
Projective measure without projective Baire

Sy Friedman, David Schrittesser

January 26, 2014



Abstract

We prove that it is consistent relative to a Mahlo cardinal that all sets of reals
definable from countable sequences of ordinals are Lebesgue measurable, but
at the same time, there is a ∆1

3 set without the Baire property. To this end,
we introduce a notion of stratified forcing and stratified extension and prove
an iteration theorem for these classes of forcings. Moreover we introduce a
variant of Shelah’s amalgamation technique that preserves stratification. The
complexity of the set which provides a counterexample to the Baire property
is optimal.
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Chapter 1

Introduction

A central theme in descriptive set theory of the reals is that of the relation
between definability and regularity. That is, one asks which sets in the
projective hierarchy have regularity, in the sense of e.g. being Lebesgue
measurable, having the Baire property or the perfect set property.

In recent years, regularity in this sense has been associated to the study
of measurability with respect to an ideal on the real numbers and a forcing
notion associated to this ideal, such as Sacks, Miller, Laver, Cohen, Random,
Mathias and others. For the purpose of this article, we will study only the
examples of the null and the meager ideals, with the associated Cohen and
Random forcing and the regularity properties of being Lebesgue measurable
and the Baire property. Nevertheless, the techniques developed here hold the
promise of being applicable to the study of all these ideals.

The broad question we are concerned with in this article is: where in
the projective hierarchy does the least irregular set appear? Clearly this
is independent of ZFC; under V = L, irregular sets appear on the lowest
possible level, ∆1

2, and in Solovay’s model, all sets are regular. It is also
possible that the least irregular set appears at some higher level n > 2, in
inner models of Π1

n−2-determinacy which have a ∆1
n-good well-ordering of

the reals (e.g. under sharps for n = 3 and in the minimal canonical inner
model with n− 3 Woodin cardinals for n > 3). Observe that in all the above
examples, the effects on different ideals are always similar, i.e. the least non-
measurable set appears at the same level as the least one lacking the Baire
property.

So a slightly more subtle question arises: can we manipulate the behavior
independently, for distinct notions of regularity? E.g. Can we have a model
where all projective sets are Lebesgue measurable but there is a projective
set without the Baire property? That some interaction is possible can be
seen from [Bar84]: if all Σ1

2 sets of reals are Lebesgue measurable, then also
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they have the Baire property.
A seminal result was Shelah’s [She84], where he finds two models of in-

terest to our question: In the first, all sets have the Baire property, but there
is a set which is not Lebesgue measurable, starting from just the consistency
of ZFC. He proves that if all Σ1

3 sets are Lebesgue measurable, then ω1

must be inaccessible to reals; thus, in this model, there is a non-measurable,
projective set.

In the second, all sets are Lebesgue measurable but there is a set which
does not have the Baire property. We improve this by making the counterex-
ample projective:

Theorem 1.1. Starting from “V = L and there exists a Mahlo cardinal”, we
can force to obtain a model where all projective sets are Lebesgue measurable,
but there is a (lightface) ∆1

3 set without the Baire property.

The main tool developed in [She84] to selectively attack a specific ideal is
amalgamation, which allows to construct partial orders which admit certain
automorphisms.

In our case we want a partial order where all partial isomorphisms of
Random subalgebras extend to an automorphism of the whole forcing — in
fact, we want to build an iteration where this is true for every tail segment.
Thus, we obtain a model where all projective sets are measurable.1

In [Dav82], it is shown how iterations of Jensen-coding may be used to
make a set of reals projective. This is done by adding and then coding
branches through large constructible Suslin trees, where the coding is pro-
jective, i.e. localized. This localization is often referred to as “René David’s
trick” or “killing universes”.

Our iteration will be of length κ, where κ is the least Mahlo in L. In this
iteration we collapse every cardinal below κ to ω. Thus, we add many Cohen
reals, which easily yield a set without the Baire property, which we call Γ0.
For every real s added by the iteration, we have to code a set of branches of
κ++-Suslin trees of L, projectively, into a real. From this code it will possible
to determine in a projective way whether s ∈ Γ0. This makes Γ0 into a ∆1

3

set.
Also, for every pair of Random reals added by a tail of the iteration, we

have to amalgamate. Of course it is crucial to show that we can “catch our
tail”, i.e. that all reals in the final model appear in some initial segment of
the iteration so that we have in fact treated all reals s and all pairs of random
reals of the final model.

