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0. Introduction 

Singular cardinals are of particular interest in the study of recursion theory on 

the ordinals. On the one hand many familiar techniques from Turing degree 

theory such as the minimal degree construction break down completely when 

applied to many singular cardinals, due to their &-inadmissibility. Moreover it is 

known that even though the Friedberg-Muchnik solution to Post’s problem can 

be adapted to all admissible ordinals [3] its relativized version will fail for singular 

cardinals of uncountable cofinality [2]. 

On the other hand sometimes the singularity of a cardinal can be an aid rather 

than a handicap in constructing recursively enumerable sets. In Friedman [l] it 

was shown that if K is a limit cardinal, then the sets S(A) ={y< K 1 K-cofinal- 

ity(y) = h} occupy distinct intermediate K-RE degrees as A varies over infinite 

regular ~-cardinals. This result solves Post’s problem for the ~-degrees without a 

priority argument. 

In this paper we focus on the first singular L-cardinal, g. The first two sections 

answer two questions left open from Friedman [l] concerning the sets S(?4:) 

described above. In Section 1 we use the infinite injury priority method to 

construct an incomplete NE-RE degree greater than the NE-degrees of the sets 

S(g). Section 2 provides a natural example of a nonzero Kk-RE degree below 

the NE-degrees of both S(e) and S(ti,), for any n, m. The methods used here are 

an elaboration of the Giidel collapse methods used in Friedman [l]. Finally in 

Section 3 the notion of character of an e-RE set is defined and studied. Using it 

an order-preserving embedding of the partial-ordering (p(o)/Finite, s) into the 

Ki-RE degrees is obtained, without the use of a priority argument. 
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1. An incomplete upper bound for tbe sets S(e) 

Let a! denote Kk. Let 

S = ((7, S) 1 y, 6 are limit ordinals <a! and 

a-cofinality(y) = cu-cofinality(6)). 

S is a-RE as (y, 8)~ S iff 3f~ L, (f is an order-preserving function from an 
unbounded subset of y onto an unbouded subset of S). Moreover S(e) car S for 
each n as S(e) = (S),: = {S 1 (e, 6) E S}. Unfortunately S =n 0’ as {e 1 n E co} = 

{y 1 y is a limit ordinal <a and (S), n y = @} has a-degree 0’. Our result in this 
section is that there is an incomplete (u-RE thick subset of S. A set A G S is thick 
if for each y < (Y, (S), -(A), is bounded in (Y (where (S), = (6 1 (‘y, 6) E S}). Clearly 
any thick subset of S is an upper bound (in the sense of s,) for the sets S(e). 

Theorem 1.1. S has an (u-FE thick subset A of a-degree ~0’. 

The original Thickness lemma for classical recursion theory was established by 
Shoenfield (see [4]). It its simplest form it states that if B G w x o is RE, (B), is 
recursive for each y1 and C is nonrecursive, then B has a thick RE subset A such 
that C &A. The corresponding result for (Y is false. For, it is easy to construct an 
a-RE B E a! x a! such that any thick a-RI3 A G B is high (A’ =cI 0”). But then 
A =o1 0’ as Shore [5] showed that any incomplete (w-RE set A is low (A’ =Q 0’). 

There are two key properties of S used in the proof of Theorem 1.1. Let 
(Y, = g. The first fact is that for any n, S n(a, x (Y,) has incomplete or,-RE 
degree. For any y <a let (S),, = {(y’, 6) E S 1 y’< y}. The second fact is that if 
y<a,_,, then (Y, is (S),,- stable; i.e., (L,, (S),, tl ((Y, x cz,,)) is a _J5C,-elementary 
substructure of (L,, (S),,). 

To demonstrate the first fact note that S rl (a~, X a,,) is a,-RE as (Y, is a-stable 
and S has a parameter-free _Z,(L,) definition. Note that {/3 1 /3 is an G-cardinal} is 
finite and hence cu,-finite. So S tl (a, X (Y,) is in fact a,-recursive since if y, 6 are 
limit ordinals <a,,, (y, a)$! S iff %,-cardinals K, A s.t. (K, y), (A, 8)E S and K$ h. 

As for the second fact note that is suffices to establish the T-stability of (Y, 
where T = S(w) v S(Kk) v * * . vS(N~_~). But this follows from the remark made 
between Theorems 1 and 2 of Friedman [l]. 

