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Abstract. We generalise Jensen’s result on the incompatibility of subcompact-

ness with �. We show that α+-subcompactness of some cardinal less than or equal

to α precludes �α, but also that square may be forced to hold everywhere where

this obstruction is not present. The forcing also preserves other strong large cardi-

nals. Similar results are also given for stationary reflection, with a corresponding

strengthening of the large cardinal assumption involved. Finally, we refine the anal-

ysis by considering Schimmerling’s hierarchy of weak squares, showing which cases

are precluded by α+-subcompactness, and again we demonstrate the optimality of

our results by forcing the strongest possible squares under these restrictions to hold.

§1. Introduction. A well known result of Solovay [19] is that �α

must fail for all α greater than or equal to a supercompact cardinal.
Jensen refined this result, showing that if κ is subcompact then �κ

fails (see for example [12, Proposition 8]). Jensen’s result can be seen
to be more or less optimal for �κ with κ a large cardinal, as Cum-
mings and Schimmerling [7, Section 6] have shown that one can force
�κ to hold for κ 1-extendible, a property just short of subcompact-
ness. However, as is shown below, forcing �α at all cardinals which
are not subcompact necessarily entails the destruction of stronger
large cardinal properties. Moreover, �κ can hold for κ a Vopěnka
cardinal, a consistency-wise stronger assumption which however does
not directly imply subcompactness — see [2].

In this article we obtain an optimal result regarding the consistency
of square with large cardinals. Specifically, we show that �α must
fail whenever there is a κ ≤ α that is α+-subcompact (appropriately
defined). Also, under the GCH, �α may be forced to hold at all
other cardinals, preserving all β-subcompact cardinals of the ground
model for all β, along with other large cardinals, of which we give
ω-superstrong cardinals as an example.

Stationary reflection is a combinatorial principle that has more re-
cently come to prominence, and which may be viewed as a strong
negation of �. With this strengthening comes a strengthening of
the large cardinal needed to imply it: we show that if some κ is α+-
stationary subcompact (see Definition 11), then stationary reflection
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holds at α+. Moreover this is again in some sense optimal: un-
der GCH, we can force to have stationary reflection fail everywhere
where stationary subcompactness does not require it to hold (and
indeed, having �α everywhere possible, as above), whilst preserv-
ing the pattern of restrictions due to subcompactness and stationary
subcompactness, as well as ω-superstrong cardinals.

In a slightly different vein, there is a hierarchy of weak forms of
�α introduced by Schimmerling [17]. We show that known results
ruling out such weak squares from supercompact cardinals have sub-
compactness analogues. Moreover, under the GCH these results are
again optimal, as we are able to force to obtain a universe in which
for every cardinal α the strongest form of �α not so precluded holds.

§2. Preliminaries. For any regular carinal α, we denote by Hα

the set of all sets of hereditary cardinality strictly less than α. We
denote by Lim the class of limit ordinals, and by Cof(α) the class
of ordinals of cofinality α. For any set of ordinals C, we denote by
ot(C) the order type of C and by lim(C) the set of limit points of C.

Definition 1. For any cardinal α, a �α-sequence is a sequence
〈Cβ | β ∈ α+ ∩ Lim〉 such that for every β ∈ α+ ∩ Lim,

• Cβ is a closed unbounded subset of β,
• ot(Cβ) ≤ α,
• for any γ ∈ lim(Cβ), Cγ = Cβ ∩ γ.

We say �α holds if there exists a �α-sequence.

The principle �α should be viewed as a property of α+ rather than
α: indeed, we shall use below the fact that �α can be forced over a
model of GCH without changing Hα+ . The point is also emphasized
by the relationship of � to stationary reflection.

Definition 2. For regular κ > λ, SR(κ, λ) is the statement that
for every stationary subset S of κ ∩ Cof(λ), there is a γ < κ such
that S ∩ γ is stationary in γ.

Note that �α refutes SR(α+, λ) for every λ ≤ α: the function
ξ 7→ ot(Cξ) from (α+ r α + 1) ∩ Cof(λ) to α + 1 is regressive, and
so is constant on a stationary set S. But now if S ∩ γ is stationary
in γ, then a pair of distinct elements of S ∩ lim(Cγ) can be found,
violating coherence.

We now define the large cardinals that we shall be considering.

Definition 3. For any cardinal α, we say that a cardinal κ < α is
α-subcompact if for every A ⊆ Hα, there exist κ̄ < ᾱ < κ, Ā ⊆ Hᾱ,
and an elementary embedding

π : (Hᾱ,∈, Ā)→ (Hα,∈, A)

with critical point κ̄ such that π(κ̄) = κ. We say that such an em-
bedding π witnesses the α-subcompactness of κ for A. If κ < α and
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κ is β-subcompact for every β strictly between κ and α, we say that
κ is < α-subcompact.

Note that κ+-subcompactness of κ is Jensen’s original notion of
subcompactness. Also note that since a finite sequences of subsets
of Hα may be encoded into a single subset of Hα (for example, with
pairs (i, x) for x in the ith subset), we may use structures with any
finite number of sets Ai rather than just one. Typical arguments
show that if κ is α-subcompact then κ is inaccessible, and indeed
we shall show below that it is a very much stronger large cardinal
assumption, at the level of supercompactness.

If κ is α-subcompact and κ < β < α, then κ is also β-subcompact.
Further, if the GCH holds then Hα+ contains all the necessary sets
to witness that κ is α-subcompact. Thus, if π : (Hᾱ+ ,∈, Ā) →
(Hα+ ,∈, A) with cp(π) = κ̄ witnesses α+-subcompactness of κ for
some (arbitrary) A ⊆ Hα+ , then κ̄ is ᾱ-subcompact by elementarity.
Further, if α is a limit cardinal and π : (Hᾱ,∈, Ā)→ (Hα,∈, A) with
critical point κ̄ witnessess α-subcompactness of κ with respect to A,
then κ̄ is < ᾱ-subcompact.

