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A <-partition of a set or class X is a function f from X 

onto <. The sets f-l(a),~ < < are the cells of the ~-partition f. 

We shall concentrate on <-partitions for 1 < < < m. In that case we 

say that f is immune if no infinite constructible set is contained 

in the union of fewer than < cells. Our goal in this paper is to 

study the existence of immune <-partitions of ORD = class of all 

ordinals. 

Theorem i. (Woodin) If 0 # exists then there is an immune ~-parti- 

tion of ORD. Moreover this partition is Al-definable with parameter 

0 # . 

Theorem 2. If there is an immune m-partition f and R is Cohen- 

generic over L[f] then there is an immune 2-partition. 

Theorem 3. There are immune m-partitions and 2-partitions which are 

class-generic over L. They can also be taken to be definable over 

L[0 #] (if 0 # exists). 

In all cases we obtain immune 2-partitions from immune ~-parti- 

tions using Cohen forcing. We do not know if it is provable in class 

theory that the existence of an immune ~-partition implies that of an 

immune 2-partitiQn. 

Note that it is easy to obtain an immune 2-partition of X for 

a set X: If card(X) = X then add a subset G of ~ using finite 

conditions (equivalently add l' Cohen reals, X = m.X'). Then the 

characteristic function of G is an immune 2-partition. But notice 

that 2 m is enlarged (if I > w I) so this is not a useful approach 

to Theorem 3. 

The partitions f constructed in Theorem 3 have the property 

that GC~ holds in L[f]. However cardinals are not preserved: 
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in L[f] = m~. (L-cardinals > w~ are preserved.) The reason is e 1 

that we must make use of the technique used to prove the following. 

Theorem 4. (Mack Stanley) There is a closed unbounded C c ORD such 

that C is class-generic over L and ~ 6 C ~ L-cofinality(~) > m. 

The idea for proving Theorem 3 is to add an immune m-partition 

of 1 for each L-cardinal l by means of iterated forcing. However 

to establish the distributivity of this forcing at l it is necessary 

to have a CUB subset of l consisting of ordinals of uncountable L- 

cofinality. Thus we simultaneously add such CUB sets to obtain the 

desired partition. By using a Cohen real we can reduce this m-parti- 

tion to a 2-partition. Carrying this out in L[0 #] requires the use 

of the "backwards Easton" nature of the iteration. 

Proof of Theorem i. First list all L-definable terms to,tl,.., so 

that every x e L can be written as tj (il,...,i n) for some j, 

where i0<'''<in belong to I = the Silver indiscernibles. For any 

= " in I,tj n-ary}n ORD and set j let Xj {tj(i I ..... i n) Ill<... <in 

f' (k) = Xj (k) - (X9 (0)u...uXj(k_l)) where j (k) is least so that 

this is nonempty. We claim that f is the desired partition where 

f(@) = least k such that @ 6 f' (k). Clearly f maps ORD onto m • 

We must show that no infinite constructible set y c ORD is contained 

in XjlU...UXjk for any finite {Jl ..... Jk }~ ~ " 

We prove the last statement by induction on uy. First note 

that Uy cannot be less than s 0 = min(I) as t(il, .... i n ) < ~0 ~t 

is constant on I n and so s 0 ~ (XjlU...UXjk) is finite. Now choose 

a consecutive pair i < i* in I so that i < Uy < i*; this is 

possible as we can assume uy q y and thus Uy has L-cofinality ~. 

We can also assume that y c (i,i*) and hence for some £,m < ~: 

E y ~ ~ = t(B,i,il...i m) for some [Z term t, some B < i and 

i* _< il<...<im in I. (The fact that £,m exist follows from 

' as follows: If y c X u...ux. .) Now define new terms t~,...,t k 
31 3 k ~ ~. . < <' 

t. =t. (i .... i ,jl...jv ) where il<...<i u < tjh(1,3] < 31 ... 3 v 
3 h 3h ± u . . . 

then let t~(i I ..... lu,31...3v...jm) = least <~,p> such that 

tjh(il...iu,Jl...jv ) = tp(B,iu,Jl...jm) and tp is [£. Then also 

let y' = {<8,p>IFor some ~ 6 y,<8,p> is least so that tp is [£, 

= tp(8,i,il...im)}. Thus y' is constructible and infinite since 

y is and moreover Uy' < i. Finally note that y' is a subset of 

Xj,U...uxj{ where t.' = 1 3h t~. By induction we are done. It is clear 
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that f is Al-definable from 0 #. 

