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Section 1. Background for  the Theory. 

a -Recurs ion  Theory, o r  Recursion Theory on (Z )-admissible 
1 

ordinals,  is cer ta in ly  a v e r y  successful generalization of Recursion Theory 

on w. 

ibility of w can be replaced by f iner  constructions which re ly  only on Z 

admissibil i ty.  

It has  demonst ra ted  that constructions exploiting the Z2 o r  Z admiss -  
3 

1 

The minimal  degree  construction however has  res i s ted  generalization 

to  a rb i t r a ry  admissible ordinals,  though important progress  was  made by 

Richard Shore  ([14]) who t r ea t ed  the X2-admissible case.  

examine h i s  argument,as the a t tempt  to  adapt it to all admiss ib le  ord ina ls  led to 

the development of p- Recursion Theory. 

It is instructive to 

2 
Shore ' s  construction can  be outlined as follows: If a is Z 

admissible,  then the s t ruc tu re  < L e , C >  is admiss ib le  where C i s  a complete 

a - recurs ive ly  enumerable set .  A minimal  a -degree  can  then be constructed by 

applying the a-finite injury method to th i s  s t ruc ture ,  much in the way Sacks and 

Simpson ([13]) f i r s t  used it i n  the i r  solution to  Pos t ' s  Problem. 

a' 

What if a is only C1 admiss ib le  ? Then the s t ruc ture  < L c , C >  i b  
a' 

no longer admissible.  

injury method to  th i s  s t ruc ture ,  yielding a minimal a -degree  ? 

Nonetheless, is it s t i l l  possible to apply the a-finite 

This leads to the study of Recursion Theory  on possibly inadmissible 

s t ruc tu res  < L [A], 6 ,  A > ,  o r  @-Recursion Theory. 

theory: 

The re  a r e  two goals f o r  this 
B 

111 
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i) To produce new constructions of recurs ive ly  enumerable se t s  which a r e  not 

dependent on any admissibil i ty assumption. 

2)  

In both cases  we hope to provide new data in the sea rch  f o r  the axioms needed to 

do Recursion Theory. 

made in  these directions.  

To c la r i fy  the concepts and techniques used in Admissible Recursion Theory. 

In this paper we r epor t  on the p rogres s  that has  been 

Section 2. Basic Notions. 

The co r rec t  general  sett ing fo r  B-Recursion Theory  is Jensen ' s  

S-Hierarchy fo r  L. F o r  l imi t  o rd ina ls  p, S has all of the important pro- 

per t ies  shared  by l imi t  levels of Gadel 's  L-Hierarchy. 

S-Hierarchy and l i s t  these  proper t ies ,  r e f e r r ing  the r eade r  to  [I] fo r  a m o r e  

thorough treatment.  F o r  ord ina ls  p such that w divides p, we have 

S = L 

B 
We proceed to  define the 

W 

so in th i s  c a s e  one may work with the usual L-Hierarchy. 
B B' 

A function f: Vn -. V is rudimentary i f  it can be generated f r o m  the 

following schemata: 

iii) f ( Z )  = xi - x. J J  

- 
R C Vn is rudimentary i f  f o r  some rudimentary function f ,  xc  R W f ( y )  = fl. 

If X is transit ive,  the rudimentary c losure  of X = the c losure  of X under the  

rudimentary functions. Also define rud(X) = rudimentary c losure  of X U {X}. 

Lemma. There  i s  a rudimentary function 5 such that f o r  t rans i t ive  X ,  

g(X) is transit ive,  X U { X } C  S(X) and rud(X) = u $(X) . 
n c  w 
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The S-Hierarchy is  now defined by: 

S o = $ ,  

sati = S ( S a )  * 

Properties of the S-Hierarchy 

B limit 4 S is closed und 
B 

r rudiment 

113 

ry  functions, On(S ) = B. B 
S 

L = S 

Suppose p is  a limit ordinal and T r  = {<i,x i,...,xn>l the ith Zn formula (p is  

n-ary and <Sg , s  > Then Trn i s  Zn over <S , E  >, uniformly 

in p. 

