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ABSTRACT. The (maximal) iterative concept of set is standardly taken to justify
ZFC and some of its extensions. In this paper, we show that the maximal iter-
ative concept also lies behind a class of further maximality principles expressing
the maximality of the universe of sets V in height and width. These principles
have been heavily investigated by the first author and his collaborators within the
Hyperuniverse Programme. The programme is based on two essential tools: the
hyperuniverse, consisting of all countable transitive models of ZFC, and V -logic,
both of which are also fully discussed in the paper.

1. THE MAXIMAL ITERATIVE CONCEPT OF SET

1.1. Generalities. In this paper, we will be pre-eminently dealing with maximal-
ity principles for the universe of sets, that is, principles which prescribe that the
universe is maximal. Of course, it is far from obvious what ‘maximal’ means or
implies here, and the next subsections aim to fully clarify what we mean by that.

Maximality principles may be seen as expressing a fundamental feature of the
iterative concept of set. It is not too hard to see why, yet it is worth examining this
in more detail.

The iterative concept of set consists in the idea that sets are generated in stages,
starting with ur-elements or, possibly, with the empty set and, then, forming the
power-set of the previous levels at stages indexed by successor-ordinals and the
union of all previous levels at stages indexed by limit-ordinals. The resulting
picture is simply what is standardly acknowledged to be the universe of sets, the
union of the Vα for all ordinals α, consisting of all sets formed through all stages.

The history of the progressive development of the axiomatisation of set theory
and, in particular, of the emergence of ZFC has shown that all the most widely
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accepted axioms of set theory are true of the iterative concept and may, in fact, be
motivated by it. This fact has gradually evolved into the more robust view that
the concept of set is essentially equivalent to the iterative concept of set.

There are several issues with the iterative concept and its full justifiability.1

However, in light of our goals, here we only wish to focus our attention on two
prominent features of it: its connection to maximality and its closeness to a platon-
istic interpretation of mathematics.

Sometimes it is said that a guiding principle in the ‘genetic’ approach to sets is
that one should form as many of them as possible. The principle seems equivalent to
the idea that all logical and conceptual constraints on the formation of sets should
be removed, and this leads to viewing the iterative concept as a maximum (or
maximal) iterative concept. Here is how Wang comments on the principle with
respect to the power-set axiom:

The concept of all subsets is often thought to be opaque because we
envisage all possibilities independently of whether we can specify
each in words; for example, just as there are 210 subsets of a set with
10 members, we think of 2a subsets of a set with a members when
a is an infinite cardinal number. In particular, we do not concern
ourselves over how a set is defined, e.g. whether by an impredica-
tive definition. This is the sense in which the individual steps of
iteration are ‘maximum’. (in [5], p. 532)

Two main features of the maximal approach are neatly highlighted in the passage
above: the fact that 1) the ‘infinite should be treated in a way analogous to the
finite’, a principle which allows us to extend certain set-theoretic operations hold-
ing in the finite to the transfinite, and 2) the fact that impredicative definitions are
seen as entirely legitimate.

As is known, Bernays, in his [6], had construed the aforementioned principles
as expressing Platonism in mathematics (set theory). In Bernays’ view, central to
mathematical (set-theoretic) Platonism would be a quasi-combinatorial conception,
that is the view that mathematical (set-theoretic) operations, entities and concepts
holding in the finite can (and should) be extended to the infinite, even in the ab-
sence of any available methods of ‘construction’.2

1For further details, see the classical Boolos, [7], Parsons, [23] and Wang, [26]. Potter, [24] pro-
vides a more recent, but not less accurate, overview of the topic.

2Cf. the following two crucial passages of [6]: ‘But analysis is not content with this modest
variety of platonism [that of arithmetical platonism, our note]; it reflects it to a stronger degree with
respect to the following notions: set of numbers, sequence of numbers, and function. It abstracts
from the possibility of giving definitions of sets, sequences, and functions. These notions are used
in a ‘quasi-combinatorial’ sense, by which I mean: in the sense of an analogy of the infinite to the
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For instance, on this view, the existence of the power-set of the integers does not
follow from exploring all known methods for constructing subsets of the integers,
but rather from an ideal intuitive grasp of the fully given collection of subsets of
integers.

Now, if the maximal iterative concept really is the expression of a platonistic
attitude in mathematics, in accordance with this fact, we might, as a consequence,
want to (or be forced to) hold that V is fully given in an ideal sense, that no possible
extension of it is conceivable (a position known as actualism) or that all statements
of set theory have a unique truth-value, all of which statements do have notable
bearings on the availability of the maximality principles we will be introducing.
Therefore, all such issues will have to be carefully taken into account throughout
the paper.3

1.2. Expanding on the Maximal Concept. Returning to the the maximal concept
of set, its manifestations in set theory are manifold. Bernays, in the previous quote,
was mentioning ‘methods of collection’, such as those permitted, for instance, by
the Infinity, the Power-Set or the Replacement Axiom.

One of the most distinctive ways to construe the maximality inherent in the
concept of set is the idea that the universe itself, V , be maximal. Again, Wang ex-
pounds this further characterisation of the meaning of ‘maximal’ in the following
way:

In a general way, hypotheses which purport to enrich the content
of power sets (say that of integers) or to introduce more ordinals
conform to the intuitive model. We believe that the collection of all
ordinals is very ‘long’ and each power set (of an infinite set) is very
‘thick’. Hence, any axioms to such effects are in accordance with
our intuitive concept. ([5], p. 553)

To rephrase Wang’s quote, one could say: the iterative concept of set leads one
to realise that there is a rich hierarchy of sets, whose formation is given by the
(maximal) procedures associated (‘methods of collecting’). Now, it is reasonable
to ask whether such methods of collecting (e.g., the Power-Set Axiom) may them-
selves be maximised in some way. In simpler words, one could say that, according
to the maximal iterative concept, the hierarchy of sets should be as wide as possible
and extend as far as possible. However, it is not prima facie clear what ‘as long

finite’ and later in the text: ‘In Cantor’s theories, platonistic conceptions extend far beyond those
of the theory of real numbers. This is done by iterating the use of the quasi-combinatorial concept
of a function and adding methods of collection. This is the well-known method of set theory’ (both
are reproduced in [5], p. 259-60).