1In L(ω On) or in L(R) of our extension, all sets will be measurable, as in Solovay’s
model, and there will be a projective set without the Baire property. Deliberately, we only
consider the bigger model, where choice holds, and its projective sets.
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To be able to code and amalgamate alternatingly in this iteration, we
isolate the concept of iterations of stratified extensions of forcing, which is
discussed in section 3 and 5 (the concept of stratified extension is needed
since the components of our forcing need not be stratified—luckily, initial
segment are stratified in a coherent way). This makes sure a tail of regular
cardinals below κ is preserved in every initial stage of the iteration.

In section 6, we devise a version of amalgamation which is also a stratified
extension, and therefore preserves stratification. In section 7, after having
discussed stratified extension and amalgamation, we motivate and describe
the iteration in detail. We also prove that in the final model, every projective
set of reals is measurable. That κ is not collapsed and thus becomes ω1 in
the final model does not follow directly from the theory of stratified forc-
ing. Instead, a kind of “κ-properness” is shown in a kind of ∆-systems type
argument involving some ideas from stratification, an archetypical use ♦, a
special kind of �-sequence discussed in 4 and the fact that enough cardinals
are preserved in earlier stages of the iteration; this is the argument of 7.4.
Here, we also show that the κ stage of the iteration adds no new reals and
that we indeed “catch our tail”. To allow this proof to go through we need
a version of (localized) Jensen coding which uses Easton support, and this is
developed in section 4. Finally in the last section we show that Γ0 is indeed
∆1

3.
We advise the reader to skim through section 7, especially the more de-

tailed sketch of the iteration given at the beginning. Also, the beginning of
each chapter contains a small introduction.



Chapter 2

Notation and preliminaries

We first define strong projection (from [Abr10]), strong sub-order and in-
dependence. These are practical in understanding how amalgamation is a
stratified extension.

Definition 2.1. We say Q is a strong sub-order of P if and only if Q is a
complete sub-order of P and for every p ∈ P and q ∈ Q such that q ≤ π(p),
we have q · p ∈ P , where π denotes the canonical projection from r.o.(P ) to
r.o.(Q).

This is related to the notion of projection1 and strong projection: We say
π : P → Q is a projection if and only if

1. p ≤ p′ ⇒ π(p) ≤ π(p′),

2. ran(π) = Q,

3. if q ∈ Q and q ≤ π(p), there is p̄ ∈ P such that p̄ ≤ p and π(p̄) ≤ q.

Observe this implies that π(1P ) = 1Q. In [Abr10], π is defined to be a strong
projection if and only if it satisfies the first two requirements above and the
following strengthening of the third requirement:

3′. If q ≤ π(p), there is p̄ ≤ p such that

a. π(p̄) = q,

b. for any r ∈ P , if r ≤ p and π(r) ≤ q then r ≤ p̄.

1[Abr10] defines (ordinary) projection with 3. replaced by the stronger: if q ≤ π(p),
there is p̄ ≤ p such that π(p̄) = q.

7
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This uniquely determines p̄, and we denote it by q · p.
If π : P → Q is a projection, π[G] generates a Q-generic Filter whenever

G is a P -generic Filter, moreover in fact r.o.(Q) is a complete sub-algebra
of r.o.(P ). If π : P → Q is a strong projection, the map i sending q ∈ Q to
i(q) = q · 1P is a complete embedding and we can assume that Q is a subset
of P . It follows from 3′b. that ∀p ∈ P p ≤ i(π(p)).

When Q is a complete sub-order of P , we say q ∈ Q is a reduction (to Q)
of p ∈ P if and only if for all q′ ∈ Q, if q′ ≤ q then q′ and p are compatible.

Lemma 2.2. Let Q be a complete sub-order of P and let π be the canonical
projection π : r.o.(P ) → r.o.(Q). Say p ∈ P and q ∈ Q is a reduction of p
such that q ≥ p; then q = π(p). If π̄ : P → Q is a strong projection, then π̄
coincides with the canonical projection on P .

Observe that if π : r.o.(P ) → r.o.(Q) is the canonical projection, then
π � P is a strong projection if and only if for every p ∈ P and q ∈ Q such
that q ≤ π(p) we have p · q ∈ P . All of the above gives us:

Lemma 2.3. The following are equivalent:

• Q is a strong sub-order of P .

• There is a strong projection π : P → Q.

• The restriction of the canonical projection π : r.o.(P ) → r.o.(Q) to P
is the unique strong projection from P to Q.

Also observe that when Q is a strong sub-order of P which is a strong
sub-order of R with πP : R→ P a strong projection, then 1Q forces πP �P : Q
is a strong projection from P : Q to R : Q.