There is a well-ordering < of L such that for limit B, < ( S  X S is Z 

over < S p  e >, uniformly in p. 

n @(S ) = {X C S IX is f i rs t -order  definable over <S E >). 
B+w B B B '  

B B  B B  
ww divides p, U S  = L . 

n 

(p(xi, ..., xn)). B 

i B B  

The above properties a r e  sufficient to safely adapt the definitions of 

@-Recursion Theory to an arbi t rary <Sp E >, B limit. 

F o r  A S  S B ,  we define: 

A is p-recursively enumerable (p-r.e.) ++- A is Z -Definable over <SB,e > . 
A is @-recursive (p-re.) A , A  = S - A a r e  both p- r .  e. 

A is p-finite <+ A E S 

By virtue of property 4) above, there is a universal p-r. e. set W(e, x) such that 

any p-r.e. set i s  of the form We = {xlW(e,x)} 

i 

B 

B '  

for some e. 

The reducibilities of @-Recursion Theory a r e  also derived from the 
- 

admissible case. F o r  any A C S 

x, y p-finite) and A; = {<x, y > (  x G A, y cx, x, y finite). 

let A* = {<x,y>l  x C A ,  y C A , 
B' 

Then: 

A is finitely p-reducible to B W ( for  some @-r. e. R, 

* 
x E Af 1 y c  Bf*[<x,y> E R])  
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A is weakly p-reducible to  B A*< B* 
f f P  

( A 5  B) 
W P  

A i sp - reduc ib le  to B C> A* < B* 
f B  

Both finitely p-reducible and p-reducible imply weakly p-reducible (but not con- 

ve r se ly  in general)  and these  two noticn s a r e  in general  incomparable. 

p-reducibility is the fundamental reducibility fo r  6-Recursion Theory. 

p-reducibility is reflexive and t rans i t ive  and thus we may define the p-degree of 

A = {Bl  A 5 B, B A}; the p-degree a r e  partially-ordered by < There  is 

a smal les t  p-degree 0 and a l a rges t  p-degree of a p-r. e. se t ,  denoted 0' . 
B B B '  

Tameness  and Regularity 

p-r. e. s e t s  a r e  constructed in stages.  A s  computations f rom a se t  A 

a r e  determined by pa i rs  < x ,  y>, where x and y a r e  p-finite and satisfy x 5 A ,  

y C x, it is convenient to know that such pa i rs  a r e  satisfied by some stage of the 

construction; i. e., i f  A" denotes the amount of A enumerated by stage u, we 

would like to  know that: 

(*)x p-finite, x C_ A + F o r  some  u, x C A' . 
In th i s  case ,  the  enumeration {Au] u<p is said to be tame. More precisely,  if 

3 y(p(x,y) (9 a A 

enumeration {Au} where x c Au 

i f  A has  such an  enumeration with the property (*)  above. This is equivalent to 

the asser t ion  that {u-finite X I X  S A }  is p-r.e.  F r o m  th is  it follows that 

deg A = 0 H A, a r e  both tamely- r .e .  

- 
formula) defines A over  < S  e >, then i t  gives r i s e  to the 

0 B' 
]y c Sup(x ,y)A x e Su. A is tamely-r.e.  

Theorem 1 ([3]). Assume that p is inadmissible.  Let W be a universal  

p-r.e. set .  Then there  is a p- recurs ive  se t  A such that 0 < A < W and 

every  p-recursive o r  tamely- r .  e. set is p-reducible to  A. 
B B  
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It follows that in the inadmissible case  there  a r e  p-recursive sets  of non- 

zero p-degree. In particular,  t. r. e. # r. e. and 1. wp # Sp . Theorem i pro- 

vides a weak solution to Post 's  Problem in p-Recursion Theory (the question of 

the existence of p-r .  e. degrees  between 0 and 0'). 

