Forcing when there are Large Cardinals

Summary:

1. What are large cardinals?

2. Forcings which preserve large cardinals (failure of GCH at a measurable)

3. Forcings which destroy large cardinals, but do something interesting (Singular Cardinal Hypothesis)

4. Some open questions

What are large cardinals?

$$\begin{split} \kappa \mbox{ is inaccessible iff:} \\ \kappa > \aleph_0 \\ \kappa \mbox{ is regular} \\ \lambda < \kappa \to 2^\lambda < \kappa \end{split}$$

 κ inaccessible implies V_{κ} is a model of ZFC

$$\begin{split} &\kappa \text{ is } \textit{measurable iff:} \\ &\kappa > \aleph_0 \\ &\exists \text{ nonprincipal, } \kappa\text{-complete ultrafilter on } \kappa \end{split}$$

Embeddings:

V = universe of all sets M an inner model (transitive class satisfying ZFC, containing Ord)

 $j: V \rightarrow M$ is an *embedding* iff: j is not the identity j preserves the truth of formulas with parameters

Critical point of *j* is the least κ , $j(\kappa) \neq \kappa$

Idea: κ is "large" iff κ is the critical point of an embedding $j: V \to M$ where M is "large"

What are large cardinals?

Suppose that κ is the critical point of $j: V \rightarrow M$

 κ is λ -hypermeasurable iff $H(\lambda) \subseteq M$

 κ is λ -supercompact iff $M^{\lambda} \subseteq M$

Fact: Measurable = κ^+ -hypermeasurable = κ -supercompact.

Kunen: No $j: V \to M$ witnesses λ -hypermeasurability for all λ , i.e., M cannot equal V

However: κ could be λ -hypermeasurable for all λ (i.e., the critical point of embeddings with arbitrary degrees of hypermeasurability)

Question: Suppose κ is a large cardinal and G is P-generic over V. Is κ still a large cardinal in V[G]?

Lifting method (Silver):

Given $j: V \rightarrow M$ and G which is P-generic over V

Let P^* be j(P)

Goal: Find a G^* which is P^* -generic over M such that $j[G] \subseteq G^*$

```
Then j: V \to M lifts to j^*: V[G] \to M[G^*], defined by j^*(\sigma^G) = j(\sigma)^{G^*}
```

If G^* belongs to V[G] then κ is still measurable (and maybe more) in V[G]

An example: Making GCH fail at a measurable cardinal

Theorem

Suppose that κ is κ^{++} -hypermeasurable. Then in a forcing extension, κ is still measurable and $2^{\kappa} = \kappa^{++}$.

Theorem is due to Woodin; the proof below is due to Katie Thompson and myself.

Step 1. Choose a forcing to make GCH fail at kappa. Obvious choice: Cohen (κ, κ^{++}) Adds κ^{++} -many κ -Cohen sets Conditions are partial functions of size $< \kappa$ from $\kappa \times \kappa^{++}$ to 2 Better choice: Sacks (κ, κ^{++}) Adds κ^{++} -many κ -Sacks subsets of κ (defined later)

Step 2: Prepare below κ

Here is the problem (illustrated using just κ -Cohen forcing): Suppose that $C \subseteq \kappa$ is κ -Cohen generic Want to lift $j: V \to M$ to $j^*: V[C] \to M[C^*]$ Need to find C^* which is $j(\kappa)$ -Cohen generic over M and "extends" C, i.e., such that $C = C^* \cap \kappa$ Impossible! C does not belong to M! Need the forcing to add C^* to be defined not in M but in a model that already has C

Solution: Force not just at $\kappa,$ but at all inaccessible $\alpha \leq \kappa,$ via an iteration

$$P = P(\alpha_0) * P(\alpha_1) * \cdots * P(\kappa)$$

where $P(\alpha)$ denotes α -Cohen forcing. Let $C(\alpha_0) * C(\alpha_1) * \cdots * C(\kappa)$ denote the *P*-generic