3See, in particular, §2.2 and §7.
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as possible’ and ‘as far as possible’ mean. It is therefore the task of the study of
maximality principles to disclose (or clarify) the meaning of ‘maximality’.

1.3. New Intrinsically Justified Axioms. The main rationale for exploring max-
imality principles is to extend ZFC, through, ideally, declaring these principles
new set-theoretic axioms. One straightforward criterion to evaluate whether a
new axiom is acceptable is to checking whether it decides set-theoretic statements
which are not decided by ZFC. But there’s something else which should guide
us in finding new axioms, that is their conceptual ‘aptness’, measured against the
maximal iterative concept.

Since Gödel, [14], it is customary, in the literature, to define these two forms of
evidence for new axioms as, respectively, extrinsic and intrinsic. Intrinsic evidence
relates to ‘conformity to the intuitive model’, as Wang would say, whereas extrin-
sic evidence to the success of an axiom. Maximality principles, as we formulate
them, clearly obey the maximal iterative concept, and this will fully justify our
view that the maximality principles described in the next sections are intrinsically
motivated. Moreover, these principles should ultimately be viewed as new intrin-
sically justified axioms, but, as detailed in the last section, this will require the sat-
isfaction of further epistemic desiderata.4 It should be noticed that the maximality
principles we introduce have also clearly proved to be able to reduce set-theoretic
incompleteness, although we will not deal with this in the present paper.

To summarise, a well-established conception of the axioms of set theory holds
that ZFC conforms to a maximal iterative concept, and that its extensions should
follow suit.5 Maximality principles are an expression of this attitude and, thus,
can be viewed as being intrinsically motivated.

4The difference between an axiom’s being intrinsically motivated (plausible) and intrinsically jus-
tified consists in the level of definitiveness conveyed by the justificatory process. Thus, an intrin-
sically motivated axiom (or principle) need not be a definitively accepted axiom (or principle) of
set theory. Koellner, [21], p. 207-8, explains the difference as follows: ‘..the notion of intrinsic jus-
tification is intended to be more secure than mere ‘intrinsic plausibility’ [...], in that whereas the
latter merely adds credence, the former is intended to be definitive (modulo the tenability of the
conception).’

5Incidentally, such a view is already expressed (although very tersely) by Gödel when he dis-
cusses the prospects of deciding CH through a new axiom: ‘..from an axiom in some sense opposite
to this one [V = L], the negation of Cantor’s conjecture could perhaps be derived. I am thinking
of an axiom which (similar to Hilbert’s completeness axiom in geometry) would state some maxi-
mum property of the system of all sets, whereas axiom A [i.e. V = L] states a minimum property.
Note that only a maximum property would seem to harmonize with the concept of set...’ ([15], p.
262-63, footnote 23).
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2. A ZERMELIAN APPROACH TO V

2.1. Height and Width Maximality. In this section, we introduce further key con-
cepts concerning the relationship between maximality principles and the maximal
iterative concept.

Set theorists have progressively formulated several maximality principles.6 As
has been clarified above, all of these prescribe, in some way, that the universe
of sets is a very rich structure, in particular, the richest possible allowed by the
set-theoretic axioms.

Now, as hinted at above in Wang’s quote, the maximality of V has two dimen-
sions, maximality in height and maximality in width, which can be characterised as
follows:

Height Maximality. The cumulative hierarchy should be as tall as possible.

Width Maximality. The cumulative hierarchy should be as wide as possible.

Again, making sense of the statements above consists in understanding carefully
what it means for V to be as tall as and as wide as possible. Let’s start with height
maximality.

There is a principle and, in fact, a class of principles, which has attracted set-
theorists’ attention in the last few decades, which seems to express height max-
imality very aptly, and this is the Reflection Principle. Very generally, reflection
can be described as asserting that the universe cannot be uniquely characterised
by any given collection of first-order properties. As is often said, the universe is in-
describable (or ineffable).7 Now, through reflection one can generate new ordinals
α’s and corresponding new levels Vα’s of the hierarchy. Therefore, another way to
construe reflection as a maximality principle is viewing it as inducing (maximal)
‘lengthenings’ of V , and that is precisely our construal of the principle.

Mathematically, in ZFC, reflection is a theorem which asserts that, if V has a
first-order property φ, then for some ordinal α, there is a Vα which satisfies φα
(that is, the relativisation of φ to Vα). A stronger version of reflection, in particular,

6Incurvati, in [18], makes an overview of different forms of maximality in set theory, and also
provides a mathematically detailed account of some of the most important maximality principles
in use. Among other things, the paper also includes a philosophical examination of the IMH,
which is widely discussed in the present paper.

7It is widely known that the emergence of the principle is connected to Cantor’s idea of the
absolute infinity of V (for which see Cantor’s renowned 1899 letter to Dedekind, in [8], p. 931-5).
Gödel was one of the major advocates of reflection, to the point that he seems to have surmised that
the axioms of set theory should be essentially reducible to one single reflection axiom (see Gödel,
[14], Wang, [27] and Ternullo, [25] for this).
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implies that, given any arbitrarily high level α, there is always a β > α such that
Vβ |= φβ .