Our proof follows the same outline as the proof of Shoenfield’s Thickness 
Lemma given in Soare [7]. The facts above are used to bound the lim inf of the 
restraint imposed by a proper initial segment of negative requirements. 

We use Soare’s notation. Let @,,,(X; y) be the result, if any, of performing the 
e th partial cll-recursive reduction with oracle X to argument y through stage 
(T < 0~. Also let G&Q = U, (Ay@=,,(X; y)). We have in mind the a-recursive 
enumeration of our desired a!-RE set A, written as {A” 1 ~<a}. A<” = 
lJ {A”’ 1 cr’ <a}. The definition of this enumeration is guided by some auxiliary 
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u(e, x, a) = 
min{z 1 @_(A”[z]; x) is defined} if z exists, 

0 

least x[xEA~-A<~] 

a, = sup(A” U {a}) 

&_(A”; x) = 
@e,AA”; x) 
undefined 

otherwise, 

if A”-A<a#fl, 

otherwise, 

if defined and u(e, x, a) < a,, 

otherwise, 

C(e, x, a) = I u(e, x, a) if &_(A”; x) is defined, 

0 otherwise. 

Thus we use the modified computation function &. It has the 

true stage (T any apparent computation &C,,(A”; x) is a 

GC(A ; x). The set of true stages T is defined by: 

T = {cr 1 A”[a,] = A[a,]}. 

We also use: 

[(e, 4 = supb 1 V Y <x (K”(Y) = d&A”; Y))), 

i(e, a) = sup{ii(e, x, u) 1 x s i(e, cr)}, 

R(e, a) = sup{i(e’, a) 1 e’s_}. 
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property that at a 

true computation 

These are the length of agreement function, restraint function and full restraint 

function, respectively. The set K is the complete a-RE set defined by K = 

{(e, x) 1 @_(fl, x) is defined for some a}. Thus i measures the length of agreement 

between K and Ge(A) at stage u. i indicates how large an initial segment of A 

must remain unchanged for the sake of preserving (P,(A) through this length of 

agreement. 

The element x injures e at stage u if x E A” -A’” and x G ?(e, a). So we are 

thinking of e synonymously with the requirement N, : Kf @JA) (where K is 

identified with its characteristic function). The strategy for achieving N, is to 

preserve agreements between K and aC(A). If x injures e, then x is interfering 

with this strategy. We define the injury sets 

I,,, = {x 13 u’ c u [x < ;(e, a’) and x E A"'- A’“‘l}, 

i,,<, = u X?,,, I a’ < 4, i, = IJ {I+_, I u<a}. 

In terms of the above definitions our construction proceeds as follows: First 

choose an a-recursive enumeration (9 ) u -=c a} of the a-RE set S. We enumerate 

x into (A”), if x E (Sa)? and x > i(i, a) for all i s y. Let A = U{A” 1 u < a}. 
We must show that (A), contains a final segment of (S), and Kf @,(A), for 
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each y <c-w. This is done by establishing the following claims by induction on 

y<CY: 

(i) For y < CX,, lim{k(y, a) I(+ E T,} < (Y,,+~ where 

T, = {a / (A)<,[GI = W)<,b,l) 
= true stages for enumeration of (A),,. 

(ii) For y < CY,,, (S), -(A), is a bounded subset of CY,,+~. 

Suppose (i), (ii) hold for all -y’< y and we seek to establish (i), (ii) for y 30. 

(Thus the base case of the induction is included here.) Note that for y’< y, 

T_,, 2 T,. So lim{sup,,,, &(y’, a) I(+ E T,}<q,+, by the regularity of (~,+i. But 

then (S),, -(A),, is a bounded subset of CY,,+~ since at a stage (+ E T, nothing 

prevents x E (Sa)<y from entering (A”),, if x is greater than the above limit. It 

follows that & is a-recursive in (S),, since (A),, sa (S),, and: 

x E I7 iff x E (A),, and x E i,,_ where CT is the stage 

s.t. x E (A”),, -(A’“)<,. 

