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THE JOURNAL OF SYMBOLIC LoGIc 
Volume 50, Number 4, Dec. 1985 

A GUIDE TO "CODING THE UNIVERSE" BY 
BELLER, JENSEN, WELCH 

SY D. FRIEDMAN 

In the wake of Silver's breakthrough on the Singular Cardinals Problem (Silver 
[74]) followed one of the landmark results in set theory, Jensen's Covering Lemma 
(Devlin-Jensen [74]): If 0# does not exist then for every uncountable x c ORD 
there exists a constructible Y - X, card(Y) = card(X). Thus it is fair to say that in 
the absence of large cardinals, V is "close to L". 

It is natural to ask, as did Solovay, if we can fairly interpret the phrase "close to L" 
to mean "generic over L". For example, if V = L[a], a c o and if O# does not exist 
then is V a-generic over L for some partial ordering e L? Notice that an 
affirmative answer implies that in the absence of 0#, no real can "code" a proper 
class of information. 

Jensen's Coding Theorem provides a negative answer to Solovay's question, in a 
striking way: Any class can be "coded" by a real without introducing 0'. More 
precisely, if A c ORD then there is a forcing b definable over <L[A], A > such that 
Y 1 V = L[a], a c w, A is definable from a. Moreover if O# 0 LEA] then Y 1fO# 
does not exist. Now as any M l ZFC can be generically extended to a model of the 
form L [A] (without introducing 0#) we obtain: For any <M, A> I ZFC (that is, M 
l ZFC and M obeys Replacement for formulas mentioning A as a predicate) there is 
an <M, A >-definable forcing 7 such that 9 If- V = L[a], a c w, <M, A> is definable 
from a. Moreover if O# 0 M then b If O# does not exist. 

The book Coding the Universe by Beller, Jensen, Welch appeared in 1982 (London 
Mathematical Society Lecture Note Series No. 47) and provides the first published 
proof of this result, as well as some of its applications. It is safe to say that the proof 
of the Coding Theorem is one of the hardest in all of set theory. The technical 
considerations are extremely elaborate and the proof draws heavily on Jensen's 
profound fine structure theory. In light of this the authors must be congratulated for 
putting this work into published form. 

Nonetheless we feel that it would be helpful to readers of Coding the Universe to 
have available an outline of the proof which provides some further explanation and 
motivation for the many intricate definitions and constructions in the book. It is the 
purpose of this article to present such an outline and to also describe some 
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simplifications that can be made, including a description of how Jensen's split into 
cases "'0 E M" and "'0 0 M" can be eliminated. 

In Part I we outline Jensen's proof, in the case where O does not belong to the 
ground model M. Part II then discusses the book itself, in view of the outline of Part 
I. At the end of Part II is a list of some misprints. We conclude in Part III with 
a discussion of simplifications that can be made in Jensen's proof and of an 
alternative method of dealing with the key distributivity lemma which obviates the 
need for considering the existence of O0 in the ground model. 

Part I. An outline of Jensen's proof. We are given a model <M, A> of ZFC, and 
our goal is to construct an <M, A>-definable be such that be I- V = L[a], a c co, A 
is definable from a. We assume that M = LEA], H(K)M = LK[A] for infinite M- 
cardinals K (where H(K) = {x I card (transitive closure of x) < K}. There is no loss 
in this assumption as otherwise we can generically extend <M, A> to have this 
property (via an <M, A>-definable forcing -see Easton [70]). 

The construction of b is based on almost disjoint forcing (Jensen-Solovay [68]). 
Suppose B c K + +. The forcing RB codes B by a subset G of K +: To each 4 < K + + we 
"canonically" assign bc K + and we arrange that 4 E B *-+ G r) bX is bounded in K 

+ 

(G is almost disjoint from be). A condition is a pair (r, F) where r: [K, Irn) 1 2, IJr <K + 

and F c {bXI | cE B}, card(r) < K. Define (rl, ?-)< (r2, F2) iff r1 D r2, r rr2, b4 e r2 

r1 n b, c Ir21, where 71 = 1 | r1( () = 1}. Then a generic set G can be identified 
with a function G: [K, K+) -+2. Moreover (given a mild hypothesis on the b,'s) we 
have 4 E B +-+ b4 is almost disjoint from G = {a I G(q) = 1}. 

There is a similar type of coding QB when K + is replaced by a limit cardinal A, B 
c A . We require that {b, < i+ } form a "quasi-scale": Each b4 is an unbounded 
subset of A; and, for all b c A, if b r 6 + is bounded in ( + for all ( < A then b r be is 
bounded in A for all sufficiently large 4 < A+. A condition in QB is r = <r, I 6 E 

Card rn A> where rb: [, I'rb) -+ 2, Irb I < 3+ and: for all 4 < A+, if r 0 LMJ[B r fl 
then 4 E B + (U Y6 ) is almost disjoint from b, (jiX will be defined below). Set r1 < r2 
iff r1, r2. A generic set can be identified with a function G: A -+2 and (with a mild 
hypothesis on the b4's): 4 E B iff b, is almost disjoint from G = Jq I G(q) = 1}. 

Now we want in both of these cases that B E LEG]. This is clear provided that 
the sequence of bu's belongs to LEG]. Suppose that B c o+ has the property: 

(*)~~~~~ a+ < o+ L[B n fl I= Card(4) < ac. 

Then (setting o = K+ for RB, o = A for QB) we can choose b4 canonically in 
L[B n f]; indeed b4 0 L4+1[B n f] where j,u = least u > sup,< 4ft4, such that 
LM [B n fl 0 ZF- A Card(4) < or. Now to see that B e L[G] we argue that we can 
identify B r) 4, b4 by a simultaneous induction on 4 < Lc+. 

We shall need one more forcing, for the purpose of arranging (*). Again suppose B 
c oc. The forcing FB adds B' c ox+ so that B' obeys (*), B E L[B']. For technical 
reasons we cannot arrange B E L[B'] by requiring il E B ?-+ E B'; instead we 
arrange il E B iff B' is almost disjoint from up = {<Ky> I y < o }.Thus a condition 

in FB is r: [oc, IrI) -+2, IrI < o + such that 4 < I I-+ Ln[r t , B r) o] # Card(4) < oc. 

And, we define r1 < r2 iff r1, r2 and q < Jr21, Q E B -+ sup(r1 m u,7) < nr2I. We can 
identify a generic set with G: [a, oc+) -+ 2, and then G has the following properties: 
For q < a', e E B iff G is almost disjoint from us, G obeys (*). Thus G serves as the 
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The forcings RB, QB and FB are the main ingredients in Jensen coding. There are 
two main properties to verify in order to justify their use: 

Extendibility. (a) For RB this says that given (r, F), 40 E B, 4 1 0 B and q < K + there 
exists (s,s) < (r, F), Is I ? q, bi0o e s-b,1 n (1-- 7) # 0. This is easily verified given 
that: F c {be I 4 < K + + }, Card(F) < K, b<0o F -+ bio is almost disjoint from Ur. 

(b) For QB this says that given r and 4 < A' there exists s < r, s 0 LJB r -]. 
This is nontrivial and is proved by induction on 4. The successor step is easy given 
that: b E LJ[B r- f], b r- 6' bounded in 6' for all 6 <A -i b is almost disjoint from 
b<. The limit case requires the existence of a closed unbounded C c 4 such that 
C r- 4' E Le, [B r- f'] for all 4' < 4, ordertype(C) < A. Such a C can be obtained 
from the proof of E1, in L[B], given that B satisfies (*). Now if A is singular in 
L4B r- f] then we can assume that 60 = ordertype (C) <6 cE Card n A. Given 
r, choose canonically by induction r 2 r1 2 r2 2 ... such that ri 0 LAJB r- 4J 
and ri t 6 = r r 6 for all i, where C = 140, .. Then 

r = U ri E L, [B 4A 
i<A 

for limit A by the hypothesis on C. Thus s' = r6o < r, s' 0 L,, [B n f'] for 4' < , 
si E LJ[B r- f. We can now obtain the desired s < s' by arguing as in the 

successor case. A similar argument works when A is inaccessible, this time using a 
normal sequence <6i I i < A> cofinal in A and requiring ri +1 r bi = ri r bi. 

