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Abstract

We study maximal orthogonal families of Borel probability measures on 2ω (abbreviated m.o.

families) and show that there are generic extensions of the constructible universe L in which each

of the following holds:

1. There is a ∆1
3-definable well order of the reals, there is a Π1

2-definable m.o. family, there are

no Σ1
2-definable m.o. families and b = c = ω3 (in fact any reasonable value of c will do).

2. There is a ∆1
3-definable well order of the reals, there is a Π1

2-definable m.o. family, there are

no Σ1
2-definable m.o. families, b = ω1 and c = ω2.
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1. Introduction

Let X be a Polish space, and let P (X) denote the Polish space of Borel probability measures

on X, in the sense of [9, 17.E]. Recall that if µ, ν ∈ P (X) then µ and ν are said to be orthogonal,

written µ⊥ν, if there is a Borel set B ⊆ X such that µ(B) = 0 and ν(X \ B) = 0. A set of

measures A ⊆ P (X) is said to be orthogonal if whenever µ, ν ∈ A and µ 6= ν then µ ⊥ ν. A

maximal orthogonal family, or m.o. family, is an orthogonal family A ⊆ P (X) which is maximal

under inclusion.

The present paper is concerned with the study of definable m.o. families. A well-known result

to Preiss and Rataj [13] states that there are no analytic m.o. families, and in a recent paper [3] it

was shown by Fischer and Törnquist that if all reals are constructible then there is a Π1
1 m.o. family.

The latter paper also raised the question how restrictive the existence of a definable m.o. family
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is on the structure of the real line, since it was shown that Π1
1 m.o. families cannot coexist with

Cohen reals.

In the present paper we study Π1
2 m.o. families in the context of c ≥ ℵ2, with the additional

requirement that there is a ∆1
3-definable wellorder of R. Our main results are:

Theorem 1. It is consistent with c = b = ℵ3 that there is a ∆1
3-definable wellorder of the reals,

a Π1
2 definable maximal orthogonal family of measures and there are no Σ1

2-definable maximal sets

of orthogonal measures.

There is nothing special about c = ℵ3. In fact the same result can be obtained for any reasonable

value of c.

Theorem 2. It is consistent with b = ℵ1, c = ℵ2 that there is a ∆1
3-definable wellorder of the reals,

a Π1
2 definable maximal orthogonal family of measures and there are no Σ1

2-definable maximal sets

of orthogonal measures.

Taken together these theorems show that the existence of a Π1
2 m.o. family does not seem

to impose any severe restrictions on the structure of the real line. On the other hand, we show

(Proposition 1) that Σ1
2 m.o. families cannot coexist with neither Cohen nor random reals, which

is why in the models produced to prove Theorems 1 and 2 there are no Σ1
2 m.o. families.

The theorems of this paper belong to a line of results concerning the definability of certain

combinatorial objects on the real line and in particular the question of how low in the projective

hierarchy such objects exist. In [12] Mathias showed that there is no Σ1
1-definable maximal almost

disjoint (mad) family in [ω]ω. Assuming V = L, Miller obtained (see [11]) a Π1
1 mad family in [ω]ω.

The study of the existence of definable combinatorial objects on R in the presence of a projective

wellorder of the reals and c ≥ ℵ2 was initiated in [1], [4] and [2]. The wellorder of R in all those

models has a ∆1
3-definition, which is indeed optimal for models of c ≥ ℵ2, since by Mansfield’s

theorem (see [7, Theorem 25.39]) the existence of a Σ1
2-definable wellorder of the reals implies that

all reals are constructible. The existence of a Π1
2-definable ω-mad family in [ω]ω in the presence

of c = b = ℵ2 was established by Friedman and Zdomskyy in [4]. In the same paper, referring

to earlier results (see [14] and [8]) they outlined the construction of a model in which c = ℵ2 and

there is a Π1
1-definable ω-mad family: start with the constructible universe L, obtain a Π1

1-definable

ω mad family and proceed with a countable support iteration of length ω2 of Miller forcing. The

techniques were further developed in [2] to establish a model in which there is a Π1
2-definable ω-mad

family and c = b = ℵ3. In particular, in the models from [4] and [2], there are no maximal almost

disjoint families of size < c and so the almost disjointness number has a Π1
2-witness.

The present paper combines the encoding techniques of [3] with the techniques of [1, 4, 2] to

obtain Theorems 1 and 2. We note that one significant difference from the situation for mad families

is that m.o. families always have size c (see [3, Proposition 4.1]).