Imagine an iteration R = (Q0 × Q1) ∗ Q̇2. Then in an extension by Q0,
the pre-order Q1 is a complete sub-order of the tail R : Q0 = Q1 ∗ Q̇2. This
special situation is captured well by the following:

Definition 2.4. Let Q and C be sub-orders of P with strong projections
πQ : P → Q and πC : P → C. We say C is independent over Q in P if and
only if for all c ∈ C and p ∈ P such that c ≤ πC(p), we have πQ(p·c) = πQ(p).

For a P -name Ċ, we say Ċ is independent in P over Q if and only if Ċ is
a name for a generic of an independent complete sub-order of P ; i.e. there is
a complete sub-order RC of P (with a strong projection πC : P → RC) such
that RC is a dense in 〈Ċ〉r.o.(P ) and RC is independent in P over Q.

By 〈Ċ〉r.o.(P ) we mean the smallest Boolean subalgebra of r.o.(P ) which
contains all the boolean values occurring in the name Ċ. Thus 〈Ċ〉r.o.(P ) is a
ground model object.
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We use the following in 7.4 (p. 123), via the notion of “remoteness” (see
also lemma 5.33 and section 5.5).

Lemma 2.5. If C is independent over Q in P , 1Q forces that C is a complete
sub-order of P : Q and πC is a strong projection. If Ċ is a P -name which is
independent over Q, then Ċ is not in V Q.

Iterations. We say Q̄θ = (Pι, Q̇ι)ι<θ is an iteration if and only if for each
ι < θ,

1. Pι Q̇ι is a pre-order

2. Pι consists of sequences p such that dom(p) = ι and for each ν < ι,
p(ν) is a Pν-name such that

1Pν  p(ν) ∈ Q̇ν . (2.1)

3. The ordering of Pι is given by:

r ≤ p ⇐⇒ ∀ν < ι r � ν Pν r(ν) ≤Q̇ν p(ν). (2.2)

We state this as some would not agree with (2.1). Fix an iteration Q̄θ+1.

Definition 2.6. 1. We call a sequence p with dom(p) = θ a thread through
(or in) Q̄θ if and only if it satisfies (2.1). The set of threads through Q̄θ

we shall sometimes denote by
∏
Q̄θ. It is endowed with the ordering

given by (2.2) (for r, p ∈
∏
Q̄θ).

2. We also use the term thread in a second, related sense: if p̄ ∈
∏

η<ι<θ Pι
for some η < θ—i.e p̄ = (pι)ι∈(η,θ) and for each ι ∈ dom(p̄) we have
pι ∈ Pι—we say p̄ forms or defines or simply is a thread (through Q̄θ)
if and only if

∀ι, ῑ ∈ dom(p̄) ι ≤ ῑ⇒ πι(pῑ) = pι. (2.3)

The point is that a thread in the first sense yields one in the second sense
and vice versa.

Definition 2.7. More generally we will also call sequence (Pι)ι≤θ an iteration
when in comes strong projections πῑι : Pῑ → Pι, for each ι < ῑ ≤ θ, and for
each (limit) ι, Pι consists of threads in the second sense.

Clearly an iteration in the second sense can be written as an iteration in
the first sense and vice versa.
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Ideals. If c is a Borel-code, we write Bc for the Borel set coded by c. Of
course given two models of set theory, both containing a Borel code c, it may
be that c codes a different set in each model.

Definition 2.8. Say r.o.(Q) is a complete sub-algebra of r.o.(P ). Let Ġ be is
the canonical P -name for the P -generic over V and π : r.o.(P )→ r.o.(Q) the
canonical projection. Let İ be a P -name for an ideal on R in the extension
via P . For a P -name ṙ and p ∈ P , we say is p forces ṙ is İ-generic over V Q,
just if p P ṙ ∈ R and for every Q-name for a Borel code ċ,

p P Bċ ∈ İ ⇒ ṙ 6∈ Bċ.

We say p forces ṙ is fully İ-generic over V Q if and only if p forces ṙ is
İ-generic over V Q and in addition, for every Q-name ċ such that π(p) Q ċ
is a Borel code,

p P ṙ 6∈ Bċ ⇒ p P Bċ ∈ İ .

In other words, p does not force anything non-trivial about ṙ. We say ṙ is
(fully) İ-generic just if 1P forces ṙ is (fully) İ-generic. Instead of “ İ-generic”,

• If İ is a name for the ideal of sets with measure zero, we say Random
over V Q.

• If İ is a name for the ideal of meager sets, we say Cohen over V Q.