(c) For FB this says that given r, q E In - B and q < a + there exists s < r, IsI > q, 
s n u170 5 Irl. This is easily verified. 

The Extendibility properties of these forcings justify the claim that the cor- 
responding generic sets do in fact code B; in (c) we also have the property (*). 
What remains to be seen is that these forcings preserve cardinals. The essential 
property to establish for this is distributivity. 

DEFINITION. g is T-distributive if given p E B and a sequence <Di I i < [> of dense 
open subsets of B there exists q < p, q E (i Di 

i is K-CC if any collection of pairwise incompatible elements of B (that is any 
antichain in I) has cardinality less than K. 

The utility of these properties is that T-distributive forcings preserve cardinals 
<+ and K-CC forcings preserve cardinals ? K. 

Distributivity. (a) RB is easily seen to be K-distributive (in fact "K-closed") and K + +- 

CC. So RB preserves cardinals. 
(b) For r E QB, r = <r, I c E Card r- a> and T E Card r- A define (r), = <r, ? <5> 

and (r)t = <r. I 6 < T>. Then QB QB x QT where QB = {(r) |I rcE QB} and QT = 

(r) re QB}. Now we claim that Q' is T-distributive: Indeed, suppose r e QB, 

<Di I i < T> are dense open on Q' and let X0 = least X < LA+, [B] such that A c X 
and r, <Di I i < T>, B e X. Then define X,+ 1 = least X -< L; ++ [B], Xi E X; XA 
= Ui< Xi for limit A < T. Define ro = r.ri+1 = least r < ri_ r E Di, r 0 Xi, rA 

= infi<Ari for limit AL. Then ri E Let[B rc ci] where di = Xi m A+. It is now easy to 
verify that rA is a condition for limit a, as by induction r k "codes" B rc , and this is all 
that we have to check, since r,, E L, _[B r- X]. 

Now as QB - QB x Qr and QjB is r-distributive we can argue that successors of 
accessible cardinals are preserved: If T < A is a successor cardinal then Qr trivially 
has the ti-CC and so QB X Qr preserves +. If T < i is singular then QB must 
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preserve T+ as otherwise T+ attains some cofinality ( < r and this is impossible as 
QB QB, x Q` and QB+ is 6-distributive, Q` is T-CC. 

Finally successors of inaccessibles are dealt with using: 
Diagonal Distributivity. Suppose D, is dense open in Q' forr XE Card r- A. Then for 

all r E QR there exists s < r such that (s), E D, for all X E Card r A. 
The proof of Diagonal Distributivity is very similar to the proof of r- 

distributivity for Q'. There is a similar (more trivial) statement with A replaced by 
limit X < A and QR replaced by Qt. 

(c) The forcing FR is -cdistributive. The proof is similar to the -c-distributivity 
proof for Q'. Cardinal preservation now follows as FR trivially is a + + -CC. 

Jensen coding. The idea for coding A c ORD by a real is to build a forcing b such 
that if G is a-generic then: 

1) G r- A is QG ' ' i+ )-generic for limit cardinals A. 
2) G n K+ is RG" [K+,K+ +) n FA K+-generic for successor cardinals K+. 

We are thinking here of co as a successor cardinal: 0+ = co. Clearly if we can 
arrange 1) and 2) then A is coded by the real G r co; for, using it we can decode to 
obtain G q col, G q w02,. .., G q wo.,... and thus all of G. And, by 2) we have that 
for q< K+, ,cE A iff G r) K+ is almost disjoint from us n K+. So G n o codes A. 

We must see how to put the RB, QR, FR forcings together to arrange 1) and 2). The 
first step to take is to avoid conflict between these three codings; namely, we choose 

b, for K+ < 4 < K++ to be a subset of u0 = {K<,y> Iy E ORD}, we choose be for 
A < 4 < A+, A limit to be a subset of u1 = {<1,y> I y E ORD} and in the definition 
of the FR forcing we replace us by u' = { <2, y> I y E us}. (Despite this change in FR 

we continue to use the same notation FR for the last forcing.) 
Now if we were merely coding A c (On + 1 then it is clear how to proceed: we can 

simply iterate codings of A into An C (Onw An into An - 1 C (On - 15 ... 5 Al into AO c co. 
But as soon as we go beyong wo. we must perform these successor codings 
simultaneously, not simply as an iteration. 

Let us simply denote FAIK+ by SK (to coincide with Jensen's notation). As before 
we inductively define [yr for r E SK by: [yr = least y > sup {r l 41 I < I ry } such that 

L,[r,A n K] = ZF- A Card(IrI) < K. Let l = LJjr,A n K]. Then R' (K SUC- 

cessor) and Q? (K limit) are the natural analogues of RB and QB defined over S/r for 
coding r into a subset of K. In particular we will have "codes" b, C K for each r E SK. 

What follows is a reasonable "first-approximation" to the desired forcing b. Note 
that we have not been explicit about our definition of the "codes" br. (We will say 
more in our discussion of Extendibility below.) In what follows we use the notation 

br = {br,O < br,1 < } c KforreSK. 

A Jensen condition p assigns to each K (in an initial segment of {0} u {Infinite 
Cardinals} = Card) a pair (PK- PK) such that: 

(a) pKESK, 
(b) (p S P) 6RP-+ 

(c) S/p, l= c singular r = <Py I Y < K> E QP-; that is, r E slp, and for all ' < IPKI 
such that r 0 p, tV: e E- iff bp, t, is almost disjoint from U y<KPy = r, and 

(d) p/,K l= K inaccessible- r = <py I Y < K> E dp,, and for all 4 < IPKI such that r 

d t e: 1 
E K iff {j I bpK 4,j E 7} is nonstationary in SpKrp (r = UY<KKPY) 

We denote the collection of Jensen conditions by 9. Also for s E SK, ??S denotes 
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the collection of Jensen conditions p,, Dom(p) = Card n K such that p u {<s, 4>} 
e A. Lastly for -r E Card: MT = {(p), = p P [z, oc) I P E g1, = {(p)I e ESg}. 

Note the change from "almost disjoint" to "nonstationary" in clause (d). We will 
explain this in our discussion of Extendibility below. Of course by "nonstationary in 

cRP4p we mean "disjoint from a closed, unbounded C E p.,,". 
Before discussing the sets br, r E SKI we list the key properties of Jensen coding: 
Extendibility. Suppose X c Card is thin (X r) K is nonstationary for inaccessible 

K). Suppose y < X, < y+ for y E X. Then for all p E E there is q < p such that 
IqI ? XforallyeX. 

Distributivity. (i) by = {(r) = r t [r, oc) I r E Y} is -cdistributive. 
(ii) K inaccessible --+ is K-Diagonally Distributive; that is, if D, is dense open on 

9, for each X E X c K, X thin -+ {p I (p) e D, for X E X} is dense. 
Factoring. Let - be an infinite cardinal, let Go: [-c, -c -+ 2 denote the generic for go 

and set 9AG` = U {9r I r c Go}. Then b and bi * 9AG` are equivalent forcings (written 
9 - be * begs), in the sense that they yield the same generic extensions. 

Chain Condition. r a successor cardinal -+ 9 has the -r . 
Using these properties we can establish the Coding Theorem. Using factoring, 

Distributivity (i) and Chain Condition we can show that successors of accessible 
cardinals are preserved; Distributivity (ii) then handles successors of inaccessibles 
and thus all cardinals are preserved (as in our discussion of cardinal preservation for 
QB). Replacement holds in 9?-generic extensions thanks to distributivity (the 
definability of forcing is an easy consequence of distributivity and factoring). 
Finally, Extendibility implies that A is indeed coded by a real. 