The requirement in Definition 3 that ᾱ be less than κ is a natural
one similar to those that are made for a range of other large cardinal
axioms: for example, the requirement that j(κ) > λ for j an em-
bedding witnessing the λ-supercompactness of some κ. As in those
cases, this restriction is mostly just a convenience, only ruling out
circumstances which are consistency-wise much stronger, as we shall
now demonstrate. To this end, let us temporarily define a cardinal
κ to be loosely α-subcompact if it satisfies the requirements to be
α-subcompact except that the cardinals ᾱ need not be less than κ.

First note that we may usually assume that ᾱ is strictly less than
α.

Lemma 4. Suppose κ is loosely α-subcompact, cf(α) > ω, and
A ⊆ Hα. Then there is an elementary embedding π : (Hᾱ,∈, Ā) →
(Hα,∈, A) witnessing the α-subcompactness of κ for A such that ᾱ
is strictly less than α.

Proof. The proof is just as in Kunen’s proof [15] that there can be
no nontrivial elementary embedding from Vλ+2 to Vλ+2. Specifically,
let f : [α]ω → α be ω-Jónsson for α, that is, for any subset X of α of
cardinality α, f“[X]ω = α; such functions were shown to exist for all
α by Erdős and Hajnal [10]. Note that f is a subset of Hα, so there
will be an elementary embedding π : (Hᾱ,∈, Ā, f̄)→ (Hα,∈, A, f)
witnessing the α-subcompactness of κ for A and f . We claim that
this π, when considered as a function from (Hᾱ,∈, Ā) to (Hα,∈, A),
satisfies the requirements of the lemma, namely, that ᾱ < α. For
suppose ᾱ were to equal α. Then since |j“ᾱ| = ᾱ we would have
f“[j“ᾱ]ω = α, and so there would be some s ∈ [j“ᾱ]ω such that
f(s) = κ̄. But now since ω < κ̄, s is of the form j(t) for some
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t ∈ [ᾱ]ω. By elementarity, j(f̄(t)) = f(j(t)), so κ̄ is in the range of
j, a contradiction. a

In particular, if κ is the critical point of a rank-plus-one-to-rank-
plus-one embedding j : Vλ+1 → Vλ+1 then it is not the case that for
all A ⊆ Hλ+ , j witnesses the loose λ+-subcompactness of κ for A.

Proposition 5. If κ is loosely α-subcompact, then κ is α-subcom-
pact or κ is the critical point of a rank-to-rank embedding j : Vα →
Vα.

Proof. From the fact that loose α-subcompactness implies loose
β-subcompactness for β < α, and using Lemma 4, if κ is loosely α-
subcompact and there is someA ⊆ Hα such that every π : (Hᾱ,∈, Ā)→
(Hα,∈, A) witnessing loose α-subcompactness of κ for A has ᾱ = α,
then α = supn∈ω(πn(κ)) for such a π. So α is the limit of inaccessible
cardinals, whence Hα = Vα. Moreover, as the image of the critical
point κ̄ of π : Vα → Vα, κ is the critical point of

π[π] =
⋃
γ<α

π(π �Vγ)

in the left self-distributive system of elementary embeddings from Vα
to Vα (see for example [8] for more on such embeddings).

So suppose that for each A ⊆ Hα there is a πA : (HᾱA ,∈, Ā) →
(Hα,∈, A) with critical point κ̄A witnessing the loose α-subcompact-
ness of κ for A such that ᾱA < α. For each A take πA with κ̄A
minimal, and with ᾱA minimal amongst those for our fixed κ̄A. Then
we claim that ᾱA < κ. For otherwise, we may use the fact that κ is
ᾱA-subcompact. More specifically, the restriction of

πA,HᾱA ,Ā,{κ̄} : (Hᾱ′ ,∈, Ā′, H¯̄αA ,
¯̄A, {¯̄κ})→ (Hα,∈, A,HᾱA , Ā, {κ̄})

to H¯̄αA gives an elementary embedding

ρ : (H¯̄αA ,∈, ¯̄A )→ (HᾱA ,∈, Ā),

with critical point at least κ̄ by the minimality of κ̄. Since ρ(¯̄κ) = κ̄,
¯̄κ = κ̄ and cp(ρ) is in fact strictly greater than κ̄. But also ¯̄α < ᾱ, so

πA ◦ ρ : (H¯̄αA ,∈, ¯̄A )→ (Hα,∈, A) is an elementary embedding with
critical point κ̄ witnessing the α-subcompactness of κ for A with
¯̄α < ᾱ, contradicting the choice of ᾱ. a

Now to the matter of the consistency strength of subcompactness
itself. It turns out that the levels of subcompactness interleave with
the levels of supercompactness in strength. Indeed one gets a result
much like Magidor’s characterisation of supercompactness [16], just
with Hα in place of Vα and the predicate A added.

Proposition 6. 1. If κ is 2<α-supercompact, then κ is α-sub-
compact.

2. If κ is (2(λ<κ))+-subcompact, then κ is λ-supercompact.
In particular, κ is supercompact if and only if κ is α-subcompact

for every α > κ.
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We spell out the proof, appropriately modified from [16], for the
sake of completeness.

