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One of Harvey’s most influential articles is his joint work with Lee Stan-
ley [8] in which he introduces a notion of Borel reducibility between iso-
morphism relations on the countable models of a theory in infinitary logic.
Through the work of many researchers, this theory later blossomed into a
rich field devoted to the more general study of Borel reducibility between
Borel and analytic equivalence relations (and quasi-orders). For a look at
some of this work see [11, 12, 17, 19, 23, 26, 27, 30].

The aim of the present article is to illustrate how a similar idea has
recently been used to good effect in four new contexts: effective descriptive
set theory, computation theory, model theory and complexity theory. This
work has deepened research in these fields, produced a number of unexpected
results and raised a host of interesting new open problems.

Section 1. Descriptive Set Theory

We begin with a brief description of the classical, noneffective setting,
before turning to the more recent work [6] in the effective context. The
principal objects of study in the classical theory are analytic (Σ1

1 with pa-
rameters) equivalence relations on Polish spaces (think of the reals). Such
equivalence relations are compared using Borel reducibility in the following
way:

E0 is Borel reducible to E1 iff there is a Borel function f : X0 → X1 such
that

xE0y iff f(x)E1f(y).

∗The author wishes to thank the John Templeton Foundation for its generous support
of this research through the project Myriad Aspects of Infinity, Project ID# 13152.
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E0 and E1 are Borel bireducible if each Borel reduces to the other. Then
B denotes the resulting set of degrees, ordered under Borel reducibility.
Work of Silver [37] and of Harrington-Kechris-Louveau [16] identifies an
interesting initial segment of B:

Theorem 1 B has the initial segment

1 < 2 < · · · < ω < id < E0

where:

n = Borel equivalence relations with exactly n classes
ω = Borel equivalence relations with exactly ℵ0 classes
id is (ωω,=) (equality on reals)
E0 is the equivalence relation xE0y iff x(n) = y(n) for all but finitely many
n. In fact, any Borel equivalence relation is Borel equivalent to one of the
above or lies strictly above E0 under Borel reducibility.

The question for the effective theory is: What happens if we replace
“Borel” by “effectively Borel”? In what follows we simply write “Hyp” for
“effectively Borel” (= lightface ∆1

1). We define:

If E and F are Hyp equivalence relations on the reals then E is Hyp reducible
to F , written E ≤H F , iff For some Hyp function f , xEy iff f(x)Ff(y)

≤H is reflexive and transitive. We write E ≡H F for E ≤H F and F ≤H E.

So the new object of study is H, the degrees of Hyp equivalence relations
on the reals under Hyp reducibility.

There are some surprises! Again we have degrees

1 < 2 < · · · < ω < id < E0

defined as follows:

n is represented by xEny iff x(0) = y(0) < n− 1 or x(0), y(0) ≥ n− 1.
ω is represented by xEωy iff x(0) = y(0).
id, E0 are as before: xidy iff x = y, xE0y iff x(n) = y(n) for all but finitely
many n.
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Proposition 2 There are Hyp equivalence relations strictly between 1 and
2!

Here is why: Let E be a Hyp equivalence relation. Recall that the
H-degree n is represented by the equivalence relation En where:

xEny iff x(0) = y(0) < n− 1 or x(0), y(0) ≥ n− 1.

Fact 1. En is Hyp reducible to E iff at least n distinct E-equivalence classes
contain Hyp reals.

Proof. Suppose that En Hyp reduces to E via the Hyp function f . Each
of the n equivalence classes of En contains a Hyp real; let x0, . . . , xn−1 be
Hyp, pairwise En-inequivalent reals. Then the reals f(xi), i < n, are Hyp,
pairwise E-inequivalent reals. Conversely, if y0, . . . , yn−1 are Hyp, pairwise
E-inequivalent reals then send the En-equivalence class of xi to the real yi;
this is a Hyp reduction of En to E. 2

Fact 2. E is Hyp reducible to E2 iff E has at most 2 equivalence classes.

Proof. If E is Hyp reducible to E2 then E has at most 2 equivalence classes
because E2 has only 2 equivalence classes. Conversely, suppose that the
equivalence classes of E are A0 and A1. We may assume that A0 has a Hyp
element x. Then A0 is Hyp as it consists of those reals E-equivalent to x and
A1 is Hyp as it consists of those reals not E-equivalent to x. Now we can
reduce E to E2 by choosing E2-inequivalent Hyp reals y0, y1 and sending
the elements of A0 to y0 and the elements of A1 to y1. 2

So to get a Hyp equivalence relation between 1 and 2 we need only find
one with two equivalence classes but with all Hyp reals in just one class.
The existence of such an equivalence relation follows from a classical fact
from Hyp theory (see [35]):

Fact 3. There are nonempty Hyp sets of reals which contain no Hyp element.

