Sy D. Friedman*
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

A K-partition of a set or class X is a function f from X onto k. The sets $f^{-1}(\alpha), \alpha<k$ are the cells of the k-partition f. We shall concentrate on k-partitions for $1<k \leq \omega$. In that case we say that f is immune if no infinite constructible set is contained in the union of fewer than k cells. Our goal in this paper is to study the existence of immune κ-partitions of ORD $=$ class of all ordinals.

Theorem 1. (Woodin) If $0^{\#}$ exists then there is an immune ω-partition of ORD. Moreover this partition is Δ_{1}-definable with parameter $0^{\#}$.

Theorem 2. If there is an immune ω-partition f and R is Cohengeneric over $L[f]$ then there is an immune 2-partition.

Theorem 3. There are immune ω-partitions and 2-partitions which are class-generic over L. They can also be taken to be definable over $\mathrm{L}\left[0^{\#}\right]$ (if $0^{\#}$ exists).

In all cases we obtain immune 2-partitions from immune w-partitions using Cohen forcing. We do not know if it is provable in class theory that the existence of an immune ω-partition implies that of an immune 2-partition.

Note that it is easy to obtain an immune 2-partition of X for a set X : If card $(X)=\lambda$ then add a subset G of λ using finite conditions (equivalently add λ^{\prime} Cohen reals, $\lambda=\omega \cdot \lambda^{\prime}$). Then the characteristic function of G is an immune 2-partition. But notice that 2^{ω} is enlarged (if $\lambda>\omega_{1}$) so this is not a useful approach to Theorem 3.

The partitions f constructed in Theorem 3 have the property that GCH holds in L[f]. However cardinals are not preserved:

* This research was supported by NSF Contract \#MCS 7609084.
ω_{1} in $L[f]=\omega_{2}^{L}$. (L-cardinals $>\omega_{1}^{L}$ are preserved.) The reason is that we must make use of the technique used to prove the following.

Theorem 4. (Mack Stanley) There is a closed unbounded $C \subseteq O R D$ such that C is class-generic over L and $\alpha \in C \longrightarrow L-\operatorname{cofinality}(\alpha)>\omega$.

The idea for proving Theorem 3 is to add an immune w-partition of λ for each L-cardinal λ by means of iterated forcing. However to establish the distributivity of this forcing at λ it is necessary to have a CUB subset of λ consisting of ordinals of uncountable L cofinality. Thus we simultaneously add such CUB sets to obtain the desired partition. By using a Cohen real we can reauce this w-partition to a 2-partition. Carrying this out in $L\left[0^{\#}\right]$ requires the use of the "backwards Easton" nature of the iteration.

Proof of Theorem 1. First list all L-definable terms t_{o}, t_{1}, \ldots so that every $x \in L$ can be written as $t_{j}\left(i_{1}, \ldots, i_{n}\right)$ for some j, where $i_{0}<\ldots<i_{n}$ belong to $I=$ the silver indiscernibles. For any j let $X_{j}=\left\{t_{j}\left(i_{1}, \ldots, i_{n}\right) \mid i_{I}<\ldots<i_{n}\right.$ in $I, t_{j} n$-ary $\}$ O ORD and set $f^{\prime}(k)=X_{j(k)}-\left(X_{j(0)} \cup \ldots U X_{j(k-1)}\right)$ where $j(k)$ is least so that this is nonempty. We claim that f is the desired partition where $f(\alpha)=$ least k such that $\alpha \in f^{\prime}(k)$. Clearly f maps ORD onto ω. We must show that no infinite constructible set $y \subseteq$ ORD is contained in $X_{j} U_{l} . . U_{j_{k}}$ for any finite $\left\{j_{1}, \ldots, j_{k}\right\} \subseteq w$.

