The tree property at the double successor of a measurable cardinal κ with 2^{κ} large

by
Sy-David Friedman (Wien) and Ajdin Halilović (Bucureşti)

Abstract

Assuming the existence of a λ^{+}-hypermeasurable cardinal κ, where λ is the first weakly compact cardinal above κ, we prove that, in some forcing extension, κ is still measurable, κ^{++}has the tree property and $2^{\kappa}=\kappa^{+++}$. If the assumption is strengthened to the existence of a θ-hypermeasurable cardinal (for an arbitrary cardinal $\theta>\lambda$ of cofinality greater than κ) then the proof can be generalized to get $2^{\kappa}=\theta$.

1. Introduction. For an infinite cardinal κ, a κ-tree is a tree T of height κ such that every level of T has size less than κ. A tree T is a κ-Aronszajn tree if T is a κ-tree which has no branches of length κ. We say that the tree property holds at κ, or $\operatorname{TP}(\kappa)$ holds, if every κ-tree has a branch of length κ. Thus, $\operatorname{TP}(\kappa)$ holds iff there is no κ-Aronszajn tree. $\operatorname{TP}\left(\aleph_{0}\right)$ holds in ZFC, and it is actually exactly the statement of the well-known König lemma. Aronszajn showed also in ZFC that there is an \aleph_{1}-Aronszajn tree. Hence, $\mathrm{TP}\left(\aleph_{1}\right)$ fails in ZFC.

Large cardinals are needed once we consider trees of height greater than \aleph_{1}. Silver proved that, for $\kappa>\aleph_{1}, \operatorname{TP}(\kappa)$ implies κ is weakly compact in L. Mitchell proved that given a weakly compact cardinal λ above a regular cardinal κ, one can make λ into κ^{+}so that, in the extension, κ^{+} has the tree property. Thus, $\operatorname{TP}\left(\aleph_{2}\right)$ is equiconsistent with the existence of a weakly compact cardinal.

For more of the relevant literature on the tree property we refer the reader to the following: Abraham [1, Cummings and Foreman [3, Foreman, Magidor and Schindler [5], and Neeman [10] have done work on the tree property at two or more successive cardinals; Magidor and Shelah [9], Neeman [10], and Sinapova [11, [12 have worked on the tree property at successors of singular cardinals.

[^0]Natasha Dobrinen and the first author [4] used a generalization of Sacks forcing to reduce the large cardinal strength required to obtain the tree property at the double successor of a measurable cardinal κ from a supercompact to a weakly compact hypermeasurable cardinal. In their model $2^{\kappa}=\kappa^{++}$.

On the other hand, $\operatorname{TP}\left(\aleph_{2}\right)$ is consistent with large continuum (for a proof see [13]). In the present paper we prove the analogous result for $\mathrm{TP}\left(\kappa^{++}\right)$ with κ measurable, using Mitchell's forcing together with a surgery argument (see [2]).

As in [4, the consistency of a cardinal κ of Mitchell order λ^{+}, where λ is weakly compact and greater than κ, is a lower bound on the consistency strength of $\operatorname{TP}\left(\kappa^{++}\right)$with κ measurable and $2^{\kappa}=\kappa^{+++}$. Therefore our result is in fact almost an equiconsistency result.
2. The theorem. We say that a cardinal κ is γ-hypermeasurable if there is an elementary embedding $j: V \rightarrow M$ with $\operatorname{crit}(j)=\kappa$ such that $H(\gamma)^{V}=H(\gamma)^{M}$.

Theorem. Assume that V is a model of $Z F C$ and κ is λ^{+}-hypermeasurable in V, where λ is the least weakly compact cardinal greater than κ. Then there exists a forcing extension of V in which κ is still measurable, κ^{++}has the tree property and $2^{\kappa}=\kappa^{+++}$.

Proof. Let κ be λ^{+}-hypermeasurable. Let $j: V \rightarrow M$ be an elementary embedding with $\operatorname{crit}(j)=\kappa, j(\kappa)>\lambda$ and $H\left(\lambda^{+}\right)^{V}=H\left(\lambda^{+}\right)^{M}$. We may assume that M is of the form $M=\left\{j(f)(\alpha) \mid \alpha<\lambda^{+}, f: \kappa \rightarrow V, f \in V\right\}$. We first define some forcing notions in order to describe the intended model.

For a regular cardinal α and an arbitrary cardinal β let $\operatorname{Add}(\alpha, \beta)$ denote the forcing for adding β many α-Cohens. The conditions are partial functions from $\alpha \times \beta$ into $\{0,1\}$ of size $<\alpha$.

Define a forcing notion P_{κ} as follows. Let ρ_{0} be the first inaccessible cardinal and let λ_{0} be the least weakly compact cardinal above ρ_{0}. For $k<\kappa$, given λ_{k}, let ρ_{k+1} be the least inaccessible cardinal above λ_{k} and let λ_{k+1} be the least weakly compact cardinal above ρ_{k+1}. For limit ordinals $k \leq \kappa$, let ρ_{k} be the least inaccessible cardinal greater than or equal to $\sup _{l<k} \lambda_{l}$ and let λ_{k} be the least weakly compact cardinal above ρ_{k}. Note that $\rho_{\kappa}=\kappa$ and λ_{κ} is the least weakly compact cardinal above κ.