Strengthenings of first-order reflection, in particular, second-order reflection, in-
cluding second-order parameters, are able to prove that there exist such large car-
dinals as inaccessibles and Mahlos, in fact, that there exist proper classes of them.
Therefore, second-order reflection is strong enough to provide new ordinals and,
consequently, if one construes height maximality in terms of producing ‘length-
enings’ of V , then one could say that second-order reflection induces a significant
lengthening of V .

As far as width maximality is concerned, things are somewhat less intelligible.
The width of the universe is given by the extent of the power-set operation. Now,
it is unclear how one could vary the extent of such an operation. As for the height
of the universe, one could try to maximise width by also adopting some form of re-
flection. Width reflection has been informally introduced by Koellner in [21],8 and
essentially arises from a construal of the core model programme in terms of reach-
ing an approximation of V using L-like models L[0#], L[0##], ..., L[0∞], .... Each
of these, by width reflection, is taken to fail to approximate V by some specified
property P . For instance, failure by L to approximate V leads to proving the exis-
tence of 0#.9 So this may overall be construed as a way to produce thickenings of
L which fail to fully approximate V from within in the same way as Vα must fail to
approximate V from below. However, it is controversial, to say the least, that this
form of width reflection, heavily based on L, is in accordance with the maximum
iterative concept.

2.2. Actualism and Potentialism. Zermelo’s Conception. The aforementioned
maximality principles for V , if all fully in line with the maximal iterative con-
cept, are conducive to several issues concerning the correct conceptualisation of
V , which need be taken into account.

For instance, it has been argued that if height maximality is essentially ex-
pressed by reflection principles construed as prescribing the indescribability of V ,
then one is more naturally inclined to see V as fully given in the sense of being
inextensible. This is the actualist position, which had already been mentioned in
§1.1. But if one adopts actualism, then higher-order quantification is less likely to
be made sense of.10

8The idea is also very carefully examined by Incurvati in the mentioned [18] and further ex-
plored in [10]. See also p. 17 of the present article.

9A brief description of the core model programme is in Jensen, [19].
10Again, see [21] for this.
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A potentialist conception, on the other hand, construes V as non-fixed in height
and width and, thus, can make sense of higher-order quantification and, in gen-
eral, of lengthenings and thickenings more easily. What would be lost for the
potentialist, though, is the availability of the full givenness of V , which appears
to lie at the root of reflection.

One way to resolve this would be to declare that the Platonism inherent in the
maximal iterative concept would automatically imply that one is supposed to be
able to intuit V as a completed object. By this interpretation, full-fledged actualism
would be the only option available and, furthermore, maximality principles refer-
ring to widenings and lengthenings of V would inevitably be viewed as meaning-
less.11

Interestingly enough, we will show that the maximality principles formulated
within the Hyperuniverse Programme are compatible with both potentialism and
actualism. In particular, even a radical form of potentialism can accommodate
maximality. And actualism, accompanied by some class theory of the same streng-
th as MK (but, in fact, less robust than that), also fully befits the programme.12

All this might lend support to the view that the issues of whether the maximal
iterative concept is essentially platonistic in character, and of whether a platonist
could only be an actualist about V are less relevant than it might seem at first
glance.

In any case, the underlying conception in which the Hyperuniverse Programme
is most fruitfully cast was the Zermelian conception, as described in [28]. In that
work, Zermelo, after formulating the axioms of set theory (often labelled Z2),
proves that, for those axioms (some of which have a second-order characterisa-
tion), the power-set of V is fixed. More specifically, he proves that:

Theorem 1. Any two models of the axioms of set theory Z2 are either isomorphic, or one
is isomorphic to a proper initial segment of the other.

This settles things as far as the width of the universe is concerned. Concerning
height, Zermelo introduces the concept of a normal domain. A normal domain is
the least rank initial segment of the hierarchy which satisfies the (second-order)
axioms of set theory. The least normal domain which satisfies (second-order) ZFC
is, as is known, Vκ, where κ is the least inaccessible cardinal. But then one can
iterate this, by considering (second-order) ZFC+‘there is one inaccessible’. The

11But things are a lot more subtle. Zermelo, for instance, who would seem to have been a
platonist was the major proponent of a partly potentialist (if width actualist) conception, for which
see the next few pages. For Zermelo’s ideas on philosophy, set theory and the justifiability of the
axioms, see, in particular, [22] and [20].

12A full account of this is provided by Antos, Barton and Friedman in [1]. For further details,
also see footnote 21.
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least normal domain which satisfies (second-order) ZFC+‘there is one inaccessi-
ble’ is Vλ, where λ > κ is the least inaccessible after κ. Thus, one obtains a vertical
multiverse consisting of Vα’s, where α is some large cardinal.

The Zermelian picture of the universe has some clear attractions, some of which
can be described as follows:

(1) Height potentialism fully befits the form of reflection introduced in the
next section. It is very comfortable to define lengthenings of the hierarchy
required by this principle within the Zermelian picture.

(2) While height actualism seems counter-intuitive to some extent, width actu-
alism would seem to be more easily justifiable insofar as there is no appar-
ent way to address thickenings of V in a way which resembles the ordinal-
indexed progress of stages in height.

(3) One can make full sense of higher-order quantification more easily within
the Zermelian multiverse, insofar as the universe is non-categorical in height.
Fully actualist (absolutist) versions of the universe struggle to provide an
equally acceptable account of this.

These reasons may be insufficient for a full case in favour of the adoption of
Zermelo’s picture as the only correct picture of V , but are clearly sufficient to ac-
commodate the maximality principles formulated within the Hyperuniverse Pro-
gramme. However, although the Zermelian conception may be viewed as the
correct conceptualisation of V , we will point the reader, when necessary, to alter-
native options.

3. HEIGHT MAXIMALITY: REFLECTION

In a sense, the principles we will be discussing improve and expand on those
already mentioned in §2.1. For instance, our height maximality principle is a form
of the reflection principle and, in our view, the strongest possible. In order to see
this we have to recall some notions already briefly introduced in §2.1.

