AN IMMUNE PARTITION OF THE ORDINALS

Sy D. Friedman* Department of Mathematics Massachusetts Institute of Technology Cambridge, Massachusetts 02139

A $\frac{\kappa}{-partition}$ of a set or class X is a function f from X onto κ . The sets $f^{-1}(\alpha), \alpha < \kappa$ are the <u>cells</u> of the κ -partition f. We shall concentrate on κ -partitions for $1 < \kappa \leq \omega$. In that case we say that f is <u>immune</u> if no infinite constructible set is contained in the union of fewer than κ cells. Our goal in this paper is to study the existence of immune κ -partitions of ORD = class of all ordinals.

<u>Theorem 1</u>. (Woodin) If $0^{\#}$ exists then there is an immune ω -partition of ORD. Moreover this partition is Δ_1 -definable with parameter $0^{\#}$.

<u>Theorem 2</u>. If there is an immune ω -partition f and R is Cohengeneric over L[f] then there is an immune 2-partition.

<u>Theorem 3</u>. There are immune ω -partitions and 2-partitions which are class-generic over L. They can also be taken to be definable over $L[0^{\#}]$ (if $0^{\#}$ exists).

In all cases we obtain immune 2-partitions from immune ω -partitions using Cohen forcing. We do not know if it is provable in class theory that the existence of an immune ω -partition implies that of an immune 2-partition.

Note that it is easy to obtain an immune 2-partition of X for a <u>set</u> X: If card(X) = λ then add a subset G of λ using finite conditions (equivalently add λ ' Cohen reals, $\lambda = \omega \cdot \lambda$ '). Then the characteristic function of G is an immune 2-partition. But notice that 2^{ω} is enlarged (if $\lambda > \omega_1$) so this is not a useful approach to Theorem 3.

The partitions f constructed in Theorem 3 have the property that GCH holds in L[f]. However cardinals are not preserved: * This research was supported by NSF Contract #MCS 7609084. ω_1 in L[f] = ω_2^L . (L-cardinals > ω_1^L are preserved.) The reason is that we must make use of the technique used to prove the following.

<u>Theorem 4</u>. (Mack Stanley) There is a closed unbounded $C \subseteq ORD$ such that C is class-generic over L and $\alpha \in C \longrightarrow L$ -cofinality $(\alpha) > \omega$.

The idea for proving Theorem 3 is to add an immune ω -partition of λ for each L-cardinal λ by means of iterated forcing. However to establish the distributivity of this forcing at λ it is necessary to have a CUB subset of λ consisting of ordinals of uncountable Lcofinality. Thus we simultaneously add such CUB sets to obtain the desired partition. By using a Cohen real we can reduce this ω -partition to a 2-partition. Carrying this out in $L[0^{\#}]$ requires the use of the "backwards Easton" nature of the iteration.

<u>Proof of Theorem 1</u>. First list all L-definable terms t_0, t_1, \ldots so that every $x \in L$ can be written as $t_j(i_1, \ldots, i_n)$ for some j, where $i_0 < \ldots < i_n$ belong to I = the Silver indiscernibles. For any j let $X_j = \{t_j(i_1, \ldots, i_n) | i_1 < \ldots < i_n \text{ in } I, t_j \text{ n-ary}\} \cap \text{ ORD }$ and set f'(k) = $X_{j(k)} - (X_{j(0)} \cup \ldots \cup X_{j(k-1)})$ where j(k) is least so that this is nonempty. We claim that f is the desired partition where $f(\alpha)$ = least k such that $\alpha \in f'(k)$. Clearly f maps ORD onto ω . We must show that no infinite constructible set $y \subseteq \text{ORD}$ is contained in $X_{j_1} \cup \ldots \cup X_{j_k}$ for any finite $\{j_1, \ldots, j_k\} \subseteq \omega$.