Now as with the building blocks the nontrivial properties to establish are 
Extendibility and Distributivity. 

Extendibility. Clearly it suffices to establish the Extendibility statement for 9s, s 
E SK, K limit (where X, < ,, | y E X> E s1s and X is thin in as). It is worthwhile to first 
consider the special case: K is singular in ?sstip,, where p E g' is given as in the 
statement of Extendibility and IP1 = least X, P E s A. A natural approach here is the 
following: Choose a short cofinal sequence <Ki I i < AK> of cardinals below K and 
given p, define p = PO 2 Pi ? ... successively by pi+, = least q < pi such that 
(q)Ki <(p.)Ki in -4pK,, I qyI ? 4 for y e X n Ki. Thus the idea here is to obtain 
extendibility for K by inductively using extendibility for the Ki'S. 

We quickly run into trouble with this, however: there is a serious difficulty in 
guaranteeing that at a limit stage 2, {pi I i < A} can be extended to a condition pA. The 
reason is that we cannot assume that <(pi)KA I i <2> belongs to 

dpK, 
and therefore 

we must certainly extend PK, in defining PAA. For such an extension to be reasonable 
it must be possible to code PAK 

- PKA into KA (as in (c) of the definition of A) using 
the codes br for r ' PAKA. But the union of the domains of the (pi)KA, i < 2, may 
already include many such br, and thus we have little freedom in defining P.".. In 
particular we do not know if we can do this in such a way as to have a member of SKS, 
due to the committments already made by the (pi)KAIS. 

The way out of this is to keep the "coding areas" for the different Ki'S disjoint, and 
to only extend pi at stage i < 2 on the "coding area" for Ki. For example, by fine 
structure theory we can canonically assign closed unbounded sets CK C Card to 
singular K so that K' E Lim(CK) -CK = CK n K'. Then when defining br, r E SKI we 
make sure that br C {<1, <AKIY>> I Y E ORD}, where AK = ordertype(CK). Thus the 
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"coding areas" for K' and K are disjoint if K' E Lim(CK). If K' is a successor element of 
CK then we at least get that the coding areas for K' and K intersect in a bounded subset 
of K'; this is good enough as the coding at K' iS unaffected by changes on a bounded 
subset of K'. 

Now when defining pi +1 first we only extend pi on the coding area for Ki (where Ko 

< K1 < enumerates Lim(Ck)), so as to code some q = Pi+lKi PKi such that 
jqj ? X~i and X q Ki, I4 | e X q Ki> E q (we also insist that (q, PK) < p(Ki)). Then 
all conflicts between these different codings are avoided and we have no trouble 
defining PAKC for limit A. Now we would like to fill in the pi's to bona fide conditions, 
incorporating the coding information we have just described. Note however that 
though K(Pi)K| i <> E Awe do not necessarily have <(pi)K i <AK> E ap, X 

which is necessary if we want { Pi I < AK} to be extendible to a condition. Thus the 
preceding process is repeated co times, successively extending the PAK,'s so as to 
absorb the necessary coding information. We can then fill in to a condition 
q < p. 

At the end of this process we have: X n K>, <47 | e X n K>> e 
dqcA IqK1i 

2 
XKl 

and U {qK' I K' < KA} completely codes q K (for limit A). Now Extendibility can be 
easily finished off as our original approach now works: extend q = q0 ? q1 ? ... 

successively by induction so that I qi + 4 l ,, for y E X r) Ki. Then r < p is as desired, 
where r(y) = U {qi(y) I i < 2K} 

There are two more points worth mentioning here. We only concerned ourselves 
with possible conflicts between the codings at the different Ki'S. Could the coding at 
Ki conflict seriously with the coding at some y 0 {Ki I i < AK}? This is prevented by 
arranging that br,rE SK, be included in U{[K+jKi++)Ii<2k}; thus if To 7{Ki 

< AK} then the coding at K or any of the Ki's affects the coding at y only on a 
bounded subset of y. Also this requirement conveniently guarantees that the codings 
do not place any restrictions on our definition of q K for limit A. 

The second point is more crucial. We implicitly assumed when we extended PKto 

qKA 
that the method of coding qK - PKA into KA was the "singular cardinal method"; 

that is, we assumed that Jdpcs F KA is singular. Otherwise we have lost control over 
the codings at the KA'S and may have trouble keeping them from conflicting with 
each other. Jensen's way of dealing with this is to impose an added restriction on the 
definition of b: 

(e) For K limit, K E Dom(p) let lp [ KI = least 4(p [ K E IPc 4). (Thus I p [KI < IPK I.) 

If SlpKrIprKI = SIKI i=i K singular, COf(K) > co then there exists a CUB CE IprKI 
such that 3 E D -+ Ipr5I l= 3 singular, D n b E -PPr6I. 

This clause guarantees that we can work with possibly a subsequence <K I i < 

A*2> of the Ki's and then know at limit stages A that dpc* I= K* is singular. Actually, 
an inductive argument then shows that we can work with the original Ki-sequence 

We now turn to the case when K iS inaccessible in 41PI. Then the above strategy 
cannot work as we do not have the singular sequences CK, (of distinct ordertypes) to 
keep the codings disjoint at some CUB collection of cardinals Ki below K. Instead, 
Jensen exploits the inaccessibility of K to obtain a CUB set of Ki'S less than K where 
the coding looks the same as at K. Now we cannot literally have this property, as our 
given p E gs may satisfy: sI PI 

= 4SIP I l= K regular, dPc, I= K' singular for all limit K' 

<K. This leads Jensen to "stratify" as1 as follows: For i < w we set y 4 = sup {/is t 



1008 SY D. FRIEDMAN 

Also ys = y' = sup{4l i < w}. Correspondingly let s/1 = 
Li[s,A 

q K], Ss 
= L,,S[s, A q K]. With this change in the definition of Us we now obtain the 
following: If ads l= K regular and p E 9s, then for all sufficiently large i < co there 
exists CUB Ci c K, Ci E sl, such that a Ipri I 3 regular for 3 E Ci. (As before, -4t 
denotes a~~'p6', where 4 -least 4', p 3 Ea?,.) 

This strongly suggests the following change in the coding at inaccessibles: Instead 
of just having a single code br for r E SK when 4r l= K inaccessible, we should have w- 
many codes bo, bl,. . . ,where br e dr+ 1. Then the coding should be (see clause (d)): 4 

E PK iff for sufficiently large i < w, {j bIK:r,j E 7} is nonstationary in sIp,,,K. (As 
before, <b',j Ij < K> is the increasing enumeration of bk.) 

Now let us take a look at extendibility for bs. First suppose that VIPI = Us (I0I 
=Isl) and that for a CUB C E ds, 3 E C - lp,1 = Ip f 31. Then there is a CUB D E sls 
such that c E D 1p61 = Ip 1, <l,KI T E X n 3>, D n q E c p,,X n q E 3sp, is thin in 
salp. Thus by induction we can successively extend p ? P1 2 P2 2 .. so that 
LPi+ 1y, I 2 4 for y E X n ci, where <HE I i < K> is the increasing enumeration of D. 
There is no difficulty in defining pA for limit 2 as <pi I i < A> E slpI, and Ip f a I 
- Ipa .l Finally define q(Ty) = U {pi(v) I i < K}J q is as desired. 

