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ANINTRODUCTION TO
THE ADMISSIBILITY SPECTRUM

SY D. FRIEDMAN*

M.l. T., Cambridge, MA 02139, U.S.A.

The admissibility spectrum provides a useful invariant for studying
definability properties of reals. An ordinal a is R -admissible if L; (R)
obeys };\ replacement. If R is a subset of w, let A (R) denote the class of all
R -admissible ordinals greater than w. Then A (R) is a proper class
containing all L(R)-cardinals. The least element of A(R) is precisely wf,
the least non-R-recursive ordinal.

The ordinal wf has received a great deal of attention in the literature. It
can be characterized in many equivalent ways: the least R-admissible
greater than w, the least non- R -recursive ordinal, the closure ordinal for
R -arithmetical positive inductive definitions, the least a such that the logic
ePA, A = L; (R), is It compact. A beautiful relationship between w f and
the hyperdegree of R was discovered by Spector.

SPECTOR CRITERION. wf > W~k iff (J:!f;h R (where (J is Kleene's complete tt;
set of integers and :!f;h is hyperarithmetic reducibility).

It is reasonable to expect that other elements of the admissibility
spectrum A (R) would provide further information concerning definability
properties of R. This is illustrated below; in particular there is a natural
generalization of Spector's Criterion which relates A (R) to the L-degree
of R.

1. Early results

Work of SACKS [1976] and JENSEN (1972] characterizes the countable sets
which can occur as an initial segment of A (R) for some real R. We present
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proofs of these results in this section which are somewhat simpler than the
original ones. (SACKS [1976] actually proves a result stronger than what we
consider here. See the discussion at the end of this section.)

THEOREM 1 (Sacks). If a > w is admissible and countable then there is a real
R such that wf = a.

PROOF (Almost Disjoint Forcing). We can assume that a is a limit of
admissibles as otherwise if (3 = sup(a n Adm), we can force over La with
finite conditions from w into {3; this produces a generic real R so that a is
the least R -admissible greater than w. (Admissibility is always preserved
when forcing with a set of conditions which is an element of the ground
model.)

Now the desired real R is obtained in two steps.
Step 1. Find A ~ a so that {3 E Adm n a ~ Lf3 [A] is inadmissible.
Step 2. "Code" A by a real R so that {3 E Adm n a ~ A n (3 IS

J I(L f3 (R » .
In both steps we of course want to preserve the admissibility of a.

To accomplish Step 1 first force AD ~ a so that La lAo] is locally
countable; i.e., La [AD] F "Every set is countable". This can be done by
forcing with finite conditions p from a x w into a with the property that
p({3, n) < {3. Note that if IJPo denotes this forcing and {3 E Adm n a then
any maximal antichain M for IJPg = IJPo n Lf3 is also a maximal antichain for
IJPo. It follows that the IJPo-forcing relation is II when restricted to ranked
sentences and that given p such that p If.. 3{3cP, cPJo, one can effectively
produce a maximal antichain M below p so that M E La and q E
M~ q If- cP ({3q) for some {3q. These facts imply that if A o is IJPo-generic over
La then La [A o] is admissible.

Second, we add A, ~ a so that La [AD, Ad is admissible but {3 E Adm n
a ~ Lf3 [AD, AI] is inadmissible. This is done by forcing with IJP I consisting
of all conditions p: {3p~ 2 in La [A o] so that {3 E Adm n
({3p + 1)~ Lf3 [AD, p] is inadmissible. Using the fact that La [Ao] is locally
countable it is easy to see that p E IJPI, {3 < a ~ 3q ~ p, {3q ~ {3. It is easy to
see that the forcing relation is II when restricted to pairs (p, cP), cP a ranked
sentence of rank < {3p, as in this case p If- cP iff Lllp [p] F cPo Lastly if
(Vi Ii < w) is a uniformly II(La [Ao]) sequence of dense open sets, p E IJPI
then we can effectively define p = Po ~ Pi~ . .. so that pi+1 E Vi and
(Pi Ii< w) is II(Lf3[Ao]), {3 = U{{3p; J i < w}. Thus LIl[Ao] is inadmissible
and p = U{Pi Ii< w} is a condition. This form of distributivity suffices to
show that if A, is IJPI-generic over La (AD] then La [AD, AI] is admissible. To
complete Step 1 define A = AD V AI.
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Step 2 is accomplished using almost disjoint forcing. We assign a real R"
to each f3 < a so that R" is definable over L" [A ] uniformly in f3. Note that
for any f3 < a there must be an L" [A ]-definable bijection of wand L" [A]
as the least counterexample L" [A] to this assertion would have to be
admissible, contrary to hypothesis. Thus we can in fact choose R" to be
Cohen generic over L" [A] as well, say for all !2(L" [A]) dense sets.