2. Preliminaries

In this section, we briefly recall the coding of probability measures on 2ω and the encoding

technique for measures introduced in [3].
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Let X be a Polish space. Recall that measures if µ, ν ∈ P (X) then µ is said to be absolutely

continuous with respect to ν, written µ � ν, if for all Borel subsets of X we have that ν(B) = 0

implies that µ(B) = 0. Two measures µ, ν ∈ P (2ω) are called absolutely equivalent , written µ ≈ ν,

if µ� ν and ν � µ.

If s ∈ 2<ω we let Ns = {x ∈ 2ω : s ⊆ x} be the basic neighbourhood determined by s. Following

[3], we let

p(2ω) = {f : 2<ω → [0, 1] : f(∅) = 1 ∧ (∀s ∈ 2<ω)f(s) = f(sa0) + f(sa1)}.

The spaces p(2ω) and P (2ω) are homeomorphic via the recursively defined isomorphism f 7→ µf
where µf ∈ P (2ω) is the measure uniquely determined by requiring that µf (Ns) = f(s) for all

s ∈ 2<ω. We call the unique real f ∈ p(2ω) such that µ = µf the code for µ. The identification of

P (2ω) and p(2ω) allow us to use the notions of effective descriptive set theory in the space P (2ω).

For instance, the set Pc(2
ω) of all non-atomic probability measures on 2ω is arithmetical because

pc(2
ω) = {f ∈ p(2ω) : µf is non-atomic} is easily seen to be arithmetical, as shown in [3].

We will use the method of coding a real z ∈ 2ω into a measure µ ∈ Pc(2ω) introduced in [3].

For convenience we repeat the construction in minimal detail. Given µ ∈ Pc(2ω) and s ∈ 2<ω we

let t(s, µ) be the lexicographically least t ∈ 2<ω such that s ⊆ t, µ(Nta0) > 0 and µ(Nta1) > 0,

if it exists and otherwise we let t(s, µ) = ∅. Define recursively tµn ∈ 2<ω by letting tµ0 = ∅ and

tµn+1 = t(tµn
a

0, µ). Since µ is non-atomic, we have lh(tµn+1) > lh(tµn). Let tµ∞ =
⋃∞
n=0 t

µ
n. For

f ∈ pc(2ω) and n ∈ ω ∪ {∞} we will write tfn for t
µf
n . Clearly the sequence (tfn : n ∈ ω) is recursive

in f .

Define the relation R ⊆ pc(2ω)× 2ω as follows:

R(f, z) ⇐⇒ (∀n ∈ ω)
(
z(n) = 1←→ (f(tfn

a
0) =

2

3
f(tfn) ∧ f(tan1) =

1

3
f(tn))

)
∧
(
z(n) = 0↔ f(tfn

a
0) =

1

3
f(tfn) ∧ f(tfn

a
1) =

2

3
f(tfn)

)
.

Whenever (f, z) ∈ R we say that f codes z. Note that dom(R) = {f ∈ pc(2ω) : (∃z)R(f, z)} is

Π0
1 and so the function r : dom(R) → 2ω, where r(f) = z if and only if (f, z) ∈ R, is also Π0

1. If

ν is a measure such that ν = µf for some code f , then let r(ν) = r(f). The key properties of this

construction is contained in the following Lemma (see [3, Coding Lemma]):

Lemma 1. There is a recursive function G : pc(2
ω) × 2ω → pc(2

ω) such that µG(f,z) ≈ µf and

R(G(f, z), z) for all f ∈ pc(2ω) and z ∈ 2ω.

The proofs of Theorems 1 and 2 use the following result, which we now prove.

Proposition 1. Suppose that there either is a Cohen real over L or there is a random real over L.

Then there is no Σ1
2 m.o. family.

We first need a preparatory Lemma. In 2ω, consider the equivalence EI defined by

xEIy ⇐⇒
∞∑
n=0

|x(n)− y(n)|
n+ 1

<∞.

We identify 2ω with Zω2 and equip it with the Haar measure µ.
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Lemma 2. Let A ⊆ 2ω be a Borel set such that µ(A) > 0. Then EI ≤B EI � A, where E � A is

the restriction of EI to A.

Notation: The constant 0 sequence of length n ∈ ω∪{∞} is denoted 0n. If A ⊆ 2ω and s ∈ 2<ω

let

A(s) = {x ∈ 2ω : s_x ∈ A},

the localization of A at s.

Proof of Lemma 2. Without loss of generality assume that A ⊆ 2ω is closed. We will define qn ∈ ω,

sn,i, st ∈ 2<ω recursively for all n ∈ ω, i ∈ {0, 1} and t ∈ 2<ω satisfying

1. q0 = 0 and qn+1 = qn + lh(sn,0).

