Nonstandard Models and Analytic Equivalence Relations

Sy D. Friedman¹ and Boban Velickovic

Abstract. We improve a result of Hjorth[93] concerning the nature of thin analytic equivalence relations. The key lemma uses a weakly compact cardinal to construct certain non-standard models, which Hjorth obtained using #'s.

The purpose of this note is to improve the following result of Hjorth [93].

Theorem. (Hjorth) Suppose that for every real $x, x^{\#}$ exists. Let E be an analytic equivalence relation, Σ_1^1 in parameter x_0 . Then either there exists a perfect set of pairwise E-inequivalent reals or every E-equivalence class has a representative in a set-generic extension of $L[x_0]$.

Hjorth's proof makes use of his analysis of nonstandard Ehrenfeucht-Mostowski models built from #'s. Instead, we construct the necessary nonstandard models using infinitary model theory, assuming only the existence of weak compacts.

Theorem 1. Suppose that for every real x there is a countable ordinal which is weakly compact in L[x]. Then the conclusion of the Theorem still holds.

The main lemma is the following.

Lemma 2. Suppose that there is a weakly compact cardinal κ in L[x], x a real, such that κ^+ of L[x] is countable. Then there is a countable nonstandard ω -model M_x of ZF such that $x \in M_x$ and $L(M_x) = (L$ in the sense of M_x) has an isomorphic copy in a set-generic extension of $L[x_0]$, for any real x_0 .

It is not known if the conclusion of Lemma 2 holds in ZFC alone, for arbitrary x (with ZF replaced by an arbitrary finite subtheory).

Proof of Theorem 1 from Lemma 2. Suppose that E is an analytic equivalence relation, Σ_1^1 in the parameter x_0 and choose an x_0 -recursive tree T on $\omega \times \omega \times \omega^{\omega}$ that $xEy \longleftrightarrow T(x,y)$ has a branch. For each countable ordinal α we define $xE_{\alpha}y \longleftrightarrow \operatorname{rank}(T(x,y))$ is at least α ; then E_{α} is Borel in (x_0, c) where c is any real coding α and E is the intersection of the E_{α} 's. We may assume that each E_{α} is an equivalence relation. A theorem of Harrington-Silver says that a Π_1^1 -equivalence relation has a perfect set of pairwise inequivalent reals or each equivalence class has a representative constructible from the parameter defining the relation. As E_{α} is Borel in (x_0, c) where c is a real coding α and as we may assume that E and hence each E_{α} has no perfect set of pairwise inequivalent reals, we know that each E_{α} -equivalence class has a representative in $L[x_0, c]$ where c is any real coding α .

Now let x be arbitrary and by Lemma 2 choose a countable nonstandard ω -model M_x of ZF containing (x_0, x) such that $L(M_x)$ has an isomorphic copy in a set-generic extension N of $L[x_0]$. Let $a \in \text{ORD}(M_x)$ be nonstandard and let c be a code for a, generic over M_x ; then by applying Harrington-Silver in $M_x[c]$ we conclude that there is y in $L(M_x)[x_0, c]$ such that yE_ax . By choosing c to be generic over N as well we get that y belongs to a set-generic extension of $L[x_0]$. Finally, yEx since if not, $yE_\alpha x$ would fail for some α admissible in (y, x) and hence for some (standard) $\alpha < a$.

 $^{^1\}mathrm{Research}$ supported by NSF Contract # 92–05530. 1991 Mathematics Subject Classification Numbers: 04A15, 03C75.

Proof of Lemma 2. We use infinitary logic. Fix a real x and assume V = L[x]. Let κ be weakly compact and introduce the language \mathcal{L} consisting of the formulas in the language of set theory with constants \underline{a} for $a \in L_{\kappa}[x]$, closed under conjunctions and disjunctions of size less than κ (however we allow a formula to have only finitely many free variables). Let T be the theory of $\langle L_{\kappa}[x], a \rangle$, $a \in L_{\kappa}[x]$ in this language. An *n*-type is a set of formulas Γ with free variables $v_1 \dots v_n$, and such a Γ is consistent with T if there is a model M of T and $m_1 \dots m_n$ in M such that $M \models \varphi(m_1 \dots m_n)$ for each $\phi \in \Gamma$, where M exists in a set-generic extension of V = L[x]. Γ is complete if for every $\varphi(v_1 \dots v_n)$ either φ or $\sim \varphi$ belongs to Φ .