• If İ is a name for P<ω(R)V [π(Ġ)]—or equivalently, for P(RV [π(Ġ)])—we
say ṙ 6∈ V Q or ṙ is not in V Q.

• If İ is a name for the ideal of sets which are bounded by a real in
V [π(Ġ)] in the sense of eventual domination, we say unbounded over
V Q.

The terms p forces ṙ is fully Random over V Q and fully Cohen over V Q are
to be understood analogously.

Lemma 2.9. Let P and Q be arbitrary partial orders and let ṙ be a P -name
for a real. If ṙ is unbounded over V , viewing ṙ as a P × Q name via the
natural embedding, ṙ is unbounded over V Q.

For a proof, see [JR93, lemma 3.3, p. 392].



Chapter 3

Stratified Forcing

In this section we assume V = L[A] for some class A. We define stratified
partial orders, show such orders preserve cofinalities, give some examples
and show that stratification is preserved under composition. We also define
diagonal support and state that iterations whose components are stratified
are themselves stratified.1 The proof is left out, since we prove a slightly more
general theorem in section 5 where we deal with iterations with stratified
initial segments but where the components aren’t necessarily stratified.

We present the definition of stratification in two parts: the first we dub
quasi-closure. We treat this first part separately from the remaining axioms
of stratification for the following reasons: firstly, the proofs that each of
these two groups of axioms is preserved in iterations are not only different
but virtually independent of each other.

Secondly, we hope that the reader will agree that quasi-closure is in-
teresting in its own right. This view is in stark contrast to the fact that
quasi-closure alone is not a very useful property— in fact, every partial order
is quasi-closed. One should think of it as an incomplete notion, to which
some other property has to be added in order to render it non-trivial. Strat-
ification is one example of this, closely connected to the notion of centered
forcing. There may be other examples, as well.

Before we define quasi-closure, we introduce pre-closure systems; analo-
gously we will define pre-stratification systems. We can reuse these notions
when we define quasi-closed and stratified extension; see section 5 on page61.

1Most of these definitions are heavily inspired by [Fri94]; see also [Fri00].

11
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3.1 Quasi-Closure
Throughout, let 〈R,≤〉 be a pre-order and let I be an intervall of regular
cardinals, that is I = Reg ∩ [λ0, λ1) or I = Reg ∩ [λ0,∞) for some regular
λ0, λ1. We introduce the notion of R being stratified on I, which implies that
for any λ ∈ I, any ordinal of cofinality greater than λ will remain so after
forcing with R. We have to use another property of R to show cardinals
greater (λ1)+ are preserved (in our application, R will have an appropriate
chain condition). Moreover, we want to allow for R to collapse some cardinals
up to and including λ0.

From now on, we write ΠT
1 (z) for the set of formulas provably equivalent

to a ΠA
1 (z) formula in some weak version of ZFC, T . For concreteness, say T

states that the universe is closed under every function F which is definable by
a ΣA

1 formula, say Φ such that ZFC ∧ V = L[A] proves “∀x∃yΦ(x, y)”.2 We
only mention this to point put that unfortunately, these classes of formulas
are not closed under bounded quantification. In practice, the reader will see
T is of little relevance and we shall sometimes omit the superscript.

We now make a few convenient definitions that facilitate the treatment
of quasi-closed partial orders, which we define afterward.

Definition 3.1. We say s = (D, c,4λ)λ∈I is a pre-closure system for R on I
if and only if D ⊆ Reg×V ×R2 is a ΠT

1 (c) class and for every λ ∈ I, x ∈ V ,
p, q, r ∈ R

(C 1) if p ≤ q ∈ D(λ, x, r) then p ∈ D(λ, x, r).

(C 2) The relation 4λ is a preorder on R and p 4λ q ⇒ p ≤ q.

(C 3) If p ≤ q ≤ r and p 4λ r then p 4λ q.

(C 4) If λ̄ ∈ I, λ̄ ≥ λ then q 4λ̄ p⇒ q 4λ p.

As a notational convenience, define 40 to mean ≤R. Clause (C 3) can
be dropped if one is not interested in iterations. Observe that by (C 3),
4λ is well-defined with respect to equivalence modulo ≈ (remember we say
p ≈ q ⇐⇒ p ≤ q and q ≤ p).

Think of each of the relations 4λ as a notion of direct extension, as it
is often called in the case of e.g. Prikry-like forcings. Intuitively, p 4λ q
expresses that p extends q but some part “below λ” is left unchanged. Think
of D as providing a kind of strategy, as with strategically closed forcing.