2. s0,i = ∅ and lh(sn,i) = lh(sn,i−1) > 0 when n > 0.

3. s∅ = ∅ and st_i = st
_slh(t)+1,i for all t ∈ 2<ω, i ∈ {0, 1}.

4. 1
n+1 ≤

∑lh(sn+1,0)
k=0

|sn+1,0(k)−sn+1,1(k)|
qn+k+1 ≤ 2

n+1 .

5. Nst ⊆ A.

6. If t ∈ 2n then µ(A(st)) > 1− 2−n.

Suppose this can be done. We claim that the map 2ω → A : x 7→ ax defined by

ax =
⋃
n∈ω

sx�n

is a Borel (in fact, continuous) reduction of EI to EI � A. To see this, fix x, y ∈ 2ω and note that

by (4) we have that

∞∑
n=0

|x(n)− y(n)|
n+ 1

≤
∞∑
n=0

lh(sn+1,0)∑
k=0

|sn+1,x(i)(k)− sn+1,y(i)(k)|
qn + k + 1

=

∞∑
n=0

|ax(n)− ay(n)|
n+ 1

≤ 2

∞∑
n=0

|x(n)− y(n)|
n+ 1

so that xEIy if and only if axEIay.

We now show that we can construct a scheme satisfying (1)–(6) above. Suppose qk, sk,i and st
have been defined for all k ≤ n and t ∈ 2≤n. It is enough to define sn+1,i satisfying (4)–(6). Define

fqn : 2ω → [0,∞] : fqn(x) =
∞∑
k=0

x(k)

qn + k + 1
.

It is clear that fqn(N0k) is dense in [0,∞] for all k ∈ ω. Let

A′ = {x ∈ A : lim
k→∞

µ(A(x�k))→ 1},
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i.e, the set of points in A of density 1. By the Lebesgue density theorem [9, 17.9] we have µ(A\A′) =

0. Let A′′ =
⋂
t∈2n A

′
(st)

and note that by (6) we have µ(A′′) > 0. Thus the set of differences A′′−A′′

contains a neighborhood of 0∞ by [9, 17.13]. It follows that there are x0, x1 ∈ A′′ such that

1

n+ 2
≤
∞∑
k=0

|x0(k)− x1(k)|
qn + k + 1

≤ 2

n+ 2
.

Since all points in A′(st) have density 1 in A′(st) there is some k0 ∈ ω such that

µ(A′(s_t xi�k0)) > 1− 2−n−1

for all t ∈ 2n. Defining sn+1,i = xi � k0, it is then clear that (4)–(6) holds.

Proof of Proposition 1. We proceed exactly as in [3, Proposition 4.2]. Suppose A ⊆ P (2ω) is a Σ1
2

m.o. family. Recall from [10] and [3, p. 1406] that there is a Borel function 2ω → P (2ω) : x 7→ µx

such that

xEIy =⇒ µx ≈ µy

and

x 6EIy =⇒ µx ⊥ µy.

Define as in [3, Proposition 4.2] a relation Q ⊆ 2ω × P (2ω)ω by

Q(x, (νn)) ⇐⇒ (∀n)(νn ∈ A ∧ νn 6⊥ µx) ∧ (∀µ)(µ 6⊥ µx −→ (∃n)νn 6⊥ µ)

and note that this is Σ1
2 when A is. Note that Q(x, (νn)) precisely when (νn) enumerates the

measures in A not orthogonal to µx (this set is always countable, see [10, Theorem 3.1].) Since

A is maximal, each section Qx is non-empty, and so we can uniformize Q with a (total) function

f : 2ω → p(2ω)ω having a ∆1
2 graph. Note that assignment

x 7→ A(x) = {f(x)n : n ∈ N}

is invariant on the EI classes.

If there is a Cohen real over L it follows from [6] that f is Baire measurable. Since EI is a

turbulent equivalence relation (in the sense of Hjorth, see e.g. [10]) the map x 7→ A(x) must be

constant on a comeagre set. But this contradicts that all EI classes are meagre.

If on the other hand there is a random real over L, then f is Lebesgue measurable by [6]. Let

F ⊆ 2ω be a closed set with positive measure on which f is continuous, and let g : 2ω → F be a

Borel reduction of EI to EI � F . Note that x 7→ A(g(x)) is then an EI -invariant Borel assignment

of countable subsets of p(2ω), and so since EI is turbulent the function f ◦ g must be constant on

a comeagre set. This again contradicts that all EI classes are meagre.