Proof. 1. Suppose κ is 2<α-supercompact, and let this be wit-
nessed by j : V → M with critical point κ, j(κ) > 2<α, and
2<αM ⊂ M . For every A ⊆ Hα, the restriction of j to Hα is ele-
mentary from (Hα,∈, A) to (HM

j(α),∈, j(A)), and since |Hα| = 2<α,
j �Hα is a member of M . Thus, with α, A and j �Hα as witnesses
for the existential quantifications, we have

M � ∃ᾱ < j(κ)∃Ā ⊆ Hᾱ ∃π : (Hᾱ,∈, Ā)→ (Hj(α),∈, j(A))

(π is an elementary embedding ∧ π(cp(π)) = j(κ)),

whence

V � ∃ᾱ < κ∃Ā ⊆ Hᾱ ∃π : (Hᾱ,∈, Ā)→ (Hα,∈, A)

(π is an elementary embedding ∧ π(cp(π)) = κ).

2. Suppose κ is (2λ
<κ

)+-subcompact, and let π : (Hᾱ,∈, {λ̄}) →
(H(2λ<κ )+ ,∈, {λ}) witness this for the predicateA = {λ}, with cp(π) =

κ̄. By elementarity we have that ᾱ = (2λ̄
<κ̄

)+, and since ᾱ < κ, we
have in particular that λ̄ < κ.

We claim that κ̄ is λ̄-supercompact. To see this, define an ultrafil-
ter U on Pκ̄λ̄ by

X ∈ U ↔ X ⊆ Pκ̄λ̄ ∧ π(X) 3 {π(ζ) | ζ ∈ λ̄}.

It is standard to check that U so defined is a κ̄-complete normal
ultrafilter on Pκ̄λ̄, noting that Pκ̄λ̄ belongs to the domain of π and
π(κ̄) = κ is greater than λ̄. Now U ∈ H(2λ̄

<κ̄
)+ , and

H(2λ̄<κ̄ )+ � U is a normal ultrafilter on Pκ̄λ̄.

Therefore by elementarity

H(2λ<κ )+ � π(U) is a normal ultrafilter on Pκλ,

and H(2λ
<κ

)+ is clearly correct for this statement. Hence, κ is λ-
supercompact. a

Observe that the level of subcompactness required in (2) to im-
ply any supercompactness is at least κ++. Indeed, Cummings and
Schimmerling [7, Section 6] note that a κ+-subcompact cardinal κ
need not be measurable, since a measurable κ+-subcompact cardinal
κ must have a normal measure 1 set of ι+-subcompact cardinals ι
below it.

§3. Squares. The general proof of the incompatibility of subcom-
pactness with � is similar to that for the κ+ case, due to Jensen.

Theorem 7. Suppose κ is α+-subcompact for some κ ≤ α. Then
�α fails.
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Proof. Suppose for contradiction that C = 〈Cβ | β ∈ α+ ∩ Lim〉
is a �α-sequence. We can take an α+-subcompactness embedding

π : (Hᾱ+ ,∈, C̄)→ (Hα+ ,∈, C)

with critical point some κ̄ < ᾱ+, so that π(κ̄) = κ. Let λ be the
supremum of π“(ᾱ+), and consider D = lim(Cλ) ∩ π“(ᾱ+). Since
π“(ᾱ+) is countably closed (indeed, it contains all of its limits of
cofinality less than κ̄) and unbounded in λ, D is also unbounded in
λ. Therefore, since λ has cofinality ᾱ+, D is a subset of the range of
π which has cardinality at least ᾱ+, but order type less than α, by
the definition of �α. For β0 < β1 in D we have that Cβ0 is an initial
segment of Cβ1 by coherence, and hence ot(Cβ0) < ot(Cβ1) < α. But
then {ot(Cβ) | β ∈ D} must be a subset of the range of π � ᾱ, and
yet has cardinality ᾱ+, a contradiction. a

Now to the optimality of this result.

Theorem 8. Suppose the GCH holds, and let

I = {α | ∃κ ≤ α(κ is α+-subcompact)}.

Then there is a cofinality-preserving partial order P such that for any
P-generic G the following hold.

1. �α holds in V [G] for all α /∈ I.
2. If κ < α are such that V � κ is α-subcompact, then

V [G] � κ is α-subcompact.

In particular, IV [G] = I.

Proof. The partial order P will be a reverse Easton forcing iter-
ation — see for example [5] for an introduction to such forcings. At
stage α for α a cardinal not in I, we force with the usual size α+

(thanks to the GCH), < α+-strategically closed partial order Sα due
to Jensen to obtain �α, which uses initial segments of the generic �α

sequence as conditions — see [5, Example 6.3]. At all other stages
we take the trivial forcing. Thus, the iteration preserves cofinalities
and the GCH, and �α holds in V [G] for all α /∈ IV . It therefore only
remains to show that forcing with P preserves the α-subcompactness
of any κ that is α-subcompact in V .

So suppose κ is α-subcompact in V . By the definition of I, the
forcing is trivial on the interval [κ, α). Also, the tail of the iteration
starting at stage α is < α+-strategically closed since each iterand is
— see [5, Proposition 7.8]. Hence, no new subsets of α are added
by this part of the forcing. By the GCH, V � |Hα| = α, and so the
tail of the iteration starting at stage κ adds no new subsets of Hα.
Thus, to consider arbitrary subsets of Hα in the generic extension,
it suffices to consider those of the form ρG for ρ a Pκ-name, where
Pκ denotes the iteration of length κ that is the initial part of P up
to (but not including) κ. We shall denote by Gκ the generic for Pκ
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obtained from G, and use corresponding notation for κ̄. Note in
particular that ρ can be taken to be a subset of Hα.