2This includes all rudimentary functions and the function x 7→ tcl(x) assigning to x its
transitive closure; also, T implies ∆A

0 -separation. Alternatively, we could take T to be the
theory of all ΣA1 -elementary sub-models of L[A].
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Together, this additional structure on R allows us to express that certain
sequences have lower bounds in R. The missing ingredient and distinct flavor
of quasi-closure is the condition that these sequences be definable in a sense.
The main point is that the definability and the use of D are intertwined in
that they are coordinated by a common object w̄ which we shall call the
strategic guide and canonical witness.

For the next two definitions, fix a pre-closure system s for R on I. All
the notions in the next two definitions have their meaning with respect to s.

Definition 3.2. Let p̄ = (pξ)ξ<ρ be a sequence of conditions in R and ρ ≤ λ.
We say w̄ is a (λ, x)-strategic guide for p̄ if and only if w̄ = (wξ)ξ<ρ is a
sequence of the same length as p̄ and for a tail of ξ < ρ

1. for some λ′ ∈ I, pξ+1 ∈ D(λ′, ({x, c}, w̄ � ξ + 1), pξ) and pξ+1 4λ
′
pξ.

2. pξ+1 4λ pξ.

3. if ξ is a limit, pξ is a greatest lower bound of (pν)ν<ξ.

Definition 3.3. 1. We say a sequence w̄ = (wξ)ξ<ρ is ΠT
1 (z) if for some

ΠT
1 (z) formula Ψ we have w = wξ ⇐⇒ Ψ(w, ξ). We say G is a ΣT

1 (z)
function if G(x) = y is a ΣT

1 (z) formula and G is a partial function.

2. Let p̄ = (pξ)ξ<ρ be a sequence of conditions in R and ρ ≤ λ. We
say w̄ = (wξ)ξ<ρ is a (λ, x)-canonical witness for p̄ if and only if w̄ is
ΠT

1 (λ ∪ {x, c}) and for some ΣT
1 (λ ∪ {(x, c)}) (partial) function G, we

have pξ = G(w̄ � ξ + 1) for every ξ < ρ.

3. We say p̄ is (λ, x)-adequate if and only if ρ ≤ λ and there is w̄ which
is both a strategic guide and a canonical witness for p̄.

4. If p̄ is (λ, x)-adequate for some x we say p̄ is λ-adequate.

Note that a sequence p̄ has a canonical witness simply if it is ΣT
2 . Also note

there is some flexibility for with respect to the definability requirement we
out in G; one could probably do with rudimentary G or with one specific
function.

Definition 3.4. We say 〈R, s〉 is quasi-closed on I if and only if for any x
and λ ∈ I,

(C I) For any p ∈ R there is q ∈ D(λ, x, p) such that q 4λ p. In addition we
can demand that q 4λ̄ 1R for any λ̄ ∈ I such that p 4λ̄ 1R.
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(C II) Every λ-adequate sequence p̄ = (pξ)ξ<ρ in R has a greatest lower bound
p in R and for all ξ < ρ, p 4λ pξ. If λ̄ ∈ I is such that for each ξ < ρ,
pξ 4λ̄ 1R, then p 4λ̄ 1R.

We also use the expression R is quasi-closed as witnessed by s. If we omit s
and no pre-closure system can be deduced from the context, we mean that
there exists a pre-closure system s such that 〈R, s〉 is quasi-closed. When we
say quasi-closed on [λ0, λ1), we mean of course quasi-closed on [λ0, λ1)∩Reg
etc.

Clause (C I) and the last sentence of clause (C II) are useful regarding
infinite iterations of quasi-closed forcings.

Remark 3.5. For arbitrary R, just define p 4λ q if and only if p = q and
D(λ, x, p) = {p} for all regular λ ≥ λ0 and all x. Then R is quasi-closed.
Quasi-closure becomes non-trivial under the additional hypothesis that cer-
tain questions about the generic extension can be decided by strengthening
a condition in the sense of 4λ, for some λ. Stratified forcing satisfies such a
hypothesis.

Remark 3.6. Say R is λ+-closed; then R trivially satisfies all the conditions
of 3.4 for this one λ. The same is true if R is λ+-strategic: for if σ : R → R
is a strategy for R, define D(λ, x, p) = {q ∈ R | q ≤ σ(p)}. D is clearly
ΠT

1 ({σ}). We can define 4λ to be the same as ≤. Of course every strategic
and thus every adequate sequence has a greatest lower bound.

This is not vacuous, in that there are non-trivial adequate sequences. In
fact, every sequence p̄ of length less than λ+ which adheres to σ is λ-adequate:
For fix p̄ of length less than λ+. By re-indexing, assume the length of p̄ is λ.
Since p̄ is ΠT

1 ({p̄}), and since D does not depend on x at all, p̄ is (λ, {p̄})-
adequate.