Let P_{0} be the trivial forcing. For $i<\kappa$, if $i=\rho_{k}$ for some $k<\kappa$, let \dot{Q}_{i} be a P_{i}-name for the forcing $\operatorname{Add}\left(\rho_{k}, \lambda_{k}^{+}\right)$. Otherwise let \dot{Q}_{i} be a P_{i}-name for the trivial forcing. Let $P_{i+1}=P_{i} * \dot{Q}_{i}$. Let P_{κ} be the iteration $\left\langle\left\langle P_{i}, \dot{Q}_{i}\right\rangle: i<\kappa\right\rangle$ with Easton support.

We define the Mitchell forcing $M(\kappa, \beta)$ as the iteration $\operatorname{Add}(\kappa, \beta) * Q$, where
$Q=\{q \mid q$ is a partial function of cardinality $\leq \kappa$ on the
regular cardinals below β such that for each γ in $\operatorname{Dom}(q)$, $\left.\emptyset \Vdash \operatorname{Add}(\kappa, \gamma) " q(\gamma) \in \operatorname{Add}\left(\kappa^{+}, 1\right) "\right\}$.

Since $M(\kappa, \lambda)$ is known to preserve the tree property at λ while making λ into the κ^{++}of the extension (see [1]), the idea is simply to force with $\operatorname{Add}\left(\kappa, \lambda^{+}\right)$over $V^{M(\kappa, \lambda)}$. However, in order to preserve the measurability of κ, our intended model will be a little different:

Let $j_{0}: V \rightarrow M_{0}$ be the measure ultrapower embedding via the normal measure $U_{0}=\{X \subseteq \kappa \mid \kappa \in j(X)\}$ derived from j with critical point κ such that ${ }^{\kappa} M_{0} \subseteq M_{0}$ and let λ_{0} be the first weakly compact cardinal of M_{0} above κ. To prove the theorem we force over V with

$$
P_{\kappa} * \operatorname{Add}\left(\kappa,\left(\lambda_{0}^{+}\right)^{M_{0}}\right) * M(\kappa, \lambda) * \operatorname{Add}\left(\kappa, \lambda^{+}\right) * R
$$

where P_{κ} is the 'preparatory' forcing defined above, and R is the forcing notion defined in the following paragraph:

Let G, g_{0} be generic filters on $P_{\kappa}, \operatorname{Add}\left(\kappa,\left(\lambda_{0}^{+}\right)^{M_{0}}\right)$, respectively. We lift the embedding $j_{0}: V \rightarrow M_{0}$ to an embedding of $V[G]$ as follows. The forcing $j_{0}\left(P_{\kappa}\right)$ can be factored into the three obvious parts $j_{0}\left(P_{\kappa}\right)_{\mid \kappa} * j_{0}\left(P_{\kappa}\right)_{\kappa} *$ $j_{0}\left(P_{\kappa}\right)_{\kappa+1, j_{0}(\kappa)}$, but since V and M_{0} have the same $H_{\kappa^{+}}$, we have $j_{0}\left(P_{\kappa}\right)_{\mid \kappa}$ $=P_{\kappa}$. By elementarity, $j_{0}\left(P_{\kappa}\right)_{\kappa}$ is the forcing $\operatorname{Add}\left(\kappa,\left(\lambda_{0}^{+}\right)^{M_{0}}\right)$. Therefore, $G * g_{0}$ is generic for $j_{0}\left(P_{\kappa}\right)_{\mid \kappa} * j_{0}\left(P_{\kappa}\right)_{\kappa}$ over M_{0}. We can easily construct in $V[G]\left[g_{0}\right]$ a generic filter H_{0} over $M_{0}[G]\left[g_{0}\right]$ for the remaining forcing $j_{0}\left(P_{\kappa}\right)_{\kappa+1, j_{0}(\kappa)}$, using the facts that $j_{0}\left(P_{\kappa}\right)_{\kappa+1, j_{0}(\kappa)}$ is κ^{+}-closed in $M_{0}[G]\left[g_{0}\right]$, $V[G]\left[g_{0}\right] \cap{ }^{\kappa} M_{0}[G]\left[g_{0}\right] \subseteq M_{0}[G]\left[g_{0}\right]$, and each dense subset of $j_{0}\left(P_{\kappa}\right)_{\kappa+1, j_{0}(\kappa)}$ in $M_{0}[G]\left[g_{0}\right]$ has an $\operatorname{Add}\left(\kappa,\left(\lambda_{0}^{+}\right)^{M_{0}}\right)$-name in $M_{0}[G]$ of the form $j_{0}(f)(\kappa)$ for some function $f \in V[G], f: \kappa \rightarrow H\left(\kappa^{+}\right)$. Therefore, j_{0} lifts in $V[G]\left[g_{0}\right]$ to an elementary embedding $j_{0}: V[G] \rightarrow M_{0}[G]\left[g_{0}\right]\left[H_{0}\right]$ because j_{0} is the identity on the conditions in G, and hence obviously $j_{0}[G] \subseteq G * g_{0} * H_{0}$. The forcing R is defined as $\operatorname{Add}\left(j_{0}(\kappa), \lambda^{+}\right)$of $M_{0}[G]\left[g_{0}\right]\left[H_{0}\right]$. We note here that R is an element of $V[G]\left[g_{0}\right]$. Since $j_{0}(\lambda)=\lambda, R$ is actually the image of $\operatorname{Add}\left(\kappa, \lambda^{+}\right)$ under j_{0}.