We prove the last statement by induction on Uy. First note that U_{y} cannot be less than $\alpha_{0}=\min (I)$ as $t\left(i_{1}, \ldots, i_{n}\right)<\alpha_{0} \longrightarrow t$ is constant on I^{n} and so $\alpha_{0} \cap\left(X_{j_{1}} U^{n} . . X_{j_{k}}\right)$ is finite. Now choose a consecutive pair $i<i *$ in I so that $i<U_{y}<i *$; this is possible as we can assume $U_{Y} \notin y$ and thus U_{Y} has L-cofinality w. We can also assume that $y \subseteq(i, i *)$ and hence for some $\ell, m<\omega$: $\alpha \in Y \longrightarrow \alpha=t\left(\beta, i, i_{1} \ldots i_{m}\right)$ for some \sum_{ℓ} term t, some $\beta<i$ and $i^{*} \leq i_{1}<\ldots<i_{m}$ in I. (The fact that ℓ, m exist follows from $\left.y \subseteq x_{j} \cup \ldots X_{j_{k}}.\right)$ Now define new terms $t_{1}^{\prime}, \ldots, t_{k}^{\prime}$ as follows: If $t_{j_{h}}=t_{j_{h}}\left(i_{1} \ldots i_{u}, j_{1} \ldots j_{v}\right)$ where $i_{1}<\ldots<i_{u} \leq t_{j_{h}}(\vec{i}, \vec{j})<j_{1}<\ldots<j_{v}$ then let $t_{h}^{\prime}\left(i_{1}, \ldots, i_{u}, j_{1} \cdots j_{v} \cdots j_{m}\right)=$ least $\langle\hat{\beta}, p\rangle$ such that $t_{j_{h}}\left(i_{1} \ldots i_{u}, j_{l} \cdots j_{v}\right)=t_{p}\left(\beta, i_{u}, j_{l} \cdots j_{m}\right)$ and t_{p} is Σ_{ℓ}. Then also let $y^{\prime}=\left\{\langle\beta, p\rangle \mid\right.$ For some $\alpha \in Y,\langle\beta, p\rangle$ is least so that t_{p} is \sum_{ℓ}, $\left.\alpha=t_{p}\left(\beta, i, i_{1} \ldots i_{m}\right)\right\}$. Thus y^{\prime} is constructible and infinite since y is and moreover $U y^{\prime}$ < i. Finally note that y^{\prime} is a subset of $X_{j}, U_{l} . . U X_{j}^{\prime}$ where $t_{j_{h}}^{\prime}=t_{h}^{\prime}$. By induction we are done. It is clear
that f is Δ_{1}-definable from $0^{\#}$.

Proof of Theorem 2. Suppose f is an immune w-partition and define $g(\alpha)=1$ or 0 , depending on whether or not $f(\alpha)$ belongs to R (R Cohen-generic over L[f]). If $y \subseteq O R D$ is infinite and constructible then Y must intersect infinitely many cells of f. But then y must intersect both cells of g as otherwise either R or \bar{R} has an infinite subset in $L[f](y)=L[f]$, contradicting Cohen genericity.

We now turn to the main result.

Proof of Theorem 3. We use "backward Easton" forcing (see Jech [78]). By induction on $k \in L$-Card $=$ \{uncountable $:$-cardinals \} we define a forcing P_{K}. For successor $K^{+}, P_{K^{+}}=P_{K} * Q_{K}+$, where Q_{K} is defined below. For limit $K, P_{k}=$ Direct Limit $\left\langle P_{K}, \mid K^{\prime}<k\right\rangle$ if K is regular, $P_{K}=$ Inverse Limit $\left\langle P_{K}\right| K^{\prime}<K>$ otherwise.

Begin by defining $P_{\omega_{1}}^{L}=\operatorname{Coll}\left(\omega_{1}^{L}\right)$ where $\operatorname{Coll}\left(\omega_{1}^{L}\right)$ is the Lévy collapse of ω_{l}^{L} to ω with finite conditions.

Suppose $\kappa>\omega$ is a singular cardinal or a successor cardinal. We define Q_{K+}, assuming P_{K} has been defined. First add a CUB subset of κ^{+}consisting of ordinals of uncountable L-cofinality: Conditions are bounded closed subsets of κ^{+}with this property. We claim that this forcing is k^{+}-distributive (the intersection of k dense open sets is dense open), in the ground model $L\left[G_{K}\right]$ where G_{K} is P_{K}-generic. Suppose $\left\langle D_{i}\right| i<\lambda>$ is a λ-sequence of dense open sets and $\lambda \leq \kappa$ is regular in $L\left[G_{K}\right]$ (without loss of generality). Suppose p is a condition and let $C \subseteq \kappa^{+}$be the closed unbounded subset consisting of all $\alpha<\kappa^{+}$such that $L_{\alpha}\left[G_{K}, D\right]<$ $L_{K^{+}}\left[G_{k}, D\right]$ where $D=\left\{(q, i) \mid q \in D_{i}\right\}$. Let $\alpha_{0}<\alpha_{1}<\ldots$ enumerate the first $\lambda+1$ elements of C and using a CUB subset X of λ consisting of ordinals of uncountable L-cofinality, thin this to a closed subsequence $\beta_{0}<\beta_{1}<\ldots$ of ordertype $\lambda+1$ also consisting of ordinals of uncountable L-cofinality. Then inductively define $P_{0}=p, P_{i+1}=$ least $q \leq p_{i}$ in D_{i} such that $U q \geq \beta_{i}$, $p_{\lambda^{\prime}}=U\left\{p_{i} \mid i<\lambda^{\prime}\right\}$ for limit $\quad \lambda^{\prime} \leq \lambda$. As we can assume that X belongs to $L_{B_{0}}\left[G_{K}\right]$ we see that for limit $\lambda^{\prime} \leq \lambda_{0},{ }_{U_{P}}{ }_{\lambda^{\prime}}=\beta_{\lambda^{\prime}}{ }^{+}$Thus $q=p_{\lambda}$ is the desired extension of p. Note that in case $\kappa^{+}=\omega_{2}^{L}$ we must use the fact that ω_{1}^{L} is countable in $L\left[G_{K}\right]$ to obtain X (in this case $\lambda=\omega$).