Note that the reduction & sa (S),, only uses parameters <(~,+i and we have that 

f,,<,“+, %,+, (S)<, n (a,+1 x c&+1). 
We claim now that K fl cq,+i # @?(A) no!,,,,. First note that K II 

(~,+i # @Y,<%+l(A<am+l). For otherwise, as Kfl (~,,+i = KC”-+1 by the a-stability of 

a”+l> we would have lim{i(r, a) 1 (~<a,+~}= (Y,+~. But now we can compute 

Kfls+l in an (Y,+~- recursive way from i?,<%+,: To compute K(p) for p < q,+l 

find some stage (+ <cq,+i such that i(-y, a) >p and 

Then K(p) = @,,,(A”; p): To see this it suffices to argue that for ~>a, r<(~,+~ 

we have f(y, 7) > p and i(r, T) 2 sup{u(y, x, cr) 1 x s p}. If 7 were the least counter- 

example to this claim, then we must have K’(x) # K<‘(x) for some x “p. But 

then K(x) = K’(x) # @+~+,(A<OLn+l)( x as the information about A” used in ) 
establishing @,,,(A”; x) cannot change before stage (~,+i. We have therefore 

shown K n antI s-,+1 f,,,,+l. But then K n CX,,+~ s%+, (S),, rl (cx,+~ x (Y,+~) which 

is impossible since K fl (Y,,+~ = {(e, x) 1 @_($J; x) is defined for some (+ <%+i} is 

complete cz,+i- RE and (S),, n (q,+i x q+i) is a,+,-recursive. 
Second, we argue that @Y,<s+l(A<an+l) = @?(A) fl CX,,+~. For the a-stability of 

cz,+i implies that A<“-+1 = A rl %+l so clearly cD~,<~,+~(A<~~+~) G @,(A). But 

conversely, if @?(A)(x) = y where x, y <cz,,+i, then we have: 

3 (T -=c CX[@,,,(A~; x) = y and Vz(z < u(y, x, a) -+ (z$ & or z E A”))] 

So since q,+i is (S),,-stable and fY sa (S),, (with parameter<cw,+i for the 

reduction): 

3 (+<(~,+i [@,,,(A”; x) = y and V z(z G ~(7, x, a) + (z$ &, or z E A”))l. 

But then @y,Cn,,l(A<ol~+~; x) = y. 
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Now we can establish (i), (ii), for y. Define p = least x s.t. K(x) # @,(A)(x). 

Then p <(~,+i. By the preceding paragraph we can choose u < cq,+i such that for 

all r 5~: V x G p (K(x) = K’(x)) and V x <p (&Y,,(A’; x) = (P,(A)(x)). If for all 

r E T,, r Z= (T &_,,(A’ ; p) is undefined, then for any r 3 a; r E T, + f(y, T) = p and 

i(r, 7) = sup{ii(y, x, a) 1 x <p}. So lim{i(y, T) 1 T E T,} exists and is less than (~,+r. 

If &?,,(A’; p) is defined for some r~=c, 7~ T,, then for any (~‘27 

K(p) # &&A”‘; p) since the computation &?,,(A’; p) = y cannot be injured at 

any stage (~‘37 (as r is a true stage for the enumeration of (A),,). Thus for all 

U’Z r i(y, a’) = p and i(r, a’) = i(y, 7). So once again lim{i(y, a’) 1 U’E T,} exists. 

But note that r can be chosen to be less than (~,+r by the (S),,-stability of q,+r, 

since T, =z_ (A),, ca (S),, and all of these reductions only involve parameters 

less than (Y,+~. We have therefore established (i) for y. 

We can now easily conclude (ii) for y since at a stage u E T, nothing can 

prevent x E (Q from entering (A”), provided x >lim{R(y, a’) 1 u’ E T,} and this 

last ordinal is less than q,+r by (i) for y. 

Finally note that in the course of establishing (i), (ii) we demonstrated that 

Kf @,(A) for each y <CL Also (ii) immediately implies that A is a thick subset of 

S. This completes the proof of Theorem 1.1. 

2. S(e), S(ti!$ do not form a minimal pair 

To establish this result we follow a strategy communicated to us by Carl 

Jockusch. If A, B are RE sets of integers, choose recursive onto functions 

f : o --+ A, g : w + B. An RE set recursive simultaneously in A and B is C = 

{(x, y) 1 for some n, x = f(n), y = g(n)}. This can be a useful way of showing that A, 

B do not form a minimal pair. 

Thus let A = S(e) = {/3 <Kk 1 L -cof(p) = g}, B = S(tim) = {/3 <?& 1 L - 

cof(p) = w,}. In order to produce C as above we first make a definition. 

Definition. If 6 E S(g) let 6 be the least ordinal y such that there is a cofinal 

f :e -+ p which is definable over L,. 