Thus the only problem with extendibility is arranging JpJ = ISt and the existence 
of a CUB C E SIP, such that c E C -+ p 1 3- lp61. The latter property cannot be 
"arranged" but must instead be made part of the definition of ??. The final clause in 
the definition of BP is: 

(f) If si'p/ l= K inaccessible then there exists CUB C E 'IPtKI such that 3 E C 
PIP f I = 1P6 hA5= 0. 
The need for "pn = 0" will become clear in a moment. Now suppose p E 9s and 

we want to extend p to q, IqI = Ist. This is done by induction on Ist. First consider the 
case Ist = 4 + 1, and we can assume that Ip = I . We can choose io < w large enough 
so that pe Es:. Now for i ? io we can define CUB sets Di E asl so that c E Di 

l t 6 =a = hs't n r. Thus 3 E Di implies that 3 "reflects" the 
coding of s(4) onto the bit,, j < i (we assume that il < i2 -> Di, Di2). Now define 
<qi I io < i> inductively by: qiO = p, and qi+ 1 is obtained from qi by coding s(4) onto 
{b't4,jIj c Di}. The codes bob are defined so that bsrij c [j+,j+ +), so qi+1 differs 
from qi only on U{6+,+ +) I 6 Di}. 

It is easy to see that we can define qi's in gst4 as above. Now suppose y E D 
= niDi. (K may be singular in a, so D may be empty!) Then s(4) has been coded on 
bp for all i > iox so we can define q. D p7, q7(IpI7) = s(4) at such y and then q,(Ipl) is 
correctly coded (for all sufficiently large i) on bitlp, . Thus the desired q is defined by: 
q(T) = U{qi(T)I i ? io} for y 0 D, q(TY) = (p.U{<lpIs(f)>},p,) for y E D. Now it is 
important to have that y E D -,, = 0 in order to know that (q,,, f-) < (ply, f-). 

Note that we cannot hope for more than "nonstationary" in clause (d), as we are 
careful to alter qi in the definition of qi+ 1 only on U { [36 3 + +) 3 e E Di}. This enables 
one to show that these changes do not significantly affect the codings at limit 
cardinals y E D. 

We also point out that clause (e) must be verified for the condition q. This is in 
some sense the nastiest part of extendibility and requires a deep fine structure 
lemma. Note that though SIp, l= y is regular for y E D it may happen that Sq, v T is 
singular. Thus clause (e) becomes a problem exactly at the transition from 
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inaccessible to singular. There is a similar verification required in the distributivity 
argument at inaccessibles. 

We will not say much about the case Ist limit. In this case p is extended repeatedly 
to p ? q0 ? q1 , where the IqiI's are cofinal in Ist, by induction. In fact the IqjI's are 
chosen from a very canonical sequence through I sI in order to facilitate the 
verification that qA is a condition for limit A; especially, to check clause (e). 

Distributivity. The key idea in the proof of the Coding Theorem appears in the 
distributivity argument, which we now describe. Thus suppose -c E Card, p E be and 
<Di I i < c> is an L[A]-definable sequence of dense open subsets of b,. We want to 
find q<p, q E niDi. If we naively extend p to P1 ?P2 2 so that pi+, E Di we have 
the problem of defining pz for limit A: though pi, E S. for i < 2 it need not be the case 
that q = U {pi I i < A} E S. The main problem is to guarantee that <pi [ v I i < A> 
E cq (q "codes" <pi [ v I i < A>). 

The strategy for dealing with these problems is as follows. Any construction of the 
pi's, i < A, for the purpose of meeting the dense sets Di will of course be definable over 
the full ground model <LEA],A>; but we could equally well work over some 
(sufficiently) elementary submodel Y c <LEA], A> large enough to contain p and a 
parameter for defining <Di I i < ->. Now choose Y" to be the least such with the 
property that y c Y The construction of the pi's inside by = transitive collapse (Yr) 
yields a sequence < p* I i < A> with the property that p* I'y = pi ['y for all i < A. 

The essential trick is to arrange that q = U {P | ' < 2} code a generic class for 
(Y)bV = "Yr in the sense of br". For then, q (together with A n y) codes (A)b" and 
hence the entire model by. As <p* I i < A> is definable over b", q codes <p* I i < A> 
and hence <pi [ v I i < A>. 

Now in actual fact it will not be possible to work with a fixed Y" but instead a 
sequence < Y? I i < c>, for y ? -. We will then alternate the construction of the YY's 
and the pi's in such a way that pi E Y.+ 1. We must design our choice of the pi's so as 
to guarantee for limit 2 that q, = U {p i i < A} codes a generic over b = collapse 
Y,. Let b = b and o: b Y . 

Now it is clear which generic G c b we want q, to code: For any b-cardinal 3 ? y 
let Gu* = U {pi** I i < A}, where p* = a- '(pi) (thus G. = qY). Then we want qY to code 
G = U {Gas I e E (b - Card) - y}. Now for qY to code G we do not actually need full 
genericity for G over (gy)b; thanks to the fact that I p I['d - Ip *I for limit b- 
cardinals 3* (and hence pi* 

' 
3* codes p,) it would suffice to have that for successor 

b-cardinals 3*: G n 3* is g,6*-generic over s?1* . Or, applying a, we want: If D 
E + r) Y. is dense open on gi+ for some 3 > y and i < y, then (p )+ extends 
an element of D for some] < A (where (p)6+ = pj I[[y, 3]). 

Now that we have the genericity requirement in the proper form it is possible to 
describe Jensen's strategy for meeting it. Assume for the moment that we already 
know that Bgr is y-distributive in -1 for r E Sir+, 3 E Card. Then we can choose pi+1 
so that (Pf+ ) extends an element of D for all dense open D on gi.5+,D 
E4 n YY by y-distributivity. Choose 3 to be bi > sup(Dom pi). Then at stage A 
we have: For all i < 2, if D E rl1 r Y? is dense open on APi-t+ then (pj)t extends 
an element of D for some < A. Now Jensen also arranges that if D E Girl, r E So +, is 
dense open on gr then for any q > A, s E So+ we have that {p Ec 9Y I (p)6+ extends an 
element of D} is also dense open on 9. Thus in fact we have achieved: For any D 
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E al q + Y7 which is dense open on yP6+ there exists j < A so that (pi)+ extends 
an element of D. Thus q. = U piy I i < Al codes a generic on (iy)b, and we have 

achieved our goal. 
But we have only dealt with one cardinal y. To prove distributivity we actually 

need to handle all y e Dom(pi) at stage i + 1. Suppose - < be Dom(pi) and that 6 is 
a successor cardinal. An application of the 6-distributivity of g4i+ in s//i+ can be 
used to show that the collection of rCE gP6+ with the following property is dense 
below (pi)": For all dense open D ongPi6+, D e l Y either r e D or for some 

iq < 6 {q e q (r)e+ E D} is dense open on yr,,+. A further argument using 
distributivity and induction establishes the same claim for limit 6. Finally one last 
argument is needed to show that the collection of r E b. such that (r)6+ has the above 
property simultaneously for a thin set of 6 E Dom(pi) is dense below pi. 

We have now arrived at the definition of the auxiliary dense sets Zi. Thus 
Dom(f) is thin and for each b E Dom(f), f(b) c ai' has cardinality <b. And zPi 
consists of all p E b. such that for all 6 E Dom(f), all D E f(6) which are dense open 
on gPi6+ either (p)`+ meets D or for some q < 6, {q E All I q u (p)a+ E D} is dense 
open on OPts+. 

Now 'for the construction of the pi's: Choose pi+, e ZP, < pi, where fi(b) 
=S n VY if 6 EYin; fi(b) undefined otherwise. Then Dom(ji) is thin for each i. 
Also choose pi+1 so that ai+1 = U Dom(pi+,) > U Yai (where aci = U Dom(pi)). 

Now we claim that qy = U {P i I i < Al codes a generic for (gy)bS for all y E 
U {Dom(pi) I i < A}. The point is that any dense set D onyPi6 + in Y7 was either met 
by (Pi + )5 + or was "reduced" to the problem of meeting some dense set on 9Pi + 1n+ 

for some q < 6. (This is true for i large enough so that y e Dom(pi).) Thus eventually 
D must be met by some (pj)c+ ,j < A, else we have an infinite descending sequence 
6 > ton > i, > ..- of cardinals! 

