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Volume 44, Number 1, March 1979 

HC OF AN ADMISSIBLE SET1 

SY D. FRIEDMAN 

Abstract. If A is an admissible set, let HC(A) = {x I x E A and x is hereditarily 
countable in A}. Then HC(A) is admissible. Corollaries are drawn characteriz- 
ing the "real parts" of admissible sets and the analytical consequences of 
admissible set theory. 

?1. A transitive set A is admissible if it satisfies pairing, set union, J0-separation 
and J0-bounding (Platek [7], Barwise [1]). An easy theorem of ZFC (Zermelo- 
Fraenkel with choice) is that HC, the collection of hereditarily countable sets, is 
admissible. It is a question of G. Sacks whether this fact is derivable from the 
axioms for admissible sets alone. In this paper we answer this question affirmatively 
and use this result to identify the sentences in the language of analysis which hold 
in all admissible sets (satisfying the axiom of infinity). 

THEOREM 1. Let A be admissible and HC(A) = {x e A I <A, e> V transitive 
closure (x) is countable}. Then HC(A) is admissible. In fact, HC(A) is a C1-elemen- 
tary submodel of A(HC(A) -< 11A). 

PROOF. First we establish the admissibility of HC(A). That is, we wish to show 
the following in A: 

(*) dVn 3x e HC qp(n, x) -3f fE HC Vn q(n, f(n)) 

for each J0-formula q (with parameter from HC(A)). We can assume that 
Vn Vx(qp(n, x) -* x is transitive). Now any transitive x e HC(A) is "coded" by some 
R e A, R c E in the sense that <x, e> is isomorphic to <a, {(n, m) I <n, m> e RI>. 
Conversely, if R e A, R C C is wellfounded, i.e., <a, {(n, m) I <n, m> e R}> is a 
wellfounded partial ordering, then R codes a transitive x e HC(A). Thus (*) can 
be transformed into the equivalent: 

Vin 3R (R wellfounded A 3 T Vm P (R(m), T(m), n)) 
+ 3 R 3T Vn((R)" wellfounded A Vm P((R)" (m), (Tj) (m), n)) 

for an appropriate recursive P (with parameter from 2w n A). 
For each n, consider the tree Tn whose nodes are of the from (r, t; 1) where 
(1) r and t are finite strings of 0's and l's, 
(2) Vm < lh(t)PQ((m), i(m), n), 
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96 S. D. FRIEDMAN 

(3) / maps {( i, 1)1r(< i, j>) = 04 order-preservingly into the A-countable 
ordinals. 

Then we know that A #a Vn [3 path through Tj] and we want Fe HC(A) such 
that Vn[F(n) is a path through Tj] Note that "f is a path through Tn" is a 2, (over 
A) predicate off and n, even though Tn need not be a member of A. 

By 21-bounding in A, there is a set Z e A of paths through the various Th's such 
that Vn 3 f e Z [f is a path through Tj] Let T, = {z e T, I z can be extended to path 
in Z). Then {T,}flEW e A and every node in T, has an extension in T,. It is now easy 
to find the desired F; simply let F(n) = leftmost path through T,. 

In [2], Barwise and Fisher prove the Levy-Shoenfield Absoluteness Theorem in 
ZF (without AC). Although this Absoluteness Theorem is not true in arbitrary 
admissible sets, we can use the techniques of [2] to establish the second part of 
Theorem 1. 

The following version of the Skolem normal form is quoted in [2] and provable 
from the axioms for admissible sets: Let 2 be the language of set theory and q a 
sentence of Y. Then there is an expansion Y' of Y with new relation symbols 
R1, ..., Rkand an V3-sentence qA' of Y' such that 

(i) Every model M of q can be expanded to a model <M, R1, ..., Rk> of q'. 
(ii) The reduct of any model of q' to Y is a model of q. 
LEMMA. Let A be an admissible set, T a transitive set belonging to A and suppose 

<T, e> # q. Then there is a tWansitive T' e HC(A) such that <T', e># (. 
PROOF OF LEMMA. We can assume that the axiom of extensionality is a logical 

consequence of q. By Skolem normal form, choose an V3-sentence (' so as to 
satisfy (i) and (ii) above and RT, ..., R4 so that T = <T, e, RT,..., RT>#qA. Write 
A' = Vx 1 ... Vx, b(x1, ..., x") where sb is existential. 

Consider 9 = {<S. f> IS = <S, E, Rs, ..., Rs> is a structure for 2', S is a 
finite subset of A, f: S -*T n ordinals and for some isomorphism j: S -* T 
f(s) = rank(j(s)) for all s e S}. For <S1, fi> and <S2,f2> in 9, define <S1, fA> >- 

<S2, f2> if: 
(a) S, c S2 as structures. 
(b) For all a,, ..., an e S1, S2 y5 0(a1, ..., an). 