i t  does not provide incomparable p-r .  e. degrees;  moreover,  in this ca se  we have 

The solution is  weak because 

A < 0. Denoting deg(A) by OU2, we a r e  led to the following picture of w s w p  -wp 

the p-r.e. degrees: 

In general, however, nonzero tamely-r.  e. degrees will not exist (though 0" pro- 

vides an  example of a nonzero p-recursive degree). 

these degrees  remain unsettled; in particular.  it is not known if  the t. r. e. 

degrees  o r  the p-recursive degrees form an initial segment of the p-r. e. 

degrees. 

tained in the p-recursive degrees  when p is inadmissible. 

Simple questions regarding 

It follows from [iO], though, that the t. r. e. degrees a r e  always con- 

A E S is regular i f  A n x is @-finite whenever x is p-finite. It is a 

theorem of Sacks ([12]) in  the case  that p i s  admissible that every p-r. e. degree 

has  a regular p-r. e. representative. Regular p-r. e. se ts  a r e  more r a r e  for 

inadmissible p; in fact, for some p ' s  , every regular p-r.e. set  (even every 

regular set)  has degree 0 (see [3]). 

i s  enough to guarantee the existence of regular,  p-r. e. representatives: 

However, a slight extension of t. r. e. -ness 
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Theorem 2 ([3], [iO]). If {x I x is p-finite, x n A # 8 )  is t. r. e., then 

A has the same p-degree a s  a regular p-r.e. set. 

However, for some p ' s  there a r e  t. r. e. sets which do not lie in the same 

Thus, there appears to be no simple characteri- p-degree as  some regular set. 

zation of the regular p-r. e. degrees. 

The reader is  referred to [lo] for proofs of the above facts a s  well a s  

further information concerning the p-r. e., t. r. e., and regular p-r .  e. degrees. 

In the further development of the theory, the limit ordinals fall into two 

This split into cases was classes determined by their degree of admissibility. 

f i rs t  revealed in Jensen's proof of I: -Uniformization for S and is determined 

by the values of certain key parameters which we now proceed to define. 

2 B' 

A relation on S is  Zn i f  it can be defined over <S E > by a formula 
B' 

consisting of n alternating unbounded quantifiers (beginning with an existential) 

followed by a limited formula. A function i s  Zn if i ts  graph is. 

The f i rs t  type of parameter that we define measures the extent to which p 

i s  not a cardinal. The B -projecturn of p, p , is  the least ordinal y such 

that there is  a Z injection of p into y. Jensen shows ("31) that this is the same 

a s  the least y such that some Zn subset of y is  not p-finite. As there is always 

a Zi bijection between p and S (see [i]), we can in fact inject S into p p  via a 

Z function. 

n 

B n 

Our second set of parameters describes the extent to which p is  singular. 

The B -cofinality of p, 

domain y has range unbounded in p. 

same a s  the least y such that some B 

(though this equivalence is not true for a l l  p). 

Z cf p, is the least y such that some 2 function with 

If p i s  Bn-i-admissible, then this is the 

function with domain y is not @-finite n 

n n 
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In case n = 1, pp and Z cf j3 a r e  alternatively written j3* and Rcf p, 

respectively. (Rcf abbreviates 'Recursive Cofinality".) We shall be mostly 

concerned with p*, Rcf p, p' and Z2cf (3. 

is a regular p-r.e. set of degree 0'. then pp and Z cf ,3 a r e  just the Z - 
projectum and Z cofinality of the relativized structure < L e ,  A > .  