We should recall that in the above argument we have assumed y-distributivity of 
yr for r e So+ and y < 6. Now a similar argument to the above can be used to 
establish this, using distributivity for forcings s, s E So+ for q < 6. Thus distributiv- 
ity for gr , r e Sy +, is established by induction on 6, simultaneously with the assertion 
that the appropriate ZP's are dense. 

There are some differences between the arguments for the cases where 6 is 
inaccessible as opposed to where 6 is singular. In the inaccessible case we run into the 
troublesome situation of having to verify clause (e), as in Extendibility. Again a key 
fine structure lemma is required and the argument is somewhat lengthy. In the 
singular case of uncountable cofinality, Jensen does not directly establish the density 
of the required ZP's but instead works with a canonical sequence 60 < 61 <... 

cofinal in 6 and establishes the density of ZP, where f' = f (Dom(f) -{60, 
6, }). This suffices to carry out the distributivity argument. Of course once 
distributivity is established the original ZP's can be shown to be dense; there does 
not appear to be a direct argument for this however. 

We now come to an extremely important point concerning Jensen's distributivity 
argument for pr , r E S6 +, y < 6. In analogy to the distributivity proof for gy we 
arrange that qy codes a generic G for (g,*)b where b = by and 7c: b Yy -< sls, r* 
- i- 1(r). However, the use of the ?P's does not actually establish the genericity of 
G over b but only the genericity of G [ 6' for 6' < * = V 1'(6) and the genericity of 
G [[6*, 6*+). (In the distributivity proof for Ad the former statement suffices as 6* 
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can be thought of as b n ORD; thus genericity over b is obtained.) In particular we 
do not have enough genericity to argue that b c b [qI = L,, [A q 7y, qj] = 3 * is 
cardinal, where ,u' = b q ORD. This is a problem, for we need the latter property to 
show that Ii' < IqY and hence that b e 4q, q. e Sy. 

Jensen deals with this difficulty by altering the definition of S7. This alteration is 
the fundamental reason why the argument splits into two cases, depending upon 
whether or not O' belongs to the ground model LEA]. Jensen's requirement for r 
e S. (which succeeds in the - 0 ' case) is that not only do we have L [r [ 4, A n y] 
I= Card(4) < y for 4 < Irn, but in fact Lj Er [ 4, A n y] I Card(4) < y for some q 
< (4 ?)L. And, by definition, IPr is large enough so that -r = Lr[r, A q y] F "r e S.". 
We can now argue that It' < /q, in the distributivity proof, as any q such that 
Lj Eq7, A n r] I= Card(I q.I ) < y must be at least 3* (by the genericity of G [ 3' for 3' 
< *) and therefore Yqy > A', as L,, I= 3* is a cardinal >y. 

This ends our outline of Jensen's proof, in the - 0 ' case. In Part III below we will 
outline an approach which overcomes the genericity problems discussed above and 
therefore provides a uniform proof of the Coding Theorem which makes no 
distinction concerning the existence of O0 in the ground model. 

Part II. A guide to the book. In light of the above outline we can now explain the 
details of the exposition provided in Coding the Universe. Such an explanation is 
most greatly needed in Chapters 2 and 3, the heart of the proof. 

In Chapter 1 the "building blocks" are discussed rather thoroughly. Most readers 
with a basic knowledge of forcing should find this chapter very readable. Some 
important definitions are missing however (though they can sometimes be found in 
the "Notational Index"): For example, "y-Distributive", "K-CC" (defined in Part I of 
this review), "Predense" (X c BP is predense if { p e P I p < some q e X} is dense 
open) and "ZF -" (= ZF without Power Set). Lemma 1.8 on p. 23 constitutes what I 
referred to as "Diagonal Distributivity" in Part I and is used to show that successors 
of inaccessibles are preserved by the coding at limit cardinals. (This same form of 
distributivity appears again as Theorem 3.2 on p. 74.) The readers should be warned 
of a gap in the extendibility proof for the limit coding on p. 21, where it is assumed 
that I = {infinite cardinals < 3} has ordertype /3 (see the definition of the qj's). 
However, this gap is easy to fill, as if I has ordertype <ft then /3 is singular and we 
can assume that e = ordertype(C) is less then fl; so define qj = q0 for all i < e, where 
Co < / is some cardinal greater than e. 

Lastly, we mention that Chapter 1 discusses the "generic codes" be on p. 12; these 
are introduced so as to obtain the "persistence" property: If s e SK, K a successor 
cardinal and G c r + codes a generic for 9,, then G also codes a generic for 9' (over 

18'). Another way to say this is that if X e S4 is predense on 9' then X is also 
predense on 9.A. This property is useful in the distributivity argument (as we 
mentioned in Part I), though is not really necessary. (We will say more about this in 
our discussion of Chapter 3.) 

Chapter 2 begins the heart of the proof and includes the definition of BP together 
with a proof of Extendibility. 

In a preliminary step a class of Cohen sets is added to improve the ground model 
<M,A> to a model <M',A'> obeying the "global axiom of choice" and O at 
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of the universe.) The Cohen sets are also used to show that large cardinal properties 
are preserved by the forcing. 

On the bottom of p. 27 begins the definition of Sa; clause (1) corresponds to our 
FA ' a+ from Part I. Clause (2) is added for the reason that we discussed in the outline 
of the Distributivity argument. This is the main use of - 0 #; the assumption a ? w)2 
in (2) is required for the reasons discussed on p. 17. 

As we mentioned in Part I, it is necessary to define an infinite sequence of Mup's 
rather than just a single MP in order to properly deal with coding at inaccessibles. 
Clause (b) on p. 28 is needed to show that MP is large enough in the distributivity 
argument. Clause (c) says that 4' obeys the covering lemma; this is used to prove 
that MP is big enough so that _p contains the canonical cofinal sequence Ca when 4p 

a singular (see Remark (1) on p. 43). Clause (d) is useful because it implies that a?' 
is < a-closed when a is a successor cardinal (see Fact 2.4.4 on p. 34). This in turn is 
used in the proof of Lemma 2.7. (Note the assertion "<v, IpI> E 9," in the proof of 
Lemma 1.3.) 

Lemmas 2.3, 2.4 are the "fine-structure" lemmas. Lemma 2.3 provides the [1- 
sequences used in establishing extendibility at limit cardinals; clause (v) of Lemma 
2.3 and Lemma 2.4 are needed in the verifications of what we referred to as "clause 
(e)" in Part I. Thus they are needed to verify that the extendibility and distributivity 
constructions are sufficiently "canonical". Lemma 2.5 is the "generic codes" lemma 
and, as already explained, is needed for Lemma 2.11. 

Note that in the definition of the successor coding R' on p. 34 that A n a' is not 
coded "directly" but instead "almost disjointly" using the VO's. (We also did this in 
defining FA a) The reason is this: Suppose s E Sa, a inaccessible and 7t: T 
~ M -< s, s E M, T transitive. Suppose also that M n a = a < a so that t(a') = a. 
Then we would like to say that S'= - '(s) belongs to Sa. (This comes up in the 
extendibility argument at inaccessibles. Also see Lemma 2.12 on p. 48, the 
Collapsing Lemma.) If we coded A "directly", say q E A <-* s(q) = 1, then we would 
need to know that - 1'(A n Isi) = A n - 1 (Isi), which puts too strong a restriction 
on A. Instead Jensen codes A "almost disjointly" and therefore the verification that 
T e S, is easy. 