We prove the last statement by induction on Uy. First note that Uy cannot be less than $\alpha_0 = \min(I)$ as $t(i_1, \ldots, i_n) < \alpha_0 \longrightarrow t$ is constant on I^n and so $\alpha_0 \cap (X_{j_1} \cup \ldots \cup X_{j_k})$ is finite. Now choose a consecutive pair $i < i^*$ in I so that $i < \bigcup y < i^*$; this is possible as we can assume $\bigcup y \notin y$ and thus $\bigcup y$ has L-cofinality ω . We can also assume that $y \subseteq (i,i^*)$ and hence for some $l,m < \omega$: $\alpha \in y \longrightarrow \alpha = t(\beta, i, i_1 \dots i_m)$ for some $\sum_k \text{ term } t$, some $\beta < i$ and $i^* \leq i_1 < \dots < i_m$ in I. (The fact that l,m exist follows from $y \subseteq X_j \cup \dots \cup X_j$.) Now define new terms t'_1, \dots, t'_k as follows: If $t_{j_h} t_{j_h}(i_1 \dots i_u, j_1 \dots j_v, \dots j_m) = \text{ least } <\beta,p>$ such that $t_{j_h}(i_1 \dots i_u, j_1 \dots j_v) = t_p(\beta, i_u, j_1 \dots j_m)$ and t_p is \sum_k . Then also let $y' = \{<\beta,p> | \text{For some } \alpha \in y, <\beta,p>$ is least so that t_p is $\sum_k , \alpha = t_p(\beta, i, i_1 \dots i_m) \}$. Thus y' is constructible and infinite since y is and moreover $\bigcup y' < i$. Finally note that y' is a subset of $X_{j_1} \cup \dots \cup X_{j_k}$ where $t_{j_h}' = t_h'$. By induction we are done. It is clear

that f is Δ_1 -definable from 0[#].

<u>Proof of Theorem 2</u>. Suppose f is an immune ω -partition and define $g(\alpha) = 1$ or 0, depending on whether or not $f(\alpha)$ belongs to R (R Cohen-generic over L[f]). If $y \subseteq ORD$ is infinite and constructible then y must intersect infinitely many cells of f. But then y must intersect both cells of g as otherwise either R or \overline{R} has an infinite subset in L[f](y) = L[f], contradicting Cohen genericity.

We now turn to the main result.

<u>Proof of Theorem 3</u>. We use "backward Easton" forcing (see Jech [78]). By induction on $\kappa \in L$ -Card = {uncountable L-cardinals} we define a forcing P_{κ} . For successor κ^+ , $P_{\kappa^+} = P_{\kappa^+} Q_{\kappa^+}$, where Q_{κ} is defined below. For limit κ, P_{κ} = Direct Limit $\langle P_{\kappa}, | \kappa^* < \kappa \rangle$ if κ is regular, P_{κ} = Inverse Limit $\langle P_{\kappa}, | \kappa^* < \kappa \rangle$ otherwise.

Begin by defining $P_{\omega_1} = \text{Coll}(\omega_1^L)$ where $\text{Coll}(\omega_1^L)$ is the Lévy collapse of ω_1^L to ω with finite conditions.

Suppose $\kappa > \omega$ is a singular cardinal or a successor cardinal. We define Q_{κ^+} , assuming P_{κ} has been defined. First add a CUB subset of κ^+ consisting of ordinals of uncountable L-cofinality: Conditions are bounded closed subsets of κ^+ with this property. We claim that this forcing is κ^+ -distributive (the intersection of κ dense open sets is dense open), in the ground model $L[G_{\kappa}]$ where G_{ν} is P_{ν} -generic. Suppose $\langle D_{i} | i < \lambda \rangle$ is a λ -sequence of dense open sets and $\lambda \leq \kappa$ is regular in L[G_k] (without loss of generality). Suppose p is a condition and let $C \subseteq \kappa^+$ be the closed unbounded subset consisting of all $\alpha < \kappa^+$ such that $L_{\alpha}[G_{\kappa},D] \prec$ $L_{\nu}+[G_{\kappa},D]$ where $D = \{(q,i) | q \in D_{j}\}$. Let $\alpha_{0} < \alpha_{1} < ...$ enumerate the first λ + 1 elements of C and using a CUB subset X of λ consisting of ordinals of uncountable L-cofinality, thin this to a closed subsequence $\beta_0 < \beta_1 < \dots$ of ordertype $\lambda + 1$ also consisting of ordinals of uncountable L-cofinality. Then inductively define $p_0 = p, p_{i+1} = least q \leq p_i$ in D_i such that $Uq \geq \beta_i$, $p_{\lambda} = \bigcup \{ p_i \mid i < \lambda' \}$ for limit $\lambda' \le \lambda$. As we can assume that X belongs to L_{β} [G_K] we see that for limit $\lambda' \leq \lambda$, $U_{\mathbf{p}_{\lambda}} = \beta_{\lambda'}$. Thus $q = p_{\lambda}$ is the desired extension of p. Note that in case $\kappa' = \omega_2^L$ we must use the fact that ω_1^L is countable in $L[G_{\nu}]$ to obtain \bar{X} (in this case $\lambda = \omega$).