Proof. Let A be the set of non-Hyp reals. Then A is Σ1
1 and therefore the

projection of a Π0
1 subset P of Reals × Reals. P is nonempty. A Hyp real

h = (h0, h1) in P would give a Hyp real h0 in A, contradiction. 2

Now we ask a harder question: Are there incomparable degrees between
1 and 2? To answer this we prove:
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Theorem 3 ([6]) There exist Hyp sets of reals A,B such that for no Hyp
function F do we have F [A] ⊆ B or F [B] ⊆ A.

Given this Theorem, define EA to be the equivalence relation with equiv-
alence classes A and ∼ A (the complement of A); define EB similarly. Note
that the sets A,B contain no Hyp reals, else there would be a constant Hyp
function F mapping one of them into the other. So a Hyp reduction of
EA to EB would have to send the elements of ∼ A (which contains Hyp
reals) to elements of ∼ B, and therefore the elements of A to elements of
B, contradicting the Theorem. Similarly there is no Hyp reduction of EB
to EA.

Proof Sketch of Theorem 3. First we quote a result of Harrington [15] (also
see [33]). For reals a, b and a recursive ordinal α we say that a is α-below b
iff a is recursive in the α-jump of b.

Fact. For any recursive ordinal α there are Π0
1 singletons a, b such that a is

not α-below b and b is not α-below a.

Now using Barwise Compactness, find a nonstandard ω-model M of ZF−

with standard ordinal ωCK1 in which are there are Π0
1 singletons a, b such

that for all recursive α, a is not α-below b and b is not α-below a (i.e., a
and b are Hyp incomparable.) Let a, b be the unique solutions in M to the
Π0

1 formulas ϕ0, ϕ1, respectively. The desired sets A,B are {x | ϕ0(x)} and
{x | ϕ1(x)}. If F were a Hyp function mapping A into B, then it would
send the element a of A to an element F (a) of B ∩M ; but then F (a) must
equal b and therefore b is Hyp in a, contradicting the choice of a, b. 2

Now fix A, B as in the Theorem. Using them we can get incomparable
Hyp equivalence relations between n and n+1 for any finite n, by considering
EA, EB where the equivalence classes of EA are A together with a split of
∼ A (the complement of A) into n classes, each of which contains a Hyp
real (similarly for EB).

We now consider Hyp equivalence relations with infinitely many equiva-
lence classes. Recall the Silver and Harrington-Kechris-Louveau dichotomies:

Theorem 4 (a) (Silver) A Borel equivalence relation is either Borel re-
ducible to ω or Borel reduces id.
(b) (Harrington-Kechris-Louveau) A Borel equivalence relation is either Borel
reducible to id or Borel reduces E0.
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How effective are these results? Harrington’s proof of (a) and the original
proof of (b) show:

Theorem 5 (a) A Hyp equivalence relation is either Hyp reducible to ω or
Borel reduces id.
(b) A Hyp equivalence relation is either Hyp reducible to id or Borel reduces
E0.

The sets A,B of Theorem 3 can be used to show that the Silver and
Harrington-Kechris-Louveau dichotomies are not fully effective:

Theorem 6 ([6]) (a) There are incomparable Hyp equivalence relations be-
tween ω and id.
(b) There are incomparable Hyp equivalence relations between id and E0.

Proof Sketch. (a) Consider the relations

EA(x, y) iff (x ∈ A and x = y) or (x, y /∈ A and x(0) = y(0))

EB: The same, with A replaced by B

Now Eω Hyp reduces to EA by n 7→ (n, 0, 0, ...). Also EA Hyp reduces to id
via the map G(x) = x for x ∈ A, G(x) = (x(0), 0, 0, ...) for x /∈ A (same for
B)

There is no Hyp reduction of EA to EB: If F were such a reduction then
let C be F−1[∼ B]. As ∼ B is Hyp, C is also Hyp and therefore A ∩ C is
also Hyp. But A ∩ C must be countable as F is a reduction. So if A ∩ C
were nonempty it would have a Hyp element, contradicting the fact that A
has no Hyp element. Therefore F maps A into B, which is impossible by
the choice of A,B. By symmetry, there is no Hyp reduction of EB to EA.

(b) Now we define EA on R × R by: (x, y)EA(x′, y′) iff x = x′ and either
x /∈ A or (x ∈ A and yE0y

′). EB is the same, with A replaced by B.