A condition in the forcing i!/J for coding A is a pair (r, i) where r is a
finite subset of wand i is a finite subset of{R ~ If3 E A} U {r* Ir a finite
subset of w}. Here we make use of the canonical operation R 1-+ R * =
{Code(R t n) In < w} C w for converting distinct subsets of w into almost
disjoint ones. Write (r', i'):S;; (r, i) if r C r', i C i' and b E i ~ b n r' C
b n r. Thus generically we produce a real R so that f3 E A iff R, R ~ are
almost disjoint. Also note that as each R" is uniformly definable over
L" IA] we obtain that A n f3 is uniformly 41 1(L" (R )), by induction on f3.
(To define A n (13 + 1) we need to know A n 13 and R" ; but the latter is
definable over L,,[A nf3]=L,,[A].)

We need only show that i!/J preserves the admissibility of La[A]. As in
the first part of Step 1 it suffices to argue that if Me i!/J" = i!/J n L" [A] is a
maximal i!/J" -antichain and It-definable over L" IA] then M is a maximal
antichain in i!/J. It is for the proof of this assertion that we chose R" to be
Cohen generic over L" [A]. Indeed suppose (r, io U i l ) were incompatible
with each element of M, where io C L" [A], t, n L" [A] =0. Note that the
reals i l C {R", IR ~, E i l } are mutually Cohen generic over L" [A] as if
13, < 132 < ... < 13k then R", is Cohen generic over L"JA], R/>, is Cohen
generic over L/>,[A] :;;;) L"IIA] [R"J, ... and we use the product lemma. So
in fact the preceding assertion about (r, i« U it) is forced by a Cohen
condition c on il. But then (r, io U {s*IsEc}) E L" [A] would be incom
patible with each element of M, contradicting the maximality of M. This
completes the proof of Theorem 1. 0

To be sure, there are many published proofs of the preceding result. We
have included the above proof here, however, to serve as a model for the
following proof of Jensen's result, as yet unpublished. To save notation we
introduce:

CONVENTION. When writing La[X,; ... , X,'] we refer to the structure
(La [XI, ... , x.], XI, ... , X n >.

THEOREM 2 (Jensen). Suppose X is a countable set of countable admissibles
greater than wand a E X~ La [X] is admissible. Then for some real R, X is
an initial segment of A (R).
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PROOF. We can assume that X has a greatest element a. As in the proof of
Theorem 1 we proceed in two steps.

Step 1. Find A C;; a so that {3 < a ~ L~ IA] is admissible iff {3 EX,
L~ [A] is not recursively Mahlo.

Step 2. Code A by a real R so that {3 < a ~ A n {3 is .j1(L~ (R)).
In both steps we want to preserve the admissibility of the elements of X.

To accomplish Step 1 first add An C;; a so that La[An] is locally
countable, as in the proof of Theorem 1 except over the ground model
La[X]. Then L~ [X] admissible ~ L~ [X, An] admissible for all {3 ~ a. (To
see this note that if An is g>n-generic then An n (3 is g>g-generic.) Also if
~ =least p.r. closed ordinal greater than {3 then {3 < a ~ {3 is countable in
L(3 [X, An]. Second, add A I C;; a so that L~ IX, An, A tl is not recursively
Mahlo for all {3 ~ a. The collection of conditions On for doing this consists
of all p: {3p~ 2 so that

(i) {3 ~ {3p ~ p t {3 E L(3 [X, An],
(ii) {3 ~ {3po L~ [X, An] admissible ~ L~ [X, An, p] admissible,
(iii) {3 ~ {3p ~ L~ [X, An] is not recursively Mahlo.

We must show that pEOn, a> {3 > {3p ~ there is a q ~ p, {3q ~ {3. Then
the argument of the second part to Step 1 in the proof of Theorem 1 shows
that On is sufficiently distributive so as to preserve the admissibility of
La[X, An].