(c)f2IS1 =fil 
As T # (', we have <S,, f> e 9 implies there is <S2,f2> E g such that <S,, f> >- 

<S2, f2> 
Now 9 e A and A t "9 can be wellordered." Let < e A be a wellordering of 97. 

Define: 
<509 A = 0. 

<Sn+l, fn+l> = < -least <S, f> such that <Sn, Jn> >_ <S, f> . If Un <S., f"> 
<S, f> then S is a wellfounded structure satisfying the axiom of extensionality, 
S e A and A t "S is countable." Let T' = transitive collapse of S, T' = <T', e, 
R', ..., RT'>. Then <T', S> t (, T' e HC(A). This completes the proof of the 
lemma. 

Just as in [2] (see Theorem 2a) the above lemma can be relativized to a parameter 
p e HC(A). (We omit the details.) We now show that HC(A) -< 1 A. Suppose q 
is 1, with parameter p e HC(A) and A # q. Then <T, e> t q for some transitive 
T e A, p e T. By the relativized version of the lemma, <T', e> t q for some transi- 
tive T' e HC(A), p e T'. But as 31-formulas persist, HC(A) (P. -H 
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REMARKS. (1) We have not really used the admissibility of A in the proof of the 
second part of Theorem 1, only the fact that A is primitive-recursively closed. 
Thus: A primitive-recursively closed -* HC(A) -<2, A. 

(2) Note that HC(HC(A)) = HC(A). Thus any locally countable admissible set 
is of the form HC(A), A admissible. 

(3) The obvious strengthenings of Theorem 1 are false. In fact, Levy and 
Feferman (see [6, Theorem 8]) have constructed a model M of ZF in which t{ = 

L. Then the functionf(n) = NL in this model shows that HC(M) is not 32-admis- 
sible. In addition, one can use forcing to construct a model N of ZF in which t2 = 
_L and {L I n e w} is 21 over H2 (N) (= {x I N H the transitive closure (x) 

has cardinality < 8}). Then H2 (N) is not admissible. 

?2. The real part of an admissible set. If A is admissible then 2w n A is called the 
real part of A. The real part of an admissible set is closed under join and "hyper- 
arithmetic in" (and more!). In the reverse direction, if X c 2W is closed under join 
and "hyperarithmetic in", let Ax = {x I <T ({x}), >is isomorphic to <K, 
{(n, m)I <n, m> eR}> for some ReX}. Then Ax n 2 = X and if X = A n 20 
for some admissible A, then Ax = HC(A). So by Theorem 1, we have: 

Fact. X is the real part of an admissible set if and only if Ax is admissible. 
We now proceed to translate the admissibility of Ax into a choice principle about 

X. Recall that we are assuming that X is closed under join and "hyperarithmetic 
in" throughout. 

Pairing, set union and JO-separation are automatic for Ax as X is closed under 
Turing jump. A typical instance of JO-bounding for Ax looks like: 

Vn e a 3y e Ax qp(n, y) -* 3z e Ax Vn 3y e zqp(n, y), 

where q is a JO-formula. We have chosen the domain of q to be w without loss of 
generality as every member of Ax is countable in Ax. For the same reason, we can 
replace the above by: 

Vn 3y e Ax p (n, y) -* f e Ax Vn q (n, f(n)), q a Jo-formula. 

As in the proof of Theorem 1, we can transform the preceding into: in 3R E X 
[R is wellfounded A P(n, R)] -* 3S E X Vn [(S)n is wellfounded A P(n, (S))], P arith- 

metic (with parameters in X) where (S)n = {m I <n, m> e S}. The above is an in- 

stance of the more general: 

(*) Win 3R E X[Q(n, R)] -* 3S E X Vn [Q(n, (S)J)], Q a H11-predicate 
(with parameters in X). 

Note that here Q is fI1 (in the real world!) and not necessarily H11 over X. For 

this reason, (*) is called External Hfl-AC (Ext 1ff-AC). We have shown that X # 

Ext 11,-AC implies Ax is admissible. 

Conversely, suppose that Ax is admissible. Then any 1f71-predicate Q(n, R) (with 

parameter in X) restricted to X is 21 over Ax (see [9, Proposition 2.5]). An applica- 
tion of 27- bounding in Ax then yields (*). So we have: 

THEOREM 2. X is the real part of an admissible set iffX F Ext HI -AC. 
DEFINTION. X is a ,8-model if X -<1 2w, i.e. X p 2a- # q for 271 q with 

parameters from X. 
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This is equivalent to: If a linear ordering is not wellfounded and belongs to X, 
then it has a descending chain in X. Any X closed under hyperjump is a 3-model. 