For technical reasons, we rewrite our forcing as

$$
P_{\kappa} * \operatorname{Add}\left(\kappa, \lambda^{+}\right) * Q * R,
$$

where Q is this time defined only using the even components i of $\operatorname{Add}\left(\kappa, \lambda^{+}\right)$ with $\left(\lambda_{0}^{+}\right)^{M_{0}} \leq i<\lambda$. More precisely, for an interval I of ordinals let $\operatorname{Add}(\kappa, I)_{\mid \text {even }}$ be the forcing whose conditions are partial functions from $\kappa \times\{$ even ordinals in $I\}$ into $\{0,1\}$ of size $<\kappa$. Then, for $q \in Q$ and $\gamma \in \operatorname{Dom}(q), q(\gamma)$ is an $\operatorname{Add}\left(\kappa,\left[\left(\lambda_{0}^{+}\right)^{M_{0}}, \gamma\right)\right)_{\text {even-name }}$ for a condition in $\operatorname{Add}\left(\kappa^{+}, 1\right)$.

We denote the final model $V^{P_{\kappa} * \operatorname{Add}\left(\kappa, \lambda^{+}\right) * Q * R}$ as W.

Definition. Let A and B be two partial orderings. A function $\pi: B \rightarrow A$ is called a projection if the following hold:

- π is order-preserving and $\pi(B)$ is dense in A.
- If $\pi(b)=a$ and $a^{\prime}<a$, then there is $b^{\prime} \leq b$ such that $\pi\left(b^{\prime}\right) \leq a^{\prime}$.

FACT. If $\pi: B \rightarrow A$ is a projection, then the forcing B is forcingequivalent to $A * B / A$ for some quotient B / A (see [1] for details).

Since both Q and $\operatorname{Add}\left(\kappa,\left[\left(\lambda_{0}^{+}\right)^{M_{0}}, \lambda\right)\right)_{\text {even }}$ exist in the model $V[G]\left[g_{0}\right]$, we can also consider the forcing $\operatorname{Add}\left(\kappa,\left[\left(\lambda_{0}^{+}\right)^{M_{0}}, \lambda\right)\right)_{\text {|even }} \times Q$. In order not to confuse it with $\operatorname{Add}\left(\kappa,\left[\left(\lambda_{0}^{+}\right)^{M_{0}}, \lambda\right)\right)_{\text {even }} * Q$, which has a different ordering, we will write $\operatorname{Add}\left(\kappa,\left[\left(\lambda_{0}^{+}\right)^{M_{0}}, \lambda\right)\right)_{\mid \text {even }} \times Q^{\prime}$. For the same reason, the conditions (p, q) in the product will be denoted as $(p,(0, q))$.

It can be shown that Q is κ^{+}-distributive, and Q^{\prime} is obviously κ^{+}-closed in $V[G]\left[g_{0}\right]$. See [1] for a proof of the following lemma.

Lemma 1. The map π given by $\pi(p,(0, q))=(p, q)$ is a projection from

$$
\operatorname{Add}\left(\kappa,\left[\left(\lambda_{0}^{+}\right)^{M_{0}}, \lambda\right)\right)_{\mid \text {even }} \times Q^{\prime} \quad \text { onto } \quad \operatorname{Add}\left(\kappa,\left[\left(\lambda_{0}^{+}\right)^{M_{0}}, \lambda\right)\right)_{\mid \text {even }} * Q
$$

This projection can be naturally extended to a projection from

$$
\operatorname{Add}\left(\kappa,\left[\left(\lambda_{0}^{+}\right)^{M_{0}}, \lambda^{+}\right)\right) \times Q^{\prime} \times R \quad \text { onto } \quad \operatorname{Add}\left(\kappa,\left[\left(\lambda_{0}^{+}\right)^{M_{0}}, \lambda^{+}\right)\right) * Q * R
$$

Lemma 2. R is κ^{+}-closed and λ-Knaster in $V[G]\left[g_{0}\right]$.
Proof. The closure follows easily because R is κ^{+}-closed in $M_{0}[G]\left[g_{0}\right]\left[H_{0}\right]$ and $M_{0}[G]\left[g_{0}\right]\left[H_{0}\right]$ is closed under κ-sequences in $V[G]\left[g_{0}\right]$. Let $\left\langle p_{\alpha}: \alpha<\lambda\right\rangle$ be a sequence of conditions in R, and let p_{α} be of the form $j_{0}\left(f_{\alpha}\right)(\kappa)$ for some function $f_{\alpha}: \kappa \rightarrow \operatorname{Add}\left(\kappa, \lambda^{+}\right), f_{\alpha} \in V[G]$. A Δ-system argument shows that λ many of the functions f_{α} are pointwise compatible. It follows that λ many of the conditions p_{α} are compatible.

Lemma 3. The forcing $Q * R$ is κ^{+}-distributive in $V^{P_{\kappa} * \operatorname{Add}\left(\kappa, \lambda^{+}\right)}$.
Proof. The forcings Q^{\prime}, R are closed in the model $V^{P_{\kappa} * \operatorname{Add}\left(\kappa,\left(\lambda_{0}^{+}\right)^{M_{0}}\right)}$ in which they are defined, therefore their product $Q^{\prime} \times R$ is closed there as well. By Easton's lemma, after forcing with the κ^{+}-c.c. forcing $\operatorname{Add}\left(\kappa,\left[\left(\lambda_{0}^{+}\right)^{M_{0}}, \lambda^{+}\right)\right)$, the product $Q^{\prime} \times R$ will remain κ^{+}-distributive. Since κ^{+}-distributivity is equivalent to not adding new κ-sequences of ordinals, it follows from the above facts about projections that $Q * R$ is distributive in $V^{P_{\kappa} * \operatorname{Add}\left(\kappa, \lambda^{+}\right)}$as well.