Then set C = {(&, &) 1 pi E S(e), p2 E S(wm) and 6, = &}. It is easy to see that 

C is Kk-recursive in each of S(e), S(tim). For, given (&, &) first check if 

f3r E S(Kf;); if not, then (pr, &) $ C. If so, then compute 6, effectively and check if 

Lb,,, contains a cofinal increasing f :&T, -+ &. If it does but Lg, does not, then 

(pr, &) E C. Otherwise (pr, &) $ C. This shows that C is Kk-recursive in S(g). A 

similar argument works for S(em). 

It remains to show that C is not e-recursive. Suppose it is and let 

3y 4(y, pr, &.) define the complement of C over (&L, E) where 4 is A, with 

parameter p. Choose k so large that m, n < k and PE Le. Note that 

(e+r, e+,) $ C so we can choose Y”E L+.I.I such that 4(y”, e+,, e,,). We get our 
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desired contradiction by producing PI, p2, y E I&;+, such that (PI, &,)E C but 

4(Y> PI, P2). 
The desired PI, &, y are obtained by applying a Gijdel collapse argument to 

Kkt1, Eci+2, y”. The construction is very similar to the proof of Theorem 1 in 
Friedman [ 11. 

Choose a J&admissible (~“<e large enough so that y” E I,,., e+, < (Y”. Define 
an em-sequence by: 

HO = z1 Skolem hull of Eci+r U{y”, b$+,} in I&.., 

y. = Ho n *+2, 

H *+r =I$ Skolem hull of H~+lU{y”,~+z, y8} in L,., 

?a+1 = Hs+I n%+,, 

HA = lJ {Hs 1 S < A} for limit A, 

‘YA = suP(x I 6 <Al. 

Finally set H = U {H8 1 S <em}, p$ = SUP(~~ ) 6 <em}. Let m: H = L,, and define 
y’= rr(y”). Note that m(e+J = 05 and L,,!=b(y’, e+1, pi) since n is the identity 
on L,. And most importantly L,, kp; is regular but there is a &.(Las) cofinal 
increasing f :KL, + & given by f(8) = -ya. So 6; = (Y’. 

Now we repeat the above with an e-iteration of & Skolem hulls inside L,,. 

Thus: 

K. = .& Skolem hull of Kk U{y’, pi, etl} in L,., 

ELM = K. n*+l, 

K 6+1 = X2 Skolem hull of KiU{y’, pi, pg, b$+l} in L,., 

pa+1 = K,+, n%+,, 

KA=U{&(S<h}, h limit, 

pA =K, n@+,, A limit. 

Finally set K = IJ {& 16 <tcf;>, & = sup{~~ 16 <Kf;). Let (+ : K = L,, y = a(~‘), 

p2 = a&). Note that u(K~+~) = PI and L, k4(y, PI, &). As Kt+r, pi are regular 
in L,,, we have that PI, p2 are regular in L,. But there is a &(La) cofinal 
increasing g : * -+ PI, namely g(6) = cog. And if f : K”, 4 & is the cofinal, increas- 
ing &(LaT) function mentioned earlier, we have that aof * em +- pz is cofinal, 
increasing and &(Lor) since K is a ,I& elementary submodel of L,, containing the 
defining parameters for f (namely y’, pi, em). So fit = &= (Y. As &E S(g), 
&E S(Wm) we have proved: 

Theorem 2.1. S(Pm), S(Kf;) do not form a minimal pair for any m, n Co. 

The same proof shows: 

corollary 2.2 (to proof). S(Ecf;,), . . . , S(#_) have a common nonzero lower bound 

forany nl,...,nk<w. 



Degree theory on i-4, 93 

A refinement of the proof shows: The set 

{(P1>. . .T Pk) 1 pi E S(Kf;) all i, S, = p, =. . . = ~,} 

is a non e-recursive lower bound for S(H,) if and only if n = 4 for some i. This 
can be used to produce an order-reversing embedding of the tree oco into the 
Kk-RE degrees (and without use of the priority method). 

3. Characters of HE-RE sets 

We continue to fix CY = e. The set S(o), as was shown in Friedman [l], has the 
property that 

(k+, S(O) n7Ecf;) < 1 (L,, S(4) 

for each n > 1 (+ denotes ‘&-elementary substructure’). Not every cx-r.e. set has 
this property. In particular, let C be of complete degree. Then C is not 
hyperregular and so there is a function f : w * (Y such that f s_ C and 
sup(f(n) 1 n -CO} = a. By introducing parameters if necessary, one may assume 

that If(n)\ < If(n + 1)1 f or all n. This imples that for all sufficiently large n, 
(I+.+ CnKf;) is not a &-elementary substructure of (L,, C). We are thus natur- 
ally led to the following definition. 