Now work in Levy collapse L[x, c] where c is a real coding κ^+ of L[x]. Let d_1, d_2, \ldots be ω -many new constant symbols and for $D \subseteq \{d_1, d_2, \ldots\}$ let the language \mathcal{L}_D be defined like \mathcal{L} but with the new constant symbols from D. Define $T_0 = T \subseteq T_1 \subseteq \ldots$ and $D_0 = \phi \subseteq$ $D_1 \subseteq D_2 \subseteq \ldots$ inductively as follows: if T_n, D_n have been defined select a complete k-type $\Gamma_n(\vec{v})$ in L[x] consistent with T_n , choose $D_n \subseteq D_{n+1}$ so that card $(D_{n+1} - D_n) = k$ and let $T_{n+1} = T_n \cup \Gamma_n(\vec{d})$ where \vec{d} enumerates $D_{n+1} - D_n$. This can be done in such a way that $\bigcup_n T_n = T^*$ is L[x]-saturated: if $\Gamma(\vec{v}, \vec{w})$ is an L[x]-type, \vec{d} a finite sequence from D, $\Gamma(\vec{d}, \vec{w})$

consistent with T^* then T^* includes $\Gamma(\vec{d}, \vec{e})$ for some \vec{e} . And note that each T_n belongs to L[x] (though of course T^* itself makes use of the Lévy collapse c).

Let M_x be the model determined by T^* , whose universe consists of (equivalence classes) of the constants $d_n, n \in \omega$. Note that a set in L[x] of sentences in some $\mathcal{L}_{\mathcal{D}}$ is consistent iff each subset of L[x]-cardinality $< \kappa$ is. An easy consequence is that M_x is nonstandard with standard ordinal κ .

Now consider $L(M_x)$: every *n*-type in the language $\mathcal{L}_0 = (\text{same as } \mathcal{L} \text{ but restricted to } L_{\kappa})$ that is realized in $L(M_x)$ belongs to L, as each of its initial segments (obtained by restricting to some $L_{\alpha}, \alpha < \kappa$) belongs to L and κ is weakly compact. Also, just as M_x is saturated for types in $L[x], L(M_x)$ is saturated for types in L, since again by weak compactness any \mathcal{L}_0 -type in L consistent with T can be extended to a complete \mathcal{L} -type consistent with T in L[x].

Now it is clear that $L(M_x)$ has an isomorphic copy in L[c]: using c we can do the same construction as we did above in L[x, c], obtaining M_0 , a model that is saturated for \mathcal{L}_0 -types in L and realizing only types in L. Now construct an isomorphism via a back and forth argument in ω steps between M_0 and $L(M_x)$.

Finally note that by the countability of κ^+ of L[x], the desired model M_x exists not only in L[x, c] but also in V.

Remark. Lemma 2 can also be used to establish the following improvement of the Glimm-Effros style dichotomy theorem of Hjorth-Kechris [96]: Let E be a Σ_1^1 equivalence relation. Assume that for every real x there is a countable ordinal which is weakly compact in L[x]. Then either E_0 is continuously reducible to E or E is reducible to $2^{<\omega_1}$ by a function Δ_2^1 in the codes.

References

Harrington-Shelah [82] Counting equivalence classes for co- κ -Souslin equivalence relations, in Logic Colloquium 80, North Holland, pp. 147–152.

Hjorth [93] Thin Analytic Equivalence Relations and Effective Decompositions, Journal of Symbolic Logic. Vol. 58, No. 4, pp. 1153–1164.

Hjorth-Kechris [96] Analytic Equivalence Relations and Ulm-Type Classifications, to appear, Journal of Symbolic Logic.

Silver [80] Counting the number of equivalence classes for Borel and coanalytic equivalence relations, Annals of Mathematical Logic, Vol. 18, pp. 1–28.