1 1 

Note that i f  p is  admissible and A 

2 2 1 

2 

1 B' 
In case Rcf p 2 p* we say that p is  weakly admissible. In this case, 

many of the arguments from admissibility theory apply. The reason for this is  

that many priority arguments use p* to index a listing of requirements and the 

above assumption allows one to perform Z l  inductions of length j3 . 
Z -Uniformiaation is also easy in this case. If p is  admissible and 2 

Z cf p 2 p! , then we say that j3 is  weakly C -admissible. In this case, one can 2 2 

car ry  out the construction of minimal p-degrees. minimal pairs of p-r. e. 

* 

degrees and major subsets of p-r. e. sets. 

If Rcf p < p* we say that p is  strongly inadmissible. In this case, the 

arguments of admissibility theory do not apply and new techniques a r e  needed. 

This i s  the difficult case of Z -Uniformization. If p i s  admissible and 2 

Z cf p < p! , then we say that p is strongly Z2-inadmissible. The constructions 

of minimal p-degrees, minimal pairs of p-r .  e. degrees and major subsets of 

p-r. e. sets a r e  all very difficult for such p and have only been accomplished in 

very special cases. 

beginning to apply themselves to this case (see Section 5). 

2 

However, the techniques of p-Recursion Theory a re  now 

Section 3 .  Weak Admissibility 

As mentioned before, the methods of @-Recursion Theory apply in this 

In particular, the method of Shore blocking (see [17]) was used in [3] to case. 

prove: 
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Theorem 3. If p is weakly admissible, then there a r e  regular t. r. e. 

sets A,B such that A B, B d w p A .  
W B  

W. Maass (in [lo]) has found a technique for transferring many results 

f rom a-Recursion Theory to arbi t rary weakly admissible ordinals. 

ciates to each weakly admissible p an admissible structure a such that 

01-r. e. degrees embed into the p-r. e. degrees. 

about the admissible structure fi have consequences about the p-r.e. degrees. 

We now describe his construction in more detail. 

He asso- 

In this way, known results 

Let K = Zlcf B. As K 2 p*, there certainly i s  a Zi injection of p into K. 

In fact, more is  true: there is  a 2 bijection of /3 onto K (see [ 3 1, p. 15). 

Let f:  B + K be such a bijection. Let 

1 

< e, x. u> c F a x c weu 
w 

and T = f[T]. Then TG K, T is p-recursive and = < L K , c r T >  is ad- 

missible. Moreover, if A 5 K, then A is p-r. e. i f  and only if  A is 01 -r. e. 

(Zl over ). Define < analogously to 5 Then these two reducibilities 

do not necessarily agree on subsets of K. A C K is p-immune if 
-0L B' 

x p-finite, x C_ A 4 x c L 

x p-finite, x & K - A + x c LK , 

K '  

Then 5 and I do agree on p-immune sets. Maass shows that every oc B 
-1'. e. degree has a p-immune M-r. e. representative. This gives an em- 

bedding E of the a - r . e .  degrees 1-1 into the p-r.e. degrees. 

Theorem 4 (Maass) ( p  weakly admissible). The range of E = the t. r. e. 

degrees = the recursive degrees. E (complete (n -r.e. set) = 0 1/2 . 
An application of admissibility theory to u( ([15] and [lb]) yields: 



AN INTRODUCTION TO B-RECURSION THEORY 119 

Corollary. Any nonzero t. r. e degree is the join of two lesser  t. r. e. 

degrees. 

in between. 

If one t. r. e. degree i s  below another, then there is a t. r. e. degree 

Section 4. Strong Inadmissibility 

This is the most challenging case for p-Recursion Theory, for the lack of 

admissibility i s  now so strong that many of the ideas from the admissible case 

become useless. 