Proof of Theorem 2. Suppose f is an immune ~-partition and define 

g(e) = 1 or 0, depending on whether or not f(e) belongs to R 

(R Cohen-generic over L[f]). If y c ORD is infinite and construc- 

tible then y must intersect infinitely many cells of f. But then 

y must intersect both cells of g as otherwise either R or R has 

an infinite subset in L[f] (y) = L[f], contradicting Cohen gener- 

icity. J 

We now turn to the main result. 

Proof of Theorem 3. We use "backward Easton" forcing (see Jech [78])• 

By induction on < 6 L-Card = {uncountable L-cardinals} we define a 
+ 

= * Q<+, where Q< is defined forcing P<. For successor K , P<+ P< 

below. For limit <,P< = Direct Limit <F<, JK' < <> if K is 

regular, P< = Inverse Limit <F I<' < <> otherwise 

Begin by defining P~L = Coll(~) where Coll(~) is the L4vy 
1 

collapse of ~ to ~ with finite conditions. 

Suppose < > ~ is a singular cardinal or a successor cardinal. 

We define Q~+, ass~nming P< has been defined• First add a CUB 

subset of <+ consisting of ordinals of uncountable L-cofinality: 
+ 

Conditions are bounded closed subsets of < with this property. We 

claim that this forcing is <+-distributive (the intersection of K 

dense open sets is dense open), in the ground model L[G<] where 

G K is P<-generic. Suppose <DiJi < l> is a h-sequence of dense 

open sets and I ~ K is regular in L[G<] (without loss of gener- 

ality). Suppose p is a condition and let C c K+ be the closed 
+ 

unbounded subset consisting of all ~ < < such that L [G<,D] 

LK+[Gm,D] where D = {(q,i) Jq e Di}. Let e 0 < ~i<... enumerate 

the first I + 1 elements of C and using a CUB subset X of l 

consisting of ordinals of uncountable L-cofinality, thin this to a 

closed subsequence B 0 < 81<... of ordertype i + 1 also consist- 

ing of ordinals of uncountable L-cofinality. Then inductively define 

P0 = p' Pi+l = least q ~ Pi in D i such that Uq ~ 8 i, 

Pl' = u{Pili < l'} for limit l' ~ I. As we can assume that X 

_ Thus belongs to L 8 [G K] we see that for limit l'< l, U~l'= 81'+ L 

q = Pl is the0desired extension of p. Note that in case K = ~2 

we must use the fact that ~ is countable in L[G K] to obtain X 

(in this case I = ~). 

The second part of Q<+ in this case consists of adding an 
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immune m-partition of <+. The conditions are immune m-partitions of 

an ordinal e < <+. To show that conditions can be extended it 

suffices to produce an immune w-partition of < in L[GK]. If 
L 

K = ~l then this is easy, using the fact that m~ iS countable. If 

K > m~ is a successor cardinal then this follows by induction. 

Finally suppose that K is singular. Let <0 < <I <''" in L be a 

closed subsequence of K of ordertype cof(K) = I. For each i < 

let fi: [Ki'Ki+l ) + ~ be an immune u-partition of [Ki,Ki+ I) and 

let g: 1 + m be an immune u-partition of I. Define 

f(e) = <fi(e), g(i)> where <i ~ ~ < Ki+l" Then f is a partition 

of < into countably many cells. It suffices to show that no 

infinite constructible set y is contained in the union of finitely 

many of these cells. If y were a counterexample then in fact we 

can assume y = YlU...Uy n where Yk -c [<.ik,Kik+l) for some ik< I , 

since g is an immune u-partition. But some Yk must be infinite 

and hence intersect infinitely many cells of fik. So y intersects 

infinitely many cells of f and we are done. 

We must also show that this forcing is <+-distributive. This 

argument is identical to that used for the preceding forcing: extend 

P = P0 to Pl ~ P2 ~''" successively and arrange that for limit 

~' ~ I, Dom(pl,) = B~, has uncountable L-cofinality. Then it is 

clear that Pl': BI' ~ m is immune as any countably infinite 

constructible y C BI, must in fact be contained in ~i for some 

i < I' This completes the discussion of QK+ when < is a successor 

cardinal or is singular. 