Now we want to lift
$$j: V \to M$$
 to
 $j^*: V[C(\alpha_0) * C(\alpha_1) * \cdots * C(\kappa)] \to$
 $M[C^*(\alpha_0) * C^*(\alpha_1) * \cdots * C^*(\kappa) * C^*(\beta_0) * C^*(\beta_1) * \cdots * C^*(j(\kappa))]$
where the β_i 's are the inaccessibles of M between κ and $j(\kappa)$.
To find the C^* 's:
Set $C^*(\alpha) = C(\alpha)$ for $\alpha < \kappa$
Set $C^*(\kappa) = C(\kappa)$
Take $\langle C^*(\beta) | \kappa < \beta < j(\kappa) \rangle$ to be any generic (they exist)
Last lift: Take $C^*(j(\kappa))$ to be any generic for $j(\kappa)$ -Cohen forcing of
 $M[C^*(\alpha_0) * C^*(\alpha_1) * \cdots * C^*(\kappa) * C^*(\beta_0) * C^*(\beta_1) * \cdots]$
containing the condition $C(\kappa) = C^*(\kappa)$ (such generics exist).

Step 3: Make this work with $\kappa\text{-}{\rm Cohen}$ forcing replaced by some forcing that kills the GCH at κ

Here is the problem:

For inaccessible $\alpha < \kappa$ replace α -Cohen by Cohen (α, α^{++}) All goes well until the last lift: we can choose $C^*(\gamma)$ for all *M*-inaccessible $\gamma < i(\kappa)$ and lift $i: V \to M$ to $i': V[C(\alpha_0) * C(\alpha_1) * \cdots] \rightarrow$ $M[C^*(\alpha_0) * C^*(\alpha_1) * \cdots * C^*(\kappa) * C^*(\beta_0) * C^*(\beta_1) * \cdots]$ We then need to find a generic for the Cohen $(i(\kappa), i(\kappa^{++}))$ -forcing of $M[C^*(\alpha_0) * C^*(\alpha_1) * \cdots * C^*(\kappa) * C^*(\beta_0) * C^*(\beta_1) * \cdots]$ which contains $j'[C(\kappa)]$. But Cohen $(i(\kappa), i(\kappa^{++}))$ is a very big forcing (it may have no generic; we may have to force one!) and $j'[C(\kappa)]$ is a very complicated set of conditions in this forcing (it is not easy to force a generic that contains it!)

Here is the solution: Use $\operatorname{Sacks}(\kappa, \kappa^{++})$ instead of $\operatorname{Cohen}(\kappa, \kappa^{++})$ Then we don't have to build a generic $S^*(j(\kappa))$ for $\operatorname{Sacks}(j(\kappa), j(\kappa^{++}))$ because $j'[S(\kappa)]$ builds one for us! Illustrate with κ -Sacks: A condition is a perfect κ -tree with a closed unbounded set of splitting levels. If G is generic then the intersection of the κ -trees in G gives us a function $g: \kappa \to 2$.

Lemma

(Tuning Fork Lemma) Suppose that $j : V' \to M'$ has critical point κ , g is κ -Sacks generic over V', M' is included in V'[g] and g belongs to M'. Then in V'[g] there are exactly two generics h_0, h_1 for the $j(\kappa)$ -Sacks of M' extending g; moreover $h_0(\kappa) = 0$ and $h_1(\kappa) = 1$.

A similar result holds for Sacks (κ, κ^{++}) , thereby solving the problem of the "last lift".

Some other applications:

(with Magidor) Assume GCH, let κ be measurable and let α be any cardinal at most κ^{++} . Then there is a cofinality-preserving forcing extension in which there are exactly α -many normal measures on κ .

(with Dobrinen) Assume GCH and let κ be λ -hypermeasurable where λ is weakly compact and greater than κ . Then there is a forcing extension in which κ is still measurable and the tree property holds at κ^{++} .

(with Zdomskyy) Assume GCH and let κ be κ^{++} -hypermeasurable. Then there is a cofinality-preserving forcing extension in which κ is still measurable and the symmetric group on κ has cofinality κ^{++} .