The second part of $Q_{\mu+}$ in this case consists of adding an

143

immune ω -partition of κ^+ . The conditions are immune ω -partitions of an ordinal $\alpha < \kappa^+$. To show that conditions can be extended it suffices to produce an immune ω -partition of κ in $L[G_{\kappa}]$. If $\kappa = \omega_1^L$ then this is easy, using the fact that ω_1^L is countable. If $\kappa > \omega_1^L$ is a successor cardinal then this follows by induction. Finally suppose that κ is singular. Let $\kappa_0 < \kappa_1 < \ldots$ in L be a closed subsequence of κ of ordertype $cof(\kappa) = \lambda$. For each $i < \lambda$ let $f_i: [\kappa_i, \kappa_{i+1}) \longrightarrow \omega$ be an immune ω -partition of $[\kappa_i, \kappa_{i+1})$ and let $g: \lambda \longrightarrow \omega$ be an immune ω -partition of λ . Define $f(\alpha) = \langle f_i(\alpha), g(i) \rangle$ where $\kappa_i \leq \alpha < \kappa_{i+1}$. Then f is a partition of κ into countably many cells. It suffices to show that no infinite constructible set y is contained in the union of finitely many of these cells. If y were a counterexample then in fact we can assume $y = y_1 U \ldots U y_n$ where $y_k \subseteq [\kappa_{i_k}, \kappa_{i_k} + 1]$ for some $i_k < \lambda$, since g is an immune ω -partition. But some y_k must be infinite and hence intersect infinitely many cells of f_{i_k} . So y intersects infinitely many cells of f and we are done.

We must also show that this forcing is κ^+ -distributive. This argument is identical to that used for the preceding forcing: extend $p = p_0$ to $p_1 \subseteq p_2 \subseteq \ldots$ successively and arrange that for limit $\lambda' \leq \lambda$, Dom $(p_{\lambda'}) = \beta_{\lambda'}$, has uncountable L-cofinality. Then it is clear that $p_{\lambda'}: \beta_{\lambda'} \longrightarrow \omega$ is immune as any countably infinite constructible $y \subseteq \beta_{\lambda'}$, must in fact be contained in β_i for some $i < \lambda'$. This completes the discussion of $Q_{\kappa+}$ when κ is a successor cardinal or is singular.

When κ is inaccessible we proceed exactly in the same way except first add a CUB subset C of κ consisting of ordinals of uncountable L-cofinality and an immune ω -partition of κ . The proof that these forcings are extendible and κ -distributive is as before. Then add the CUB subset of κ^+ and the immune ω -partition of κ^+ as before and use the set C to show that $\cap\{D_i \mid i < \kappa\}$ is open dense if each D_i is open dense. This completes the description of Q_{κ^+} and hence the definition of P_{κ} for all L-cardinals $\kappa > \omega$.

It is now easy to obtain the desired immune ω -partition of ORD. Let G be P-generic over L where $P = \text{Direct Limit } \langle P_{\kappa} | \kappa \in \text{L-Card} \rangle$. The fact that G preserves cardinals $\geq \omega_1^L$ and the GCH follows from the "backward Easton" nature of our forcing: $P \simeq P(\langle \kappa \rangle) * P(\langle \kappa \rangle)$ where $P(\langle \kappa \rangle)$ is κ^+ -distributive and $\operatorname{card}(P(\langle \kappa \rangle)) = \kappa$, for regular $\kappa \geq \omega_1^L$. So cardinals are preserved above ω_1^L and the GCH holds. Now force over L[G] with conditions p: $\alpha \longrightarrow \omega$ which are immune ω -partitions. Extendibility and ORD-distributivity follow as before, using the existence in L[G] of immune ω -partitions of each $\alpha \in \text{ORD}$ and the existence of CUB subsets of each regular $\kappa > \omega_1^L$ consisting of ordinals of uncountable L-cofinality. This completes the proof of the first statement of Theorem 3, as to obtain an immune 2partition of ORD we need only add a Cohen real.

We must finally argue that G can be obtained definably over $L[0^{#}]$. (The final Cohen real can then be chosen in $L[0^{#}]$ using the fact that $\omega_1^{L[G]} = \omega_2^L < \omega_1^{L[0^{\#}]}$.) This is again a consequence of the "backward Easton" nature of the forcing P. It suffices to build $H \subseteq L_{i_{\omega}}$ in $L[0^{\#}]$ which is $P_{i_{\omega}}$ -generic over $L_{i_{\omega}}$ and such that $t(j_{1}...j_{n}) \in H \leftrightarrow t(j_{1}'...j_{n}) \in H$ whenever $j_{1} < ... < j_{n}, j_{1}' < ... < j_{n}'$ belong to $I \cap i_{\omega}, i_{\omega} = \omega^{th}$ indiscernible. For then define $t(k_1...k_n) \in G$ iff $t(i_1...i_n) \in H$, $i_1 < ... < i_n$ the first n indiscernibles. This is well-defined due to the above property of H. To see that G is P-generic, choose $D = s(\ell_1 \dots \ell_m)$ to be predense on P. Then $\overline{D} = s(i_1...i_m)$ is also predense on P and hence some $\overline{p} = t(i_1...i_n)$ belongs to G and extends an element of \overline{D} . Ву definition $p = t(\ell_1 \dots \ell_m, \ell_{m+1} \dots \ell_n)$ belongs to G (where $\ell_m < \ell_{m+1} < \ldots < \ell_n$ belong to I) and by indiscernibility p extends an element of D. As any L-definable open dense subclass of Pcontains a predense $D \in L$, we have shown that G is P-generic over L.