As said, height maximality in terms of reflection of the universe V can be intu-
itively formulated as follows:

(Reflection) Any property which holds in V already holds in some rank initial seg-
ment Vα of V .

In other words, V cannot be described as the unique initial segment of the uni-
verse satisfying a given property. The strength of such reflection depends on what
we take the word ‘property’ to mean13. If this just means ‘first-order property with

13Properties are often formulated using higher-order quantification. Let M be a class. We say
that a variable x is 1-st order (or of order 1) if it ranges over elements of M . In general, we say



EXPLAINING MAXIMALITY THROUGH THE HYPERUNIVERSE PROGRAMME 9

set parameters’ then we obtain Lévy reflection, a form of reflection provable in
ZFC.

A priori, there is no need to limit ourselves to first-order properties of V . But
to express second-order properties of V we need to move beyond ZFC to Gödel-
Bernays class theory GB. The latter has variables ranging over sets and also vari-
ables ranging over the larger collection of classes (collections of sets: note that
every set is also a class). The ∈-relation applies between sets and classes and we
impose the Comprehension Scheme for formulas with only set-quantifiers (but
with both set and class variables). Thus in GB we can quantify over classes but
cannot apply Comprehension to formulas containing such quantifiers. We also
include Global Choice as an axiom, which says that there is a class function F such
that F (x) is an element of x for every nonempty set x.

GB is conservative over ZFC. However it can be strengthened by adding second-
order reflection axioms to it, such as:

• Π1
m Reflection If ϕ(R) is a Π1

m formula with a class variableR, then reflection
for ϕ(R) is the implication

ϕ(R)→ (Vα, Vα+1) � ϕ(R ∩ Vα)

where on the right-hand-side the set variables range over Vα and the class
variables over Vα+1.

Even Π1
1 Reflection for sentences (without the class variable R) is rather strong,

as it implies the existence of an inaccessible cardinal. That is because the regularity
of an ordinal α is equivalent to the truth of a Π1

1 sentence in (Vα, Vα+1). By adding
parameters we get stronger large cardinals such as Mahlo cardinals and weakly
compact cardinals.

But just as ZFC is inadequate for second-order reflection, GB is inadequate for
third-order reflection.14

that a variable R is n + 1-st order (or of order n + 1), 0 < n < ω, if it ranges over Pn(M), where
Pn(M) denotes the result of applying the powerset operation n times to M . A formula ϕ is Πn

m

if it starts with a block of universal quantifiers of variables of order n + 1, followed by existential
quantification of variables of order n + 1, and these blocks alternate at most m − 1 times; the rest
of the formula can contain variables of order at most n + 1, and quantifications over variables of
order at most n. Σnm is obtained by switching the words universal and existential.

14As an aside, it is worth noting that if formulated with third-order parameters, third-order
reflection is in fact inconsistent! For instance, for a third-order parameter R, i.e. a collection of
classes, one is tempted by the following natural-looking principle:

• Third-order reflection If ϕ(R) is true in (V,R) then for some α, ϕ(R̄) is true in (Vα, R̄),
where R̄ = {R ∩ Vα | R ∈ R}.

But such a principle will fail if R consists of all bounded subsets of the ordinals (viewed as
a collection of classes) and ϕ(R) simply says that each element of R is bounded in the ordinals.
Therefore when discussing third-order reflection it is customary to only allow second-order, and



10 EXPLAINING MAXIMALITY THROUGH THE HYPERUNIVERSE PROGRAMME

Of course there is no reason to stop at third-order reflection, and in light of
the Zermelian conception, it is meaningful to discuss ‘α-th order’ reflection for
ordinals α in lengthenings of V , i.e. in models V ∗ which have V as a rank initial
segment.

This naturally leads to the following form of higher-order reflection:
• Extended Reflection Axiom (ERA) V satisfies the ERA if V has a length-

ening V ∗, a model of ZFC, such that if ϕ is first-order and ϕ(A) holds in
V ∗ where A is a subclass of V , then ϕ(A ∩ Vα) holds in Vβ for some pair of
ordinals α < β in V .

This allows us to reflect properties (with second-order parameters) that are α-th
order, for all ordinals α appearing in the least ZFC model lengthening V . This
embodies all of the classical froms of strong reflection and more.

However, clearly the ERA can easily be strengthened further, by requiring the
lengthening V ∗ of V to satisfy more than ZFC, such as ZFC + ‘there is ZFC-
lengthening of ZFC’. Indeed, it appears that there is no optimal form of reflection
which can be described in terms of lengthenings of V , as we can always strengthen
such a reflection principle further by requiring a lengthening V ∗ of V in which the
principle holds with reference only to lengthenings of V appearing in V ∗.

How are we then to achieve an optimal reflection principle? This problem is
fully addressed mathematically in Section 2.2 of [11], where the principle of #-
generation is introduced. This asserts the existence of a special kind of set called
a # (sharp) that ‘generates’ V through iteration. An optimal form of reflection
results as this iteration also produces a closed unbounded class of indiscernibles
for V , adequate for witnessing any conceivable form of reflection. It is crucial that
a # generating V cannot be an element of V , otherwise such optimality would not
be possible.

We cannot provide the full details of #-generation here, but at least some no-
tions will be briefly discussed.

First, imagine that V can be seen as being the last step in an elementary chain of
universes (Vκi | i < ∞) and we set V = Vκ∞ . We can continue the construction of
this chain ‘beyond’ V itself, producing an upwards elementary chain of universes
V = Vκ∞ ≺ Vκ∞+1 ≺ Vκ∞+2 ≺ · · · .