Singular cardinal hypothesis (SCH): If $2^{cof(\kappa)} < \kappa$ then $\kappa^{cof(\kappa)} = \kappa^+$ SCH \Rightarrow GCH holds at singular strong limit cardinals

Theorem

(Prikry) Suppose that κ is measurable and the GCH fails at κ . Then in a forcing extension, κ is still a strong limit cardinal where the GCH fails, but now κ has cofinality ω . In particular, the SCH fails in this forcing extension.

Prikry forcing: A forcing that preserves cardinals, adds no new bounded subsets of κ but adds an ω -sequence cofinal in κ

```
Conditions in Prikry forcing:
```

Fix a normal measure U on κ . A condition is a pair (s, A) where s is a finite subset of κ and A belongs to U.

Extension in Prikry forcing:

(t, B) extends (s, A) iff t end-extends s B is a subset of A $t \setminus s$ is contained in A

Facts: (a) If G is P-generic then $\bigcup \{s \mid (s, A) \in G \text{ for some } A\}$ is an ω -sequence cofinal in κ . (b) P is κ^+ -cc: If (s, A), (t, B) are conditions and s = t then (s, A)and (t, B) are compatible.

The main lemma about Prikry forcing is the following. We say that (t, B) is a *direct extension* of (s, A) iff s = t and B is a subset of A.

Lemma (The Prikry property)

For σ a sentence of the forcing language, every condition has a direct extension which decides σ (i.e., either forces σ or $\sim \sigma$).

Lemma (The Prikry property)

For σ a sentence of the forcing language, every condition has a direct extension which decides σ (i.e., either forces σ or $\sim \sigma$).

Proof. Suppose that (s, A) is a condition and define $h : [A]^{<\omega} \to 2$ as follows:

$$h(t) = 1$$
 iff $(s \cup t, B) \Vdash \sigma$ for some B
 $h(t) = 0$ otherwise.

As U is normal there is $A^* \in U$ which is *homogeneous* for h: For each n and t_1 , $t_2 \in [A^*]^n$, $h(t_1) = h(t_2)$. Then (s, A^*) decides σ : Otherwise there would be $(s \cup t_1, B_1)$, $(s \cup t_2, B_2)$ extending (s, A^*) which force σ , $\sim \sigma$, respectively. We can assume that for some n, both t_1 and t_2 belong to $[A^*]^n$. But then $h(t_1) = 1$, $h(t_2) = 0$, contradicting homogeneity. \Box

Corollary: P does not add new bounded subsets of κ .

Proof. Suppose $(s, A) \Vdash \dot{a}$ is a subset of λ , where λ is less than κ . Set $(s, A_0) = (s, A)$ and using the Prirky property choose a direct extension (s, A_1) of (s, A_0) which decides " $0 \in \dot{a}$ ". Then choose a direct extension (s, A_2) of (s, A_1) which decides " $1 \in \dot{a}$ ", etc. After λ steps we have a direct extension (s, A_λ) of (s, A) which decides which ordinals less than λ belong to \dot{a} , and therefore forces \dot{a} to belong to the ground model. \Box

In summary: If G is P-generic then κ has cofinality ω in V[G] and V, V[G] have the same cardinals and bounded subsets of κ . In particular, if GCH fails at κ in V, then in V[G], κ is a singular strong limit cardinal where the GCH fails.

An improvement: Model where \aleph_ω is strong limit and the GCH fails at \aleph_ω

Theorem

(Magidor) Suppose that κ is measurable. Then there is a forcing extension in which κ equals \aleph_{ω} .

For the proof, mix Prikry forcing with Lévy collapses:

Suppose that $\alpha < \beta$ are regular. Then Lévy (α, β) is a forcing that makes β into α^+ and otherwise preserves cardinals:

 $p \in Lévy(\alpha, \beta)$ iff p is partial function of size $< \alpha$ from $\alpha \times \beta$ to β such that $p(\alpha_0, \beta_0) < \beta_0$ for each (α_0, β_0) in the domain of p.