The limit coding is discussed in ?2.5. As explained in the discussion of 
Extendibility in Part I, it is important to define pn E (f3+, f3+ +) (on p. 41) rather than 
(fB,/+); also, on p. 42, P is used to keep the codings at different ye's disjoint. 
(Actually the use of I CA I in that definition is not actually necessary. For, p.., codes the 
model -4I, + which contains (the collapse of) C0 and satisfies that "(collapse of) fi is 
the largest cardinal". Thus if fi' E C, and s' E S, , then the codings of s and s' are 
already disjoint without the insertion of ICI and IC, I, as the ps ya's code models 
which contain (the collapse of) C,0 and satisfy that "(collapse of) fi' is the largest 
cardinal"; and IC 1 0 ICfl0) 

It is important to know that the singular sequence C, belongs to Us when s 
E S0l, -S l= fi is singular. This is asserted in Remark (1) on p. 43, but it should be 
pointed out that this is a use of clause (c) (in the definition of uP+ 1) on p. 28. In fact 
one can assert more: C, e L,[ EA q /3]. 

We arrive at the definition of gs on pp. 43-44. Clause (ii) on p. 44 corresponds to 
clause (f) of Part I and clause (iv) to (e) of Part I. 
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The Collapsing Lemma on p. 48 is used repeatedly in the extendibility proof at 
inaccessibles; it was used implicitly in the outline of that proof in Part I. The 
"smoothness" condition I p [y = Ipy I (for CUB-many y) is seen to be essential here to 
argue that Pa = m - '(s) (where n = 72n ). 

The Extendibility argument of ?2.7 proceeds as was outlined in Part I; one should 
note the use of clause (iv) (in the definition of Y') in Case 2 on p. 53. The singular 
extendibility proof in Lemma 2.14.3 makes use of Ad, that "part" of bi which refers 
only to the coding area for ft. As far as I can tell the middle paragraph on p. 55 (lines 
8, 9, 10 from the bottom) is irrelevant and can be safely ignored. 

The extendibility proof at inaccessibles begins on p. 59 and continues through the 
end of Chapter 2. The crucial verification is clause (d) on p. 63 (for Case 1). It should 
be mentioned here that there is a crucial use of "Pa, = 0" here to verify that 
(dqu qa) < (Pja pa) in Rib+ . This justifies the inclusion of "j = 0" in clause (ii) of the 
definition of 9s. (Note that Pa, corresponds to what we called - in Part I.) 

This concludes our discussion of Chapter 2. There are a number of misprints in 
this chapter which we list (together with misprints from other chapters) at the end of 
this part. 

The key distributivity proof is to be found in Chapter 3. Distributivity is first 
established for bps sE S ,:+, and then afterwards (?3.7) for Id. This is because the 
latter argument depends upon the density of the sets ZIP ZIP, (see p. 116) which 
depends in turn on the distributivity of forcings of the form As, s e S, +. (Incidentally 
z aP when Dom(p) = Card n [Eu a] should be defined as 2:'P, where 
s = 0-member of S,,+.) 

There are two forms of distributivity for s s e S,,+, when a is inaccessible: 
ordinary -distributivity in adl (Theorem 3.1) and "diagonal distributivity" in d4 
(Theorem 3.2). The latter is needed for cardinal preservation at c+, as well as to 
establish the density of Zf's. Lemmas 3.4, 3.8 and 3.10 show progressively that Zzs.P is 
dense in bi for p e Ys and f e F(p), assuming distributivity for bs. This is necessary 
as the argument for the density of ZIfP without assuming distributivity (Lemma 3.12 
in the inaccessible case) makes use of the density of Zg's based at smaller cardinals. 
Thus distributivity and Zf-density are established by a double induction. 

Lemma 3.5 is the Factoring property for 9s and is in fact a straightforward 
consequence of: Ads - M * 9A6 for any cardinal 5 E (-I, a). (Incidentally, this 
equivalence holds as Ad is isomorphic to the dense subset of , * 9'6 consisting of 
all ((p)A, [(p)6]) for p E A, where [x] for x e us is the canonical term denoting x. 
Now Factoring follows from the usual Product Lemma.) In particular the restriction 
to successor cardinals in (b) is superfluous. We might point out, however, that the 

'+-CC of g16 does require that 3 is a successor cardinal as well as the property that 
Do is _6-generic over sl' for p e GD1 (where D is gs-generic over sl ,s e Sa, D 
- D n [E, 6), D' = D n [Eb' )-this is Corollary 3.5.1). The latter is a consequence 
of the use of the "generic codes" of Lemma 2.5, as was Lemma 2.11. 

The reader must be warned that throughout Chapter 3 (and the rest of the book as 
well) the authors consistently use the word "dense" when they mean "open dense". 
The only exceptions that I detected are near the definitions of A* on pp. 73 and 1 15. 
Of course this is not a serious error; however, many results, such as Theorem 3.2, are 
false as stated without this change. More importantly, the failure to make the 
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distinction hides the use of Lemma 2.11 in a multitude of places. For example, 
though Lemma 3.4 is fine as stated provided the z1's are assumed open dense, 
Lemma 2.11 is required to assert that A is open dense. The openness of A is used in 
the proof of Lemma 3.8 where it is asserted on the last line of p. 81 that A* is dense 
(which requires the openness of A*, i < K). Similarly the fact that ZsP is open is a 
consequence of Lemma 2.11. 

Actually these uses of Lemma 2.11 (and hence the need for generic codes) can be 
eliminated by observing that the proof of Lemma 3.4 really shows that A contains 
an open dense set. This can be used to show that the Zf's contain open dense sets, 
and this is enough to carry out the distributivity proof. (Alternatively: replace all 
occurrences of "j(q)y, is dense in Ay+" by "qy- lkA(G)v+ is dense in 9'y"', where G 

denotes the generic for US). 
Lemmas 3.6 and 3.7 are the cardinal-preservation and coding lemma. The use of 

Lemma 2.11 in the proof of 3.6 is eliminable as we can assume that A P is predense in 
gGD1 

The use of the Zf's to establish distributivity is presented in ?3.4. As noted in Part 
I, the original condition po is extended to Po P P2 ... , where pi+ 1 E ZsfPi and 

Dom(Li) is thin. Note that conditions can be lengthened at a thin set of cardinals by 
clause (d) of the Extension Lemma 2.14. (Extendibility on a set which is not thin is 
impossible as it would contradict the Collapsing Lemma 2.12.) 

The key assertions in the distributivity proof are the genericity claims: Lemmas 
3.16 and 3.17. Note that it is not asserted that D' is (9s<)b-generic over b; this is the 
lack of full genericity alluded to in Part I. Accordingly one cannot assert 
"LM [A n y, py] I= 4 is a cardinal" in the proof of Lemma 3.22(b) on p. 98, and thus 
the need for the altered definition of S,. The bulk of the verification that p is a 
condition is in checking clause (iv) in the definition of SPy when Spy y is singular. 
Full use of Lemma 2.4 is required. 

The proof of Theorem 3.2 is along similar lines. The singular case of uncountable 
cofinality presents one new problem: the analogue of Lemma 3.12 asserting the 
density of the Zf's is not immediately established due to the lack of a CUB subset of 
a which is disjoint from the domain of f So instead Jensen works essentially with f' 
= f [ (Dom(f) - C.) and argues that this suffices. An important point is the Fact on 
p. 114 (used in the proof of Lemma 3.40.7), which asserts that A r) y can recover the 
collapse of Q, It is for the proof of this Fact that Jensen defined pl so that _4S 
satisfies the Covering Lemma. 

Chapter 3 ends with the distributivity proof for b,. There are no surprises here, 
given the techniques used in establishing distributivity for Us, 

All the work is now complete for the proof of the Coding Theorem. The first 
section of Chapter 4 ties everything together, showing that Y IF ZFC A V = L[R] 
for some R c w, A is definable from R. Jensen uses the property "G 9-generic 
- G r) ba+ is ba + -generic over s +" to show that IH_ is definable. (Actually this is 
unnecessary: Suppose r is a successor cardinal, M -< <L, + + [A], A n I + + >,z c M, 

card(M) = r. Let ic: T M, T transitive. Then T[D,] I= ADr is - +-CC, whenever D, 
c [a, (a +)T) is (9,)T-generic over T. Moreover any predense X c 9"D5 X E T [D,], is 
also predense on SiAS for any s E ST, D, c s, as in that case X E L(,+)T[A] < Lo+ [A] 
and there exists p e GD, such that L(,+)T[A] 1 X is predense in As for all s p. Thus 
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by the Truth Lemma we can write: p ft0 iff for all T as above, rank(0) <, up 
e L,[A] we have that p [-4 in (9?)T.) 