Applying the α-subcompactness of κ in V , let

π : (Hᾱ,∈, ρ̄)→ (Hα,∈, ρ)

witness the α-subcompactness of κ for ρ, with critical point κ̄ taken
by π to κ. We wish to lift π to an elementary embedding π′ :

(H
V [G]
ᾱ ,∈, ρ̄G) → (H

V [G]
α ,∈, ρG). As noted in Section 2, κ̄ is < ᾱ-

subcompact if α is a limit cardinal and β̄-subcompact if ᾱ = β̄+,
so in either case P is trivial on the interval [κ̄, ᾱ). Furthermore,
even if the forcing iterand at stage ᾱ is non-trivial, it will be < ᾱ+-
strategically closed, and hence adds no new sets to Hᾱ. Indeed the
tail of the forcing from stage ᾱ on is< ᾱ+-strategically closed. There-

fore H
V [G]
ᾱ = H

V [Gκ̄]
ᾱ , so combining this with H

V [G]
α = H

V [Gκ]
α our goal

becomes to lift π to

π′ : (H
V [Gκ̄]
ᾱ ,∈, ρ̄Gκ̄)→ (HV [Gκ]

α ,∈, ρGκ),

for which it suffices by the usual (Silver) argument to show that
π“Gκ̄ ⊆ Gκ. But π is the identity below κ̄, so this is immediate. a

It should be noted that this lifting argument did not require that
the generic contain a non-trivial master condition. Hence, every P-
generic G over V will preserve all β-subcompacts for all β.

Of course, it is important that our forcing preserve not only α-
subcompact cardinals, but stronger large cardinals too. We ver-
ify this for a test case near the top of the large cardinal hierarchy,
specifically, ω-superstrong cardinals (I2 cardinals in the terminology
of [14]). Recall their definition.

Definition 9. A cardinal κ is ω-superstrong if and only if there
is an elementary embedding j : V → M with critical point κ such
that, if we let λ = supn∈ω(jn(κ)), Vλ ⊂M .

Note that we may take M such that every element of M has the
form j(f)(a) for some f with domain Vλ and some a ∈ Vλ. Indeed,
given any j : V → N witnessing ω-superstrength, the transitive
collapse of the class of elements of this form gives such an M .

Proposition 10. The forcing iteration P of Theorem 8 preserves
all ω-superstrong cardinals.

Proof. We again use Silver’s method of lifting embeddings. Let
κ be ω-superstrong, let j : V → M witness this, let λ be as in
Definition 9, and suppose we have chosen j in such a way that every
element of M is of the form j(f)(a) for some a in Vλ and f with
domain Vλ. It follows from ω-superstrength that κ is α-subcompact
for every α < λ, that is, < λ-subcompact. Thus, our forcing P is
trivial between κ and λ. Also, since the definition of I∩Vλ is absolute
for models containing Vλ, j(PVλ ) = PMλ = PVλ (hence the “non-trivial
support” of P will also be bounded below κ). Below λ, therefore, we



8 ANDREW D. BROOKE-TAYLOR AND SY-DAVID FRIEDMAN

may just take the generic for M to be the generic for V , Gλ, and we
get a lift j′ of j from V [Gλ] to M [Gλ].

We claim that for the tail of the forcing, the pointwise image of the
tail of the generic for V , j′“Gλ, generates a generic filter for M , by
the λ+-distributivity of this tail forcing. Indeed this is standard for
preservation results about ω-superstrongs: compare for example with
[12] and [1]. To be explicit: every element of M [Gλ] is of the form
σGλ for some σ = j(f)(a) with a ∈ Vλ. Suppose D is a dense class
in the tail of the forcing iteration, defined in M [Gλ] as {p | ψ(p, d)}
for some parameter d = j(f)(a)Gλ with a ∈ Vλ. Since the tail Pλ of
the forcing is < λ+-strategically closed and |Vλ| = λ, it is dense for
q ∈ Pλ to extend an element of Dx = {p | ψ(p, f(x)Gλ)} whenever
x ∈ Vλ and Dx is dense in Pλ. We may therefore take such a q lying
in Gλ, and by elementarity have that j(q) extends D. That is, j′“Gλ

indeed generates a generic filter over M for (Pλ)M . a

§4. Stationary reflection. For simplicity, we restrict attention
to cofinality ω. This is to ensure that the cofinality of interest is not
affected by the embeddings involved — any small enough cofinality
would suffice.

As noted after Definition 2, SR(α+, ω) can be seen as a strong
failure of square. Correspondingly, we consider a strengthening of
subcompactness.

Definition 11. For any cardinal α, we say that a cardinal κ ≤ α+

is (α+, ω)-stationary subcompact if for every A ⊆ Hα+ and every
stationary set S ⊆ α+ ∩ Cof(ω), there exist κ̄ < ᾱ+ < κ, Ā ⊆ Hᾱ+,
a stationary set S̄ ⊆ ᾱ+ ∩ Cof(ω) and an elementary embedding

π : (Hᾱ+ ,∈, Ā, S̄)→ (Hα+ ,∈, A, S)

with critical point κ̄ such that π(κ̄) = κ. We say that such an em-
bedding π witnesses the (α, ω)-stationary subcompactness of κ for A
and S.

Thus, (α+, ω)-stationary subcompactness is α+-subcompactness
with the extra requirement that there be witnessing embeddings re-
specting the stationarity of any given S ⊆ α+ ∩ Cof(ω). As for
subcompactness, we can and will freely replace A in the definition
by any finite number of subsets of Hα+ . Since Hγ+ is correct for
stationarity of subsets of γ, we have that if κ < β+ < α and κ is α-
subcompact, then κ is (β+, ω)-stationary subcompact, and moreover
if π : (Hᾱ,∈, Ā) → (Hα,∈, A) is an embedding with critical point
κ̄ witnessing α-subcompactness of κ for any A ⊆ Hα, then for all
β̄+ < ᾱ, κ̄ is (β̄+, ω)-stationary subcompact.