3. ∆1
3 w.o. of the reals, Π1

2 m.o. family, no Σ1
2 m.o. families with b = c = ℵ3

We proceed with the proof of Theorem 1. We will use a modification of the model constructed

in [2]. The preliminary stage P0 = P0 ∗ P1 ∗ P2 of the iteration will coincide almost identically
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with the preliminary stage P0 of [2] (see Step 0 through Step 2). For convenience of the reader we

outline its construction. We work over the constructible universe L.

Recall that a transitive ZF− model is suitable if ωM3 exists and ωM3 = ωL
M

3 . If M is suitable

then also ωM1 = ωL
M

1 and ωM2 = ωL
M

2 .

Fix a 3ω2(cof (ω1)) sequence 〈Gξ : ξ ∈ ω2∩cof (ω1)〉 which is Σ1-definable over Lω2 . For α < ω3,

let Wα be the L-least subset of ω2 coding α and let Sα = {ξ ∈ ω2 ∩ cof (ω1) : Gξ = Wα ∩ ξ 6= ∅}.
Then ~S = 〈Sα : 1 < α < ω3〉 is a sequence of stationary subsets of ω2∩ cof (ω1), which are mutually

almost disjoint.

For every α such that ω ≤ α < ω3 shoot a club Cα disjoint from Sα via the poset P0
α, consisting

of all closed subsets of ω2 which are disjoint from Sα with extension relation end-extension and let

P0 =
∏
α<ω3

P0
α be the direct product of the P0

α’s with supports of size ω1, where for α ∈ ω, P0
α is

the trivial poset. Then P0 is countably closed, ω2-distributive and ω3-c.c.

For every α such that ω ≤ α < ω3 let Dα ⊆ ω3 be a set coding the triple 〈Cα,Wα,Wγ〉 where

γ is the largest limit ordinal ≤ α. Let

Eα = {M∩ ω2 :M≺ Lα+ω2+1[Dα], ω1 ∪ {Dα} ⊆ M}.

Then Eα is a club on ω2. Choose Zα ⊆ ω2 such that Even(Zα) = Dα, where Even(Zα) = {β :

2 · β ∈ Zα}, and if β < ω2 is the ωM2 for some suitable model M such that Zα ∩ β ∈ M, then

β ∈ Eα. Then we have:

(∗)α: If β < ω2, M is a suitable model such that ω1 ⊂ M, ωM2 = β, and Zα ∩ β ∈ M, then

M � ψ(ω2, Zα∩β), where ψ(ω2, X) is the formula “Even(X) codes a triple 〈C̄, W̄ , ¯̄W 〉, where

W̄ and ¯̄W are the L-least codes of ordinals ᾱ, ¯̄α < ω3 such that ¯̄α is the largest limit ordinal

not exceeding ᾱ, and C̄ is a club in ω2 disjoint from Sᾱ”.

Similarly to ~S define a sequence ~A = 〈Aξ : ξ < ω2〉 of stationary subsets of ω1 using the

“standard” 3-sequence. Code Zα by a subset Xα of ω1 with the poset P1
α consisting of all pairs

〈s0, s1〉 ∈ [ω1]<ω1 × [Zα]<ω1 where 〈t0, t1〉 ≤ 〈s0, s1〉 iff s0 is an initial segment of t0, s1 ⊆ t1 and

t0\s0 ∩Aξ = ∅ for all ξ ∈ s1. Then Xα satisfies the following condition:

(∗∗)α: If ω1 < β ≤ ω2 and M is a suitable model such that ωM2 = β and {Xα} ∪ ω1 ⊂ M, then

M � φ(ω1, ω2, Xα), where φ(ω1, ω2, X) is the formula: “ Using the sequence ~A, X almost

disjointly codes a subset Z̄ of ω2, such that Even(Z̄) codes a triple 〈C̄, W̄ , ¯̄W 〉, where W̄ and
¯̄W are the L-least codes of ordinals ᾱ, ¯̄α < ω3 such that ¯̄α is the largest limit ordinal not

exceeding ᾱ, and C̄ is a club in ω2 disjoint from Sᾱ”.

Let P1 =
∏
α<ω3

P1
α, where P1

α is the trivial poset for all α ∈ ω, with countable support. Then

P1 is countably closed and has the ω2-c.c.