LEMMA 4. In W, $\kappa^{+}=\left(\kappa^{+}\right)^{V}, \kappa^{++}=\lambda$, and $\kappa^{+++}=\left(\lambda^{+}\right)^{V}$. In particular, $2^{\kappa}=\kappa^{+++}$.

Proof. $\kappa^{+}=\left(\kappa^{+}\right)^{V}$: This follows from the facts that $P_{\kappa} * \operatorname{Add}\left(\kappa, \lambda^{+}\right)$is κ^{+}-c.c in V, and $Q * R$ is κ^{+}-distributive in $V^{P_{\kappa} * \operatorname{Add}\left(\kappa, \lambda^{+}\right)}$.
$\kappa^{++}=\lambda, \kappa^{+++}=\left(\lambda^{+}\right)^{V}$: The Mitchell forcing $M(\kappa, \lambda)$ collapses precisely the cardinals between κ^{+}and λ (see [1, Lemma 2.4] for a proof). On the other hand, in the model $V^{P_{\kappa} * \operatorname{Add}\left(\kappa,\left(\lambda_{0}^{+}\right)^{M_{0}}\right)}$, in which all cardinals are preserved, R has the λ-Knaster property and $M(\kappa, \lambda) * \operatorname{Add}\left(\kappa, \lambda^{+}\right)$satisfies the λ-c.c. It follows that their product also satisfies the λ-c.c., which means that all cardinals above λ are preserved.

Remark. In the general case where κ is θ-hypermeasurable we can first force to add a function $f: \kappa \rightarrow \kappa$ with $j(f)(\kappa)=\theta$. Then θ_{0}, M_{0} 's version of θ, is less than κ^{++}, because $\theta_{0}=j_{0}(f)(\kappa)<j_{0}(\kappa)<\kappa^{++}$. It follows that the forcing R still has the λ-Knaster property in $V^{P_{\kappa} * \operatorname{Add}\left(\kappa, \theta_{0}\right)}$.

To complete our proof we need to show that, in the extension, κ is still measurable and $\lambda=\kappa^{++}$still has the tree property.

Lemma 5. κ remains measurable in W.
Proof. In order to prove that κ remains measurable in W we intend to extend the elementary embedding $j: V \rightarrow M$ to an embedding of W. We have already picked generics G, g_{0} for the forcings $P_{\kappa}, \operatorname{Add}\left(\kappa,\left(\lambda_{0}^{+}\right)^{M_{0}}\right)$, respectively. Let g be an $\operatorname{Add}\left(\kappa,\left[\left(\lambda_{0}^{+}\right)^{M_{0}}, \lambda^{+}\right)\right)$-generic filter over $V[G]\left[g_{0}\right]$. We first use a 'surgery' argument to lift j to an embedding of $V[G]\left[g_{0}\right][g]$. For completeness we give the full proof.

The embedding j can be factored as $k \circ j_{0}$, where $k: M_{0} \rightarrow M$ is defined by $k\left([F]_{U}\right):=j(F)(\kappa)$. The embedding k is also elementary and its critical point is $\left(\kappa^{++}\right)^{M_{0}}$. By elementarity and GCH, $\left(\kappa^{++}\right)^{M_{0}}<j_{0}(\kappa)<\kappa^{++}$. Note also that $k\left(\lambda_{0}\right)=\lambda$.

On page 57 we have lifted in $V[G]\left[g_{0}\right]$ the embedding $j_{0}: V \rightarrow M_{0}$ to an embedding $j_{0}: V[G] \rightarrow M_{0}[G]\left[g_{0}\right]\left[H_{0}\right]$.

Next we lift the embedding $k: M_{0} \rightarrow M$ to $M_{0}[G]\left[g_{0}\right]\left[H_{0}\right]$. It lifts trivially to $k: M_{0}[G] \rightarrow M[G]$. Note that $k\left(\operatorname{Add}\left(\kappa,\left(\lambda_{0}^{+}\right)^{M_{0}}\right)\right)=\operatorname{Add}\left(\kappa, \lambda^{+}\right)$, and that k is almost the identity on the conditions in g_{0}, namely, it only shifts the i th component to the $k(i)$ th component. Therefore, we can rearrange the generic filter $g_{0} \times g$ into some $\left(g_{0} \times g\right)^{\prime}$ such that the i th component of $g_{0} \times g$ is the same as the $k(i)$ th component of $\left(g_{0} \times g\right)^{\prime}$. Then $k\left[g_{0}\right] \subseteq\left(g_{0} \times g\right)^{\prime}$ and the embedding k lifts in $V[G]\left[g_{0}\right][g]$ to $k: M_{0}[G]\left[g_{0}\right] \rightarrow M[G]\left[\left(g_{0} \times g\right)^{\prime}\right]$ (note that k restricted to λ_{0}^{+}belongs to $M[G]$). And finally, we 'transfer' H_{0} along k to build a filter H generic for $k\left(j_{0}\left(P_{\kappa}\right)_{\kappa+1, j_{0}(\kappa)}\right)=j\left(P_{\kappa}\right)_{\kappa+1, j(\kappa)}$. Namely, let $H=\left\{p \in j\left(P_{\kappa}\right)_{\kappa+1, j(\kappa)} \mid k\left(p_{0}\right) \leq p\right.$ for some $\left.p_{0} \in H_{0}\right\}$; then H is generic for $j\left(P_{\kappa}\right)_{\kappa+1, j(\kappa)}$. To see this, note that each open dense set $D \subseteq$ $j\left(P_{\kappa}\right)_{\kappa+1, j(\kappa)}$ in $M[G]\left[\left(g_{0} * g\right)^{\prime}\right]$ is of the form $k(f)(a)$ for some $f \in M_{0}[G]\left[g_{0}\right]$ with domain of size $\left(\lambda_{0}^{+}\right)^{M_{0}}$, because every element of M is of the form $j\left(f^{\prime}\right)(\alpha)=\left(k\left(j_{0}\left(f^{\prime}\right)\right)\right)_{\Gamma \lambda^{+}}(\alpha)=k\left(j_{0}\left(f^{\prime}\right)_{\upharpoonright\left(\lambda_{0}^{+}\right)^{M_{0}}}\right)(\alpha)$ for some $f^{\prime} \in V, \alpha<\lambda^{+}$. We may assume that $f(x)$ is an open dense subset of $j_{0}\left(P_{\kappa}\right)_{\kappa+1, j_{0}(\kappa)}$ for each
$x \in \operatorname{Dom}(f)$, and since $j_{0}\left(P_{\kappa}\right)_{\kappa+1, j_{0}(\kappa)}$ is $\left(\lambda_{0}^{++}\right)^{M_{0}}$-closed in $M_{0}[G]\left[g_{0}\right]$, we may choose $r_{0} \in H_{0}$ belonging to each $f(x), x \in \operatorname{Dom}(f)$. It follows that $k\left(r_{0}\right) \in D \cap H$.