Structure of L a s  developed initially by G'ddel [ 8 ]  and more extensively by 

Jensen [ 9 ] .  A l l  of these techniques emanate from two basic lemmas due to 

Godel: 

The alternative is  to employ deeper techniques from the Fine 

Lemma. For  each limit ordinal B, there is  a partial function 

h: w X S - S which is Z over S such that for  any Zl formula p(x, p), 
B B  1 B 

<SBl (> 3 xdx.  P) + 3 i e  w(p(h(i, PI, P) . 
- Proof. Recall the canonical Zl well-ordering < of S Then if  the 

define h@(i, p) e least (in the sense of < ) 

B' 
ith E l  formula is 

pair <x, y >  such that $(x, p, y). Then h(i, p) = first component of hf(i, p). f 

3 y$(x. p, y), 

B' The h above i s  called the canonical Z skolem function for S 1 

Transitive Collapse Lemma. If X < S  (i.e., X C_ S and any Zl 
1 B  B 

B formula with parameters from X 

< X , t  > is  isomorphic to a unique < S Y , c  >. 

and a solution in S has a solution in X )  then 

Using these two lemmas, we can now illustrate in a simple example how 

Fine Structure technique can be used to generalize to arbitrary p a result whose 

"recursion-theoretic" proof only succeeds for admissible B. 
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Proposition (Jensen). Suppose A C y < p *  and A i s  p-r.e. Then 

A is p-finite. 

Proof Number d ,  p admissible. If A is not p-finite, then it has a 1-1 

$-recursive listing f: p - A. But then p* I sup A 5 y < p*, contradiction. 

Proof Number 2, p arbitrary.  Let p G S be a parameter  defining A as a 

set  Zl over S 

Lemma. Then X 4 S 

j:X c r S  Let g = joh. 

B 
F o r m  X = Range h on O X  (y u{p}), where h i s  f rom the 

B' 
so apply the Transit ive Collapse Lemma to get 

1 B' 

6 '  

Now g is Zl over S (simply t ransfer  the Zci definition for  h over X 
6 

to S 6 ) .  Then so is g-'. But i f  f uniformizes gWi, f Z over  S we see  that 

f injects S6 into o X ( y u { p } ) ;  hence into y .  Since y C p*, we have proved 

that 6 < p. 

1 6 *  

But A is Z 

Fur the r  ideas of Jensen, in particular an effectivized version of his  0 

definable over S 6 ,  so A G S -/ 1 B' 

principle, were used in [4] to establish: 

Theorem 5. If p* is regular with respect to p-recursive functions, 

then there  a r e  p-r. e. se ts  A,  B 5 p* such that A 9 B, B b w p A  . 
W P  

This i s  the best  solution to Post ' s  Problem so f a r  known in the strongly 

inadmissible case. 

c a r dinal If. 

Open Problem. 

inadmissible p ? 

This covers  the case  where S I=  "p* is a successor  
B 

Does the conclusion of Theorem 5 hold for a rb i t r a ry  strongly 

Forcing can be used to achieve a s t ronger  and more model-theoretic in- 

comparability than that in Theorem 5. The following result  will appear in  [5]: 

Theorem 6. 
* 

Assume p* is regular with respect to p-recursive functions 

and S "p i s  the largest  cardinal. 'I Then there  a r e  p-r. e. se ts  A ,  B 5 p* 
B 
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such that 

A is not hi over < S  [ B ] , c > ,  

B is not Ai over < S  [A].€ > . 
B 

B 
ierarchy is  fined exact (S [A]  is the pth level of the S[A]-hierarc y. This 

B .Y 

a s  the S-hierarchy except the function f(x) = A n x is  added to the schemes for 

the rudimentary functions. ) 

We conclude this section by sketching the proof of a theorem which 

illustrates the use of Skolem Hulls and 0 in p-Recursion Theory. 

Theorem 7. There a re  p-r. e. sets A,  B such that A $ B, B $ A. 
f s f B  

The proof of this theorem is not uniform in the sense that it divides into 

cases depending on the nature of p. Thus, the sets A ,  B will be defined relative 

to the choice of a parameter p c S B '  

Open Problem. Can Theorem 7 be made uniform in that the sets A,  B have 

parameter-free Zi definitions independent of p? 