Finally we force a localization of the Xα’s. Fix φ as in (∗∗)α and let L(X,X ′) be the poset

defined in [2, Definition 1], where X,X ′ ⊂ ω1 are such that φ(ω1, ω2, X) and φ(ω1, ω2, X
′) hold in

any suitable modelM with ωM1 = ωL1 containing X and X ′, respectively. That is L(X,X ′) consists

of all functions r : |r| → 2, where the domain |r| of r is a countable limit ordinal such that:
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1. if γ < |r| then γ ∈ X iff r(3γ) = 1

2. if γ < |r| then γ ∈ X ′ iff r(3γ + 1) = 1

3. if γ ≤ |r|, M is a countable suitable model containing r � γ as an element and γ = ωM1 , then

M � φ(ω1, ω2, X ∩ γ) ∧ φ(ω1, ω2, X
′ ∩ γ).

The extension relation is end-extension. Then let P2
α+m = L(Xα+m, Xα) for every α ∈ Lim(ω3)\{0}

and m ∈ ω. Let P2
α+m be the trivial poset for α = 0, m ∈ ω and let

P2 =
∏

α∈Lim(ω3)

∏
m∈ω

P2
α+m

with countable supports. Note that the poset P2
α+m, where α > 0, produces a generic function

in ω12 (of LP0∗P1
), which is the characteristic function of a subset Yα+m of ω1 with the following

property:

(∗ ∗ ∗)α : For every β < ω1 and any suitable M such that ωM1 = β and Yα+m ∩ β belongs to M, we

have M � φ(ω1, ω2, Xα+m ∩ β) ∧ φ(ω1, ω2, Xα ∩ β).

Claim. P0 := P0 ∗ P1 ∗ P2 is ω-distributive.

Proof. [2, Lemma 1].

Let ~B = 〈Bζ,m : ζ < ω1,m ∈ ω〉 be a nicely definable sequence of almost disjoint subsets of ω.

We will define a finite support iteration 〈Pα, Q̇β : α ≤ ω3, β < ω3〉 such that P0 = P0 ∗ P1 ∗ P2, for

every α < ω3, Q̇α is a Pα-name for a σ-centered poset, in LPω3 there is a ∆1
3-definable wellorder

of the reals, a Π1
2-definable maximal family of orthogonal measures and there are no Σ1

2-definable

maximal families of orthogonal measures. Along the iteration for every α < ω3, we will define in

V Pα a set Oα of orthogonal measures and for α ∈ Lim(α) a subset Aα of [α, α + ω). Every Qα

will add a generic real, whose Pα-name will be denoted u̇α and similarly to the proof of [2, Lemma

2] one can prove that L[Gα] ∩ ωω = L[〈u̇Gαξ : ξ < α〉] ∩ ωω for every Pα-generic filter Gα. This

gives a canonical wellorder of the reals in L[Gα] which depends only on the sequence 〈u̇ξ : ξ < α〉,
whose Pα-name will be denoted by <̇α. We can additionally arrange that for α < β, <α is an

initial segment of <β, where <α= <̇Gαα and <β= <̇
Gβ
β . Then if G is a Pω3-generic filter over L,

then <G=
⋃
{<̇Gα : α < ω3} will be the desired wellorder of the reals and O =

⋃
α<ω3

Oα will be

the Π1
2-definable maximal family of orthogonal measures.

We proceed with the recursive definition of Pω3 . For every ν ∈ [ω2, ω3) let iν : ν ∪ {〈ξ, η〉 :

ξ < η < ν} → Lim(ω3) be a fixed bijection. If Gα is a Pα-generic filter over L, <α= <̇Gαα and

x, y are reals in L[Gα] such that x <α y, let x ∗ y = {2n : n ∈ x} ∪ {2n + 1 : n ∈ y} and

∆(x ∗ y) = {2n + 2 : n ∈ x ∗ y} ∪ {2n + 1 : n /∈ x ∗ y}. Suppose Pα has been defined and fix a

Pα-generic filter Gα.

If α = ω2 · α′ + ξ, where α′ > 0, ξ ∈ Lim(ω2), let ν = o.t.(<̇Gαω2·α′) and let i = iν .
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Case 1 . If i−1(ξ) = 〈ξ0, ξ1〉 for some ξ0 < ξ1 < ν, let xξ0 and xξ1 be the ξ0-th and ξ1-th reals in

L[Gω2·α′ ] according to the wellorder <̇Gαω2·α′ . In LPα let

Qα = {〈s0, s1〉 : s0 ∈ [ω]<ω, s1 ∈ [
⋃

m∈∆(xξ0∗xξ1 )

Yα+m × {m}]<ω},

where 〈t0, t1〉 ≤ 〈s0, s1〉 if and only if s1 ⊆ t1, s0 is an initial segment of t0 and (t0\s0) ∩ Bζ,m = ∅
for all 〈ζ,m〉 ∈ s1. Let uα be the generic real added by Qα, Aα = α+ ω\∆(xξ0 ∗ xξ1) and Oα = ∅.