The second part of $Q_{K^{+}}$in this case consists of adding an
immune ω-partition of κ^{+}. The conditions are immune ω-partitions of an ordinal $\alpha<\kappa^{+}$. To show that conditions can be extended it suffices to produce an immune ω-partition of κ in $L\left[G_{K}\right]$. If $K=\omega_{1}^{L}$ then this is easy, using the fact that ω_{l}^{L} is countable. If $k>\omega_{l}^{L}$ is a successor cardinal then this follows by induction. Finally suppose that k is singular. Let $k_{0}<k_{1}<\ldots$ in L be a closed subsequence of k of ordertype $\operatorname{cof}(\kappa)=\lambda$. For each $i<\lambda$ let $f_{i}:\left[\kappa_{i}, \kappa_{i+1}\right) \longrightarrow \omega$ be an immune ω-partition of $\left[\kappa_{i}, \kappa_{i+1}\right)$ and let $g: \lambda \longrightarrow \omega$ be an immune ω-partition of λ. Define $f(\alpha)=\left\langle f_{i}(\alpha), g(i)\right\rangle$ where $k_{i} \leq \alpha<k_{i+l}$. Then f is a partition of K into countably many cells. It suffices to show that no infinite constructible set y is contained in the union of finitely many of these cells. If y were a counterexample then in fact we can assume $y=y_{I} U \ldots y_{n}$ where $y_{k} \subseteq\left[\kappa_{i_{k}}, \kappa_{i_{k}+1}\right)$ for some $i_{k}<\lambda$, since g is an immune ω-partition. But some ${ }^{k} \ddot{Y}_{k}$ must be infinite and hence intersect infinitely many cells of $f_{i_{k}}$. So y intersects infinitely many cells of f and we are done.

We must also show that this forcing is κ^{+}-distributive. This argument is identical to that used for the preceding forcing: extend $p=p_{0}$ to $p_{1} \subseteq p_{2} \subseteq \ldots$ successively and arrange that for limit $\lambda^{\prime} \leq \lambda, \operatorname{Dom}\left(p_{\lambda^{\prime}}\right)=\beta_{\lambda^{\prime}}$ has uncountable L-cofinality. Then it is clear that $p_{\lambda^{\prime}}: \beta_{\lambda^{\prime}} \longrightarrow \omega$ is immune as any countably infinite constructible $y \subseteq \beta_{\lambda}$, must in fact be contained in β_{i} for some $i<\lambda^{\prime}$. This completes the discussion of Q_{K+} when K is a successor cardinal or is singular.

When k is inaccessible we proceed exactly in the same way except first add a $C U B$ subset C of K consisting of ordinals of uncountable L-cofinality and an immune w-partition of k. The proof that these forcings are extendible and κ-distributive is as before. Then add the CUB subset of κ^{+}and the immune ω-partition of κ^{+}as before and use the set C to show that $\cap\left\{D_{i} \mid i<k\right\}$ is open dense if each D_{i} is open dense. This completes the description of $Q_{K}+$ and hence the definition of P_{k} for all L-cardinals $k>\omega$.