When K is inaccessible we proceed exactly in the same way 

except first add a CUB subset C of K consisting of ordinals of 

uncountable L-cofinality and an immune u-partition of K. The proof 

that these forcings are extendible and <-distributive is as before. 

Then add the CUB subset of K+ and the immune m-partition of <+ as 

before and use the set C to show that N{Dili < <} is open dense 

if each D i is open dense. This completes the description of QK+ 

and hence the definition of P< for all L-cardinals K > m. 

It is now easy to obtain the desired immune u-partition of ORD. 

Let G be P-generic over L where P = Direct Limit <P I<E L-Card>. 
K 

L 
The fact that G preserves cardinals > m I and the GCH follows 

from the "backward Easton" nature of our forcing: P = P(~K)*P(>Ki 

where P(>K) is <+-distributive and card(F(<<)) = <, for regular 

< > ~. So cardinals are preserved above m~ and the GCH holds. 

Now force over L[G] with conditions p: ~ ~ m which are immune 

u-partitions. Extendibility and ORD-distributivity follow as before, 
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using the existence in L[G] of immune w-partitions of each ~ E ORD 
L 

and the existence of CUB subsets of each regular < > e I consist- 

ing of ordinals of uncountable L-cofinality. This completes the 

proof of the first statement of Theorem 3, as to obtain an immune 2- 

partition of ORD we need only add a Cohen real. 

We must finally argue that G can be obtained definably over 

L[0#]. (The final Cohen real can then be chosen in L[0 #] using 

the fact that ~[G] = ~ < ~[0#].) This is again a consequence of 

the "backward Easton" nature of the forcing P. It suffices to 

build H C Lie in L[0 #] which is Piw-generic over Lie and such 
! • . ! 

that t(Jl...jn ) 6 H ÷÷ t(Jl...jn) 6 H whenever 31<...<Jn,31<...<j~ 
th belong to I A i ,' i~ = ~ indiscernible. For then define 

t(kl...kn) e G iff t(il...in) e H, il<...<i n the first n indis- 

cernibles. This is well-defined due to the above property of H. To 

see that G is P-generic, choose D = s(£i...£ m) to be predense on 

P. Then D = s(il...im) is also predense on P and hence some 

= t(il...i n) belongs to G and extends an element of 5. By 

definition p = t(Zl...Zm,Zm+l...£ n) belongs to G (where 

£m < Zm+l<'''<Zn belong to I) and by indiscernibility p extends 

an element of D. As any L-definable open dense subclass of P 

contains a predense D E L, we have shown that G is P-generic 

over L. 

Now we build H. Let H 2 c Li2 be the L[0#]-least Pi2- 

generic and H 1 = H 2 n L i . We must now define H 3 c Li3 so as to 

be Pi3-generic and so tha~ t(il,Jl...jn ) 6 H 2 iff t(i2,Jl...jn)e 
+ 

< ' ... ' belong to I. Recall that a Qil-generlc H 3 where i _ 31< <3n 

c i I consisting of ordinals of consists first of a generic CUB Cil - 

uncountable L-cofinality and also a generic e-partition fil:il ~ ~; 

then similar C'+'f'+1 l are added. We must define a Qi~-generic 
1 1 

consisting of Ci2,fi2,Ci~,fi~. But notice that Cil,fil are 

conditions in the forcings for adding Ci2,fi2 over the ground 

model L[H2] ; choose Ci2,fi2 so as to extend Cil,fil. Then 

clearly t(il,Jl...jn) belongs to the generic determined by 

Hl*Ci71fi iff t(i2,Jl ..... jn ) belongs to the generic determined 

by H~*Ci2,fi2 as in this case t(il,Jl...jn ) 6 Lil and so 

t(il,Jl...jn) = t(i2,Jl...jn). To define Ci~,fi~ consider 

K = {t(i2,Jl...jn) It(il,Jl...jn) e generic determined by 

H~*C i ,f. ,C.+,f~+} c P.+*Q.+ Now for each n and i e I consider 
1 I~ 11 ±i - i i " 

Y. = L.~ A Skolem hull2(i ~ {i,Jl..jn }) where i < jl <. .<j l,n i " " n 
belong to I and i* = min(I-(i+l)). Then Li, = u{Yi,nIn • m}. 

As the forcing PI(P2, respectively) which adds Cil+,fil+(Ci~ ,fi2 +, 
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respectively) is il+-distributive (i2+-distributive, respectively) it 

follows that for each n there exists pn 6 K such that pn=(p~,p~) 

where P~ I I-- P~ meets all open dense D C P2, D E Yi2,n[H2*Ci2,fi2]. 