Case 2 . Suppose i−1(ξ) = ζ ∈ ν. If the ζ-th real according to the wellorder <̇Gαω2·α′ is not the

code of a measure orthogonal to O′α =
⋃
γ<αOγ , let Qα be the trivial poset, Aα = ∅, Oα = ∅.

Otherwise, i.e. in case xζ is a code for a measure orthogonal to O′α, let

Qα = {〈s0, s1〉 : s0 ∈ [ω]<ω, s1 ∈ [
⋃

m∈∆(xζ)

Yα+m × {m}]<ω},

where 〈t0, t1〉 ≤ 〈s0, s1〉 if and only if s1 ⊆ t1, s0 is an initial segment of t0 and (t0\s0)∩Bζ,m = ∅ for

all 〈ζ,m〉 ∈ s1. Let uα be the generic real added by Qα. In LPα+1 = LPα∗Qα let gα = G(xζ , uα) be

the code of a measure equivalent to µxζ which codes uα (see [3, Lemma 3.5]) and let Oα = {µgα}.
Let Aα = α+ ω\∆(uα).

If α is not of the above form, i.e. α is a successor or α ∈ ω2, let Qα be the following poset for

adding a dominating real:

Qα = {〈s0, s1〉 : s0 ∈ ω<ω, s1 ∈ [o.t.(<̇Gαα )]<ω},

where 〈t0, t1〉 ≤ 〈s0, s1〉 if and only if s0 is an initial segment of t0, s1 ⊆ t1, and t0(n) > xξ(n) for all

n ∈ dom(t0)\dom(s0) and ξ ∈ s1, where xξ is the ξ-th real in L[Gα]∩ωω according to the wellorder

<̇Gαα . Let Aα = ∅, Oα = ∅.
With this the definition of Pω3 is complete. Let O =

⋃
α<ω3

Oα. In LPω3 we have: ν is a measure

in the set O if and only if for every countable suitable model M such that ν ∈M, there is ᾱ < ωM3
such that Sᾱ+m is nonstationary in (L[r(ν)])M for every m ∈ ∆(r(ν)). Therefore O has indeed a

Π1
2 definition. Furthermore O is maximal in Pc(2

ω). Indeed, suppose in LPω3 there is a code x for a

measure orthogonal to every measure in the family O. Choose α minimal such that α = ω2 ·α′ + ξ

for some α′ > 0 and ξ ∈ Lim(ω2) and x ∈ L[Gω2·α′ ]. Let ν = o.t.(<̇Gαω2·α′) and let i = iν . Then

x = xζ is the ζ-th real according to the wellorder <̇Gαω2·α′ , where ζ ∈ ν and so for some ξ ∈ Lim(ω2),

i−1(ξ) = ζ. But then xζ = x is the code of a measure orthogonal to Oα and so by construction

Oα+1 contains a measure equivalent to µx, which is a contradiction. To obtain a Π1
2-definable m.o.

family in LPω3 consider the union of O with the set of all point measures. Just as in [2] one can

show that < is indeed a ∆1
3-definable wellorder of the reals.

Since Pω3 is a finite support iteration, along the iteration cofinally often we have added Cohen

reals. Thus for every real a in LPω3 there is a Cohen real over L[a] and so by Proposition 1 in LPω3

there are no Σ1
2 m.o. families. Also note that since cofinally often we have added dominating reals,

LPω3 � b = ω3.
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4. ∆1
3 w.o. of the reals, a Π1

2 m.o. family, no Σ1
2 m.o. families with c = ℵ2

In this section we establish the proof of Theorem 2. The model is obtained as a slight modifi-

cation of the iteration construction developed in [1]. We restate the definitions of the posets used

in this construction. For a more detailed account of their properties see [1]. We work over the

constructible universe L.

If S ⊆ ω1 is a stationary, co-stationary set, then by Q(S) denote the poset of all countable

closed subsets of ω1\S with extension relation end-extension. Recall that Q(S) is ω1\S-proper,

ω-distributive and adds a club disjoint from S (see [1], [5]). For the proof of Theorem 2 we use the

form of localization defined in [1, Definition 1]. That is, if X ⊆ ω1 and φ(ω1, X) is a Σ1-sentence

with parameters ω1, X which is true in all suitable models containing ω1 and X as elements, then

L(φ) be the poset of all functions r : |r| → 2, where the domain |r| of r is a countable limit ordinal,

such that

1. if γ < |r| then γ ∈ X iff r(2γ) = 1

2. if γ ≤ |r|,M is a countable, suitable model containing r � γ as an element and γ = ωM1 , then

φ(γ,X ∩ γ) holds in M.