We need two Facts (see [18] and [24]):

1. If h : R → R is Baire measurable and constant on E0 classes then h is
constant on a comeagre set.
2. If B ⊆ R2 is Hyp then so is {x | {y | (x, y) ∈ B} is comeagre}.
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Now suppose that F were a Hyp reduction of EA to EB. Let π(x, y) = x for
all x and define h : R→ R by: h(x) = z iff {y | π(F (x, y)) = z} is comeagre.

Using 1 and 2, h is a total Hyp function. We claim that h[A] ⊆ B, con-
tradicting the choice of A,B: Assume x ∈ A. Then for comeagre-many y,
π(F (x, y)) = h(x). So if h(x) /∈ B then F maps more than one EA class into
a single EB class, contradiction. By symmetry there is no Hyp reduction
of EB to EA. 2

The overall picture of the degrees of Hyp sets of reals under Hyp re-
ducibility is the following: Call a degree canonical if it is one of 1 < 2 <
· · · < ω < id < E0. For any two canonical degrees a < b there is a rich
collection of degrees which are above a, below b and incomparable with all
canonical degrees in between.

However at least one nice thing happens: If a degree is above n for each
finite n, then it is also above ω.

Because this field is so new (like the others introduced in this paper),
there remain many open questions. Here are several:

1. If a Hyp equivalence relation is Borel reducible to E0 must it also be Hyp
reducible to E0? (This is true for finite n, ω, id.)
2. Are there any nodes other than 1? I.e., is there a Hyp equivalence
relation with more than one equivalence class which is comparable with all
Hyp equivalence relations under Hyp reducibility?
3. Is there a minimal degree? Are there incomparables above each degree?

There is also a jump operation, which is in need of further study.

Section 2. Computation Theory

So far we have considered only Borel equivalence relations. But there are
many interesting analytic (Σ1

1 with parameters) equivalence relations which
are not Borel, and indeed these appeared already in [8]:

Let T be any theory in first-order logic (or any sentence of the infinitary
logic Lω1ω). Then the isomorphism relation on the countable models of T
is an analytic equivalence relation which need not be Borel.
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On the other hand there are many analytic equivalence relations which
are not Borel reducible to such an isomorphism relation; an example is E1,
the equivalence relation on Rω defined by:

~xE1~y iff ~x(n) = ~y(n) for almost all n

Note that E1 is even Hyp.

We now turn to equivalence relations not on the reals but on the natu-
ral numbers, where computation theory play a central role. A motivating
question for this study is the following:

Question. Is every Σ1
1 equivalence relation on the natural numbers reducible

to isomorphism on a Hyp class of computable structures?

Of course we can identify a computable structure with a natural number
which serves as an index for it. The reducibility we use is: E0 ≤H E1 iff
there is a Hyp function f : N → N such that mE0n iff f(m)E1f(n). (We
say that E0 is Hyp-reducible to E1.)

Theorem 7 ([5]) Every Σ1
1 equivalence relation on N is Hyp-reducible to

isomorphism on computable trees.

This answers the above Question positively.

Proof Sketch: Let E be a Σ1
1 equivalence relation on N and choose a com-

putable f : N 2 → Computable Trees such that ∼ mEn iff f(m,n) is well-
founded.

Now associate to pairs m,n computable trees T (m,n) so that:

T (m,n) is isomorphic to T (n,m)
mEn implies that T (m,n) is isomorphic to the “canonical” non-well-founded
computable tree
∼ mEn implies that T (m,n) is isomorphic to the “canonical” computable
tree of rank α, where α is least so that f(m′, n′) has rank at most α for all
m′ ∈ [m]E , n′ ∈ [n]E .

Now to each n associate the tree Tn gotten by gluing together the T (n, i),
i ∈ ω. If mEn then Tm is isomorphic to Tn as they are obtained by gluing
together isomorphic trees. And if ∼ mEn then Tm, Tn are not isomorphic
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as they are obtained by gluing together trees which on some component are
non-isomorphic. 2

It can be shown that the isomorphism relation on computable trees (and
therefore any Σ1

1 equivalence relation onN ) Hyp-reduces to the isomorphism
relation on each of the following Hyp classes:

1. Computable graphs
2. Computable torsion-free Abelian groups
3. Computable Abelian p-groups for a fixed prime p
4. Computable Boolean Algebras
5. Computable linear orders
6. Computable fields

These results came as a surprise, because in the classical setting, the
analogue of 2 is an open problem and the analogue of 3 is false!

Fokina and I show in [4] that the global structure of Σ1
1 equivalence

relations on N under Hyp reducibility is very rich: it embeds the partial
order of Σ1

1 sets under Hyp many-one reducibility. But it is not known if
there is a single isomorphism relation on computable structures which is
neither Hyp nor complete under Hyp-reducibility! However we do have:

Theorem 8 (Fokina-Friedman [4]) Every Σ1
1 equivalence relation is Hyp

bireducible to a bi-embeddability relation on computable structures.