It is now easy to obtain the desired immune ω-partition of ORD. Let G be P-generic over L where $P=$ Direct Limit $\left\langle P_{K} \mid K \in L-C a r d\right\rangle$. The fact that G preserves cardinals $>\omega_{1}^{L}$ and the $G C H$ follows from the "backward Easton" nature of our forcing: $P \simeq P(\leq K) * P(>k)$ where $P(>k)$ is K^{+}-distributive and $\operatorname{card}(P(\leq K))=k$, for regular $\kappa>\omega_{1}^{L}$. So cardinals are preserved above $\omega_{1}^{\bar{L}}$ and the GCH holds. Now force over L[G] with conditions $p: \alpha \longrightarrow \omega$ which are immune ω-partitions. Extendibility and ORD-distributivity follow as before,
using the existence in $L[G]$ of immune ω-partitions of each $\alpha \in$ ORD and the existence of CUB subsets of each regular $\kappa>\omega_{l}^{L}$ consisting of ordinals of uncountable L-cofinality. This completes the proof of the first statement of Theorem 3, as to obtain an immune 2partition of ORD we need only add a Cohen real.

We must finally argue that G can be obtained definably over $L\left[0^{\#}\right]$. (The final Cohen real can then be chosen in $L\left[0^{\#}\right]$ using the fact that $\omega_{1}^{L[G]}=\omega_{2}^{L}<\omega_{1}^{L[O \#]}$.) This is again a consequence of the "backward Easton" nature of the forcing P. It suffices to build $H \subseteq L_{i_{\omega}}$ in $L\left[0^{\#}\right]$ which is $P_{i_{\omega}}$-generic over $L_{i_{\omega}}$ and such that $t\left(j_{1} \ldots j_{n}\right) \in H \leftrightarrow t\left(j j_{1} \ldots j_{n}\right) \in H{ }^{\omega}$ whenever $j_{1}<\ldots<j_{n}, j_{1}^{\prime}<\ldots<j_{n}^{\prime}$ belong to $I \cap i_{\omega}, i_{\omega}=\omega^{\text {th }}$ indiscernible. For then define $t\left(k_{1} \ldots k_{n}\right) \in G$ iff $t\left(i_{1} \ldots i_{n}\right) \in H, i_{1}<\ldots<i_{n}$ the first n indiscernibles. This is well-defined due to the above property of H. To see that G is P-generic, choose $D=s\left(\ell_{I} \ldots \ell_{m}\right)$ to be predense on P. Then $\bar{D}=s\left(i_{1} \ldots i_{m}\right)$ is also predense on P and hence some $\bar{p}=t\left(i_{1} \ldots i_{n}\right)$ belongs to G and extends an element of \bar{D}. By definition $p=t\left(\ell_{1} \ldots \ell_{m}, \ell_{m+1} \cdots \ell_{n}\right)$ belongs to G (where $\ell_{\mathrm{m}}<\ell_{\mathrm{m}+\mathrm{l}}<\ldots<\ell_{\mathrm{n}}$ belong to I) and by indiscernibility p extends an element of D. As any L-definable open dense subclass of P contains a predense $D \in L$, we have shown that G is P-generic over L.