Therefore, we can lift k to $k: M_{0}[G]\left[g_{0}\right]\left[H_{0}\right] \rightarrow M[G]\left[\left(g_{0} \times g\right)^{\prime}\right][H]$ in $V[G]\left[g_{0}\right][g]$, getting the commutative diagram

We now plan to lift $j: V[G] \rightarrow M[G]\left[\left(g_{0} \times g\right)^{\prime}\right][H]$ to an embedding of $V[G]\left[g_{0}\right][g]$. Let $G_{Q} \times h$ be a filter on $Q \times R$ which is generic over $V[G]\left[g_{0}\right][g]$. We transfer h along k, just as we did with H_{0}, in order to get a generic h^{*} for $j\left(\operatorname{Add}\left(\kappa, \lambda^{+}\right)\right)$so that we could lift j to $j: V[G]\left[g_{0}\right][g] \rightarrow M_{0}[G]\left[g_{0}\right]\left[H_{0}\right]\left[h^{*}\right]$. The fact that h can be transferred to create a generic for $j\left(\operatorname{Add}\left(\kappa, \lambda^{+}\right)\right)$, and the fact that $R=j_{0}\left(\operatorname{Add}\left(\kappa, \lambda^{+}\right)\right)$is not a harmful forcing in $V[G]\left[g_{0}\right]$, i.e. has κ^{+}-closure and λ-Knaster property, are the main advantages of factoring j as $k \circ j_{0}$.

This lifting argument is called surgery, because we still have to make sure that $j\left[g_{0} \times g\right] \subseteq h^{*}$, and that is done by altering the generic h^{*} on a small part, as follows. Let $F=\bigcup g_{0} \times g: \kappa \times \lambda^{+} \rightarrow 2$ be the function corresponding to the generic $g_{0} \times g$. Then $\bigcup j\left[g_{0} \times g\right]$ is the function $F^{*}: \kappa \times j\left[\lambda^{+}\right] \rightarrow 2$ defined by $F^{*}(\gamma, j(\delta))=F(\gamma, \delta)$. We have to modify h^{*} to $h^{* *}$ so that each q^{*} in $h^{* *}$ is compatible with F^{*} so that $j\left[g_{0} \times g\right] \subseteq h^{* *}$. Finally we show that $h^{* *}$ is also a generic filter.

For any $q \in h^{*}$ let q^{*} be defined by altering q on $\operatorname{Dom}(q) \cap\left(\kappa \times j\left[\lambda^{+}\right]\right)$ to agree with F^{*}. We claim that q^{*} belongs to $M[G]\left[\left(g_{0} \times g\right)^{\prime}\right][H]$, and therefore is a condition in $j\left(\operatorname{Add}\left(\kappa, \lambda^{+}\right)\right)$. We can write q as $j(f)(\alpha)$ for some $\alpha<\lambda$ and some function $f: \kappa \rightarrow \operatorname{Add}\left(\kappa, \lambda^{+}\right), f \in V[G]$. If $(\gamma, j(\delta))$ belongs to $\operatorname{Dom}(q)$, then (γ, δ) belongs to $\operatorname{Dom}(f(\beta))$ for some $\beta<\kappa$, so $\{(\gamma, \delta) \mid(\gamma, j(\delta)) \in \operatorname{Dom}(q)\}$ is contained in $Z_{0}=\bigcup_{\beta} \operatorname{Dom}(f(\beta)) \in V[G]$. As Z_{0} has size at most κ and P_{κ} is κ-c.c., there is $Z \in V$ with $Z_{0} \subseteq Z \subseteq \kappa \times \lambda^{+}$ of size at most κ. Then Z belongs to M and $j\lceil Z$ also belongs to M. Using $q, g_{0}, g, j \backslash Z$ we can define q^{*}, and therefore q^{*} belongs to $M[G]\left[\left(g_{0} \times g\right)^{\prime}\right][H]$.

Claim. $h^{* *}:=\left\{q^{*} \mid q \in h^{*}\right\}$ is $j\left(\operatorname{Add}\left(\kappa, \lambda^{+}\right)\right)$-generic over the model $M[G]\left[\left(g_{0} \times g\right)^{\prime}\right][H]$.