??4.2 and 4.3 verify the large cardinal preservation properties of b?. One must 
verify that the preliminary forcing which adds a class of Cohen sets does preserve 
these properties; the proof of that is given in the Appendix. 

?4.4 provides an example of a class-generic real in L[O#] which is not set-generic 
(over L). This is a very interesting construction and serves as the motivation for 
much of Chapter 5. The idea here is to build a real R which generically over L codes a 
class of Cohen sets. This is done by making R 9-generic over <L, A >, where A = 0 
and bA is the Jensen coding of A. 

The construction here is very much in the style of the distributivity argument in 
that a sequence p0 ? p' ? is built (with the aid of 0#) so that p'"' E ZP' for an 
appropriate fi. This time at the limit stage, pCo meets all constructible predense sets! 
Roughly speaking, the pi's are not single conditions but amenable classes such that 
pi r a is a condition for each o E Card. At stage i + 1, pi+ 1 is chosen so that pi+ v + 
"reduces" all predense sets D E 9P'+ which can be defined using ordinals < v and an 
i-tuple of indiscernibles > v. An indiscernibility argument shows that the resulting 
pi+1 is amenable. As any predense D E 9P'o can be defined in the above way for 
some i, it follows that pCo meets all predense D E L. Actually for technical reasons it is 
necessary to work first with the forcing 9,, and then later code the resulting ??0,- 
generic D_, c wl into a real. 

Chapter 5 further explores the relationship between 0V and class forcing over L. 
Three notions of "class-generic over L" are defined and Solovay's conjecture is 
resurrected in the form "If 0V ? L[a], a c w, then a is class-generic over L". 

Beller shows that 0V itself is not "medium class-generic" over L, leaving "weak 
class-generic" as an open question. He then makes a study of the genericity 
properties of reals produced by the method of ?4.4; note that the reals built there 
were only p-generic for predense sets in L, not necessarily for L-definable classes. 
Belier shows that these reals can be made a-generic for L-definable classes (though 
they need not be) and must be "medium class-generic". 

On p. 168 Beller suggests an approach to the new version of Solovay's conjecture 
in the form of the question: Assuming -0', is every real a set-generic over some 
(proper) inner model L [b] of L [a]? The answer is no, for there can exist a real a and 
an amenable A c ORD such that n E a +-+ A, = {a c <n, c> E A} is definable with 
parameters in L [a] (a-+ An is A 2-definable with parameters in L [a]). Then if a ? L [b] 
there must exist n such that n E a yet An is not z12-definable with parameters in L [b], 
and this property persists in set-generic extensions of L[b]. 

?5.2 is devoted to answering a question of Sacks: If L, is a countable model of ZF 
then is there an a c w such that Lf[a] I= ZF and L,,[x] ZF for all o < /3? The 
answer is yes, and this was shown independently by R. David [82]. David [83] 
actually proved a stronger result: If A is a Z1 class of admissibles such that L-Card 
c A then there is an generic real R such that the R-admissibles all belong to A. This 
is stronger, for it is not difficult to intitially extend L to L[RO] so that L[R0]-Card 
c {fl L[RO] k ZF} (see ?5.2.3); then apply David's result over L[RO]. 

Finally, ?5.3 explores the general question of when 0V can build generic objects 
for L-definable forcings. For example, if K is an indiscernible then there exists a 
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Cohen subset of K in L[O#] iff cof(K) = a) in L[O#]. Other sufficient conditions for 
generic existence in L[0#] are proved for certain types of class forcings as well. 

Chapter 6 presents a very beautiful treatment of fine structure theory, providing a 
new and extremely natural construction of [l-sequences. (The considerations of this 
chapter are also key to the study of higher-gap morasses.) An important category of 
maps is defined on p. 203 between structures of the form L,[a], v p.r. closed, L,[a] 
1 There is a largest uncountable cardinal, v not a cardinal in L[a]. There the "El- 
sequence" at L,[a] is just {U Range(f [ v') If: Lv,[a'] -+ L,[a] belongs to the 
category} (see the top of p. 210). What follows is a very thorough analysis of these 
sequences, culminating in Lemma 6.30 which asserts that if an ordinal occurs in a 
LI-sequence then it arises as U Range (f [ v') for a highly canonical f This is the key 
to showing the coherence property for these sequences. The latter part of the chapter 
reworks the same theory but for models L,[a] where v is singular in L[a]. This is 
needed to establish Lemma 2.4, asserting the existing of canonical singular 
sequences. 

The "generic codes" are built in Chapter 7 with the aid of a "quasi-morass", a 
morass-like structure where the levels are not linear but instead form a tree. The 
construction of a quasi-morass from the fl-sequences of Chapter 6 is exactly like 
the usual construction of a morass from "coherent" Ml-sequences. 

Jensen's proof of the Coding Theorem without the hypothesis " - 0 appears in 
Chapter 8. As is pointed out there, the key obstacle to overcome is the use of 2) in the 
definition of Sa to guarantee that u: is "large enough". The approach taken in 
Chapter 8 is to define 41 so as to contain the # of (A r) a) u s. This enables Jensen 
to obtain b E -41 at the key step in the distributivity argument, as b E L[A n a, py] 
and /1 contains the # of (A rn ox) u py, it also contains H(y +)L[A P" I and hence b. 
Another approach is outlined in Part III below. 

The book ends, with Chapter 9 which contains results about coding "over 0"'. 
Thus Jensen starts with a model M and an iterable elementary embedding: M -* M 
and then codes M by a real a in such a way that extends toj: L[a] -+ L[a]. Thus a# 
exists; in addition Jensen can control the canonical a-indiscernibles so that they 
agree eventually with the iteration points of j. 

This completes our discussion of the book's exposition. As mentioned earlier 
there are a number of misprints; we list here some of the more confusing ones (line 
-N refers to the Nth line from the bottom of the page). 

Page 14: y should be y+ (line - 4). 
Page 17: q should be 5 (line - 5), and 5 should be 5' (line - 3). 
Page 32: It' should be cs (fifth line of Remark 2). 
Page 43: E should be 0 in Remark 2, both times. 
Page 47: a should be a + in the statement of Lemma 2.11. 
Page 50: Lemma 2.14(d) should require that < y I y E X> belong to .1s. 
Page 51: Xsj should be Xa and X' should be X _ (line 7), and CY E X should be 

,Y ?X (line 13). 
Page 54: fi' E Cp should be /3' 0 Cp (line 3). 
Page 56: q(/3) should be q(fli) (line - 8), and * should be 6 + (line - 7). 
Page 61: In the line before Claim 2, [ should be A. 

Page 63: The second E in line -3 should be 4. 
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Page 69: s E S* should be Y E S* (line - 12), and s6 should be sj (line - 11) 
Page 77: y+ should be '+ (line 1). 
Page 81: a should be a:' (line - 3). 
Page 148: p" should be p'v+ in the definition of fiv. 
Page 159: Delete "L-definable" from the first line of the proof of Lemma 5.3. 
Page 203: The domain of f should be JA in line -2. 