Now we build H. Let $H_{2} \subseteq L_{i_{2}}$ be the $L\left[0^{\#}\right]-$ least $P_{i_{2}}-$ generic and $H_{1}=H_{2} \cap L_{i_{1}}$. We must now define $H_{3} \subseteq L_{i_{3}}$ so as to be $P_{i_{3}}$-generic and so that $t\left(i_{1}, j_{1} \ldots j_{n}\right) \in H_{2}$ iff $t\left(i_{2}, j_{1} \ldots j_{n}\right) \in$ H_{3} where $i_{\omega} \leq j_{1}<\ldots<j_{n}$ belong to I. Recall that a $Q_{i_{1}}^{+}$-generic consists first of a generic $C U B C_{i} \subseteq i_{1}$ consisting of ordinals of uncountable L-cofinality and also a generic ω-partition $f_{i_{1}}: i_{1} \longrightarrow{ }^{\longrightarrow}$; then similar $C_{i}{ }_{1}^{+}, f_{i_{1}}^{+}$are added. We must define a $Q_{i}{ }_{2}^{+-g e n e r i c}$ consisting of ${\stackrel{C}{C_{i}}}_{i_{2}}, f_{i_{2}}, C_{i_{2}}, f_{i j}$. But notice that $C_{i_{1}}, f_{i_{1}}$ are conditions in the forcings for adding $C_{i_{2}}, f_{i_{2}}$ over the ground model $L\left[H_{2}\right]$; choose $C_{i_{2}}, f_{i_{2}}$ so as to extend $C_{i_{1}}, f_{i_{1}}$. Then clearly $t\left(i_{1}, j_{1} \ldots j_{n}\right)$ belongs to the generic determined by ${ }^{H}{ }_{1}{ }^{*} C_{i_{1}},{ }^{f_{i}}$ iff $t\left(i_{2}, j_{1}, \ldots, j_{n}\right)$ belongs to the generic determined by ${ }_{H}{ }_{2}^{\prime}{ }^{\prime} C_{i_{2}}, f_{i_{2}}$ as in this case $t\left(i_{1}, j_{1} \ldots j_{n}\right) \in L_{i_{1}}$ and so $t\left(i_{1}, j_{1} \cdots j_{n}\right)=t\left(i_{2}, j_{1} \cdots j_{n}\right)$. To define $C_{i}+f_{i}^{+}$consider $K=\left\{t\left(i_{2}, j_{1}, \ldots j_{n}\right) \mid t\left(i_{1}, j_{1} \ldots j_{n}\right) \in\right.$ generic determined by $H_{l}{ }^{*} C_{i_{1}}, f_{i_{1}}, C_{i_{1}}^{+}, f_{i_{1}}^{+\}} \subseteq P_{i_{2}}^{+*} Q_{i_{2}}^{+}$. Now for each n and $i \in I$ consider $Y_{i, n}=L_{i *} n^{1}$ Skolem hull ${ }^{1}\left(i U_{i}^{2}\left\{i, j_{1} \ldots j_{n}\right\}\right.$ where $i<j_{1}<\ldots<j_{n}$ belong to I and $i^{*}=\min (I-(i+1))$. Then $L_{i *}=U\left\{Y_{i, n} \mid n \in \omega\right\}$. As the forcing $P_{1}\left(P_{2}\right.$, respectively) which adds $C_{i_{1}}{ }^{+}, f_{i_{1}}+\left(C_{i_{2}}{ }^{+}, f_{i_{2}}+\right.$,
respectively) is $i_{1}+-$ distributive ($i_{2}+-$ distributive, respectively) it follows that for each n there exists $p_{n} \in K$ such that $p_{n}=\left(p_{n}^{0}, p_{n}^{1}\right)$ where $p_{n}^{0} \mid-p_{n}^{l}$ meets all open dense $D \subseteq P_{2}, D \in Y_{i_{2}, n}\left[H_{2} *_{C_{i}}, f_{i_{2}}\right]$. Thus we obtain a $P_{i_{2}} *_{i_{2}}+$-generic $H_{2} *_{G}$ by defining $H_{2} *_{G}=\{p\}$ $\exists q \in K, q \leq p\}$. This defines $C_{i 2}+, f_{i_{2}}+$. But note that the same reasoning can be applied to $P\left(>i_{1}\right) \cap L_{i_{2}}, P\left(>i_{2}\right) \cap L_{i_{3}}$ to obtain a $P_{i_{3}}$-generic H_{3} such that $t\left(i_{1}, j_{1} \ldots j_{n}\right) \in H_{2}$ iff $t\left(i_{2}, j_{1} \ldots j_{n}\right) \in H_{3}$. Now H_{4} is uniquely determined by $P_{i_{4}}$-genericity and the requirement that $t\left(i_{1}, i_{2}, j_{1} \ldots j_{n}\right) \in H_{3}$ iff $t\left(i_{2}, i_{3}, j_{1} \ldots j_{n}\right) \in H_{4}$, as the forcing to add $C_{i_{2}}, f_{i_{2}}$ is i_{2}-distributive, $L_{i_{2}}=U\left\{Y_{i_{1}}, n \mid n \in \omega\right\}$ and the forcing to add $\mathrm{H}_{3}\left(>\mathrm{i}_{2}\right)$ is $\mathrm{i}_{2}+$-distributive, $\mathrm{L}_{\mathrm{i}_{3}}=$ $u\left\{Y_{i_{2}, n} \mid n \in \omega\right\}$. We must check that $t\left(i_{1}, i_{3}, j_{1} \ldots j_{n}\right) \in H_{4}$ iff $t\left(i_{2}, i_{3}, j_{1}, \ldots j_{n}\right) \in H_{4}$. First suppose that $t\left(i_{1}, i_{3}, j_{1} \ldots j_{n}\right) \in H_{4}\left(\leq i_{3}\right)$, so that $t=\left(t_{0}, t_{1}\right)$ where $t_{0} \in P\left(<i_{3}\right)$ and $t_{0} \|-t_{1} \in$ Forcing to add $C_{i_{3}}, f_{i_{3}}$. Now note that by construction of $H_{3}, C_{i_{2}}, f_{i_{2}}$ extends $C_{i_{1}}, f_{i_{1}}$. So by definition of H_{4} we have that $C_{i_{3}}, f_{i_{3}}$ extends $C_{i_{2}}$, $f_{i_{2}}$. Now actually $t_{0} \in P\left(<i_{2}\right)$ so we have that $t\left(i_{1}, i_{2}, j_{1}, \ldots j_{n}\right) \in$ $H_{3}\left(\leq i_{2}\right)$ and so $t\left(i_{2}, i_{3}, j_{1} \cdots j_{n}\right) \in H_{4}$ by definition of H_{4}. This argument is reversible, so the equivalence is proved in this case. Now to handle the general case note that any condition in H_{4} can be extended to a condition in H_{4} of the form $\left(t_{0}, t_{1}\right)$ where $t_{0} \in H_{4}\left(\leq i_{3}\right)$ and $t_{1}=t_{1}\left(i_{3}, j_{1} \ldots j_{n}\right)$; to see this just note that this is true for $H_{2}\left(\leq i_{1}\right)$ and there is by definition an elementary embedding $\mathrm{H}_{2} \longrightarrow \mathrm{H}_{4}$ sending i_{1} to i_{3}. So it is enough to consider such $\left(t_{0}, t_{1}\right)$. But we have already shown that
$t_{0}\left(i_{1}, i_{3}, j_{1} \ldots j_{n}\right) \in H_{4}\left(<i_{3}\right)$ iff $t_{0}\left(i_{2}, i_{3}, j_{1} \cdots j_{n}\right) \in H_{4}\left(\leq i_{3}\right)$ and as t_{1} does not mention i_{1}, i_{2} we are done.