These are our first examples of forcings which non-trivially satisfy the
definition of quasi-closed (albeit for just one fixed λ), since any statement
about the generic can be decided by extending in the sense of 4λ.

3.2 A word about definability and set forcing
The concept of quasi-closure is more natural in a class forcing context. Since
we only apply it for set forcing, we can make do with ΠT

1 (z) (as opposed
taking into account ΠT

n (z) for all n > 1). We still have to use a form of
Π1-uniformisation, implicit in the construction of canonical witnesses (see
3.14). In class forcing, this uniformisation can be achieved using the fact that
conditions form a class, and the “height” of each condition in an adequate
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sequence effectively represents the canonical witness. Using this technique,
I do not know a proof that κ is not collapsed. See also [Fri00], chapter 8.2,
p. 175.

Think of x as a tuple of constants which can be used in in the definition
of an adequate sequence p̄. From now on we shall always assume that c is
among the constants given by x. We can and will assume that some large
enough Lµ[A] is among the constants given by x, where µ is a cardinal and
R ∈ Lµ[A] (i.e. assume that Lµ[A] is in or is recursive in c). This allows us to
bound quantifiers of certain statements and argue that they are ΠT

1 ({x}∪λ).
Intuitively, this use of c is analogous to the use of a large structure with
predicates in the context of proper forcing. In our application, it will suffice
to set c = {κ+++}.

3.3 Stratification

Definition 3.7. We say S = (D,4λ,2λ,Cλ)λ∈I is a pre-stratification system
for R on I if and only if (D, c,4λ)λ∈I is a pre-closure system for R on I and
for every λ ∈ I the following conditions are met:

(S 1) The binary relation 2λ on R satisfies p ≤ q ⇒ p 2λ q.

(S 2) If p ≤ q 2λ r then p 2λ r.3

(S 3) If λ ≤ λ̄ and λ̄ ∈ I then p 2λ q ⇒ p 2λ̄ q.

(S 4) Density: Cλ ⊆ R × λ is a binary relation such that dom(Cλ) is dense
in R. Moreover, for any λ′ ∈ I ∩ λ and p ∈ R, there is q 4λ′ p such
that q ∈ dom(Cλ).

(S 5) Continuity : If λ′ ∈ I ∩ λ and p is a greatest lower bound of the λ′-
adequate sequence p̄ = (pξ)ξ<ρ and for each ξ < ρ, pξ ∈ dom(Cλ),
then p ∈ dom(Cλ).4 If in addition q̄ is another λ′-adequate sequence
of length ρ with greatest lower bound q and for each ξ < ρ, Cλ(pξ) ∩
Cλ(qξ) 6= ∅, then Cλ(p) ∩Cλ(q) 6= ∅.

3Note that we don’t assume 2λ to be transitive, since this does not seem to be preserved
by composition. If 2λ were transitive, condition (S 2) would follow from (S 1). We need
(S 2) for lemma 3.15. We need that 2λ is reflexive (i.e. p 2λ p for all p) for 5.18(Cs4). In
the context of (S 2), reflexivity is the same as the last part of (S 1).

4In any application I know, we could ask this for all λ′ ∈ I, not just those smaller than
λ.
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The last part of condition (S 1), all of (S 3) and and the “moreover” part
of (S 4) can be dropped if one is not interested in infinite iterations. Don’t
think that 2λ is a pre-order or well-defined on the separative quotient of R,
although (S 2) guarantees some regularity with respect to ≈.

Definition 3.8. We say a pre-order 〈R,≤〉 is stratified on I as witnessed
by S = (D,4λ,2λ,Cλ)λ∈I if and only if S is a pre-stratification system on
I, 〈R,4λ,D〉λ∈I is quasi-closed, and for each λ ∈ I the following conditions
hold:

(S I) Expansion: If p 2λ d and d 4λ 1R, then in fact p ≤ d.

(S II) Interpolation: If d ≤ r, there is p 4λ r such that p 2λ d. In addition,
whenever λ̄ ∈ I and d 4λ̄ 1R, then also p 4λ̄ 1R.

(S III) Centering : If p 2λ d and and Cλ(p) ∩ Cλ(d) 6= ∅ then p and d are
compatible. In fact, there is w such that for any λ′ ∈ I ∩ λ, w 4λ′ p
and w 4λ′ d.