The extendibility assertion is proved by induction on {3. If {3 is a
successor ordinal then the result is clear. If {3 is a limit ordinal but
L~ [X, An] is inadmissible then the construction of q is easy by induction,
using the fact that {3 is countable in L(3 [X, Al If L~ [X, An] is admissible
then first we force with og= OnnL~[X,An] to obtain q': {3~2 so that
q' E L(3 [X, An] and q' ~ p. (Note that p E Og.) Then L~ [X, An, q'] is
admissible as og preserves admissibility just as does On. We must arrange
that L~ [X, An,q] is not recursively Mahlo. This requires one further
forcing. Let Of consist of all closed p C;; (3, Ip1= max(p) E p so that
p E L~ [X, An, q'] and

(i) {3'~ Ip I~ p n{3'E L(3,IX, An, q'],
(ii) {3'~lpl, Lw[X,An,q'] admissible ~Lw[X,An,p,q'] admissible,
(iii) {3'Ep~Lw[X,An,q'] inadmissible.

(Note that (ii) is actually redundant due to (i), (iii) and the fact that p is
closed.) Now force q" to be O~-generic, q" E L(3 [X, An]' Then O~ can be
shown to preserve admissibility much as could Og. Clearly
L~ [X, An, q', q"] is not recursively Mahlo as q" provides a closed un
bounded set of {3'< {3 such that Lw[X, A o, q'] is inadmissible. Finally we
define q ~ p so as to code q', q", Then q E 00, {3q ={3.
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We now have that L,dX] admissible ---i> L/3 [X, A o, Ad admissible, {3 <
a ---i> L/3 [X, A o, Ad is not recursively Mahlo. In particular {3 < a ---i> there is
an L/3 [X, A o, Ad-definable bijection of wand L/3 [X, Ao, Ad. At last we
now complete Step 1. We add Az~ a so that {3 < a ---i> L/3 [X, A o, AI, A z] is
admissible iff {3 E X. The collection of conditions ?PI for doing this consists
of all p: e, ---i> 2 in L/3 [X, A o, A .l so that

(i) {3";;{3p ---i> L/3 [X, A o, A I,p] is admissible iff {3 EX,
(ii) {3";; e, ---i> P r(3 E L{3 [X, A o, AI).

We must show that for all p E ?PI, {3 < a there exists q ,,;; p, {3q ;;;;. {3. Once
this is accomplished we have completed Step 1 as the argument that ?PI
preserves admissibility is much like that for 00.

The extendibility assertion is proved by induction on {3. As before the
nontrivial case is where (3 E X. Then the desired «< p is obtained by
forcing with ?P~ = ?PI n L/3 [X, A o, Ad. Such a q can be found in
L{3 [X, A o, A l ). And, ?P~ preserves admissibility just as did Og. This
completes Step 1: let A = X v A o V Al V Az where Az is ~I-generic.

Step 2 is precisely as in the proof of Theorem 1. Note that we can choose
R/3 to be definable over L/3 [A], as in that proof, since (3 < a ---i> there is an
L/3 [A ]-definable bijection of wand L/3 [A). Lastly note that {3 EX, R
~ -generic over La [A] ---i> R ~ /3 -generic over L/3 [A] (for !z definable
dense sets) so it follows that L/3 [R] is admissible. D

As we mentioned earlier, SACKS [1976] establishes a result somewhat
stronger than Theorem 1: If a > w is a countable admissible ordinal then
a = w f for some real R such that S <s R ---i> W f< w f, where ";;h refers to
hyperarithmetic reducibility. Sacks uses pointed perfected forcing and in
addition, when La is not locally countable, perfect trees of Levy collapsing
maps.