Definition 3.1. Let A be a subset of a. The character of A, denoted char(A), is 
the set of all n <w such that 

U&k, A nti> (1 &x, A). 

Proposition 3.2. Let A and B in L be such that A <ol B. Then 
char(A) Z* char(B), where 2” means containment module finite sets. 

Proof. Let 3y 4 and 3y & be Z,(B) sentences such that for all a-finite K: 

and 
KG A e CL,, B)kqy ICY, K) 

K G A e (L,, B) My &<y, K). 

Let no be chosen so that Kf;o is greater than the parameters occurring in 4 and 6. 
Let n > no and n E char(B). Let 3x +(x) be Z,(A) with parameters less than e. 
Suppose that 

Ok, A) b3x Icl(x). 
Then 

V-,x, B)~=IKZ~YIYZ~Y (44~1, K,) & icy,, KJ 

& U-,, K,, J-G) != 3~ $‘(x>) (*I 

where 4’ is obtained from +!J by replacing ‘z E A’ by z E K1, ‘zg A’ by z E K2. By 
the &(B)-stability of tcf;, the statement (*) is true in the structure (Le, B flk#. 
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In other words, 

(L,:, B nti)b3K,K, 3y,y, 374 (a~~, K,) & 44~~~ K2) 

& K,, K,, &)bgx +‘(x)>. 

Hence (Le_, A ne)l=3x I,!J(x), so that n E Char(A). 

Remark. It follows from Proposition 3.2 that if A =a B, then char(A) = char(B) 

modulo finite sets (written char(A) =* char(B)). The converse is not true. Indeed 

since characters are degree-theoretically invariant (modulo finite sets), and there 

are only NF possibilities for characters while there are cr = EEf; many a-r.e. degrees, 

there certainly exist many different a-r.e. degrees whose characters are only 

finitely different. 

In the Sacks-Simpson [3] construction the incomparable a-r.e. degrees have 

characters =* w, as with the S(n), for n =X0, Kk, . . . , tcf;, . . . . 

We now prove a theorem which is a weak form of the density theorem. The 

theorem says that for each constructible Kcchar(A), there is a B such that 

A s,B and char(B) = * K. This result has the following consequences: (i) 

(Representability) Every constructible Kc w is the character of an a-r.e. set A,; 

(ii) (Friedberg-Muchnik-Sacks-Simpson theorem) There exist Kf-many pairwise 

incomparable a-r.e. degrees; (iii) (Upward Density Theorem) If char(A) #* 8, 

then there exist e many cz-r.e. degrees d such that deg(A) <m d Co, 0’. While (ii) 

and (iii) are known results (in particular, Shore [6] has proved the full Density 

theorem), our method of proof is different and does not use a priority argument. 

Furthermore, (i) provides a classification of hyperregular a-r.e. degrees according 

to the measure of stability (in terms of characters) of the sets sitting in them. This 

may provide a useful tool in the study of the fine structure of hyperregular a-r.e. 

degrees. 

Theorem 3.3. Let A be a-r.e. and let KC char(A) be constructible. There exists an 

a-r.e. set B z,A such that char(B) =* K. 

Proof. If char(A) =*@, then we let B = A. Hence we may assume that 

char(A) #* @ and let K c char(A) be constructible. 

The set B will consist of pairs (x, y) such that 

This ensures that A sor B. We let B, = {x 1 (x, 0) E B}. 

Let B1={y I(O, Y)EB}. W e construct B so that for each n$ K, B1 2 (Kf;_,, g>. 

Without loss of generality we may assume n 2 1. Furthermore, it is safe to assume 

that o - K # * fl since otherwise we may again take B = A to prove the theorem. 

The objective is to construct a B such that B aa A and for all but finitely many 

n E 0, 

(L,:, B nNk> <I (La, B) 

if and only if n E K. 
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To kill the B-stability of Kk, n$K, note that if B1 z(Etf;_,,Kf;), then 

(L,, B)l=~X(X$?kB,AX>Kt;_J (**I 

but (L,;, B ng) fails to satify the same sentence. 
At stage u, let A’” be the set of ordinals which have been enumerated in A 

before c~, and define B’“, B’” (i = 0,l) similarly. Let u’ be the least T>U such 
that: 

(i) L, I=3 n <w(lal = K,), 

(ii) let T,, denote the nth infinite cardinal of L,. Suppose that la/L_ = T,,,. Then 
for each n G m such that n E K, 

(&, A” n 7,) -=c 1 (L,, A<,). 