The extension relation is end-extension. Recall that L(φ) has a countably closed dense subset

(see [1, Remark 2]) and that if G is L(φ)-generic and M is a countable suitable model containing

(
⋃
G) � γ as an element, where γ = ωM1 , then M � φ(γ,X ∩ γ) (see [1, Lemma 2]).

We will use also the coding with perfect trees defined in [1, Definition 2]. Let Y ⊆ ω1 be

generic over L such that in L[Y ] cofinalities have not been changed and let µ̄ = {µi}i∈ω1 be a

sequence of L-countable ordinals such that µi is the least µ > supj<i µj , Lµ[Y ∩ i] � ZF− and

Lµ � ω is the largest cardinal. Say that a real R codes Y below i if for all j < i, j ∈ Y if and only

if Lµj [Y ∩ j, R] � ZF−. For T ⊆ 2<ω a perfect tree, let |T | be the least i such that T ∈ Lµi [Y ∩ i].
Then C(Y ) is the poset of all perfect trees T such that R codes Y below |T |, whenever R is a branch

through T , where for T0, T1 conditions in C(Y ), T0 ≤ T1 if and only if T0 is a subtree of T1. Recall

also that C(Y ) is proper and ωω-bounding (see [1, Lemmas 7,8]).

Fix a bookkeeping function F : ω2 → Lω2 and a sequence ~S = (Sβ : β < ω2) of almost disjoint

stationary subsets of ω1, defined as in [1, Lemma 14]. Thus F and ~S are Σ1-definable over Lω2

with parameter ω1, F−1(a) is unbounded in ω2 for every a ∈ Lω2 and whenever M,N are suitable

models such that ωM1 = ωN1 then FM, ~SM agree with FN , ~SN on ωM2 ∩ωN2 . Also ifM is suitable

and ωM1 = ω1 then FM, S̄M equal the restrictions of F , ~S to the ω2 of M. Fix also a stationary

subset S of ω1 which is almost disjoint from every element of ~S.

Recursively we will define a countable support iteration 〈Pα, Q̇β : α ≤ ω2, β < ω2〉 and a

sequence 〈Oα : α ∈ ω2〉, such that in LPω2 there is a ∆1
3-definable wellorder of the reals and

O =
⋃
α<ω2

Oα is a maximal family of orthogonal measures. Define the wellorder <α in L[Gα]

where Gα is Pα-generic just as in [1]. We can assume that all names for reals are nice and that

for α < β < ω2, all Pα-names for reals precede in the canonical wellorder <L of L all Pβ-names

for reals, which are not Pα-names. For each α < ω2, define a wellorder <α on the reals of L[Gα],

where Gα is a Pα-generic as follows. If x is a real in L[Gα] let σαx be the <L-least Pγ-name for x,
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where γ ≤ α is least so that x has a Pγ-name. For x, y reals in L[Gα] define x <α y if and only if

σαx <L σ
α
y . Note that whenever α < β, then <α is an initial segment of <β.

We proceed with the definition of the poset. Let P0 be the trivial poset. Suppose Pα and

〈Oγ : γ < α〉 have been defined. Let Q̇α = Q̇0
α ∗ Q̇1

α be a Pα-name for a poset where Q̇0
α is a

Pα-name for the random real forcing and Q̇1
α is defined as follows:

Case 1. If F (α) = {σαx , σαy } for some pair of reals x, y in L[Gα], then define Qα as in [1]. That

is Qα is a three stage iteration K0
α ∗ K̇1

α ∗ K̇2
α where:

(1) In V Pα∗Q̇0
α , K0

α is the direct limit 〈P0
α,n, K̇0

α,n : n ∈ ω〉, where K̇0
α,n is a P0

α,n-name for Q(Sα+2n)

for n ∈ xα ∗ yα, and K̇0
α,n is a P0

α,n-name for Q(Sα+2n+1) for n 6∈ xα ∗ yα.

(2) Let G0
α be a Pα ∗ Q̇0

α-generic filter and let Hα be a K0
α-generic over L[G0

α]. In L[G0
α ∗Hα] let

Xα be a subset of ω1 coding α, coding the pair (xα, yα), coding a level of L in which α has size at

most ω1 and coding the generic G0
α ∗Hα, which we can regard as a subset of an element of Lω2 . Let

K1
α = L(φα) where φα = φα(ω1, X) is the Σ1-sentence which holds if and only if X codes an ordinal

ᾱ < ω2 and a pair (x, y) such that Sᾱ+2n is nonstationary for n ∈ x∗y and Sᾱ+2n+1 is nonstationary

for n 6∈ x ∗ y. Let Ẋα be a P0
α ∗ Q̇0

α ∗ K̇0
α-name for Xα and let K̇1

α be a P0
α ∗ Q̇0

α ∗ K̇0
α-name for K1

α.