Let WO = {R I {(n, m) I <n, m> e R} is a wellordering}. WO is a complete 
HI1-set. Clearly if X is a 3-model, then X n WO is 1ff over X. Leo Harrington has 
recently shown that the converse is not true. 

DEFINTION. X is 171-strong if X n WO is ff1 over X (with parameters from X). 
PROPOSITION 3. Suppose X is fIf-strong. If P is f11 (with parameters from X), then 

P n X is f11 over X (with parameters). 
PROOF. If P is 1]1 (with parameters from X), then P n X is many-one reducible 

(via a recursive function) to WO n x, so P n X is f11 over X. H 
Question. If X is 1I1-strong and Q c X is 1l over X, then does Q = P n x 

where P is Ill (with parameters from X)? 
DEFINTION. 31-AC is the axiom scheme 

Vn 3R P(n, R) -* 3S Vn P (n, (S)), P 21 with parameters. 

Ext 111-AC implies 27 AC, so by Theorem 2, IL AC is true in every admissible 
set. This last fact is due to J. Steel [10]. 

PROPOSITION 4. If X is the real part of an admissible set and is HI'-strong, then X 
is a /3-model. 

PROOF. If X is not a 3-model, let <L, < L> e X be a linear ordering which has a 
descending chain but none in X. Let L* = the largest wellordered initial segment 
of L. Then L* is 1ff, so by hypothesis, L* is ff1 over X. Let X = A n 2w, A admis- 
sible. Then L* is fl over A (since it is 1ff1) and h7i over A (since it is 1ff1 over A n 2w). 
Since A 1 J1-separation, L* e A n 2w = X. 

Now X 1 1-AC. Using this, it is easy to construct a descending chain through 
L in X. (Apply T1-AC to the statement Va3b(a E L - L* b E L - L*, b < La).) H 

Assume X is 171-strong. Then Xl= Ext 11 -AC iff X 1 327-AC. We have therefore 
established half of the following result: 

THEOREM 5. X is the real part of an admissible set if: 
(1) X is HI'-strong, X 1= 12-AC or 
(2) X is not Hf'-strong, X # 21-A C. 
PROOF. In light of earlier remarks, it suffices to prove: 
Claim. X # 11-AC, X k Ext HI-AC -+ X is 171-strong. 
First we prove: 
LEMMA. Suppose <L, <L> E X is a linear ordering. Let WF(L) = the largest 

wellordered initial segment of L. If WF(L) is 1l over X but not an element of X, 
then X is Hf'-strong. 

PROOF OF LEMMA. Suppose <M, <M> E X is a linear ordering. which is not a 
wellordering but X l= <M, < M> is a wellordering. Then a e WF(L) -+ X l= there 
is an isomorphism of La, onto an initial segment of <M, < M>, where La, = 
{b e L I b < L a}. Since WF(L) 0 X and X 1 J'-CA, there is a E L- WF(L) such 
that X # there is an isomorphism of L,, into an initial segment of <M, <M>. 

Therefore, for <M, <M> E X: <M, <M> is a wellordering <*> X k "<M, <M> 
is a wellordering A Va E M Vf [(f an isomorphism of Mat onto an initial segment 
of L) -* f(a) e WF(L)]." This shows that WO n X is HI over X. H 

PROOF OF CLAIM. Let P(n, r) be a counterexample to Ext ff'-AC. That is, P(n, R) 
is Hf (with parameter from X), Vn 3R E X P(n, R) but - 3S E X Vn P (n, (S),). 



HC OF AN ADMISSIBLE SET 99 

Let f be a recursive function such that: 
(1) Vn, P(n, R) iff {If (n)}R is a wellordering. 
(2) Vn VR {If(n)}R is a linear ordering. 
We can assume that X is not closed under hyperjump, so let <L, <L> e X be a 

linear ordering, WF(L) 0 X. For each n and a e L consider the tree Ta whose nodes 
are pairs (z, 1) where: 

(i) z- is a finite string of O's and I's. 
(ii) I is an order-preserving map from the finite linear ordering {f(n)}fh(,) into 

the < L-predecessors of a. 
Then we have: 
(a) a e L-WF(L) -- Vn Ta has a path in X. 
(b) a e WF(L) -+ 3n Ta has no path in X. 