This strengthened subcompactness notion is sufficient to obtain
stationary reflection as a consequence.

Proposition 12. If there exists some κ ≤ α such that κ is (α+, ω)-
stationary subcompact, then SR(α+, ω) holds.



SUBCOMPACT CARDINALS, SQUARES, AND STATIONARY REFLECTION 9

Proof. Suppose κ ≤ α is (α+, ω)-stationary subcompact, let S
be a stationary subset of α+ ∩ Cof(ω), take A ⊆ Hα+ arbitrary,
and let π : (Hᾱ+ ,∈, Ā, S̄) → (Hα+ ,∈, A, S) with critical point κ̄
witness (α+, ω)-stationary subcompactness of κ for A and S. Let
λ = sup(π“ᾱ+); we claim that S∩λ is stationary in λ. The pointwise
image of ᾱ+ in α+ is countably closed and unbounded in λ, so for any
club C ⊆ λ, C ∩ π“ᾱ+ is also countably closed and unbounded in λ.
Therefore, π−1C is countably closed and unbounded in ᾱ+, and hence
has nonempty intersection with S̄. But now taking ξ ∈ S̄ ∩ π−1C,
we have π(ξ) ∈ S ∩ C. Hence, S ∩ λ is stationary. a

Again, we have a complementary result under the GCH.

Theorem 13. Suppose the GCH holds. Let I be as defined in
Theorem 8, and similarly let

J = {α | ∃κ ≤ α(κ is (α+, ω)-stationary subcompact)} ⊆ I.

Then there is a cofinality-preserving partial order P such that for any
P-generic G the following hold.

1. SR(α+, ω) fails in V [G] for all α /∈ J .
2. �α holds in V [G] for all α /∈ I.
3. If κ ≤ α are such that V � κ is (α+, ω)-stationary subcompact,

then V [G] � κ is (α+, ω)-stationary subcompact. In particular,
JV [G] = J .

4. IV [G] = I.

Proof. Again P will be a reverse Easton iteration. At stage α for
α ∈ J , we take the trivial forcing. For cardinals α ∈ IrJ , we take the
forcing Rα that adds a non-reflecting stationary set to α+ ∩ Cof(ω)
by initial segments; this forcing is α+-strategically closed and (by the
GCH) of size α+ (see [5, Example 6.2]). For cardinals α /∈ I, we take
a three stage iteration, first forcing with Rα. Next, we force with
the partial order CR

α that makes the generic stationary set from Rα

non-stationary by shooting a club through its complement. Third,
we force to make �α hold with Sα. The two stage iteration Rα ∗ ĊR

α

is < α+-strategically closed (indeed it contains a natural dense sub-
order that is < α+-closed), and Sα is also < α+-strategically closed,

so Rα ∗ ĊR
α ∗ Ṡα is < α+-strategically closed. It also has a dense

suborder of size α+. Thus, our reverse Easton iteration will indeed
preserve cofinalities, as well as the GCH. The generic extension will
also clearly satisfy 1 and 2 of the theorem.

As in the proof of Theorem 8, we will denote by Pκ the iteration
up to stage κ and by Gκ the corresponding generic (and similarly for
other ordinals); note that since κ is inaccessible, Pκ is a direct limit,
so we can and will identify Pκ with

⋃
γ<κ Pγ.

If κ is (α+, ω)-stationary subcompact, then the forcing is trivial
in stages from κ up to (but not necessarily including) α+, and is
< α++-strategically closed from stage α+ onward, so no new ele-
ments or subsets of Hα+ are added after stage κ. Thus, to show
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that (α+, ω)-stationary subcompactness is preserved, it suffices to

show that for any Pκ-name ρ for a subset of H
V [G]

α+ and any Pκ-
name σ for a stationary subset of α+, there is an embedding from

(H
V [G]

ᾱ+ ,∈, ρ̄G, σ̄G) to (H
V [G]

α+ ,∈, ρG, σG) witnessing the α+-stationary
subcompactness of κ for ρG and σG in V [G].

Because Pκ is only of cardinality κ, there is some p ∈ G and some
S ∈ V stationary in α+ such that p 
 Š ⊆ σ, and Hα+ contains
all the requisite sets to be correct for this statement. In V let
π : (Hᾱ+ ,∈, ρ̄, σ̄, p̄, S̄)→ (Hα+ ,∈, ρ, σ, p, S) with critical point κ̄ and
S̄ stationary in ᾱ+ witness α+-stationary subcompactness of κ for

ρ, σ, p and S. Then by elementarity, p̄ 
 ˇ̄S ⊆ σ̄, and moreover, p̄ is a
condition bounded below κ̄, so since κ̄ = cp(π), p̄ = π(p̄) = p. It fol-
lows, since Pκ̄ is small relative to ᾱ+, that S̄ remains stationary under
forcing with Pκ̄, and so p forces σ̄ to be stationary in ᾱ+. Now by
Silver’s lifting of embeddings method again, π lifts to an elementary

embedding π′ : (H
V [Gκ̄]

ᾱ+ ,∈, ρ̄Gκ̄ , σ̄Gκ̄) → (H
V [Gκ]

α+ ,∈, ρGκ , σGκ), since

π“Gκ̄ = Gκ̄. That is, we have π′ : (H
V [G]

ᾱ+ ,∈, σ̄G) → (H
V [G]

α+ ,∈, σG)
with σ̄G stationary, as required.