Thus we obtain a Pi2*Qi2+-generic H2*G by defining H2*G = {Pl 

~q e K, q ~ p}. This defines Ci2+,fi2 +. But note that the same 

reasoning can be applied to p(>il) n Li2,P(>i2) N Li3 to obtain a 

Pi3-generic H 3 such that t(il,Jl.°.jn ) e H 2 iff t(i2,Jl...jn ) e ~. 

Now H 4 is uniquely determined by Pi4-genericity and the 

requirement that t(il,i2,Jl...jn ) e H 3 iff t(i2,i3,Jl...jn ) 6 H4, 

as the forcing to add Ci2,fi2 is i2-distributive, Li2= u{Yil, n In6~} 

and the forcing to add H3(>i 2) is i2+-distributive, Li3 = 

u{Yi2, n In e ~}. We must check that t(il,i3,Jl...j~ e H 4 iff 

t(i2,i3,Jl...jn ) 6 H 4. First suppose that t(il,i3,Jl...jn ) 6 H4(~i3) , 

so that t = (t0,tl) where t O E P(<i3) and t 0 I I-- t I • Forcing 

to add Ci3,fi3. Now note that by construction of H 3, Ci2,fi2 extends 

Cil,fil. So by definition of H 4 we have that Ci3,fi3 extends Ci2, 

fi2. Now actually t O • P(<i 2) so we have that t(il,i2,Jl...jn) • 

H3(~i 2) and so t(i2,i3,Jl...jn) • H 4 by definition of H 4. This 

argument is reversible, so the equivalence is proved in this case. Now 

to handle the general case note that any condition in H 4 can be 

extended to a condition in H 4 of the form (t0,t I) where 

t o • H4(~i 3) and t I = tl(i3,Jl...jn) ; to see this just note that 

this is true for H2(&il) and there is by definition an elementary 

embedding H 2 ; H 4 sending i I to i 3. So it is enough to con- 

sider such (t0,tl). But we have already shown that 

t0(il,i3,Jl...jn) • H4(~i 3) iff t0(i2,i3,Jl...jn) • H4(~i 3) and as 

t I does not mention il,i 2 we are done. 

In general define Hm+ 3 by the condition t(im,im+l,Jl...jn) • 

Hm+ 2 iff t(im+l,im+2,Jl...jn) • Hm+ 3. This uniquely determines 

Hm+ 3 as a Pim+3-generic set. As in the preceding argument we can 

show that t(i I .... ,im+l,Jl...jn) • Hm+ 2 iff t(il,...,im,im+2, 

jl...jn ) • Hm+ 3. Finally let H = Direct Limit {Hmlm < w}. Then H 

is Pie-generic. We have arranged that for any kl<...<k/+2<Jl<...<jn 

in I A i that t(k I ..... k/,k/+l,Jl°..jn) • H iff 

t(k I ..... k/,k/+2,Jl...jn) • H. But now it is easy to argue that for 

any kl<...<k/<Jl<...<jl that t(k I ..... k/) • H ÷+ t(Jl ..... j/) • H 

by applying the preceding 1 times. We have constructed the desired 

H and thus completed the proof of Theorem 3. I 

Remark Mack Stanley pointed out to me that there is a simpler con- 

struction for producing G inside L[0#] : Just define G(<i) by induc- 
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tion on i E I so that Ci,f i extends Cj,fj for j 6 I N i. It 

appears though that the above is necessary to control the indiscerni- 

bles relative to G. Thus for example one can then code G by a real 

R in L[0#],I R = I. 

Some Open Questions 

(a) The obvious question is if Theorem 3 can be proved using a forc- 

ing which preserves cardinals. Some progress was made by Shelah, who 

showed that an immune 2-partition of ~w can be obtained by a 

cardinal-preserving forcing. 

(b) Clearly immune 2-partitions yield immune e-partitions. How about 

the converse? 

(c) Clearly immune k-partitions, 2 < k < ~ yield immune 2-partitions. 

But what if we weaken immunity to say that no infinite constructible 

set is contained in just one cell? Then does the existence of a 

weakly immune k-partition imply that of an immune 2-partition? 

Jech [78] 

Reference 

Set Theory, Academic Press, 1978. 