Recently, R. LUBARSKY [1984] has established a version of the preceding
result in the context of Jensen's theorem. He shows that, assuming X as in
Jensen's theorem has a greatest element a and in addition that X n {3 is
uniformly definable over L/3 for (3 E X, that there is a real R so that X is an
initial segment of A(R) and in addition, S E La (R)---i> R E La (S) or X is
not an initial segment of A (S). Lubarsky's proof is a significant extension
of Sacks'; the key difference is that a =wf---i> La (S) is locally countable,
however (3 E A (S)~ L/3 (S) is locally countable. Thus when establishing
minimality for R, Lubarsky must consider that for S E La (R) one need not
have the local countability.of L/3 (S) for {3 E X (though L/3 (R) is locally
countable for (3 E X). A new argument is required to rule out the
possibility that such an S may obey "X is an initial segment of A(S)".
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2. The full spectrum-limitations

The theme of this section is that A(R) is a useful invariant for detecting
the set-theoretic complexity of R. Let A denote A (0) = all admissibles
greater than w.

THEOREM 3. SupposeR E L. Then A (R) contains A - {3 for some {3 < H~.

PROOF. Choose {3 so that R E Le, (3 < H~. 0

Thus it follows from Theorem 2 that if V = L then the possible
admissibility spectra A (R) can be completely characterized: they are of the
form X U (A - a) where X is as in Jensen's theorem, X E La.

Note that if R is a Sacks real (R is generic for perfect set forcing over L)
then a density argument shows that the conclusion of Theorem 3 fails.
However we have the following.

THEOREM 4. SupposeR is set-genericover L (R belongsto L(G) whereGis
9P-generic over L, 9P E L). Then:

(a) A (R) dA - {3 for some (3.
(b) Forany a < HI there exist {3, 'Y < HI such that A n ({3, 'Y) has ordertype

~ a and is contained in A (R).

PROOF. (a) Choose (3 so that 9P E Lfl where R E Lfl(G), G is 9P-generic
over L.U a> (3 is admissible then La(G) is admissible as forcing with a set
of conditions preserves admissibility. Thus La(R) is admissible since
R ELfl(G)c;"La(G).

(b) By the result of (a) we know that there exist {3, 'Y E ORD such that
An ({3, 'Y) has ordertype ~ a and is contained in A(R). But HC = (the
hereditarily countable sets) is a !I elementary substructure of V. So there
must exist such {3, 'Y which are countable. 0

The preceding result imposes severe restrictions on which admissibility
spectra can be obtained via set-forcing over L. It implies that even
when restricting to countable admissible ordinals, simple spectra such as
{aZi liEORD}=(even admissibles) cannot be realized by A(R) for
set-generic R (where an < al < ... is the increasing enumeration of A).

The next result implies that certain spectra cannot be realized without
the use of large cardinals.
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THEOREM 5 (Silver). Suppose A(R)- {3 is contained In the class of all
L -cardinals for some {3. Then 0# <;; L R.

PROOF. Let K be a singular cardinal greater than {3. Then (K+t(Rl>(K+t
since there are R-admissible ordinals between K and (K+t(R). By Jensen's
Covering Theorem (see DEVLIN-JENSEN 11974]), 0# E L(R). D

This result can in fact be strengthened to provide a natural generaliza
tion of Spector's Criterion, in the context of L-degrees.

DEFINTION. X ~ ORD is 41-complete if whenever Y ~ ORD is 41(L), Y is
L1 t(L[X ], X).

PROOF. X is 41-complete whenever X is unbounded and X ~ L-Card =
{a Ia is an L-cardinal}, as if Y is 41(L) with defining formula cf> (y) then
y~ Y iff 30' E X (La F - cf>(y) and y, p E La) where p is the parameter in
cf>. (We are using the fact that a an L-cardinal~ La <I, L; i.e., a is stable.)
Thus A (R) is 4t-complete whenever 0# <;;L R as A (0#) c L-Card. Con
versely if A (R) is 41-complete then L-Card is 4t(L (R» and as in the proof
of Theorem 5, (K +)L(Rl > (K +)1_ for sufficiently large singular K. (We are
using the R-stability of (K+)/(Rl.) By the Covering Theorem, 0# <;;L R. 0

Theorem 6 has the consequence that certain spectra X are ruled out
entirely, even though the Jensen criterion (a E X ~ (La [X], X) is admissi
ble) is satisfied.

COROLLARY. There is no real R obeying any of the following:
(a) A (R) = 4z-admissible L-cardinals,
(b) A (R) = 42-admissible stables,
(c) R is generic over L via an amenable class forcing, A (R ) ~ stables.