The proof is based on the analagous result in the non-effective setting:

Theorem 9 (Friedman-Motto Ros [11]) Every analytic equivalence relation
on the reals is Borel bireducible to a bi-embeddability relation on countable
structures.

I should also mention that there has been considerable prior work on
computably enumerable equivalence relations, of which provable equivalence
is a natural example. For those interesting results we refer to [13] and the
references therein.

Section 3. Model Theory

It is natural to expect that insights into the model-theoretic properties
of a first-order theory could be derived from the descriptive set-theoretic
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behaviour of the isomorphism relation on its countable models under Borel
reducibility. This idea was pursued by Laskowski [29], Marker [31] and
in depth by Koerwien [28]. But the conclusion was rather negative: the-
ories can be complicated model-theoretically and simple descriptive set-
theoretically (an example is dense linear orderings), or vice-versa (an ex-
ample is described in [28]).

A solution to this difficulty emerged through the study of isomorphism
on a theory’s uncountable models. The work of [10] shows, for example, that
a theory is classifiable and shallow in Shelah’s model-theoretic sense exactly
if the isomorphism relation on its models of size κ (for an appropriate choice
of regular uncountable cardinal κ) is “Borel” in a generalised sense.

Naturally, a prerequisite for this study is the development of a suitable
descriptive set theory of the uncountable, which has turned out to be a fas-
cinating area of independent interest. Armed with such a theory it becomes
possible to bring in the methods of model-theoretic stability theory to un-
cover deep connections between the model theory and descriptive set theory
of first-order theories.

I begin with the uncountable descriptive set theory. It is favourable to
assume GCH and choose κ to be a successor cardinal greater than ℵ1. The
Generalised Baire Space κκ is the space of all functions f : κ→ κ topologised
with basic open sets of the form Ns = {f | s ⊆ f}, s an element of κ<κ. In
this context the Borel sets are obtained by closing the open sets under the
operations of complementation and unions of size at most κ. The Σ1

1 sets
are the projections of Borel sets, the Π1

1 sets are the complements of the Σ1
1

sets and the ∆1
1 sets are those which are both Σ1

1 and Π1
1. Borel sets are

∆1
1 but the converse is false. As usual, a set is nowhere dense if its closure

contains no nonempty open set; a set is meager if it is the union of κ-many
nowhere dense sets. The Baire Category Theorem holds in the sense that
the intersection of κ-many open dense sets is dense. A set has the Baire
Property (BP) if its symmetric difference with some open set is meager.
Borel sets have the BP. A perfect set is the range of a continuous injection
from 2κ (the Generalised Cantor Space) into κκ. A set has the Perfect Set
Property (PSP) iff it either has size at most κ or contains a perfect subset.

Theorem 10 (see [10]) (a) It is consistent that all ∆1
1 sets have the BP.

(b) For any stationary subset S of κ, the filter CUB(S), the closed unbounded
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filter restricted to S, is a Σ1
1 set without the BP.

(c) In L, CUB(S) for stationary S is not ∆1
1, but there are nevertheless ∆1

1

sets without the BP and without the PSP.
(d) It is consistent relative to an inaccessible cardinal that all Σ1

1 sets have
the PSP (and the use of an inaccessible is necessary).

I turn now to Borel reducibility. Suppose that X0, X1 are Borel subsets
of κκ. Then f : X0 → X1 is a Borel function iff f−1[Y ] is Borel whenever Y
is Borel. This implies that the graph of f is Borel, as (x, y) belongs to the
graph of f iff for all s ∈ κ<κ, either y does not belong to Ns or x belongs to
f−1[Ns].

If E0, E1 are equivalence relations on Borel sets X0, X1 respectively then
we say that E0 is Borel reducible to E1, written E0 ≤B E1, iff for some Borel
f : X0 → X1:

x0E0y0 iff f(x0)E1f(x1).

Now recall the following picture from the classical case:

1 <B 2 <B · · · <B ω <B id <B E0

forms an initial segment of the Borel equivalence relations under ≤B where n
denotes an equivalence relation with n classes for n ≤ ω, id denotes equality
on ωω and E0 denotes equality modulo finite on ωω.

At κ we easily get the initial segment

1 <B 2 <B · · · <B ω <B ω1 <B · · · <B κ

where for each nonzero cardinal λ ≤ κ we identify λ with the ≡B class
of Borel equivalence relations with exactly λ-many classes. What happens
above these equivalence relations? We might hope for:

Silver Dichotomy The equivalence relation id (equality on κκ) is the strong
successor of κ under ≤B, i.e., if a Borel equivalence relation E has more
than κ classes then id is Borel-reducible to E.