In general define H_{m+3} by the condition $t\left(i_{m}, i_{m+1}, j_{1} \cdots j_{n}\right) \in$ H_{m+2} iff $t\left(i_{m+1}, i_{m+2}, j_{1} \ldots j_{n}\right) \in H_{m+3}$. This uniquely determines H_{m+3} as a $P_{i_{m+3}}$ generic set. As in the preceding argument we can show that $t\left(i_{1}, \ldots, i_{m+1}, j_{1} \ldots j_{n}\right) \in H_{m+2}$ iff $t\left(i_{1}, \ldots, i_{m}, i_{m+2}\right.$, $\left.j_{1} \ldots j_{n}\right) \in H_{m+3}$. Finally let $H=\operatorname{Direct}$ Limit $\left\{H_{m} \mid m<\omega\right\}$. Then H is $P_{i_{\omega}}$-generic. We have arranged that for any $k_{1}<\ldots<k_{\ell+2}<j_{1}<\ldots<j_{n}$ in $I \cap i_{\omega}$ that $t\left(k_{1}, \ldots, k_{\ell}, k_{\ell+1}, j_{1} \ldots j_{n}\right) \in H \quad$ iff
$t\left(k_{1}, \ldots, k_{\ell}, k_{\ell+2}, j_{1}, \ldots j_{n}\right) \in H$. But now it is easy to argue that for any $k_{1}<\ldots<k_{\ell}<j_{1}<\ldots<j_{\ell}$ that $t\left(k_{1}, \ldots, k_{\ell}\right) \in H \rightarrow t\left(j_{1}, \ldots, j_{\ell}\right) \in H$ by applying the preceding ℓ times. We have constructed the desired H and thus completed the proof of Theorem 3 .

Remark Mack Stanley pointed out to me that there is a simpler construction for producing G inside $L\left[0^{\#}\right]$: Just define $G(<i)$ by induc-
tion on $i \in I$ so that C_{i}, f_{i} extends C_{j}, f_{j} for $j \in I \cap i$. It appears though that the above is necessary to control the indiscernibles relative to G. Thus for example one can then code G by a real R in $L\left[0^{\#}\right], I^{R}=I$.

Some Open Questions

(a) The obvious question is if Theorem 3 can be proved using a forcing which preserves cardinals. Some progress was made by Shelah, who showed that an immune 2-partition of κ_{ω} can be obtained by a cardinal-preserving forcing.
(b) Clearly immune 2-partitions yield immune w-partitions. How about the converse?
(c) Clearly immune k-partitions, $2 \leq k<\omega$ yield immune 2-partitions. But what if we weaken immunity to say that no infinite constructible set is contained in just one cell? Then does the existence of a weakly immune k-partition imply that of an immune 2-partition?

Reference

Jech [78] Set Theory, Academic Press, 1978.