PROOF. (a), (b) are clear, using Theorem 6. (c) follows from the fact that the
condition on R contradicts O#<;;LR (see Beller-Jensen-Welch [1982],
p. 157). 0

We have left open the possibility of solutions to spectrum equations
A (R) = X, where X is not 41-complete. We discuss this in the next section.
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3. The full spectrum-positive results

The results of Section 2 imply that a real R satisfying A (R) = (even
admissibles) cannot be set-generic and cannot construct 0'" (i.e., O"':o;;;LR).
Thus such reals are entirely ruled out by the following conjecture of
Solovay.

SOLOVAY'S CONJECTURE. O"':O;;;L R ~ R is set-generic (over L).

Fortunately for our purposes, Solovay's conjecture is false. This was
shown by Jensen (see BELLER-JENSEN-WELCH [1982]).

THEOREM 7 (Jensen). If A kORD then there is an (L[A],A)-definable
forcing for extending L (A] to L(R), R k W so that L(R) 1= ZFC and A is
definable over L(R).

COROLLARY. The negation of Solovay's conjecture is consistent.

PROOF. Choose A k ORD to be amenable but not L-definable. By
Jensen's theorem we can get R k W so that A is definable over L(R).
Then R cannot be set-generic over L as otherwise there is a condition
p E fJ' and a formula 4J (where R E L(G), G fJ'-generic over L) such that
for unboundedly many a E ORD, P II- A n a is an initial segment of
{{3!4J({3)}. Thus {3 E A iff 3x E L (p II- {3 E x, x an initial segment of
{{3 4J ({3 )}). D

As it turns out the technique used to prove Theorem 7, Jensen's coding
method, suffices to get the first example of a nontrivial spectrum.

THEOREM 8 (David, Friedman). There is an L-definable forcing for produc
ing a real R so that L(R)I=ZFC and A(R)k(even admissibles).

IDEA OF PROOF. The desired forcing is made up of certain "building
blocks", which are not difficult to describe. Jensen coding is used to put
these building blocks together.

We wish to arrange that a R-admissible ~ a is an even admissible.
Suppose that we have D k NI so that: La [D] admissible~ a is even. Then
we could hope to choose R so as to code D and satisfy the desired
property.

The problem is that if we code D by R in the usual way (with almost
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disjoint forcing) we only obtain the following: For all a, D n (HI)L. is
.11(L (R )). The reason is that to decode D from R we need to know the
almost disjoint coding reals Rji and it is only for {3 < (HI)L. that we have
Rji E L". Thus the recovery of D from R is not "fast enough". On the
other hand we are in great shape if D has the following stronger
properties:

L" (D n 0 admissible, L" (D n ~) 1= ~ =NI ~ a is even. (*)

L" [D] admissible and locally countable ~a is even. (**)

For then we need only recover D n (HI)L. inside L" (R) to guarantee that a
is even (or inadmissible relative to R), a recovery that can be made.

The question is how to obtain D ~ HI obeying (*), (**). The natural thing
to do is force with conditions d which are initial segments of HI obeying (*),
(**) for ~,,;;:; sup(d). We now come to the heart of the argument, which is
contained in the following two observations:

(1) Extendibility for this forcing is trivial because given d and ~ >
sup(d) we are free to extend d to length ~ by killing all admissibles
between sup (d) and ~. It is crucial for this argument that we are only
concerned with killing admissibility, not in preserving it.

(2) Distributivity for this forcing is easily established assuming the
following (!): There exists D' c Hz such that:

L" (D' n~) admissible, L" (D' n~) 1= ~ =Hz~ a is even (*')

L, [D] admissible, L" [D] = "Ix (card(x),,;;:; H,)~ a is even. (**')

Thus we are faced with the original problem, but one cardinal higher!
Proof by induction does not look promising. However note that we need

not already "have" all of D' before we can "start building" D; thus the
idea of the proof (as in all Jensen coding constructions) is to build
R, D, D', D", ... simultaneously and check distributivity for any final
segment of the forcing. 0

A proof of the preceding result will appear in DAVID [1984]. In that
paper the above ideas are combined with some ideas from "strong coding"
(mentioned below) to improve the conclusion of Theorem 8 to: A (R) ~
{a ILI=<fJ(a)}, where <fJ is l\ and LI=<fJ(K) for all cardinals K.