By elementarity, all of these universes will satisfy the same first-order sentences,
but we want more. We want that any two pairs of universes ‘resemble’ each other,

not third-order parameters. An alternative is to consider embedding reflection (see for example the
discussion in Section 2.1 of [11], and in [17]) where R̄ results from applying the inverse of an
elementary embedding to R. This very strong form of reflection yields supercompact cardinals,
however does not appear to be derivable from the maximal iterative conception, as are the forms
of reflection consistent with V = L.
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i.e. satisfy the same first-order sentences, and this can be extended to any pair
of n-tuples of universes W~i, where ~i = i0 < i1 < · · · < in−1 and W~j , where ~j =
j0 < j1 < · · · < jn−1 (to simplify our notation, we use the symbol Wi for V ∗κi). But
we want to impose an even higher level of resemblance, whereby all n-tuples of
models satisfy the same second-order sentences and so on. In the end, the whole
process can be seen as the construction of a series of embeddings πij : V → V ,
leading to an indiscernibly-generated V . In more rigorous terms:
Definition 2. ([11], p.6). V is indiscernibly-generated iff: (1) There is a continuous
sequence κ0 < κ1 < · · · of length ∞ such that κ∞ = ∞ and there are commuting
elementary embeddings πij : V → V , where πij has critical point κi and sends κi to κj .
(2) For any i ≤ j, any element of V is first-order definable in V from elements of the range
of πij together with κk’s for k in the interval [i, j).

Indiscernible-generation has an equivalent but more useful formulation in terms
of #-generation (for its definition see [11], p. 6). So we will use the term #-
generation for this strong form of reflection.

Now, one can show that #-generation implies all forms of reflection which are
compatible with V = L (again see [11]).

As a consequence of this, we believe that #-generation expresses the strongest
possible amount of vertical reflection and therefore can legitimately claim to be
the optimal principle expressing the vertical maximality of V.

4. WIDTH MAXIMALITY: V -LOGIC, IMH

4.1. The Strategy. From the Zermelian perspective, which incorporates height
potentialism and width actualism, expressing principles of width maximality prin-
ciples presents a real challenge. Whereas in the case of height maximality we
made liberal use of lengthenings of V , no analogous notion of thickening (or outer
model) of V is available.

Now, since [9], the programme has expressed width maximality in terms of the
following principle:

• (The Inner Model Hypothesis, IMH) If a first-order sentence holds in an
inner model of some outer model of V then it also holds in some inner
model of V .

As is clear, the IMH is conceptually problematic for the Zermelian, as it ex-
plicitly refers to ‘outer models’ which are not available in the Zermelian picture.
However, if the IMH were referring not to the whole V , but just to some countable
transitive model (which we will mostly indicate as ‘little-V ’) of ZFC, then the IMH
would make perfect sense even within a Zermelian perspective.15

15Note that IMH is also known to consistently hold for some choice of little-V . See [12].
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However recent developments, discussed in [2], [10] and [4], provide a solution
to this problem. The introduction of V -logic enables one to express first-order
properties of arbitrary outer models (almost) internally within V , in the same way
as first-order properties of set-forcing extensions of V can be internalised using
the forcing relation. The word ‘almost’ occurs because this new ‘truth in outer
models’ relation will not in general be first-order definable over V , but rather over
a small lengthening (not thickening) of V called Hyp(V ) (the least ‘admissible set’
containing V as an element). As lengthenings are available to the Zermelian, this
enables her to express principles such as the IMH without loss of content.

Therefore, we shall scrutinise two approaches to width maximality: the first,
through the use of V -logic, will allow one to make sense of IMH as if it were
referring to the whole V , and the second will construe the IMH as referring to
some countable model ‘little-V ’. The latter approach is particularly convenient, as
it entirely befits our goal to reduce the study of the consequences of maximality
principles to their consequences in countable transitive models.

Let us review the first approach. As we said, the case of IMH is analogous to
that of Martin’s Axiom (MA), a principle of set-forcing.16 Several formulations of
MA are available, in particular, MAℵ1 asserts:

• (Outer Model MAℵ1). Whenever V [G] is a generic extension of V by a par-
tial order P with the countable chain condition in V , and ϕ(x) is a Σ1(P(ω1))
formula (i.e. a Σ1 formula with a subset of ω1 as parameter), if in V [G] there
is a y such that ϕ(y) holds, then there is also such a y in V .

Note the quantification in this definition over the (generic) outer models V [G]
of V . How can the width actualist possibly make sense of this? The answer is of
course via the definable forcing relation:

• (Internal MAℵ1). Whenever P is a partial order with the countable chain
condition in V , and ϕ(x) is a Σ1(P(ω1)) formula, if there is a forcing con-
dition p in P forcing the existence of a y such that ϕ(y) holds, then there is
also such a y in V .

These two formulations of MAℵ1 are equivalent when V is replaced by a count-
able transitive model little-V of ZFC. When little-V is not countable (and possibly
equal to V ), we use the latter internal formulation to express MAℵ1 .

Thus we convert a principle that makes reference to outer models of V to one
which is internal, expressible within V .

4.2. V -logic and IMH. The point of V -logic is that it provides a tool to enable us
to do the analogous thing not for just generic outer models, but for outer models
in general. V -logic has a symbol for ∈, a predicate symbol V̄ to denote V and a

16For further on this analogy, see [4].
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constant symbol x̄ to denote x for each set x. The proof relation `V of V -logic
begins with axioms that assert that x̄ belongs to V̄ for each set x, together with the
usual axioms of first-order logic and all quantifier-free sentences true in V . The
rules of inference are modus ponens together with the infinitary rules:

• From ϕ(ȳ) for all y in x, infer ∀y ∈ x̄ϕ(y).
• From ϕ(x̄) for all x in V , infer ∀x ∈ V̄ ϕ(x).