To prove part 4, it now suffices to consider the case when κ is α+-
subcompact but no κ′ is (α+, ω)-stationary subcompact. Further-
more, in order to show that I is preserved, it suffices to only show
that α+-subcompactness of κ is preserved when κ is the least α+-
subcompact cardinal. So suppose that κ is the least α+-subcompact
cardinal and no κ′ is (α+, ω)-stationary subcompact.

For anyA ⊆ Hα+ , we claim there is a π : (Hᾱ+ ,∈, Ā)→ (Hα+ ,∈, A)
witnessing the α+-subcompactness of κ for A such that ᾱ /∈ I: no κ′

is ᾱ+-subcompact. To see this, let B be a subset of Hα+ × κ ⊂ Hα+

such that for each cardinal γ < κ, the cross-section Bγ = {x ∈ Hα+ |
(x, γ) ∈ B} witnesses the failure of γ to be α+-subcompact, that
is, there is no embedding π′ witnessing α+-subcompactness of γ
for Bγ. Let π : (Hᾱ+ ,∈, Ā, B̄) → (Hα+ ,∈, A,B) be an embedding
witnessing the α+-subcompactness of κ for A and B with minimal
critical point, and given the critical point, minimal ᾱ. Call the
critical point κ̄ as always. We claim that π considered as an em-
bedding from (Hᾱ+ ,∈, Ā) to (Hα+ ,∈, A) is as required. If κ̄ itself
were ᾱ+-subcompact, there would be an elementary embedding ϕ :
(H¯̄α+ ,∈, ¯̄A, ¯̄B ) → (H+

ᾱ ,∈, Ā, B̄) witnessing the ᾱ+-subcompactness
of κ̄ for Ā and B̄, and then π ◦ ϕ would be an embedding witness-
ing the α+-subcompactness of κ for A and B with critical point
less than κ̄, violating the choice of π. Similarly if some κ′ > κ̄
were ᾱ+-subcompact, then there would be an elementary embed-
ding ϕ : (H¯̄α+ ,∈, ¯̄A, ¯̄B )→ (H+

ᾱ ,∈, Ā, B̄) with critical point κ̄′ >
κ̄ witnessing the ᾱ+-subcompactness of κ′ for Ā and B̄. In this
case, π ◦ ϕ would be an elementary embedding witnessing the α+-
subcompactness of κ for A and B, with critical point κ̄ but with
domain H¯̄α+ for some ¯̄α+ < ᾱ+, again violating the choice of π.
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Finally, if some κ′ < κ̄ were ᾱ+-subcompact, there would be an ele-
mentary embedding ϕ : (H¯̄α+ ,∈, ¯̄A, ¯̄B )→ (H+

ᾱ ,∈, Ā, B̄) with critical
point κ̄′ witnessing the ᾱ+-subcompactness of κ′ for Ā and B̄. But
then π ◦ϕ witnesses the α+-subcompactness of π(κ′) = κ′ for A and
B, and in particular, we may view π ◦ϕ as an elementary embedding
(H¯̄α+ ,∈, ¯̄Bκ̄′)→ (Hα+ ,∈, Bκ′) witnessing the α+-subcompactness of
κ′ for Bκ′ . This of course violates the choice of B, and so the claim
is proven.

Returning to the proof of part 4, we have α and κ such that κ
is the least α+-subcompact cardinal and no κ′ is (α+, ω)-stationary
subcompact, and we wish to show that κ remains α-subcompact in
the generic extension V [G]. The forcing P is trivial on [κ, α), is Rα at

stage α, and is < α++-strategically closed thereafter. Thus, H
V [G]

α+ =

H
V [Gκ]

α+ , and any subset of H
V [G]

α+ is named by a Pα+1
∼= Pκ ∗ Ṙα-name

which is a subset of Hα+ ; of course, any such name is forced by 1Pκ∗Ṙα
to be a subset of Hα+ .

So suppose σ is such a name; we wish to lift an embedding in V
witnessing the α+-subcompactness of κ for σ to an embedding in
V [G] witnessing the α+-subcompactness of κ for σG. Often such
lifting arguments simply require one to find an appropriate master
condition (see for example [5, Section 12]), as there will always be a
generic including any condition. However, we wish to lift embeddings
for many different names σ, and it is not clear that the corresponding
conditions can all lie in a common generic. One fix that is sometimes
possible is to use homogeneity of the partial order to argue that
the generic can be modified to contain the master condition without
altering the genric extension it produces — this is the approach taken
in [3], for example. But again this is not appropriate in the present
context, as when G is modified to give some G′, the interpretation
of the name σ may be changed. Instead, we shall show that master
conditions for witnessing embeddings are dense in the partial order,
thus guaranteeing that for each σ there is a corresponding master
condition in any given G. A similar technique has been used to
demonstrate the indestructibility of Vopěnka’s Principle relative to
many natural forcing iterations [2].

To this end, let p be an arbitrary element of Pα+1, and take π
witnessing α+-subcompactness of κ for σ and {p}. As shown above,
we may assume that no κ′ is ᾱ+-subcompact, but by the comment
after Definition 11, κ̄ will be ᾱ-stationary subcompact. Thus, the
forcing is trivial on [κ̄, ᾱ), at stage ᾱ is Rᾱ ∗ ĊR

ᾱ ∗ Ṡᾱ, and is < ᾱ++-
strategically closed thereafter. In particular, Hᾱ+ receives no new
elements from stage κ̄ of the forcing onward.