If we omit S and no pre-stratification system can be deduced from the con-
text, we mean that there exists a pre-stratification system S witnessing that
R is stratified. When we say stratified on [λ0, λ1), we mean of course stratified
on [λ0, λ1) ∩Reg etc.

Conditions (S 5) and (S I) are important to preserve stratification in
(infinite) iterations. The second part of (S III) was introduced to allow
for amalgamation (see section 6), but is also useful to control the diagonal
support in iterations (see below).

We illustrate definition 3.8 with some examples.

Example 3.9. A simple observation is that for any pre-order R, R is strati-
fied above |R|. A little more generally, if R is λ0-centered, then R is stratified
on [λ0,∞): for if λ ≥ λ0, we can simply define p 4λ q just if p = q. Similarly,
D(λ, x, p) = R for all p ∈ R. Thus, quasi-closure and continuity become
vacuous. Moreover, let g : R → λ0 be a a function such that if g(p) = g(q)
then p and q are compatible. Set Cλ(p) = {g(p)} for any p ∈ R. Lastly,
define p 2λ q to hold for any pair p, q. Then the only non-vacuous condition
in the definition of stratification is centering, which holds for every λ ≥ λ0

since g witnessed that R was centered.

This example has a corollary:

Corollary 3.10. If a pre-ordered set R is stratified, we can always assume
that for λ ≥ |R|, D, 4λ, 2λ and Cλ take the simple form discussed above in
example 3.9.
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Observe that (C 4) and (S 3) remain valid if we modify a given pre-stratification
system in such a way as to ensure that the above assumption holds. A more
interesting example:

Example 3.11. Say R = P ∗ Q̇ where P is (λ0)+-centered and (λ0)+-closed
and P Q̇ is λ0-centered and λ0-closed. Then R is stratified on Reg —
ignoring (S 5). If the centering functions for P and Q̇ξ in the extension
are continuous in the sense of (S 5)—and it seems that for many centered
forcings, this is the case—R is actually stratified.

Define D as in the previous example. For λ < λ0, define 4λ to be identical
to ≤R; define p 2λ q if and only if p = q and let Cλ(p) = λ for every p ∈ R.
Then Interpolation and centering hold at λ for trivial reasons, and quasi-
closure at λ expresses the fact that R is closed under sequences of length at
most λ. For λ = λ0, fix a name for a centering function ġ; set (p, q̇) 4λ (p′, q̇′)
if and only if (p, q̇) ≤ (p′, q̇′) and q̇ = q̇′; set (p, q̇) 2λ (p′, q̇′) if and only if
p ≤P p′. Let χ ∈ Cλ(p, q̇) if and only if p  ġ(q̇) = χ̌. Lastly, R has a
subset R′ which is (λ0)+ centered and 4λ0-dense. This allows us to define a
stratification above (λ0)+, in a similar way to the previous example.

Finally, we can discuss preservation of cofinalities and the GCH.

Definition 3.12. In the following, we fix a regular cardinal λ ∈ I and drop
the superscripts on C,4 and 2.

1. Let D,D∗ ⊆ R, and r ∈ R. We say r λ-reduces D to D∗ (often, we
don’t mention the prefix λ) exactly if

(a) D∗ ⊆ dom(C) and |D∗| ≤ λ;
(b) for each d ∈ D∗, r 2 d;
(c) for any q ∈ dom(C) ∩ D, if q ≤ r, there is d ∈ D∗ such that

C(q) ∩C(d) 6= 0.

2. Let α̇ be a name for an element in the ground model V , and let r ∈
R. We say α̇ is λ-chromatic below r just if there is a function H
with domH ⊆ λ such that if q ≤ r decides α̇ and q ∈ dom(C), then
C(q) ∩ dom(H) 6= 0 and for all χ ∈ C(q) ∩ dom(H), q  α̇ = H(χ) (to
be pedantically precise, we mean the “standard name” for H(χ)). We
call such H a λ-spectrum (of α̇).

3. If ṡ is a name and p  ṡ : λ → V , then we say ṡ is λ-chromatic
(with λ-spectrum (Hξ)ξ<λ) below p if and only if for each ξ < λ, ṡ(ξ̌) is
chromatic with spectrum Hξ below p.
For notational convenience, we say ẋ is 0-chromatic below p if for some
x, p R ẋ = x̌.
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Observe that if for some ground model set x, p  α̇ = x̌ (i.e. α is 0-
chromatic), then α̇ is in fact λ-chromatic for every regular λ, and the function
with domain λ and constant value x is a λ-spectrum.