Proof. Suppose that D is an open dense subset of $j\left(\operatorname{Add}\left(\kappa, \lambda^{+}\right)\right), D \in$ $M[G]\left[\left(g_{0} \times g\right)^{\prime}\right][H]$. For any $q \in j\left(\operatorname{Add}\left(\kappa, \lambda^{+}\right)\right)$define $N(q)$ to be the set of conditions r with the same domain as q which disagree with q on a set of size at most κ. Then $E=\{q \mid N(q) \subseteq D\}$ is a dense subset of $j\left(\operatorname{Add}\left(\kappa, \lambda^{+}\right)\right)$
as well, by the $j(\kappa)$-closure of $j\left(\operatorname{Add}\left(\kappa, \lambda^{+}\right)\right)$. Choose q in $E \cap h^{*}$. Then q^{*} belongs to $N(q)$, and therefore to D. It follows that $h^{* *}$ intersects D. This shows the Claim.

So far we have proven that in $V[G]\left[g_{0}\right][g][h]$ there is a definable elementary embedding $j: V[G]\left[g_{0}\right][g] \rightarrow M[G]\left[\left(g_{0} \times g\right)^{\prime}\right][H]\left[h^{* *}\right]$.

We now need to find a generic filter $G_{j(Q)} \times h_{j(R)}$ for $j(Q \times R)$ such that $j\left[G_{Q} \times h\right] \subseteq G_{j(Q)} \times h_{j(R)}$, in order to define our final lifting

$$
j: V[G]\left[g_{0}\right][g]\left[G_{Q}\right][h] \rightarrow M[G]\left[\left(g_{0} \times g\right)^{\prime}\right][H]\left[h^{* *}\right]\left[G_{j(Q)}\right]\left[h_{j(R)}\right] .
$$

This last step is, however, just another transferring argument since, by Lemma3, $Q \times R$ is κ^{+}-distributive over $V[G]\left[g_{0}\right][g]$, that is, $G_{j(Q)} \times h_{j(R)}:=$ $\left\{(q, r) \Gamma^{j}\left(q_{0}, r_{0}\right) \leq(q, r)\right.$ for some $\left.\left(q_{0}, r_{0}\right) \in G_{Q} \times h\right\}$ is an appropriate generic. This completes the proof of Lemma 5 .

Lemma 6. κ^{++}has the tree property in W.
Proof. In order to get a contradiction suppose that there is a κ^{++} Aronszajn tree in W.

Recall that W can be written as $V^{P_{\kappa}} * \operatorname{Add}\left(\kappa,\left(\lambda_{0}^{+}\right)^{M_{0}}\right) * M(\kappa, \lambda) * \operatorname{Add}\left(\kappa, \lambda^{+}\right) * R$. Let V_{1} denote the model $V^{P_{\kappa} * \operatorname{Add}\left(\kappa,\left(\lambda_{0}^{+}\right)^{M_{0}}\right) * M(\kappa, \lambda)}$ and let $R^{\prime}=R_{\mid \lambda}$ be the forcing $\operatorname{Add}\left(j_{0}(\kappa), \lambda\right)$ of $M_{0}[G]\left[g_{0}\right]\left[H_{0}\right]$. We first notice that there must be a $\kappa^{++}{ }_{-}$ Aronszajn tree already in $V_{1}^{\operatorname{Add}(\kappa, \lambda) \times R^{\prime}}$. Indeed, note that $\operatorname{Add}\left(\kappa, \lambda^{+}\right) \times R$ has the λ-c.c. in V_{1} (see the proof of Lemma 4 and let π be an $\operatorname{Add}\left(\kappa, \lambda^{+}\right) \times R$ name in V_{1} for a subset of $\lambda=\kappa^{++}$which codes a κ^{++}-Aronszajn tree. Then for every $\alpha<\kappa^{++}$there is a maximal antichain A_{α} of size less than λ such that each $q \in A_{\alpha}$ decides the statement $\check{\alpha} \in \pi$. Let $B=\bigcup\{\operatorname{Dom}(q) \mid$ $q \in A_{\alpha}$ for some $\left.\alpha\right\}$. Then $|B|=\lambda$, and $\left(\operatorname{Add}\left(\kappa, \lambda^{+}\right) \times R\right)_{\mid B}$ is isomorphic to $\operatorname{Add}(\kappa, \lambda) \times R^{\prime}$. Thus, we can replace $\operatorname{Add}\left(\kappa, \lambda^{+}\right) \times R$ with its isomorphic copy such that π is an $\operatorname{Add}(\kappa, \lambda) \times R^{\prime}$-name, which means that there is a κ^{++}-Aronszajn tree in $V_{1}^{\operatorname{Add}(\kappa, \lambda) \times R^{\prime}}$.

Just as before, rewrite $P_{\kappa} * \operatorname{Add}\left(\kappa,\left(\lambda_{0}^{+}\right)^{M_{0}}\right) * M(\kappa, \lambda) * \operatorname{Add}(\kappa, \lambda) \times R^{\prime}$ as $P_{\kappa} * \operatorname{Add}\left(\kappa,\left(\lambda_{0}^{+}\right)^{M_{0}}\right) * \operatorname{Add}(\kappa, \lambda) * Q \times R^{\prime}$, where Q is defined only using the even components of $\operatorname{Add}(\kappa, \lambda)$. Hence, in terms of our chosen generics, the above means that there is a κ^{++}-Aronszajn tree T in $V[G]\left[g_{0}\right]\left[g_{\mid \lambda}\right]\left[G_{Q}\right]\left[h_{\mid \lambda}\right]$. Let \dot{T} be an $\operatorname{Add}(\kappa, \lambda) * Q \times R^{\prime}$-name in $V[G]\left[g_{0}\right]$ for T.