Proofs are then well-founded trees which can be shown to belong toHyp(V ), the
least admissible set containing V as an element. Assuming height potentialism,
(which is provided by the Zermelian conception), Hyp(V ) makes full sense.

As said, now we proceed in a way fully analogous to what we did above using
the forcing relation. Reconsider the IMH:

• (The Inner Model Hypothesis, IMH) If a first-order sentence holds in an
inner model of some outer model of V then it also holds in some inner
model of V .

We then formulate an internal version of this as follows:

• (The Internal Inner Model Hypothesis, IMH) If the theory in V -logic Tϕ
asserting that the first-order sentence ϕ holds in an inner model of some
outer model of V̄ is consistent in V -logic, then there is an inner model of V
in which ϕ holds.

The ‘internal’ IMH is expressible as a first-order property of Hyp(V ), using the
fact that the consistency of Tϕ in V -logic is equivalent to saying that there is no V -
logic proof inHyp(V ) of a contradiction using the axioms of Tϕ. And as in the case
of MAℵ1 , the two formulations of the IMH, the one using outer models and the
internal one, are equivalent when V is replaced by a countable transitive model
little-V of ZFC.

Thus V -logic opens the door to expressing a wide range of width maximality
principles, even in the Zermelian, width actualist context. With rare exceptions,
these principles are formalisable internally inHyp(M) for arbitrary transitive ZFC
models M , and not just for countable ones. In fact, in almost all cases, the study
of width maximality principles for V can be reduced to its study for countable
transitive models of ZFC. We discuss this in the next section.

5. REDUCTION TO H

5.1. Reduction of IMH. Our introduction of V -logic was intended to deal with
the problem that for an uncountable transitive model of ZFC (such as V itself)
there may be no (proper) outer models available and therefore we are required to
discuss width maximality in terms of the consistency of V -logic theories.
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As promised, we shall now deal with the second approach, where V is taken to
be a countable transitive model little-V . Moreover, in this section we show that
we can reduce our study of width maximality, and to some extent of height max-
imality, to a study of countable transitive models. As the collection of countable
transitive models carries the name hyperuniverse, we are led to what is known as
the Hyperuniverse Programme.

First we illustrate the reduction to the hyperuniverse with the specific example
of the IMH. Suppose that we formulate the IMH as above, using V -logic, and want
to know what first-order consequences it has.

Fact 3. Suppose that a first-order sentence ϕ holds in all countable models of the IMH.
Then it holds in all models of the IMH.

This is for the following reason: Suppose that ϕ fails in some model M of the
IMH, where M may be uncountable. Now notice that the IMH is first-order ex-
pressible in Hyp(M), the least admissible lengthening of M . But then apply the
downward Löwenheim-Skolem theorem to obtain a countable little-v which sat-
isfies the IMH, as verified in its associated little-Hyp(V ), yet fails to satisfy ϕ. But
this is a contradiction, as by hypothesis ϕ must hold in all countable models of the
IMH.

So without loss of generality, when looking at first-order consequences of width
maximality criteria as formulated in V -logic, we can restrict ourselves to countable
little-V ’s. The advantage of this is that, then, we can dispense with the little-
V -logic as by the Completeness Theorem for little-V -logic, consistent theories in
little-V -logic do have models, thanks to the countability of little-V . Thus for a
countable little-V , the IMH simply says:

• (IMH for little-V ’s). Suppose that a first-order sentence holds in an inner
model of an outer model of little-V . Then it holds in an inner model of
little-V .

But, if V is taken to be ‘little-V ’, then V can really be ‘thickened’, which means
that the Zermelian picture collapses to a radical potentialist picture, wherein both
height and width of V are not fixed.

As we have seen, the Zermelian and the radical potentialist versions of the IMH
coincide on countable models.

5.2. Reduction of #-generated V . #-generation revisited. As far as the case of
#-generation is concerned, its reduction to the hyperuniverse is not so obvious,
and we shall see that the choice of working either within a Zermelian perspective
or a radical potentialist perspective makes a big difference.

First, consider the following encouraging analogue for #-generation of our ear-
lier reduction claim for the IMH, which we state here without proof.
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Fact 4. Suppose that a first-order sentence ϕ holds in all countable models which are
#-generated. Then it holds in all models which are #-generated.

Now the difficulty is this: how do we express #-generation from a width actu-
alist perspective? Recall that to produce a generating # for V we have to produce
a set of rank less than Ord(V ) which does not belong to V , in violation of width
actualism.

At this point we need to say a bit more about #’s and models generated by
them. A pre-# is a structure (N,U) where U measures the subsets in N of the
largest cardinal κ of N , meeting certain first-order conditions; it is a # if in addi-
tion it is iterable, i.e. for any ordinal α if we take iterated ultrapowerse of (N,U)
for α steps then it remains wellfounded. V is #-generated if it results as the union
of the lower parts of the α-iterates of some # as α ranges over Ord(V ).

But notice that to express the iterability of a generating # for V we are forced to
consider theories Tα formulated in Lα(V )-logic for arbitrary (Gödel-) lengthenings
Lα(V ) of V : Tα asserts that V is generated by a pre-# which is α-iterable, i.e. iterable
for α-steps. Thus we have no fixed theory that captures #-generation, only a
tower of theories Tα (as α ranges over ordinals past the height of V ) which capture
closer and closer approximations to #-generation.

Therefore, in order to overcome these difficulties, we need to introduce another
form of #-generated V , that is, weakly #-generated V .

Definition 5. V is weakly #-generated if for each ordinal α past the height of V ,
the theory Tα which expresses the existence of an α-iterable pre-# which generates V is
consistent.

Weak #-generation is meaningful for a width actualist who is also a height po-
tentialist (that is, a Zermelian), as it is expressed entirely in terms of theories in-
ternal to lengthenings of V .