Note that by elementarity, σ̄ is a Pκ̄∗Ṙᾱ-name for a subset of Hᾱ+ ,
and that p is essentially comprised of p � κ, a Pκ-condition that is
thus bounded below κ, and a name ṗ(α) for an Rα-condition. Let
κ0 = dom(p � κ); then κ0 is an ordinal less than κ in the range of
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π, so the critical point κ̄ of π must be greater than κ0, and p̄ � κ̄ =
p �κ = p �κ0. Furthermore, by adding any other singleton {γ} as a
predicate for γ < κ, we can take π with κ̄ as large as desired less than
κ (without affecting the fact that no κ′ is ᾱ+-subcompact). Since
a direct limit is taken at κ, the set of those conditions in Pκ that
extend a p̄ for such an embedding is therefore dense below p�κ, and
so we may assume without loss of generality that if p ∈ G then p̄ is
in the Pκ0 ∗ Ṙᾱ-generic obtained from G.

For terminological convenience working with Rᾱ we now move to
V [Gκ̄]; note that since π is the identity on Vκ̄, it lifts in the usual

(Silver) way to an embedding π′ : H
V [Gκ̄]

ᾱ+ → H
V [Gκ]

α+ . Let GRᾱ denote
the Rᾱ generic over V [Gκ̄] that comes from G. Now, r =

⋃
π′“GRᾱ

is a condition in RV [Gκ]
α , since the union of the pointwise image of

the CR
ᾱ-generic component of G is a club in the complement of r in

sup(π′“ᾱ+). Since p̄(ᾱ) ∈ GRᾱ , r ≤ p, and if r ∈ G, π′ lifts to an
embedding

π′′ : (H
V [Gκ̄∗GRᾱ ]

ᾱ+ ,∈, σ̄Gκ̄∗GRᾱ
)→ (H

V [Gκ∗GRα ]

α+ ,∈, σGκ∗GRα
).

But this is the same as

π′′ : (H
V [G]

ᾱ+ ,∈, σ̄G)→ (H
V [G]

α+ ,∈, σG),

and we are done. a
Our forcing for Theorem 13 also preserves stronger large cardinals.

Proposition 14. The forcing iteration P of Theorem 13 preserves
all ω-superstrong cardinals

The proof is exactly as for Proposition 10.

§5. Weaker Squares. Schimmerling [17] introduced the follow-
ing generalisation of �α.

Definition 15. For any cardinal α, a �α,<µ-sequence is a se-
quence 〈Cβ | β ∈ α+ ∩ Lim〉 such that for every β ∈ α+ ∩ Lim,

• Cβ is a set of closed unbounded subsets of β,
• 1 ≤ |Cβ| < µ,
• ot(C) ≤ α for every C ∈ Cβ,
• for any C ∈ Cβ and γ ∈ lim(C), C ∩ γ ∈ Cγ.

We say �α,<µ holds if there exists a �α,<µ-sequence, and we write
�α,ν for �α,<ν+.

Of course, �α,1 is simply �α, and the strength of the statement
�α,<µ is non-increasing as µ increases; moreover Jensen [13] has
shown that �α,2 does not imply �α,1. Jensen’s weak square, �∗α,
is simply �α,α, and �α,α+ is provable in ZFC for all α.

It turns out that some of these weaker forms of square are also pre-
cluded by α+-subcompactness of some κ < α. Indeed, corresponding
results are known for κ an α+-supercompact cardinal, so this should
not be surprising.
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Theorem 16. Suppose κ is α+-subcompact for some κ ≤ α. Then
�α,<cf(α) fails.

Proof. Suppose for contradiction that C = 〈Cβ | β ∈ α+∩Lim〉 is
a �α,<cf(α)-sequence. Note that clubs of order type α only occur at
ordinals with cofinality cf(α). We can take an α+-subcompactness
embedding

π : (Hᾱ+ ,∈, C̄)→ (Hα+ ,∈, C)

with critical point some κ̄ < ᾱ+ such that π(κ̄) = κ, and ᾱ < α. Let
λ be the supremum of π“(ᾱ+), let C be an arbitrary member of Cλ,
and consider the inverse image D̄ of lim(C) under π. Because π“(ᾱ+)
is < κ̄-closed and unbounded in λ, D̄ is < κ̄-closed and unbounded
in ᾱ+, so we may take some β̄ ∈ D̄ of cofinality different from cf(ᾱ)
such that |D̄ ∩ β̄| = ᾱ.

Now, for any γ̄ < β̄ in D̄, π(γ̄) ∈ C ∩ β ∈ Cβ, so by elementarity
there is some C̄ ∈ C̄β̄ with γ̄ ∈ C̄. But there are fewer than cf(ᾱ)
elements of C̄β̄, each of order type strictly less that ᾱ, so |

⋃
C̄β̄| < ᾱ,

and not all γ ∈ D̄ ∩ β̄ can be covered in this way. a
Note that under the GCH, �∗α holds for all regular α (we may take

all clubs of order type less than α at ordinals of cofinality less than
α), making Theorem 16 optimal. For singular α, we leave obtaining
a forcing reversal of the result until we have considered obstructions
to even weaker variants of �.

Foreman and Magidor [11] observed that if �∗α holds then there is
a �∗α sequence (referred to in [6] as an improved square sequence,
�imp
α,α ) with the added property that for all β < α+, there is a C ∈ Cβ

with ot(C) = cf(β). Indeed, if we choose an arbitrary sequence
〈Dγ | γ ∈ Lim ∩ α + 1〉 such that Dγ is a club in γ of order type
cf(γ), then for any �∗α-sequence C, we may obtain a �imp

α,α -sequence
by adding {δ ∈ C | ot(C ∩ δ) ∈ Dγ} to Cβ for every C ∈ Cβ and
γ such that ot(C) ∈ Lim(Dγ) ∪ {γ}. Using this fact with a trick
due to Solovay, we see that if there is some κ > cf(α) that is α+-
subcompact, then even �∗α fails.