Recall that λ is a weakly compact cardinal in $V[G]\left[g_{0}\right]$. Therefore, there exist in $V[G]\left[g_{0}\right]$ transitive ZF^{-}-models N_{0}, N_{1} of size λ and an elementary embedding $k: N_{0} \rightarrow N_{1}$ with critical point λ, such that $N_{0} \supseteq H(\lambda)^{V[G]\left[g_{0}\right]}$ and $G, g_{0}, \dot{T} \in N_{0}$.

Note that $g_{\mid \lambda} * G_{Q} * h_{\mid \lambda}$ is also $\operatorname{Add}(\kappa, \lambda) * Q \times R^{\prime}$-generic over N_{0}. Since λ is the critical point of k, we can factor $k\left(\operatorname{Add}(\kappa, \lambda) * Q \times R^{\prime}\right)$ as

$$
\operatorname{Add}(\kappa, \lambda) * \operatorname{Add}(\kappa,[\lambda, k(\lambda))) * Q * Q^{*} * R^{\prime} * R^{*}
$$

where Q^{*} and R^{*} denote the tail forcings $k(Q) / Q$ and $k\left(R^{\prime}\right) / R^{\prime}$, respectively, with components indexed from the interval $[\lambda, k(\lambda))$. Since k is the identity on $g_{\mid \lambda} * G_{Q} * h_{\mid \lambda}$ we can extend the embedding $k: N_{0} \rightarrow N_{1}$ in some large universe U to an embedding

$$
k: N_{0}\left[g_{\mid \lambda}\right]\left[G_{Q}\right]\left[h_{\mid \lambda}\right] \rightarrow N_{1}\left[g_{\mid \lambda}\right]\left[g^{*}\right]\left[G_{Q}\right]\left[G_{Q^{*}}\right]\left[h_{\mid \lambda}\right]\left[h^{*}\right]
$$

where $g^{*}, G_{Q^{*}}, h^{*}$ are arbitrary generics for $\operatorname{Add}(\kappa,[\lambda, k(\lambda))), Q^{*}, R^{*}$, respectively, picked in U. (We can assume that G_{Q} is generic over $N_{1}\left[g_{\mid \lambda}\right]\left[g^{*}\right]$ and that $h_{\mid \lambda}$ is generic over $N_{1}\left[g_{\mid \lambda}\right]\left[g^{*}\right]\left[G_{Q}\right]\left[G_{Q^{*}}\right]$, for one can start the argument by first picking an $\operatorname{Add}(\kappa, \lambda) * \operatorname{Add}(\kappa,[\lambda, k(\lambda))) * Q * Q^{*} * R^{\prime} * R^{*}$-generic filter $g_{\mid \lambda} * g^{*} * G_{Q} * G_{Q^{*}} * h_{\mid \lambda} * h^{*}$ over V in some large universe U, and then restricting it to $\operatorname{Add}(\kappa, \lambda) * Q \times R^{\prime}$ to get $g_{\mid \lambda} * G_{Q} * h_{\mid \lambda}$.)

Since $T \in N_{0}\left[g_{\mid \lambda}\right]\left[G_{Q}\right]\left[h_{\lambda}\right]$ is a λ-Aronszajn tree, by elementarity $k(T)$ is a $k(\lambda)$-Aronszajn tree in $N_{1}\left[g_{\mid \lambda}\right]\left[g^{*}\right]\left[G_{Q}\right]\left[G_{Q^{*}}\right]\left[h_{\mid \lambda}\right]\left[h^{*}\right]$ which coincides with T up to level λ. Hence T has a cofinal branch b in $N_{1}\left[g_{\mid \lambda}\right]\left[g^{*}\right]\left[G_{Q}\right]\left[G_{\left.Q^{*}\right]}\right]\left[h_{\mid \lambda}\right]\left[h^{*}\right]$. We will show that b must actually belong to $N_{1}\left[g_{\mid \lambda}\right]\left[G_{Q}\right]\left[h_{\mid \lambda}\right]$ (i.e. the tail generics $g^{*}, G_{Q^{*}}, h^{*}$ cannot add a new branch), and thereby reach the desired contradiction to the assumption that T has no cofinal branches in $V[G]\left[g_{0}\right][g]\left[G_{Q}\right][h]$!

Similarly to the discussion following Lemma 1, in N_{1} there is a projection from the product

$$
\operatorname{Add}(\kappa, \lambda) \times \operatorname{Add}(\kappa,[\lambda, k(\lambda))) \times Q^{\prime} \times Q^{* \prime} \times R^{\prime} \times R^{*}
$$

onto

$$
\operatorname{Add}(\kappa, \lambda) * \operatorname{Add}(\kappa,[\lambda, k(\lambda))) * Q * Q^{*} * R^{\prime} * R^{*}
$$

where Q^{\prime} and $Q^{* \prime}$ are κ^{+}-closed forcings defined in N_{1}. Let $G_{Q^{\prime}} \times G_{Q^{* \prime}}$ be $Q^{\prime} \times Q^{* \prime}$-generic over $N_{1}\left[g_{\lambda \lambda}\right]\left[g^{*}\right]$. (Again we can assume that $h_{\mid \lambda}$ is generic over the bigger model $N_{1}\left[g_{\mid \lambda}\right]\left[g^{*}\right]\left[G_{Q^{\prime}}\right]\left[G_{Q^{*}}\right]$.)