We believe that the answer is  "yes. In fact, we 

Conjecture. There a r e  integers m,n  such that for all limit ordinals p, 

w," is not over < S  [w,B],c > , 

wft is not A~ over < S  [ w ' I , ~ >  , 
B 

B m  

where W p  = the nth parameter-free p-r.e. set. n 

Before giving our proof sketch of Theorem 7, we make some preliminary 

definitions and remarks. In view of Theorem 3,  it suffices to prove Theorem 7 

in  the strongly inadmissible case. Choose p-recursive functions 

f . S  _9 f3 
0' 8 

unbounded in p. Let p' c S be such that both f and g a r e  Zl over S in the 

parameter pi .  

i - i  * 
0 

and go: Rcf p - p such that go is  order-preserving, Range g 

O B  0 0 B 
Let po = < p i ,  p*> . 
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Let h(i, p) be the canonical X i  skolen function for  S and for y < p* 
B 

define H(y) = {h( i ,<y ' ,po>)( - i  c w.y' < y } .  

of y u {p,]": Note that u H(y) = Sp . In our construction, H(y) consists 

of those reduction procedures e of priority y. (Thus the construction i s  re-  

dundant in that each reduction procedure is assigned a final segment of different 

priorities.) 

Claim. 

the next p-cardinal. 

Proof. See [4], Page 24. 4 

Thus H(y) is the llZi Skolem Hull  

Y < B* 

Of special importance a re  those y < p* such that y 4 H(y). 

t Let K < p* be a p-cardinal (i. e., Sp I)K i s  a cardinal"). Let K = 

t 
Then' {y  < K'I y 4 H(y)] is closed, unbounded in K . 

Let = {y  < @*I y 4 H(y) and y is not a p-cardinal}. The form of 

0 that we need (which more resembles m fact) reads a s  follows: 6 .  
: There is a sequence <D Iy < p*>, X -definable without parameter 

Y i 

over L * ,  such that 
8. 

B 

Y 
1) D C_ Power Set of y 

t 
2) D c L (where y = least p-cardinal > y )  

3) If A C p* is p-r. e. with parameter po , then 

Y 

Proof. See [4], Page 25. D = { x c  y I  x 6 L, } where = least 6 such that 

y is  not a 6-cardinal. 4 

y Y+ 

y c  + A n y c D  . 
- 

Y Y 

We a r e  now ready to outline the construction. We wish to satisfy the 

requirements: 

A -  R~ : B + { X I  j f i n i t e  y s K (<x, y >  c we)) 

R~ B : K + {xi ]finite y c ~  (<x,y> c we)}. 

It is  easy to see that satisfying these requirements for each e 6 S guarantees 
B 

A k fpB,  B $,, A. Here, We = eth p-r .  e. set. Our method for attempting to 

satisfy R: is  to put some x into B at stage u i f  some finite y E A" satisfies 
- 

< x, y> 6 W l  . (A" = part of A enumerated by stage u, similarly for  W," . ) 
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- 
If we can succeed in guaranteeing y s A'J' fo r  all crI > u, R," will be 

satisfied. 

These attempts a t  the above requirements conflict with each other. The 

solution is to o r d e r  the requirements in a l is t ,  the requirements lower on the 

l is t  having higher priority. 

is assigned all of the pr ior i t ies  y < @* such that e t H(y). 

A B In this  construction, each requirement Re (or  R e )  

The construction proceeds in R cf @ steps.  Recall  the function 

go: R cf j3 -c j3. At  each stage u we will use an  approximation to the se t  d and 

the function H. Let H'(y) = {h'(i ,<y' ,po>)( i e w , y '  < y ]  

canonical 2 skolem function for  S . (If j3 is of the fo rm j3' t w ,  le t  

H'(y) = H ( y ) n  go(o).) 

Stage u. 