Note that i ~char(A), a<#- implies that T = Nf obeys (i), (ii). So U’ exists. 
Let 11(u) be the integer m such that 1~) = ai in L,,. If n(a) + 1 E K, let 

B” = B<” U {(x, 0) 1 x E A”‘}. 

If n(a) + 1 pf K, then let 

B” = B’” U {(x, 0) 1 x E A”‘) U HO, Y > 1 Y E (4,wr a>>. 

Finally let 

Lemma 3.4. If n$K, then B, z(H!_~,N~;). 

Proof. This follows easily from our construction. Let (+ be chosen so that 
a&, = Kk_,. Then (Ecf;_r, a) E By. As such U’S occur unboundedly often in Ki, we 
have the lemma. 

Lemma 3.5. Suppose n E K and h;-, contains the parameters which define A and 

B. Then 

Proof. Let n E K be as given and let 3x 4(x, a,, . . . , q, B) be a C,(B)-sentence 
with parameters aI, . . , a, in LR:,. Suppose that this sentence is true in (L,, B). 

Then 

(L,, A) I=% 3x [B,‘“= A n (T = A’” & 4(x, a,, . . . , &, B’“)]. 

As K c char(A), we have n E char(A) and so (I+, A n e) satisfies this sentence 
which we denote by 4. 

Choose 6 to be the least (T >Kk_, for which Ic, is true in (L,, A n CT). Our goal is 
to show that B’” - - B n & and therefore that 3x 4 is true in (L,, B n S). 

claim. n(G) + 1 = n. 
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Clearly n(s) + 12 n. 

Suppose n(e)> n - 1. In the notation of our construction, let 6$,, be the 

cardinality of 6 in Lb,. Then by (ii) in the definition of G’, we have 6;~ G&, and 

(L,;, A<“’ n +n) K1 (L,,, A=+‘). 

In particular (L,;, A’-“‘n&L) = (L&k, A t-l&;) satisfies 4. Hence there is a v <B; 

for which $ is true in (L,, A rl Y) = (L, A<“’ tl v). But this contradicts the choice 

of c?, and the claim is proved. 

It follows from our construction that B<” = B fl&, since Ace = A tl & and no 

L, for r> &’ will tell us that & has smaller cardinality than it has in L+. Thus 

(L,, B fl&)l=Yx 4 and so (L&,, B fle) -$ (L,, B). This proves Theorem 3.3, as it 

was observed earlier that for n# K, (e-i, Nk) c B. 

Corollary 3.6. Let Kc o be constructible. Then there is an a-r.e. set A such that 
char(A) = * K. 

Proof. Let A be a-recursive. Then char(A) =* o. As K c* w, by Theorem 3.3, 

we have an 1y-r.e. set AK such that char(A,) =*R 

Corollary 3.7. There exist e-many pairwise incomparable a-r.e. sets. 

Proof. There exist KF many almost disjoint constructible reals K. For each such 

K, let A, be a-r.e. such that char(A,) =* K. By Proposition 3.2, these sets are 

pairwise (Y -incomparable. 

Corollary 3.8. Let char(A) #” a. Then there exist e-many a-r.e. degrees which 

lie strictly between deg(A) and 0’. 

Proof. There exist Kk many almost disjoint constructible reals K E char(A) such 

that (char(A)- K) #* fl and K #* 8. Then by Proposition 3.2 each deg(A,) 

where char(A,) =* K and K is as above lies strictly between deg(A) and 0’. 

7. Some open problems 

(a) Prove the following Character Density theorem. 

If a = NE and A s,B are a-RE, char(A) 2 K ?char(B), KE L, then there is an 
a-RE C such that A sa C <a B and char(C) = K. 

(b) Let C = {(&, &) ( /3i E S(e), &E S(tim) and 6, = b,}, as in Section 2. Is C a 

greatest lower bound for S(e), S(&,) in the sense of NE-degree? 
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(c) Find a non e-recursive A which is ‘Hi-recursive in each of the sets S(e), 
n E w. 
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