If we can show that the bigger generic $g^{*} * G_{Q^{* \prime}} * h^{*}$ does not add the branch b through T over the bigger model $N_{1}\left[g_{\mid \lambda}\right]\left[G_{Q^{\prime}}\right]\left[h_{\mid \lambda}\right]$, then in particular the smaller generic $g^{*} * G_{Q^{*}} * h^{*}$ does not add b over the smaller model $N_{1}\left[g_{\mid \lambda}\right]\left[G_{Q}\right]\left[h_{\mid \lambda}\right]$, and we are done.

Since all the forcings are defined in N_{1}, we can 'reorder the generics' in $N_{1}\left[g_{\mid \lambda}\right]\left[g^{*}\right]\left[G_{Q^{\prime}}\right]\left[G_{Q^{*}}\right]\left[h_{\mid \lambda}\right]\left[h^{*}\right]$ as we want. Write

$$
N_{1}\left[g_{\mid \lambda}\right]\left[g^{*}\right]\left[G_{Q^{\prime}}\right]\left[G_{Q^{*}}\right]\left[h_{\mid \lambda}\right]\left[h^{*}\right] \quad \text { as } \quad N_{1}\left[G_{Q^{\prime}}\right]\left[h_{\mid \lambda}\right]\left[g_{\mid \lambda}\right]\left[g^{*}\right]\left[G_{Q^{*}}\right]\left[h^{*}\right] .
$$

Note that in $N_{1}\left[G_{Q^{\prime}}\right]\left[h_{\mid \lambda}\right], Q^{* \prime} \times R^{*}$ is a κ^{+}-closed forcing and $\operatorname{Add}(\kappa, k(\lambda))$ is κ^{+}-c.c. Therefore, it can be shown that $Q^{* 1} \times R^{*}$ does not add any branches to T over the model $N_{1}\left[G_{Q^{\prime}}\right]\left[h_{\mid \lambda}\right]\left[g_{\mid \lambda}\right]\left[g^{*}\right]$ (for a detailed proof of this lemma see [13]).

Finally, $\operatorname{Add}(\kappa,[\lambda, k(\lambda)))$ has the κ^{++}-Knaster property, which means that it could not have added the branch b over the model $N_{1}\left[G_{Q^{\prime}}\right]\left[h_{\mid \lambda}\right]\left[g_{\mid \lambda}\right]$ either.

This proves Lemma 6 and hence the proof of the Theorem is complete.

3. Open questions

1. Is it possible to singularize the cardinal κ of the above model preserving the tree property of $\kappa^{++?}$
2. Does the consistency of the existence of a measurable cardinal κ, such that $\operatorname{TP}\left(\kappa^{++}\right)$and $2^{\kappa}=\kappa^{+++}$, follow from the consistency of the existence of a cardinal κ of Mitchell order λ^{+}where λ is weakly compact (yielding an equiconsistency result)?
3. Is it consistent to have $\operatorname{TP}\left(\aleph_{\omega+2}\right)$, \aleph_{ω} strong limit, and $2^{\aleph_{\omega}}$ large?
4. Is it consistent to have $\operatorname{TP}\left(\lambda^{+}\right), \lambda$ singular strong limit, and 2^{λ} large?

Acknowledgements. The first author wishes to thank the Austrian Science Fund (FWF) for its generous support via project P19898-N18.

References

[1] U. Abraham, Aronszajn trees on \aleph_{2} and \aleph_{3}, Ann. Pure Appl. Logic 24 (1983), 213-230.
[2] J. Cummings, Iterated forcing and elementary embeddings, in: Handbook of Set Theory, Springer, Dordrecht, 2010, 775-883.
[3] J. Cummings and M. Foreman, The tree property, Adv. Math. 133 (1998), 1-32.
[4] N. Dobrinen and S.-D. Friedman, The consistency strength of the tree property at the double successor of a measurable, Fund. Math. 208 (2010), 123-153.
[5] M. Foreman, M. Magidor and R.-D. Schindler, The consistency strength of successive cardinals with the tree property, J. Symbolic Logic 66 (2001), 1837-1847.
[6] S.-D. Friedman and A. Halilović, The tree property at $\aleph_{\omega+2}$, J. Symbolic Logic 76 (2011), 477-490.
[7] M. Gitik, The negation of the singular cardinal hypothesis from $o(\kappa)=\kappa^{++}$, Ann. Pure Appl. Logic 43 (1989), 209-234.
[8] T. Jech, Set Theory, The Third Millennium Edition, Springer, Berlin, 2003.
[9] M. Magidor and S. Shelah, The tree property at successors of singular cardinals, Arch. Math. Logic 35 (1996), 385-404.
[10] I. Neeman, The tree property up to $\aleph_{\omega+1}$, to appear.
[11] D. Sinapova, The tree property and the failure of the Singular Cardinal Hypothesis at $\aleph_{\omega^{2}}$, J. Symbolic Logic 77 (2012), 934-946.
[12] D. Sinapova, The tree property at $\aleph_{\omega+1}$, J. Symbolic Logic 77 (2012), 279-290.
[13] S. Unger, Fragility and indestructibility of the tree property, Arch. Math. Logic 51 (2012), 635-645.

Sy-David Friedman
Kurt Gödel Research Center
University of Vienna
1090 Wien, Austria
E-mail: sdf@logic.univie.ac.at
Ajdin Halilović
Faculty of Engineering Sciences
Lumina-The University of South East Europe
021187 Bucureşti, Romania
E-mail: ajdin.halilovic@lumina.org

[^1]
[^0]: 2010 Mathematics Subject Classification: 03E35, 03E55.
 Key words and phrases: the tree property, large cardinals, forcing.

[^1]: Received 16 January 2013;
 in revised form 1 August 2013