Part III. Simplifications and an alternate approach. Jensen's proof can be 
simplified in a number of ways. Some of these have already been discussed in Part II. 
We now review these simplifications and also describe an approach different from 
Chapter 8 for eliminating the " - 0"" hypothesis. 

a) The requirement that a4s obey the covering lemma (clause (c), p. 28) can be 
dropped. (This was pointed out on p. 257.) Jensen's uses of it were as follows: First, in 
defining the limit coding (pp. 42-43) Jensen uses singular sequences Cf from L, and 
then it is important to know (Remark (1) on p. 43) that Cp e 4, if s E Sp, -1s P= / is 
singular. Second, the requirement is used to prove the Fact on p. 114 which is needed 
to "recover the generic from pr" in the distributivity proof at singular cardinals of 
uncountable cofinality. The way around this is to, instead of the Cel's, use the Dp's 
from Lemma 2.4 (on p. 31). Thus when coding p(c), sp l= /1 singular one should use 
the CUB set Dprgp given by the lemma. The necessary coherence properties are 
guaranteed by 2.4(iii). And, a different proof of the Fact is: Show by induction on 4 

< a* that (A n y) u p, can recover D' n c; then if Q = least 4 such that 53?Dj y 
= a' is singular, it follows that D> E 4s', where p' = characteristic function of D' on 
[a', 4) (and lp' and D>, are obtained by relativizing the definitions of 1dp and Dp to b). 
It follows that D>, = collapse of DP (where p c pA,,,, IPI = f4) belongs to 
L,, [A n y, pr]. We are assuming here Claim (i) for i < p, but this can be proved by 
induction on i, using the above argument to handle the case of i being a limit ordinal. 

b) Lemma 2.5 (the "generic codes") can be omitted. This lemma was used 
implicitly in the discussion of the Zf's, but as we pointed out in Part II this can be 
avoided by noticing that while Zf need no longer be open without Lemma 2.11 
(which depends heavily on "generic codes") it still contains a dense open set of 
conditions. (Also the more minor use of Corollary 3.5.1 in the proof Lemma 4.1 is 
easily eliminated; see the discussion in Part II.) 

Thus the preliminary step of adding the Cohen sets (p. 26), as well as the 
Appendix, are needed only for preserving large cardinal properties. 

c) We now come to the most difficult clause to eliminate: The special requirement 
on elements of S., clause 2) on pp. 27-28 (together with (b) on p. 28). It is desirable to 
eliminate this clause as it is the key use of "' . 0#". 

Our proposed change is best motivated by reexamining the distributivity 
argument: Note that a key point was that py coded only a "partially" generic G c b; 
this is because there was no way to show that G r) a' generically coded G n [a', cx*). 
We redefine the forcing js so as to guarantee at this point in the proof that G is fully 
generic over b. 

To guarantee the full genericity of G we redefine bs so that in some sense the Zf's 
are dense "by design" at limit cardinals. Specifically, let Y" = U {bue I 4 < ISI}. 
Then br's c S.4 Also for s E S, define v, = the largest p.r. closed v such that 
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L, 
[A rn a, s] I= /,to is the largest cardinal (if there is such a v > ,p ; otherwise 

v, 
= u?). 

Then we require the following for p E As, IPI = SI: If D E - = LVS[A r ca, s] is 
predense on 9'<s then for some /3 < o, DVA is predense on 9PO (where D(P) = {q 

E vpf I q u (P)p < some element of D}). Once the c-distributivity of 9<s in Qs is 
established, it follows that the above holds not just for some f, < a but tor all pJ < o. 
(including limit /3. This requirement also implies that gPD is +ff-CC for D E Se, fl 
limit). 

Now let us see what this does for us in the distributivity proof. As before we have 
that py codes G and G n 5' is generic for each b-cardinal 5' < 0'. But now the 
genericity of G rn L* follows as any predense D e La+ [G rn [o%, o*), A' r- o<] has 
been "reduced" by the definition of the conditions; thus the fact that G meets D 
follows from the genericity of G r /3' for /3' < o'. Now we can argue that in fact G is 
(fully) generic over b. 

Of course genericity over b is not enough to know that ,uPY is "large enough". We 
must also know the distributivity of (!Y,)b. Now in the the argument below we 
actually prove distributivity for g <s in ds for s E Sa, a limit; so if Isi = I + 1 we can 
assume distributivity of 9`<S and thus we have in the distributivity proof: up, > p" 
- collapse of oSr<. This is sufficient to argue that '1py is large enough. If Isl = A limit 
then distributivity follows by induction. 

The extendibility argument must now be different than Jensen's, as the "pre- 
density reduction" requirement on conditions adds a new difficulty. 

To illustrate the method consider the special case of extending p E 9As, IpI = X, to 
q Ei ks, IqI = 4 + 1 = IsI. We assume that s E Saas k= #c singular, cof(o) > co and 
that < s is f-distributive in d for -r E Card n a. The main part of the proof is to 
show that if f E sl, = d<: is such that f(y) < yT for y < a then p can.be extended to 
q Ege so that Iq, I 2 f(y) for all y. 

This is done by "induction" on f Specifically, for each /3 < u:= and n E co 
consider the f = f: defined by f(y) = Hq y T', where H' = 2n Skolem hull of y 

inside JAV [A q a, s []. Then we show the above statement by induction on (/3, n), 
ordered lexicographically, and simultaneously show the density of USE. 

When n = 1 we can use induction to successively extend p to Pi 2 P2 2 ... so that 

q = U i pi is as desired. One must choose an "approximation" to J, [A q a, s [ d] and 
correspondingly an approximation f 1o5 

1 
l (/3 limit) or f a, f p2, .. (/3 = A + 1) to 

f; then Pi + l is chosen so as to "handle" the ith term f1 of this approximation and also 
to belong to Xf r The argument that p, is a condition for limit A is like Jensen's, 
except now we have full genericity of the G coded by pz, and we use the distributivity 
of the collapse of b/`<str. 

When n = k + 1 > 1 the argument complexities. Roughly, we want to argue as 
follows: Let To < yT < be the limit points of the canonical cofinal sequence DS, Q 
below a. Let MO = JO [AO n COO0 So] be the transitive collapse of the 2k Skolem hull 
of To inside JA[A r) a, s []. We would like to use induction first to build q0 in 
(gSo)Mo to "handle" fo = (fk+l)Mo (Note that (fk'+l)Mo is not the same as the 
collapse of fk + 1, as MO is not a k?+ l-elementary submodel.) Of course q0 cannot 
actually belong to M., but must instead be thought of as the direct limit of a 2k(Mo)- 

collection of compatible conditions in (9"(?)Mo, a "2k-quasicondition" for short. 
Now let M1 denote the model for y, corresponding to M,: then there is a natural 
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embedding 

7r01: MO ml 

Now consider q' = 7o, [qo]. We would like to use induction to extend q' to q1 to 
handle f1 = (fb 1)Mi and so that q1 meets q1[fo] = Eot. Then if we continue this 
process through all the yi's we finally get q < p, so that q handles flu (The fact that 
we have met the 21i guarantees that q,, is a quasicondition and that q is a condition.) 

If &/s = a inaccessible, Is = I + 1, then we can use the extendibility argument of 
Jensen, as we have the Collapsing Lemma 2.12. 

If Isl = limit then we can again follow Jensen's argument except now a second 
complication arises, caused by the restriction that we have put on the definition of 
be. If gos < vs then we must arrange when we extend a given p to q E AS, IqI = Isi, 
that q "reduces" all predense D E &/s. (If Ps = vs this is trivial as extendibility for g 
is enough to know that q reduces predense D E &/s = &s/.) The argument here 
depends on the nature of vs. Note that we can think of dsl as corresponding to a 
point in Jensen's quasi-morass (see Chapter 7). Thus we induct on the quasi-morass, 
following cases much as Jensen does in his "generic codes" construction. However, 
there is no need for 0. This construction implicitly contains a proof of the 
distributivity of 9`<S in &/s as well. 

This ends the outline of an alternate approach to the Coding Theorem. The 
details will appear in our forthcoming paper entitled "Strong Coding". 

This also ends this guide which we hope will be of value to current and future 
readers of Coding the Universe. To be sure, a large investment is required to 
appreciate the depth of Jensen's theorem, but this is more than compensated for by 
the beauty of the mathematics. 
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