Theorem 11 (a) The Silver Dichotomy implies the PSP for Borel sets.
Therefore it fails in L and its consistency requires at least an inaccessible
cardinal.
(b) The Silver Dichotomy is false with Borel replaced by ∆1

1.
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Is the Silver Dichotomy consistent? This question remains open.

We can also consider what happens above id. In the case κ = ω we have:

Classical Glimm-Effros Dichotomy E0 = (equality mod finite) is the strong
successor of id, i.e., if a Borel equivalence relation E is not Borel-reducible
to id (i.e., E is not smooth) then E0 Borel-reduces to E.

At κ, what shall we take E0 to be? For infinite regular λ ≤ κ, define
E<λ0 = equality for subsets of κ modulo sets of size < λ.

Proposition 12 For λ < κ, E<λ0 is Borel bireducible with id.

So we can forget about E<λ0 for λ < κ and set E0 = E<κ0 , equality
modulo bounded sets.

As in the classical case we have:

Proposition 13 E0 = E<κ0 is not Borel-reducible with id.

There are other versions of E0: For regular λ < κ define Eκλ = equality
modulo the ideal of λ-nonstationary sets. These equivalence relations are
key for connecting model-theoretic stability with uncountable descriptive set
theory.

How do the relations Eκλ compare to each other under Borel reducibility
for different λ? For simplicity, consider the special case κ = ω2.

Theorem 14 ([10]) (a) It is consistent that Eω2
ω and Eω2

ω1
are incomparable

under Borel reducibility. (b) Relative to a weak compact it is consistent that
Eω2
ω is Borel-reducible to Eω2

ω1
.

It is not known if it is consistent for Eω2
ω1

to be Borel-reducible to Eω2
ω .

What is the relationship between E0 and Eκλ?

Theorem 15 (a) The relations Eκλ do not Borel reduce to E0, as E0 is
Borel and the Eκλ are not.
(b) If κ = µ+ for some cardinal µ then E0 reduces to Eκλ , unless λ is the
cofinality of µ.
(c) In L, the condition in (b) that λ not be the cofinality of µ can be dropped.
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The structure of the ∆1
1 equivalence relations under Borel reducibility is

(consistently) very rich:

Theorem 16 Consistently, there is an injective, order-preserving embed-
ding from (P(κ),⊆) into the partial order of ∆1

1 equivalence relations under
Borel reducibility.

The above summarises the current state of knowledge regarding uncount-
able descriptive set theory. As has been mentioned, there remain many open
questions, some of which we list at the end of this section.

Now we return to the connection between uncountable descriptive set
theory and model theory. Let T be a countable, complete and first-order
theory. Then T is classifiable iff there is a “structure theory” for its mod-
els. (Example: Algebraically closed fields (transcendence degree).) T is
unclassifiable otherwise. (Example: Dense linear orderings.)

Shelah’s Characterisation (Main Gap): T is classifiable iff T is superstable
without the OTOP and without the DOP.

A classifiable T is deep iff it has the maximum number of models in all
uncountable powers. (Example: Acyclic undirected graphs, every node has
infinitely many neighbours.) T is shallow otherwise.

For simplicity assume GCH and κ = λ+ where λ is uncountable and
regular. Isomκ

T is the isomorphism relation on the models of T of size κ.

Theorem 17 ([10])
(a) T is classifiable and shallow iff Isomκ

T is Borel.
(b) T is classifiable iff for all regular µ < κ, ESκµ is not Borel reducible to
Isomκ

T .
(c) In L, T is classifiable iff Isomκ

T is ∆1
1.

The proof uses Ehrenfeucht-Fraissé games. The Game EFκt (A,B) is de-
fined as follows, where A, B are structures of size κ and t is a tree. Player
I chooses size < κ subsets of A ∪ B and nodes along an initial segment of
a branch through t; player II builds a partial isomorphism between A and
B which includes the sets that player I has chosen. Player II wins iff he
survives until a cofinal branch is reached.
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The tree t captures Isomκ
T iff for all size κ models A, B of T , A ' B iff

Player II has a winning strategy in EFκt (A,B).

Now there are 4 cases:

Case 1: T is classifiable and shallow.

Then Shelah’s work [36] shows that some well-founded tree captures
Isomκ

T . We use this to show that Isomκ
T is Borel.

Case 2: T it classifiable and deep.

Then Shelah’s work shows that no fixed well-founded tree captures Isomκ
T .

We use this to show that Isomκ
T is not Borel.

Shelah’s work also shows that L∞κ equivalent models of T of size κ are
isomorphic. This means that the tree t = ω (with a single infinite branch)
captures Isomκ

T . As the games EFκω(A,B) are determined, this shows that
Isomκ

T is ∆1
1.