Collapsing Prikry forcing: 1st try

Fix a normal measure U on κ . A condition is of the form $((\alpha_0, p_0), (\alpha_1, p_1), \dots, (\alpha_{n-1}, p_{n-1}), A)$ where:

$$\alpha_0 < \alpha_1 < \cdots < \alpha_{n-1} < \kappa$$
 are inaccessible
 p_i belongs to Lévy (α_i, α_{i+1}) for $i < n-1$
 p_{n-1} belongs to Lévy (α_{n-1}, κ)
A belongs to U

To extend: Strengthen the p_i 's, increase n, shrink A and take the new α 's from the old A

Problem: This collapses κ to ω (the p_i 's are running wild!)

Solution: Control the p_i 's on a measure one set

Collapsing Prikry forcing: 2nd try Let $i: V \to M$ witness that κ is measurable and choose U to be the normal measure $\{A \mid \kappa \in j(A)\}$ Guiding generic: Choose G in V to be generic over M for Lévy(κ^+ , $j(\kappa)$) of M (this is possible) Now define a condition to be of the form $((\alpha_0, p_0), (\alpha_1, p_1), \dots, (\alpha_{n-1}, p_{n-1}), A, F)$ where: $\alpha_0 < \alpha_1 < \cdots < \alpha_{n-1} < \kappa$ are inaccessible p_i belongs to Lévy $(\alpha_i^+, \alpha_{i+1})$ for i < n-1 p_{n-1} belongs to Lévy (α_{n-1}^+, κ) A belongs to UF is a function with domain A such that $F(\alpha)$ belongs to Lévy (α^+, κ) for each inaccessible α in A $i(F)(\kappa)$ belongs to G

An extension of $p = ((\alpha_0, p_0), (\alpha_1, p_1), \dots, (\alpha_{n-1}, p_{n-1}), A, F)$ is of the form $p^* = ((\alpha_0^*, p_0^*), (\alpha_1^*, p_1^*), \dots, (\alpha_{p^*-1}^*, p_{p^*-1}^*), A^*, F^*)$ where: n^* is at least n $\alpha_i^* = \alpha_i$ and p_i^* extends p_i for i < n p_i^* extends $F(\alpha_i^*)$ for $j \ge n$ A^* is contained in A $F^*(\alpha)$ extends $F(\alpha)$ for each $\alpha \in A^*$ p^* is a *direct extension* of p if in addition $n^* = n$ A generic produces a Prikry sequence $\alpha_0 < \alpha_1 < \cdots$ in κ together with Lévy collapses g_0, g_1, \ldots where g_i ensures $\alpha_{i+1} = \alpha_i^{++}$. So after collapsing α_0 , we see that κ is at most \aleph_{ω} . The forcing is κ^+ -cc. But why isn't κ collapsed?

The Prikry property: For σ a sentence of the forcing language, every condition has a direct extension which decides σ .

Using this, one gets: Any bounded subset of κ belongs to $V[g_0, g_1, \ldots, g_n]$ for some n, and therefore κ remains a cardinal Summary: Prikry Collapse forcing makes κ into \aleph_{ω} and preserves cardinals above κ .

Now start with κ measurable and GCH failing at κ . Then Prikry Collapse forcing makes κ into \aleph_{ω} with \aleph_{ω} strong limit, GCH failing at \aleph_{ω} (Strong failure of the SCH)

Open Questions

1. Preserving large cardinals

Consider various cardinal characteristics of the continuum (almost-disjointness number, bounding number, dominating number, splitting number, ...)

How do these behave at a large cardinal?

Is it consistent that a strongly compact cardinal have a unique normal measure?

Is it consistent with a supercompact cardinal for $H(\kappa^+)$ to have a definable wellordering for every uncountable κ ?

Open Questions

2. Using large cardinals

(SCH-type problems): What are the possibilities for the function $n \mapsto 2_n^{\aleph}$ for $n \leq \omega$?

Is it consistent that there is no $\kappa\text{-}{\rm Aronszajn}$ tree for any regular cardinal $\kappa>\omega_1?$

Is it consistent to have stationary reflection at the successor of each singular cardinal?

Can the nonstationary ideal on ω_1 be saturated with CH?

```
Can \aleph_{\omega} be Jonsson?
```