Theorem 17. Suppose κ is α+-subcompact for some κ ≤ α with
κ > cf(α). Then �α,α fails.

Proof. We essentially follow the proof for the analogous result
with κ α+-supercompact due to Shelah [18] as presented by Cum-
mings [4, Section 6]. Suppose for contradiction that C is a �imp

α,α

sequence, and let

π : (Hᾱ+ ,∈, C̄)→ (Hα+ ,∈, C)

be an embedding witnessing the α+-subcompactness of κ for C. Since
cf(α) = π(cf(ᾱ)), it is in particular in the range of π, and hence
cf(α) < κ implies that in fact cf(α) < κ̄. Let λ = sup(π“ᾱ+), and
take C ∈ Cλ with ot(C) = ᾱ+ = cf(λ). Let D̄ be the preimage of C
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under π; as usual, it is a < κ̄-closed unbounded subset of ᾱ+. Let
ζ be the ᾱ-th element of D̄. Since cf(ᾱ) < κ̄, π is continuous at ζ,
and in particular π(ζ) is a limit point of C. Thus, C ∩ π(ζ) ∈ Cπ(ζ).
Now for every subset X of D̄ ∩ ζ of size less than κ̄, π(X) = π“X ⊂
C ∩ π(ζ) ∈ Cπ(ζ), so by elementarity, there is an element C̄X of C̄ζ of
order type less than κ̄ such that X ⊆ C̄X . But there are ᾱ<κ̄ > ᾱ
such subsets X of D̄ ∩ ζ and at most ᾱ such elements of C̄ζ , each
with at most 2<κ̄ = κ̄ < ᾱ subsets, yielding a contradiction. a

Once again we show by forcing that under the GCH, these results
are optimal.

Theorem 18. Suppose the GCH holds. Let I be as defined in
Theorem 8, and similarly let

K = {α | ∃κ > cf(α)(κ is α+-subcompact)} ⊆ I.

Then there is a cofinality-preserving partial order P such that for any
P-generic G the following hold.

1. �α holds in V [G] for all α /∈ I.
2. �α,cf(α) holds in V [G] for all α /∈ K.

3. IV [G] = I.
4. KV [G] = K.

Proof. Once more we use a reverse Easton iteration P. In our
iterands, we use the forcing partial order of Cummings, Foreman and
Magidor [6, Theorem 16] to force �α,cf(α) for singular α. We denote
this partial order by Tα; note that it is < cf(α) directed closed and
< α-strategically closed, and by the GCH has cardinality α+.

For regular cardinals α /∈ I, we force with Sα at stage α. For
singular cardinals α ∈ IrK, we force with Tα. For singular cardinals
α /∈ I, we force with the two-stage iteration Tα ∗ Ṡα. At all other
stages we use the trivial forcing. Clearly this gives a generic extension
that satisfies 1 and 2, so we turn to preservation of I and K.

Because of 1, 2, and the fact that cofinalities are preserved, it
suffices to lift various embeddings witnessing α+-subcompactness.
Indeed, there are three cases for which we need to check preservation:
regular α in I, singular α in K, and singular α in IrK. However, for
the first two of these, the forcing iteration is trivial at stage α, and the
question reduces to lifting embeddings π : (Hᾱ+ ,∈, σ̄)→ (Hα+ ,∈, σ)
for Pα names σ. We wish to show that it is dense in Pα to force such
a π to lift, so let p be an arbitrary condition in Pα. As in the proof of
Theorem 13, the support of p is bounded below κ, and conditions p̄
for embeddings π : (Hᾱ+ ,∈, {γ}, {p̄}, σ̄)→ (Hα+ ,∈, {γ}, {p}, σ) with
κ̄ minimal are dense below p�κ as γ ranges over ordinals less than κ.
Thus we may assume that π is such an embedding with p̄ ∈ G. The
structure Hα+ correctly computes I ∩ α and K ∩ α, so π(Pᾱ) = Pα.
Let G[κ̄,ᾱ) denote the generic over V [Gκ̄] for P[κ̄,ᾱ), the part of the
iteration from stage κ̄ up to but not including stage ᾱ. Note that the
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non-trivial iterands in P[κ,α) are all of the form Tβ for some singular
β ∈ I rK, that is, singular β with cf(β) ≥ κ. Since directed closure
iterates (see for example [5, Proposition 7.11]), we have that P[κ,α) is
< κ directed closed. Hence, there is a condition in P[κ,α) extending
every condition in π“G[κ,α), including in particular p, since G was
assumed to contain p̄. This condition is the desired master condition
extending p.

For singular α ∈ I r K, the argument is not too different. Let κ
be the least cardinal that is α+-subcompact. In this case σ will be
a Pα+1

∼= Pα ∗ Ṫα-name, so σ̄ will be Pᾱ ∗ Ṫᾱ-name. As in the proof
of Theorem 13, we may take π witnessing α+-subcompactness of κ
such that no κ′ is ᾱ+-subcompact. Thus, the forcing will be Tᾱ ∗ Ṡᾱ
at stage ᾱ, and from G we get a Pᾱ ∗ Ṫᾱ-generic, which gives rise
to master condition in P[κ,α+1). As usual this argument can be run
below any condition p ∈ Pα+ , so such master conditions are dense,
and α+-subcompactness of κ̄ is preserved. a

In this case our forcing will be non-trivial on certain singular car-
dinals between κ and λ (as in Definition 9) for κ an ω-super strong
cardinal. However, it seems likely that a careful homogeneity argu-
ment, using a homogeneity iteration result like those in [9], will show
that ω-superstrong cardinals are again preserved under this forcing;
we leave the details to the interested reader.
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