We must also show: ESκµ (equality modulo the µ-nonstationary ideal) is
not Borel reducible to Isomκ

T for any regular µ < κ. This is because (in this
case) Isomκ

T is absolutely ∆1
1, whereas µ-stationarity is not.

Now we look at the unclassifiable cases. Recall: Classifiable means su-
perstable without DOP and without OTOP.

Case 3: T is unstable, superstable with DOP or superstable with OTOP.

Work of Hyttinen-Shelah [20] and Hyttinen-Tuuri [21] shows that in this
case no tree of size κ without branches of length κ captures Isomκ

T . This
can be used to show Isomκ

T is not ∆1
1.

But ESκλ ≤B Isomκ
T is harder. Following Shelah, there is a Borel map

S 7→ A(S) from subsets of κ to Ehrenfeucht-Mostowski models of T built on
linear orders so that A(S0) ' A(S1) iff S0 = S1 modulo the λ-nonstationary
ideal.

Case 4: T is stable but not superstable.
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This is the hardest case and requires some new model theory. In our
joint paper [10], Hyttinen replaces Ehrenfeucht-Mostowski models built on
linear orders with primary models built on trees of height ω + 1 to show
ESκω ≤B Isomκ

T . (We don’t know if ESκλ ≤B Isomκ
T or if Isomκ

T could be ∆1
1

in this case.)

Now we have all we need to prove the Theorem mentioned earlier:

(a) T is classifiable and shallow iff Isomκ
T is Borel.

We mentioned that if T is classifiable and shallow then Isomκ
T is Borel

and if it is classifiable and deep it is not. If T is not classifiable then some
ESκµ Borel reduces to Isomκ

T , so the latter cannot be Borel.

(b) T is classifiable iff for all regular µ < κ, ESκµ is not Borel reducible to
Isomκ

T .

We mentioned that if T is not classifiable then ESκµ is Borel reducible to
Isomκ

T where µ is either λ or ω. We also mentioned that if T is classifiable and
deep then no ESκµ is Borel reducible to Isomκ

T , by an absoluteness argument.
When T is classifiable and shallow there is no such reduction as Isomκ

T is
Borel.

(c) In L, T is classifiable iff Isomκ
T is ∆1

1.

We mentioned that if T is classifiable then Isomκ
T is ∆1

1, in ZFC. If T is
not classifiable then ESκµ Borel reduces to Isomκ

T for some µ, and in L, ESκµ
is not ∆1

1.

This summarises the work in [10]. Some surprisingly basic and very
interesting open questions remain in this new area. Below are some of them.
Assume GCH throughout.

1. Under what conditions on a regular uncountable κ does Vaught’s Con-
jecture hold in the following form: If an isomorphism relation on the models
of size κ has more than κ classes then id is Borel reducible to it?
2. Is the Silver Dichotomy for regular uncountable κ consistent?
3. Is it consistent for there to be Borel equivalence relations which are in-
comparable under Borel reducibility for a regular uncountable κ?
4. Is it consistent that Sω2

ω1
Borel reduces to Sω2

ω ?
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5. We proved that the isomorphism relation of a theory T is Borel if and
only if T is classifiable and shallow. Is there a connection between the depth
of a shallow theory and the Borel degree of its isomorphism relation? Is one
monotone in the other?
6. Can it be proved in ZFC that if T is stable unsuperstable then isomor-
phism for the size κ models of T (κ regular uncountable) is not ∆1

1?
7. If κ = λ+, λ regular and uncountable, does equality modulo the λ-
nonstationary ideal Borel reduce to isomorphism for the size κ models of T
for all stable unsuperstable T?
8. Let DLO be the theory of dense linear orderings without end points and
RG the theory of random graphs. Does the isomorphism relation of RG
Borel reduce to that of DLO for a regular uncountable κ?

Section 4. Complexity Theory

We consider NP equivalence relations on finite strings. One motivation
for this topic is the following: Borel reducibility allows us to compare iso-
morphism relations on Borel classes of countable structures. Is there an
analogous reducibility for “nice” classes of finite structures?

The resulting theory of “strong isomorphism reductions” is introduced in
[9] and studied systematically in [2]. We consider polynomial-time definable
classes C of structures for a finite vocabulary τ , where the structures in C
have universe {1, . . . , n} for some finite n > 0 and where C is invariant,
i.e., closed under isomorphism. To avoid trivialities we also assume that C
contains arbitrarily large structures. Some examples of such classes are:

1. The classes SET, BOOLE, FIELD, GROUP, ABELIAN and CYCLIC
of sets (structures of empty vocabulary), Boolean algebras, fields, groups,
abelian groups, and cyclic groups, respectively.
2. The class GRAPH of (undirected and simple) graphs.
3. The class ORD of linear orderings.
4. The classes LOP of linear orderings with a distinguished point and LOU
of linear orderings with a unary relation.