Now we build H. Let $H_2 \subseteq L_{i_2}$ be the $L[0^{#}]$ -least P_{i_2} generic and $H_1 = H_2 \cap L_i$. We must now define $H_3 \subseteq L_{i_3}$ so as to be P_{i_3} -generic and so that $t(i_1, j_1, \dots, j_n) \in H_2$ iff $t(i_2, j_1, \dots, j_n) \in H_2$ H_3 where $i_{\omega} \leq j_1 < \ldots < j_n$ belong to I. Recall that a $Q_{i_1}^+$ -generic consists first of a generic CUB $C_{i_1} \subseteq i_1$ consisting of ordinals of uncountable L-cofinality and also a generic ω -partition $f_{i_1}:i_1 \longrightarrow \omega;$ then similar $C_{i_1}^+, f_{i_1}^+$ are added. We must define a $Q_{i_2}^+$ -generic consisting of $C_{i_2}^1, f_{i_2}^1, C_{i_2}^1, f_{i_2}^1$. But notice that $C_{i_1}, f_{i_1}^2$ are conditions in the forcings for adding C_{i_2}, f_{i_2} over the ground model $L[H_2]$; choose C_{i_2}, f_{i_2} so as to extend C_{i_1}, f_{i_1} . Then clearly $t(i_1, j_1, ..., j_n)$ belongs to the generic determined by $t(i_1, j_1, \dots, j_n) = t(i_2, j_1, \dots, j_n)$. To define C_{i_2}, f_{i_2} consider $K = \{t(i_2, j_1, \dots, j_n) | t(i_1, j_1, \dots, j_n) \in \text{generic determined by} \}$ $\begin{array}{l} H_{1}^{*}C_{i_{1}},f_{i_{1}}^{-},\overline{C}_{i_{1}}^{+},f_{i_{1}}^{+}\}\subseteq \overline{P}_{i}^{+}\overline{*}Q_{i_{1}}^{+}. \ \, \text{Now for each } n \ \, \text{and } i \in I \ \, \text{consider} \\ Y_{i,n}^{} = L_{i}^{+} \cap \overline{S} \text{kolem hull}^{2} (i \cup \{i,j_{1},\ldots,j_{n}\}) \ \, \text{where } i < j_{1}^{<} \ldots < j_{n} \end{array}$ belong to I and $i^* = \min(I - (i+1))$. Then $L_{i^*} = \bigcup \{Y_{i,n} | n \in \omega\}$. As the forcing $P_1(P_2, \text{ respectively})$ which adds $C_{i_1}^+, f_{i_1}^+, (C_{i_2}^+, f_{i_2}^+, f_{i_2}^+, f_{i_2}^+, f_{i_3}^+)$