(a) holds because Vn 3R e XP(n, R). (b) holds because - 3S e XVn P(n, (S)") and 
1 -AC. Now by l1-AC, 

a e WF(L) +-+ VS eX 3n [(S)n is not a path through Tn] 

and we are then done by the lemma. H 
In case we only consider models of 17-DC, we can replace "fIl-strong" by the 

more natural "/-model" in Theorem 5: 
DEFINITION. 11-DC is the axiom scheme 

VJR 3S P(R, S) -* S Vn P ((S)n, (S)n+l) P n7 with parameters. 

1 -BI is the axiom scheme VR[R a wellordering A Vn (P(n) -* n e Field(R)) A 

3nP(n) - 3 n(P(n) A Vm < R n - P(m))], P 21 with parameters. 
1 -BI says that a Cl-subset of a wellordering has a least element (in the sense of 

the wellordering). BI stands for "Bar Induction." (For more information on bar 
induction, see [3], [4] and [5].) 

LEMMA 6 (HOWARD AND KREISEL [5]). 21-DC 21[BI. 
PROOF. (-a) Let R be a wellordering and P(n) 3S VmQ(S(m), n) a Cl-predicate 

contained in the field of R. If P has no < R-least element, then 

Vn VS 3S' 3n'[n' < R n A ( VmQ (3(m), n) -? VmQ(S'(m), n'))]. 

By 27kDC, R is not wellordered. 
(a-) Assume VR S 3 T Vn Q(R(n), 3(n), i(n)), Q recursive. Consider the tree 

whose nodes are of the form (ro, ..., rn; t1, ..., tj) where 
(1) Each r, is a finite string of O's and ls. 
(2) Vn < m Q(rQ(n), ri+1(n), ti(n)). 

(r0, ..., r"; t1, ..., t") extends the above node if n > m and r' extends ri, t4 extends 
ti for each i ? m. A path through this tree yields the conclusion of 27 DC that 
we want. Let < be the Kleene-Brouwer ordering of this tree. It is enough to show 
that < is not a wellordering. By 271-BI, it is enough to exhibit a,2?-subset of the 
tree with no < -least element. But simply consider 

{(ro, . . ., rm; t1, ..., t) 
I 3Ro .. * 3Rm 3 T . 3TmVlnVi < mQ (Ri(n), Ri+i(n), Ti(n))}. H 

THEOREM 7. X is the real part of an admissible set satisfying 21-DC iff 
(1) X is a :-model of I27AC (= I2-DC) or 
(2) X is a non-/3-model of 2l-DC. 
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PROOF. Note that 1-AC-? v-DC -- I,-DC. 
By Theorem 5, it is enough to show that a 1I-strong model of 17-DC is a 

model. Suppose X l= 1l-DC is 11f-strong. If X is not a n-model, then there is a 
linear ordering L E X such that X l L is a wellordering, but WF(L) # L. WF(L) 
is 1]1, hence by 11-strength WF(L) is 1I over X. But then L- WF(L) contradicts 21- 
BI which holds in X by Lemma 6. H 

Theorem 5 can be used to characterize which statements in the language of 
analysis are true in every admissible set. We begin with a lemma which was pointed 
out by Leo Harrington: 

LEMMA 8. Let X 1,= S where S is a recursive set of sentences. Then there is a Y l= S 
which is not H1I -strong. 

PROOF. We can assume that X is countable. Consider the theory T = ZF- + 
3X(X [-- S) + Vx(x finite ordinal -? W,, x = n) which is a member of the admis- 
sible fragment LO,1CK. Then HC l= T. By the theorem on pinning down ordinals 
(see [1, Theorem 7.5, p. 107]), T has a model M such that the ordinal cOCK is not 
represented in M; i.e., no partial ordering in M has ordinal rank c)I K. 

In particular, Kleene's ( 0 M because otherwise <0, < ,> represents cO)CK. 

As M l= T, there is Y E-= M, Y l= S. Then Y is not 171-strong as otherwise ( is 
H1I-definable over Y and hence an element of M. - 

Theorem 5 and the lemma immediately yield: 
THEOREM 9 (HARRINGTON). If ( is a sentence of analysis true in some c-model of 

21-AC, then (D is true in some admissible set. 
COROLLARY 10. The c-consequences (consequences in c-logic) of the axioms for 

admissible sets (together with the axiom of infinity) in the language of analysis are 
precisely the c-consequences of 1 -AC. 

In [8], G. Sacks has characterized the 1-sections of normal finite type objects 
as the real parts of admissible sets satisfying 31-DC. 21-DC is the scheme: 

Vx3yp(x,y) -? 3f[domf = co A Vn(p(f(n),f(n + 1))] 

sp a Cl-formula with parameters. 
The above results can be used to characterize those sentences of analysis true 

in every 1-section. 
LEMMA 11. Suppose A is a locally countable admissible set of ordinal height a. 