A countable little-V is weakly #-generated if it is α-generated for each count-
able ordinal α (where the witnesssing pre-# may depend on α). Little-V is #-
generated iff it is α-generated when α = ω1 iff it is α-generated for all ordinals
α.

Now we have the following reduction to countable little-V ’s:

Fact 6. Suppose that a first-order sentence ϕ holds in all countable little-V which are
weakly #-generated, and this is provable in ZFC. Then ϕ holds in all models which are
weakly #-generated.

To summarise: as radical potentialists we can comfortably work with full #-
generation as our principle of height maximality. But as width actualists, we in-
stead work with weak #-generation, expressed in terms of theories inside Gödel
lengthenings Lα(V ) of V . Weak #-generation is sufficient to maximise the height
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of the universe. And properly formulated, the reduction to the hyperuniverse also
applies to weak #-generation: to infer that a first-order statement follows from
weak #-generation it suffices to show that in ZFC one can prove that it holds in
all weakly #-generated countable models.17

In what follows we will primarily work with #-generation, as at present the
mathematics of weak #-generation is poorly understood. Indeed, as we shall see
in the next section, a synthesis of #-generation with the IMH is consistent, but
this remains an open problem for weak #-generation.

6. H-AXIOMS: SYNTHESIS OF #-GENERATION WITH IMH-VARIANTS

In light of the reduction to the hyperuniverse (H), we see that maximality fea-
tures of V such as #-generation and the IMH can be expressed as axioms about
countable models, i.e. as properties of members of H expressed through quantifi-
cation over H. We refer to these as H-axioms.

An important step in the development of the Hyperuniverse Programme is the
synthesis of the H-axiom of #-generation, expressing vertical maximality, with H-
axioms which express horizontal maximality. The first example of such a synthesis
is the IMH#, which asserts the IMH for vertically-maximal universes:

Definition 7 (IMH#). M satisfies the IMH# if M is #-generated and whenever a first-
order sentence holds in a #-generated outer model of M , it also holds in a definable inner
model of M .

IMH# captures both vertical maximality and aspects of horizontal maximality
simultaneously. But the development of H-axioms does not stop here. One may
introduce further logical contraints, and derive further principles incorporating
them.

An absolute parameter is a set p which is uniformly definable over all outer mod-
els of V which ‘respect’ them in the sense that they preserve cardinals up to and
including the cardinality of the transitive closure of p. The SIMH (Strong IMH) is
the IMH for sentences with absolute parameters relative to outer models which
respect them:

Definition 8 (SIMH). If a sentence with absolute parameters holds in an outer model
which respects those parameters then it holds in a definable inner model.

17Weak #-generation is indeed strictly weaker than #-generation for countable models: Sup-
pose that 0# exists and choose α to be least so that α is the α-th Silver indiscernible (α is countable).
Now let g be generic over L for Lévy collapsing α to ω. Then by Lévy absoluteness, Lα is weakly
#-generated in L[g], but it cannot be #-generated in L[g] as 0# does not belong to a generic exten-
sion of L.
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A related principle is the CPIMH (Cardinal Preserving IMH). A cardinal-absolute
parameter is a set p which is uniformly definable over all cardinal-preserving ex-
tensions of V . Then CPIMH asserts the following:

Definition 9 (CPIMH). If a sentence with cardinal-preserving parameters holds in a
cardinal-preserving outer model of V it also holds in a definable inner model of V .

Restricting SIMH and CPIMH to #-generated universes yields corresponding
principles SIMH# and CPIMH#.18

More recent work (see [10]) develops further H-axioms, such as forms of Cardi-
nal Maximality (for example: κ+ of HOD is less than κ+ for every infinite cardinal
κ), Width Reflection (for each ordinal α there is an amenable elementary embed-
ding of an inner model into V with critical point greater than α) and its associated
analogue of #-generation for width called Width Indiscernibility and Omniscience
(the first-order definability of satisfaction across outer models, see [13]).19

7. THE DYNAMIC SEARCH FOR TRUTH

We now proceed to review some of the issues we had briefly mentioned at the
beginning, relating to the correct interpretation of maximality, and to whether and
in what sense the maximal iterative concept should be construed as expressing a
platonistic conception of mathematics.

It is important to recall once more the way we construe the maximality of V . We
said that V can literally be maximised, through maximising the ordinals α indexing
the Vα and the subsets in Vα+1, for all ordinals α. In turn, this was conceptualised
as corresponding to ‘lengthening’ and ‘thickening’ the universe. Whenever this
was shown not to be possible within the Zermelian picture, we found a way to
internalise the maximisation through the use of a powerful logic, V -logic.

Now, we have seen that there is an altogether different approach to the maxi-
mality of V , that is full actualism, whereby such absolutely infinite objects as V are
viewed as already maximal, in a way which cannot be transcended. Full actualism
befits universism, insofar as it also encourages the idea that there is a fully determi-
nate universe of sets.

Universism, although not implausible, is, at least, epistemologically dubious,
like the radical form of Platonism which underlies it. The main trouble with this
conception is that the associated semantic determinacy (that is, the idea that, for
all φ, φ is uniquely decided by a suitable collection of axioms) leaves a considerable
portion of set-theoretic practice, dealing with different ‘universes’, entirely unac-
countable. Furthermore, universism, unless it is endowed with a suitably strong

18See figure 1 at the end of the paper.
19For the consequences of all of these in members of H, see, in particular, [3], [2], [10].
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class theory, is inadequate to express the myriad of valuable forms of width max-
imality that are otherwise available.