The next step in the study of admissibility spectra is to introduce the
requirement of admissibility preservation into the above. Thus for example
we wish to obtain solutions to the equation A (R) = (even admissibles).
This requires the method of strong coding.
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THEOREM 9. There is a L1,(L )-definable forcing 'lP for producing a real R so
that L (R ) 1= ZFC and A (R ) = (even admissibles).

IDEA OF PROOF. We approach the problem as in Theorem 8. Of course now
the extendibility property is much more difficult (distributivity is the same).
Indeed the desired extension of d to d' of length ~ ~ must be made
generically, so as to preserve even admissibles. Thus we see that our
conditions must be constructed out of generic sets for "local" versions of
the very same forcing. Thus in fact we construct a strong coding 'lP{3 ~ L{3 at
each admissible {3 and then inductively build 'lP{3 out of generic sets for
various 'lPf3', W< {3.

The main difficulty is in showing that the desired generic sets actually
exist; note that we want a 'lP{3 -generic over L{3 where {3 may indeed be
uncountable. The proof of generic existence is by a simultaneous induction
with the proofs of extendibility, distributivity and requires use of the
critical projecta of FRIEDMAN [1982]. (These projecta are closely related to
Jensen's notion of dependency in the theory of higher-gap morasses.)

The other difficulty in the extendibility argument is the conflict between
the genericity requirement and the need to "avoid" the almost disjoint
codes R~: Recall that in almost disjoint forcing, (r', ,'):::;; (r, f) iff r';;;) t,

i' ;;;) i and se t ~ b n r' ~ r. This last requirement causes difficulty with
the need for making r' generic. Solving this requires the construction of
special "supergeneric" codes R{3. These codes will not be Cohen generic
but instead generic for a suitable forcing, defined inductively. 0

4. Recent work

A complete characterization of those A ~ ORD which can be realized as
admissibility spectra A (R) is not known. However some hints as to the
nature of such a characterization are hinted at by the following examples.

(a) Suppose A = L-Card, the class of L-cardinals. Then A cannot be of
the form A (R) as A fails to satisfy: a E A ~ La (A] is admissible.

(b) Suppose A = (all a such that La 1= Power set). Then A cannot be of
the form A (R) as then the L (R )-cardinal successor to Mw would be greater
than the L-cardinal successor to Mw , hence 0" E L(R); but then A(R)
{3 c L -Card for some {3.

(c) Suppose A = {a Ia a successor admissible, L-Card(a) a successor
L -Cardinal] U {a Ia recursively inaccessible, L -Card(a) a limit L
cardinal}. Then A cannot be of the form A(R) else L-Card is L11(L(R))

and thus 0" E L(R); this is a contradiction as in (b).
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(d) Suppose A = nonprojectibles = {a 12\ projectum(a) = a}. Then A
cannot be of the form A (R) for then the least R -admissible a greater than
HI would have cofinality w, but this is false since cof(a) = cof(!, projectum
a relative to R) = HI.

Also note the fol1owing: If A = A(R) then A is L1 1(L(R)) and hence A
"col1apses to itself" when transitively col1apsing l'f Skolem hul1s. More
precisely, for any x E flPw,(ORD) = {x ~ ORD Ix is countable} let TTx be the
unique order-preserving function from x onto ordertype(x). Then in L (R),
A * = {x E gilw,(ORD) ITTx [A] is an initial segment of A} contains a closed
unbounded class (namely {x E flPw,(ORD) Ix <~1 L(R)}). Thus
(L(A], A )FA * is stationary in flPw,(ORD), assuming (HI)L[AI = (H,)L(R).

The above considerations lead us to conjecture what the situation is in a
very special case of the general problem. Namely suppose a = (least a
such that L, F KP and Hz exists). We conjecture the fol1owing.

(*) Suppose A ~ a is amenable and (La, A) is admissible. Then there is
a real R such that A = A (R) n a, La (R) F KP + Hz exists iff:

(i) L L AI HI", Hz" E ,
(ii) {3 E A ~ (Lil [A], A n (3) is admissible,

(iii) H~" < {3, (3 a successor element of A ~ La F cof({3)= HI,
(iv) (L",A)FA* is stationary on gilw,(ORD).

The key step in establishing this conjecture should be to obtain an
(WI, l)-morass of A-preserving maps, using property (iv) to show that the
natural forcing for doing this is w-distributive.
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