Suppose X = A n 2w0 satisfies 21-DC. Then either A l= 21-DC or there is a well- 
ordering (of integers) of order type a definable over X. 

PROOF. If X is a R-model, then N1-DC for A is equivalent to N2-DC for X; but by 
Theorem 7, X 1= D2-AC and in general 12-AC --+ ILDC. So X a R-model 
A l= 11-DC. 

Now suppose X is not a 3-model and let <L, <L> E X be a linear ordering such 
that X l= "<L, <L> is a wellordering" and WF(L) ? X. Consider an instance of 
11-DC: 

(*) Vx 3y p(x, y) -* 3f[domf = co A Vn p(f(n),f(n + 1))]. 

By pairing, it suffices to treat the case where sp is JO. The hypothesis of (*) can be 
transformed into the equivalent: 

VR 3S[R wellfounded -? (S wellfounded A Q(R, S))] 
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where Q is an appropriate arithemtic predicate and "R wellfounded" abbreviates 
"{(n, m) I <n, m> EJ R} is a wellfounded partial ordering." Finally, transform this 
into the equivalent: 

VPR S 3 T[R wellfounded -? (S wellfounded A Vin P(R(n), S(n), T(n)))] 

where P is recursive. The conclusion of (*) is now equivalent to: 

3R 3 T Vm[(R)m is wellfounded A VnP((R)m(n), (R)m+i (n), (T)m(n))]. 

For each a E L, consider the tree Ta whose nodes are of the form (zo,..., zm; 
t15 ..., tm;f) where 

(1) Each zi is a finite string of 0's and 's. 
(2) Vn < m Vi < m P (?i(n), zi+l(n), li(n)). 

(3) For all i < m, (f)i is a function mapping {(j, k) I zi(<i, k>) = 0} order-preserv- 
ingly into the < L-predecessors of a. 

(Z'5., Xzn; tK, ... t'; f') extends (zo, ..., 5zm; t15 ...,5 tm;;f) if n > m and Vli < m 
(z' extends zi, t' extends ti, (f ') extends (f)j). Thus if a e WF(L), then a path 
through Ta yields the conclusion of (*). For each a, define 

Sa = {(Z0, ..., Zm; tl, ... X tm; f) e Ta I 3R 3 T 3F Vi < m[(R)i extends zi A 

(T)i extends tj A F extends f A VnP((Ri(n), Ri+l(n), (T)i(n)) 
A (F)i maps {(j, k) I < j, k> E (R)j} order-preservingly into 

the < L-predecessors of a]}. 

The assumption of (*) implies that if a E WF(L), Z E Sa, then 3 b E WF(L) [z has a 
proper extension in Sb}. If for some a E WF(L) there is no b E WF(L) such that 
dW [I E Sa -? z has a proper extension in Sb], then define WF(L) in X by: 

b E WF(L) *. 3z E Sa [z- has no proper extension in Sb], 

so in this case we are done (clearly < WF(L), < L> has order type a). 
Otherwise, define 

< L-least b s.t. VZ1 [Z. E Sa -? z has a proper extension in Sb], 

g(a) = if such a b exists, 

0 otherwise. 

Then g: WF(L) -? WF(L) and g: L -? L U {0} is definable over X. Let ao E WF(L) 
be such that Sao =# 0 and consider the sequence a0, g(ao), g(g(ao)), .... If this 
sequence runs unboundedly through WF(L), then WF(L) is again definable over 
X. Otherwise, let a E WF(L) be the supremum of this sequence. We have: : E S<a 
z has a proper extension in S<a' where S<a = Ub<La 5b But then 5<a is a 21- 
subset of the Kleene-Brouwer ordering of Ta with no least member. By 27 BI, 
Ta has a path and this demonstrates the conclusion of (*). H 

THEOREM 12. Suppose (p is a sentence of analysis true in some 0)-model of 17-DC. 
Then p is true in some admissible set satisfying 21-DC (and hence (p is true in the 
1-section of some normal object offinite type). 

PROOF. The proof of Lemma 8 shows that (p is true in some X l= 2l-DC which 
cannot define a wellordering of integers of order type o)cK. By Theorem 5, Ax 
is admissible and by Lemma 11, Ax l= 11-DC. - 
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Questions. (1) Is there a locally countable admissible A such that A n 2w' [ 21- 
DCbutA [t1,-DC? 

(2) Is there a nice characterization (as in Theorem 7) of the real parts of admis- 
sible sets satisfying 21-DC? 
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