It is even more doubtful that universism stems from a correct interpretation
of the maximal iterative concept, as proclaimed by its supporters.20 But even if it
were, we have seen that there are ways to incorporate ‘thickenings’ of the universe
even within a width actualist picture and extend this to ‘lengthenings’ using MK.21

Therefore, the platonist absolutist who believes in the existence of a preferred struc-
ture determinately encompassing all truths about sets would not have to abandon
her position, even in the case maximality principles should be viewed as more cor-
rectly implying the idea of ‘thickenings’ in height and width (as in the Zermelian
or fully potentialist picture).

Moreover, it is not clear what one gains epistemically from holding that univer-
sism is the only way to make sense of maximality. It is interesting to briefly take
into account the discussion of this issue provided by Hauser. Hauser has, in our
view, convincingly, shown that finding objective solutions to such undecidable
statements as CH does not depend upon having a pre-formed picture of V , that
is, from believing in the full determinacy of V itself. Rather, objective solutions of
set-theoretic problems will most likely be the outcome of procedures conforming
to particular evidential standards of proof. In the author’s own words:

[This position] can be characterized in a nutshell as objectivity over
objects and involves a twofold inversion of priorities. The first one
shifts the attention from ontology to epistemology, i.e., questions
about the existence and nature of mathematical items are discussed
exclusively in the context of mathematical truth. [...] In the second
inversion, evidence is treated as the primary epistemological con-
cept. This reflects the widespread agreement among philosophers
(and mathematicians) about what counts as evidence for the truth of
a proposition – regardless of their conflicting ideas about the nature
of truth. ([16], 265-66)

The author also casts a hypothesis concerning the way the general acceptability
of new axioms will be construed in view of such epistemic inversion. In his view,
the latter

20For a defence of this position see [17].
21 We come back to the issue briefly discussed in footnote 12. The overall strategy is to formulate

the IMH in V -logic, as shown above in §4. Recall that V -logic proofs are carried out inHyp(V ), the
least admissible structure containing V as an element. Now, it can be proved that, in a sub-theory
of MK, it is also possible to build a class coding Hyp(V ), and therefore fully make use of V -logic
to handle width maximality.
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..may be characterized as a gradual convergence towards a reflec-
tive equilibrium of high-level convictions and their lower level and
‘practical’ consequences along the lines of the holistic views on the-
ory formation [...]. (ibid., p. 275)

Now, when we evoked ‘optimality’ with reference to the search for new ax-
ioms, we intended to refer precisely to procedures whereby one could select the
most suitable H-axioms, by studying their mathematically ‘optimal’ features, in
a way which may plausibly recall the objectivity over objects account advocated
by Hauser, that is by downplaying the role of ontology (in particular, a universist
ontology). Only, we do not view ‘practical consequences’ as crucial to this under-
taking (although certainly the consequences of maximality principles are worth
examining), nor do we subscribe to a holistic view concerning set-theoretic truth:
the idea of ‘testing’ maximality principles to find optimal H-axioms should not be
viewed as subservient to the search for extrinsic (that is, ‘empirical’) evidence for
new axioms, but rather to the goal of best expressing the maximality of V .

Within scientific procedures, optimality is provided by the fine-tuning of the
general statements of a theory through empirically testing its results. Within set
theory, it is hard to say what may count as an analogue of this, unless one takes the
study of ‘consequences’ to play the same role as that of confirmation in physics
(which is, to say the least, utterly problematic). For our purposes, though, this
can hardly be different from the idea of producing progressive refinements and
strengthenings of higher-order principles.

The idea of progressive refinements of maximality principles adds an interest-
ing ‘dialectical’ twist to our search for new axioms: the motivating idea is that
different principles should be combined to produce syntheses of their features
and better candidates as ultimate maximality principles (as illustrated in Figure
1).

Ideally, then, the study of H-axioms will reach its natural endpoint when opti-
mal maximality principles are found. We believe that the attainment of this might
reasonably be described in terms of finding fully intrinsically justified new axioms.

At this stage, we cannot say anything definitive, but surely the analysis of the
maximality of V conducted within the Hyperuniverse Programme has already led
to remarkable findings, that, in conclusion, we may recapitulate as follows:

(1) #-generated V may be viewed as the strongest possible form of reflection
construed as ‘lengthening’ of V

(2) IMH may be viewed as the most natural form of expressing the width max-
imality of V , insofar as it successfully thrives on a suitable conceptualisa-
tion of ‘thickenings’ (outer models) of V through V -logic
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[Maximality of V ]

IMH #-generated V

[Cardinal-absolute parameters] IMH# [Absolute parameters]

CPIMH# SIMH#

· · · · · ·

FIGURE 1. Maximality principles

(3) combinations, variants and refinements of these principles construed as
quantifying over members of the hyperuniverse (H-axioms) can be shown
to have the effect of strongly reducing set-theoretic incompleteness, in such
a way as to make it at least plausible to assume that they could be seen as
new axioms.
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[28] E. Zermelo. Über Grenzzahlen und Mengenbereiche: neue Untersuchungen über die Grund-

lagen der Mengenlehre. Fundamenta Mathematicae, 16:29–47, 1930.



22 EXPLAINING MAXIMALITY THROUGH THE HYPERUNIVERSE PROGRAMME

CONTENTS

1. The Maximal Iterative Concept of Set 1
1.1. Generalities 1
1.2. Expanding on the Maximal Concept 3
1.3. New Intrinsically Justified Axioms 4
2. A Zermelian Approach to V 5
2.1. Height and Width Maximality 5
2.2. Actualism and Potentialism. Zermelo’s Conception. 6
3. Height Maximality: Reflection 8
4. Width Maximality: V -logic, IMH 11
4.1. The Strategy 11
4.2. V -logic and IMH 12
5. Reduction to H 13
5.1. Reduction of IMH 13
5.2. Reduction of #-generated V . #-generation revisited 14
6. H-axioms: Synthesis of #-generation with IMH-variants 16
7. The Dynamic Search for Truth 17
References 20