(3) Let Yα be K1
α-generic over L[G0

α ∗Hα]. Note that the even part of Yα-codes Xα and so codes

the generic G0
α ∗ Hα. Then in L[Yα] = L[G0

α ∗ Hα ∗ Yα], let K2
α = C(Yα). Finally, let K̇2

α be a

Pα ∗ Q̇0
α ∗ K̇0

α ∗ K̇1
α-name for K2

α.

Case 2. If F (α) = {σαx} where x is a code for a measure orthogonal to
⋃
γ<αOγ , then let Q̇1

α

be a Pα ∗ Q̇1
α-name for K0

α ∗ K̇1
α ∗ K̇2

α where in LPα∗Q̇α , K0
α is the direct limit 〈P0

α,n, Q̇0
α,n : n ∈ ω〉

where Q̇0
α,n is a P0

α,n-name for Q(Sα+2n) for every n ∈ x and a P0
α,n-name for Q(Sα+2n+1) for every

n /∈ x. Define K1
α and K2

α just as in Case 1 . In LPα∗Qα let g = G(x,Rα) be a code for a measure

which is equivalent to µx and codes the real Rα. Let Oα = {µg}.
In any other case, let Qα be a Pα-name for the trivial poset, Oα = ∅. With this the definition

of Pω2 and the family O =
⋃
γ<ω2

Oα is complete.

Claim. O =
⋃
γ<ω2

Oγ is a maximal family of orthogonal measures in Pc(2
ω).

Proof. It is clear that O is a family of orthogonal measures. It remains to verify its maximality.

Suppose the contrary and let f be a code for a measure in L[G] where G is Pω3-generic over L,

which is orthogonal to all measures in O. Fix α minimal such that f is in L[Gα] and let σ be

the <L-least name for f . Since F−1(σ) is unbounded, there is β ≥ α such that F (β) = {σ}.
Therefore Qβ is nontrivial and Oβ = {µg} for some measure µg which is equivalent to µf , which is

a contradiction.

Clearly, µ ∈ O if and only if for every countable suitable model M such that µ ∈ M there is

α < ωM2 such that Sα+m is nonstationary in L[r(µ)]M for every m ∈ ∆(r(µ)). Thus our family O

has indeed a Π1
2 definition. Just as in the proof of Theorem 1, to obtain a Π1

2-definable m.o. family

in LPω3 consider the union of O with the set of all point measures.

Since for every real a ∈ LPω3 there is a random real over L, by Proposition 1 in LPω3 there

are no Σ1
2 m.o. families. The bounding number b remains ω1 in LPω3 , since the countable support

iteration of S-proper ωω-bounding posets is ωω-bounding (see [1, Lemma 18] or [5]).
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Remark 4.1. In [3] the following question was raised:

Question 1. If there is a Π1
1 m.o. family, are all reals constructible?

This is to our knowledge still unsolved. Törnquist has recently shown that the existence of a

Σ1
2 m.o. family implies the existence of a Π1

1 m.o. family, and that the existence of Σ1
2 mad family

implies the existence of a Π1
1 mad family.
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[8] B. Kastermans, J. Steprāns, Y. Zhang Analytic and coanalytic families of almost disjoint functions,

Journal of Symbolic Logic 73 (2008), 1158-1172.

[9] A. S. Kechris Classical Descriptive Set Theory Graduate Texts in Mathematics, 156, Springer-Verlag,

1995.

[10] A. Kechris, N. E. Sofronidis A strong ergodic property of unary and self-adjoint operators Ergodic

Theory and Dynamical Systems 21 (2001).

[11] A. Miller Infinite combinatorics and definability , Annals of Pure and Applied Logic, vol. 41 (1989),

179-203.

[12] A.R.D. Mathias Happy Families, Annals of Mathematical Logic 12 (1977), 59-111.

[13] D. Preiss, J.Rataj Maximal Sets of Orthogonal Measures are not Analytic Proc. of the Amer. Math.

Soc. 93, No. 3 (1985), 471-476.

[14] D. Raghavan Maximal almost disjoint families of functions, Fundamenta Mathematicae 204 (2009),

241-282.

11