Let C and D be classes. We say that C is strongly isomorphism reducible
to D and write C ≤iso D, if there is a function f : C → D computable in
polynomial time such that for all A,B ∈ C, A ' B iff f(A) ' f(B). We
then say that f is a strong isomorphism reduction from C to D and write
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f : C ≤iso D. If C ≤iso D and D ≤iso C, denoted by C ≡iso D, then C and
D have the same strong isomorphism degree.

Examples:
(a) The map sending a field to its multiplicative group shows that FIELD ≤iso

CYCLIC.
(b) CYCLIC ≤iso ABELIAN ≤iso GROUP; more generally, if C ⊆ D, then
C ≤iso D via the identity.
(c) SET ≡iso FIELD ≡iso ABELIAN ≡iso CYCLIC ≡iso ORD ≡iso LOP. (For
the proof see [2].)

Proposition 18 C ≤iso GRAPH for all classes C.

The structure of ≤iso between LOU and GRAPH is linked with central
open problems of descriptive complexity. Before turning to that I’ll first
consider the structure below LOU. That structure, even below LOP, is
quite rich.

Theorem 19 The partial ordering of the countable atomless Boolean alge-
bra is embeddable into the partial ordering induced by ≤iso on the degrees
of strong isomorphism reducibility below LOP. More precisely, let B be the
countable atomless Boolean algebra. Then there is a one-to-one function
b 7→ Cb defined on B such that for all b, b′ ∈ B:

(i) Cb is a subclass of LOP
(ii) b ≤ b′ iff Cb ≤iso Cb′.

This result is obtained by comparing the number of isomorphism types
of structures with universe of bounded cardinality in different classes. For
a class C we let C(n) be the subclass consisting of all structures in C with
universe of cardinality ≤ n and we let #C(n) be the number of isomorphism
types of structures in C(n). Examples:

#BOOLE(n) = [log n], #CYCLIC(n) = n, #SET(n) = #ORD(n) = n+ 1.
#LOP(n) =

∑n
i=1 i = (n+ 1) · n/2 and #LOU(n) =

∑n
i=0 2i = 2n+1 − 1.

#GROUP(n) is superpolynomial but subexponential (more precisely, it is

bounded by nO(log2 n)). See [1].

A class C is potentially reducible to a class D, written C ≤pot D, iff there
is some polynomial p such that #C(n) ≤ #D(p(n)) for all n ∈ N. Of course,
by C ≡pot D we mean C ≤pot D and D ≤pot C.
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Lemma 20 If C ≤iso D, then C ≤pot D.

Proof. Let f : C ≤iso D. As f is computable in polynomial time, there
is a polynomial p such that for all A ∈ C we have |f(A)| ≤ p(|A|), where
f(A) denotes the universe of f(A). As f strongly preserves isomorphisms,
it therefore induces a one-to-one map from {A ∈ C | |A| ≤ n}/' to {B ∈
D | |B| ≤ p(n)}/'. 2

We state some consequences of this simple observation:

Proposition 21 1. CYCLIC 6≤iso BOOLE and LOU 6≤iso LOP.
2. C ≤pot LOU for all classes C and LOU ≡pot GRAPH.
3. The strong isomorphism degree of GROUP is strictly between that of
LOP and GRAPH.
4. The potential reducibility degree of GROUP is strictly between that of
LOP and LOU .

The following concepts are used in the proof of Theorem 19. We call
a function f : N → N value-polynomial iff it is increasing and f(n) can be
computed in time f(n)O(1). Let VP be the class of all value-polynomial
functions. For f ∈ VP the set Cf = {A ∈ LOP | |A| ∈ im(f)} is in
polynomial time and is closed under isomorphism. As there are exactly
f(k) pairwise nonisomorphic structures of cardinality f(k) in LOP, we get

#Cf (n) =
∑

k ∈ N with f(k) ≤ n
f(k).

The following proposition contains the essential idea underlying the proof of
Theorem 19. Loosely speaking, it says that if the gaps between consecutive
values of f ∈ VP “kill” every polynomial, then there are classes C and D
with C 6≤pot D.

Proposition 22 Let f ∈ VP and assume that for every polynomial p ∈ N[X]
there is an n ∈ N such that∑

k∈N with f(2k)≤n

f(2k) >
∑

k∈N with f(2k+1)≤p(n)

f(2k + 1).

