answer all meaningful questions of modern mathematics.
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