respectively) is i1+-distributive (i2+-distributive, respectively) it follows that for each n there exists $p_n \in K$ such that $p_n = (p_n^0, p_n^1)$ where $p_n^0 \mid \mid - p_n^1$ meets all open dense $D \subseteq P_2$, $D \in Y_{i_2,n}[H_2 * C_{i_2}, f_{i_2}]$. Thus we obtain a $P_{12}*Q_{12}$ +-generic H_2*G by defining $H_2*G = \{p\}$ $]q \in K, q \leq p$ }. This defines C_{i2}^+, f_{i2}^+ . But note that the same reasoning can be applied to $P(>i_1) \cap L_{i_2}, P(>i_2) \cap L_{i_3}$ to obtain a P_{i_3} -generic H_3 such that $t(i_1, j_1, \dots, j_n) \in H_2$ iff $t(i_2, j_1, \dots, j_n) \in H_3$. Now H_4 is uniquely determined by P_{i4} -genericity and the requirement that $t(i_1, i_2, j_1, \dots, j_n) \in H_3$ iff $t(i_2, i_3, j_1, \dots, j_n) \in H_4$, as the forcing to add C_{i_2}, f_{i_2} is i_2 -distributive, $L_{i_2} = \bigcup \{Y_{i_1}, n \mid n \in \omega\}$ and the forcing to add $H_3(>i_2)$ is i_2 +-distributive, $L_{i_3} =$ $\cup \{Y_{i_2,n} \mid n \in \omega\}$. We must check that $t(i_1, i_3, j_1, \dots, j_n) \in H_4$ iff $t(i_2, i_3, j_1, \dots, j_n) \in H_4. \text{ First suppose that } t(i_1, i_3, j_1, \dots, j_n) \in H_4(\underline{\leq} i_3),$ so that $t = (t_0, t_1)$ where $t_0 \in P(\langle i_3 \rangle)$ and $t_0 \mid \mid - t_1 \in Forcing$ to add C_{i_3}, f_{i_3} . Now note that by construction of H_3, C_{i_2}, f_{i_2} extends C_{i1}, f_{i1} . So by definition of H_4 we have that C_{i3}, f_{i3} extends C_{i2} , f_{i_2} . Now actually $t_0 \in P(\langle i_2 \rangle)$ so we have that $t(i_1, i_2, j_1, \dots, j_n) \in P(\langle i_2 \rangle)$ $H_3(\leq i_2)$ and so $t(i_2,i_3,j_1,\ldots,j_n) \in H_4$ by definition of H_4 . This argument is reversible, so the equivalence is proved in this case. Now to handle the general case note that any condition in H_4 can be extended to a condition in H_4 of the form (t_0, t_1) where $t_0 \in H_4(\leq i_3)$ and $t_1 = t_1(i_3, j_1...j_n)$; to see this just note that this is true for $H_2(\leq i_1)$ and there is by definition an elementary embedding $H_2 \longrightarrow H_4$ sending i_1 to i_3 . So it is enough to consider such (t_0, t_1) . But we have already shown that $t_0(i_1,i_3,j_1\ldots j_n) \in H_4(\underline{<}i_3) \text{ iff } t_0(i_2,i_3,j_1\ldots j_n) \in H_4(\underline{<}i_3) \text{ and as}$ t_1 does not mention i_1, i_2 we are done.

In general define H_{m+3} by the condition $t(i_m, i_{m+1}, j_1, \dots, j_n) \in H_{m+2}$ iff $t(i_{m+1}, i_{m+2}, j_1, \dots, j_n) \in H_{m+3}$. This uniquely determines H_{m+3} as a P_{i_m+3} -generic set. As in the preceding argument we can show that $t(i_1, \dots, i_{m+1}, j_1, \dots, j_n) \in H_{m+2}$ iff $t(i_1, \dots, i_m, i_{m+2}, j_1, \dots, j_n) \in H_{m+3}$. Finally let $H = \text{Direct Limit } \{H_m \mid m < \omega\}$. Then H is P_{i_ω} -generic. We have arranged that for any $k_1 < \dots < k_{\ell+2} < j_1 < \dots < j_n$ in $I \cap i_\omega$ that $t(k_1, \dots, k_\ell, k_{\ell+1}, j_1, \dots, j_n) \in H$ iff $t(k_1, \dots, k_\ell, k_{\ell+2}, j_1, \dots, j_n) \in H$. But now it is easy to argue that for any $k_1 < \dots < k_\ell < j_1 < \dots < j_\ell$ that $t(k_1, \dots, k_\ell) \in H \leftrightarrow t(j_1, \dots, j_\ell) \in H$ by applying the preceding ℓ times. We have constructed the desired H and thus completed the proof of Theorem 3.

<u>Remark</u> Mack Stanley pointed out to me that there is a simpler construction for producing G inside $L[0^{#}]$: Just define G(<i) by induction on $i \in I$ so that C_i, f_i extends C_j, f_j for $j \in I \cap i$. It appears though that the above is necessary to control the indiscernibles relative to G. Thus for example one can then code G by a real R in $L[0^{\#}], I^{R} = I$.

Some Open Questions

(a) The obvious question is if Theorem 3 can be proved using a forcing which preserves cardinals. Some progress was made by Shelah, who showed that an immune 2-partition of \aleph_{ω} can be obtained by a cardinal-preserving forcing.

(b) Clearly immune 2-partitions yield immune ω -partitions. How about the converse?

(c) Clearly immune k-partitions, $2 \le k \le \omega$ yield immune 2-partitions. But what if we weaken immunity to say that no infinite constructible set is contained in just one cell? Then does the existence of a weakly immune k-partition imply that of an immune 2-partition?

Reference

Jech [78] Set Theory, Academic Press, 1978.