€3 <Re  , z >  where z e D 

least  @-finite bijection j between H'(y) and y. 

been considered, attack < R t ,  z> as follows: 

x > y, x not being restrained f rom entering B by y, and a finite y A' such 

that Cx,  y >  e Weu and y Q j - ' [z]  = 9. 

put x into B and have y rest ra in  the members  of y f rom entering A. The 

pairs  

where h' is the 

i g o ( 4  
Then define .8, = {y  < p*I y E H'(y)). 

A Do the following fo r  each y e .Au : F o r m  all pairs  <Re  , z > , 

e e H'(y). Order  such pairs  in a'list and choose the 

Given that ea r l i e r  pairs  have 
Y' 

See if  there  is an x 4 H'(y). 
- 

Then fo r  the least  such pair  <x,  y>, 

B < R e ,  z > a r e  handled similarly.  

The idea, then, is that the members  of D 

This ends the construction. 

(via the bijection j: Hu(y) - y) 
Y 

provide 8tguesses11 at A n H u h ) ,  B n H'(y). 

po defines the ent i re  construction, oB" implies that j [A  H'(y)], 

j [ B n  Hu(y)] E Dy i f  y 6 a . 
Then these  guesses are each used to sea rch  for  an x and y which attempt to 

Of course,  since the parameter  

So fo r  y e A!. , one of the "guesses" is correct .  

satisfy R: (o r  R ~ ) .  B 
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A Now each pair < R e ,  z>, e e H(y), z c D is attacked at most once at 
Y 

each stage of the construction; thus, any x put into A o r  B by y and any y 

restrained from intersecting A or B by y must belong to H(yi-1). 

Lemma. 

Proof. 

Suppose y e H'(ytl) - H'(y) and y e L!. . Then y { H(y). 

Otherwise, let y E H''(yt), y' < y, u1 least. Assume that y' and 

y have the same 

some T < u', y 6 HT(6) - HT(y'). Then 6 c H"'(yIt1) and 6 2 y .  

6 E H"(y't1) and so y H ( y ' t l ) .  This contradicts y e . 4 

-cardinality K . Let 6,, be the least 6 <  K' so that for  

But as K I y'. 

Ul 

Now any y restrained by y at  stage u must belong to 

H'(ytl) - H'(y). 

a s  each y' < y only puts members of H(y) into A o r  B, no member of y can 

ever be put into A or B. If in addition the attempt associated with y used a 

correct guess z for A r )  H'(y) (or B n H"(y)), then this attempt will succeed 

and the corresponding requirement RA 

Thus, by the Lemma, if y c 1 , we have y { H(y). But then 

B (or Re)  will be satisfied. 

Lastly, note that no y e d can ever be put into A o r  B, by construction. 

Thus we may argue for B d  A a s  follows (A B is similar): If 

B = { X I  3 finite y c A, <x,  y> We}, then choose y e 4 and u so that if 

y '  = least member of d 

f s f a  - 

greater than y, - 
1 )  Jfinite y 5 A" , < y ' , y >  e weu , 

2) Y n (A n H ~ ( Y ) )  = fl 

Such a y and u exist since 

at  this stage o r  an earlier stage for the pair <Re , j[A fl H'(y)]>. By earlier 

Remarks, this attempt will succeed. 

C_ E. Then there must be an attempt made 

A 

End of proof sketch. 
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Section 5. Minimal @-Degrees Revisited 

We return now to the original problem which motivated our  study. 

Have we learned anything new concerning minimal a-degrees  through the study 

of p-Recursion Theory? The following resul t  gives an affirmative answer: 

Theorem 8. If (I* = a and p a  is a successor  a-cardinal,  then there  
2 

is a minimal a-degree which is a-r. e. in 0'. 

The proof, which applies the techniques of p-Recursion Theory to the 

s t ructure  <L E , C >  (C a complete a-r. e. set), will appear i n  [ 6 ] .  
a' 
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