Then Cg0 is not potentially reducible to Cg1, where g0, g1 : N→ N are defined
by g0(n) := f(2n) and g1(n) := f(2n+ 1).
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Proof. For contradiction assume that there is some polynomial p such that
#Cg0(n) ≤ #Cg1(p(n)) for all n ∈ N. Choose n to satisfy the hypothesis.
Then

#Cg0(n) =
∑

f(2k)≤n

f(2k) >
∑

f(2k+1)≤p(n)

f(2k + 1) = #Cg1(p(n)),

a contradiction. 2

The other needed ingredient for the proof of Theorem 19 is:

Lemma 23 The images of the functions in VP together with the finite sub-
sets of N are the elements of a countable Boolean algebra V (under the usual
set-theoretic operations). The factor algebra V/≡pot, where for b, b′ ∈ V

b ≡ b′ ⇐⇒ (b \ b′) ∪ (b′ \ b) is finite,

is a countable atomless Boolean algebra.

This lemma shows that the set of images of functions in VP has a rich
structure. To complete the proof of Theorem 19, the functions in VP are
composed with a “stretching” function h, which guarantees that the gaps
between consecutive values “kill” every polynomial. Then we can apply the
idea of the proof of Proposition 22 to show that the set of the ≤pot-degrees
has a rich structure too. For the details see [2].

So far, in all concrete examples of classes C and D for which we know
the status of C ≤iso D and of C ≤pot D, we have C ≤iso D iff C ≤pot D. So
the question arises whether the relations of strong isomorphism reducibility
and potential reducibility coincide. We believe that they are distinct but
have only the following partial result:

Theorem 24 If UEEXP∩ coUEEXP 6= EEXP, then the relations of strong
isomorphism reducibility and that of potential reducibility are distinct.

Recall that EEXP = DTIME

(
22
nO(1)

)
and NEEXP := NTIME

(
22
nO(1)

)
.

The complexity class UEEXP consists of those Q ∈ NEEXP for which
there is a nondeterministic Turing machine of type NEEXP that for every
x ∈ Q has exactly one accepting run. Finally, coUEEXP := {∼ Q | Q ∈
UEEXP}.
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Here is the idea of the proof: Assume Q ∈ UEEXP ∩ coUEEXP. We
construct classes C and D which contain structures in the same cardinalities
and which contain exactly two nonisomorphic structures in these cardinal-
ities. Therefore they are potentially reducible to each other. While it is
trivial to exhibit two nonisomorphic structures in C of the same cardinal-
ity, from any two nonisomorphic structures in D we obtain information on
membership in Q for all strings of a certain length. If C ≤iso D held, then
we would get nonisomorphic structures in D (in time allowed by EEXP) by
applying the strong isomorphism reduction to two nonisomorphic structures
in C and therefore obtain Q ∈ EEXP.

In the other direction we have:

Theorem 25 If strong isomorphism reducibility and potential reducibility
are distinct then P 6= #P .

Recall that P = #P means that for every polynomial time nondeter-
ministic Turing machine M the function fM such that fM(x) is the number
of accepting runs of M on x ∈ Σ∗ is computable in polynomial time. The
class #P consists of all the functions fM.

Until now we have focused exclusively on isomorphism relations on in-
variant polynomial time classes of finite structures. But this theory can be
put into the broader context of NP equivalence relations in general. If E and
E′ are NP equivalence relations then we say that E is strongly equivalence
reducible to E′, and write E ≤eq E

′, iff there is a function f computable
in polynomial time such that for all strings x, y: xEy iff f(x)E′f(y). We
then say that f is a strong equivalence reduction from E to E′ and write
f : E ≤eq E

′. The following natural question then arises: Is there a maxi-
mal NP equivalence relation under the reducibility ≤eq? The final section
of [2] relates this question to enumerations of clocked Turing machines, to
p-optimal proof systems as well as to other central questions in complexity
theory.

Another natural question is whether, in analogy to the computability
theory context, every NP equivalence relation is reducible to an isomor-
phism relation on a polynomial time invariant class of finite structures, or
equivalenty, whether graph isomorphism is ≤eq complete among NP equiv-
alence relations. For this we have the following partial result:
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Proposition 26 ([2]) Assume that the polynomial time hierarchy does not
collapse. Then not every NP equivalence relation reduces to graph isomor-
phism.

Indeed there are many worthy open questions in this area waiting to be
explored.

In conclusion

After decades of work focusing on the “unary” case, definability the-
ory has been dramatically deepened by the study of binary relations, most
importantly equivalence relations. An important step in this process was
taken in Harvey’s fundamental paper with Lee Stanley [8]. The extent to
which the different areas of logic have been enriched through the study of
analogues of Harvey’s idea is only now being understood, and I look forward
to seeing much exciting work in this direction during the coming years.
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