To illustrate λ-reduction, observe that if r λ-reduces D to D∗, then D∗
is a subset of D∗ of size λ which is predense below r: for if q ≤ r, we can
assume that q ∈ dom(Cλ), so that there is d ∈ D∗ with Cλ(d) ∩Cλ(q) 6= ∅.
By (S 2), q 2λ d and so by Centering (S III), q and d are compatible.

Now say Say R is stratified in I and λ ∈ I.

Theorem 3.13. Let D be a dense subset of R and p ∈ D. Then there is
r 4λ p such that r λ-reduces D to some D∗.

Proof. We build an adequate sequence p̄ = (p0)ξ≤λ, starting with p0 = p. We
shall first sketch a construction such that r = pλ is the desired condition,
without specifying a canonical witness; then we argue how this construction
can be carried out so as to obtain a canonical witness at the same time. This
will serve as a blueprint for later constructions, where we shall not explicitly
carry out the construction of w̄, as it is entirely analogous to the case at
hand.

Let x = (p0,4λ,2λ,Cλ, R,D, c), where c contains any parameters in the
definition of D. Say we have constructed w̄ � ν and p̄ � ν. If ν ≤ λ is a limit
ordinal, assume by induction that p̄ � ν is adequate and let pν be a greatest
lower bound. Now say ν = ξ + 1. Choose, in a manner yet to be specified
wξ+1, pξ+1, p∗ξ and dξ which satisfy the following:

1. p∗ξ ∈ D(λ, (x, w̄ � ξ + 1), pξ), and pξ+1 4λ p∗ξ .

2. (a) If there is no d ≤ p∗ξ such that d ∈ D and ξ ∈ Cλ(d) we demand
pξ+1 = p∗ξ ;

(b) else pξ+1 and dξ satisfy: dξ ≤ p∗ξ , dξ ∈ D and ξ ∈ Cλ(dξ); moreover
pξ+1 4 p∗ξ and pξ+1 2λ dξ.

Observe this does not even mention wξ+1; its role will be explained by lemma
3.14, below. If the first alternative of item 2 obtains, the dξ we choose
is completely irrelevant for the rest of the construction. It is clear that p̄
will have w̄ as a strategic guide: since pξ+1 ≤ p∗ξ , by item 1 and (C 1),
pξ+1 ∈ D(λ, x, pξ) and pξ+1 4λ pξ.

Let D∗ = {dξ | ξ < ρ and 2b obtained at stage ξ + 1 }. Clearly, pλ re-
duces D to D∗. For if q ≤ pλ, q ∈ D and ξ ∈ Cλ(q), then q witnesses that
at step ξ + 1 of the construction of p̄, 2b obtained. So we have dξ ∈ D with
ξ ∈ Cλ(dξ). Moreover, q ≤ pλ 2λ dξ. In order to conclude that this construc-
tion works, we need to show that for every ν ≤ λ, p̄�ν is (λ, x)-adequate. For
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this it is enough to explain how precisely we made our choices in the above
construction:

Lemma 3.14. In the previous, wξ+1, pξ+1, p∗ξ and dξ can be chosen so that
w̄ is a (λ, x)-canonical witness for p̄.

Proof. Observe that at successor stages, pξ+1, p∗ξ and dξ are chosen so as to
satisfy a property which is ΠT

1 in parameters x and w̄ � ξ + 1. That is, we
may choose ΠT

1 (x) formula Φ0 such that Φ0(pξ+1, p
∗
ξ , dξ, w̄ � ξ + 1) holds just

if 1 and 2 hold.
In what follows, the choice of w̄ will be such that for each ξ < λ, wξ is a

quintuple, and p̄ is obtained from w̄ by projecting to the first coordinate. In
fact, we will have wξ+1 = (pξ,M, p∗ξ , dξ, w̄�ξ+1) whereM is a model allowing
us to uniformize Φ0 and the rest of the coordinates are as in the successor step
of the above construction. At limits ν we shall have wν = (pν ,M, p∗, d, w̄ �ν),
where p∗ and d are just dummies. Using the initial segment w̄ � ξ as a last
coordinate in wξ makes w̄ ΠT

1 (x) in the end (see below).
Let Φ1(p, p∗, d, w̃) be the formula expressing that if ν = dom(w̃) is a limit

then p is the greatest lower bound in R of the sequence obtained from w̃ by
projecting to the first coordinate (and for clarity, p∗ = d = ∅ if you want);
and if ν = ξ + 1 then Φ0(p, p∗, d, w̃) holds.

Now let Φ(w, w̃) be the ΠT
1 (x) formula expressing: w = (p,M, p∗, d, w̃) is

such that

1. M is transitive, M ≺Σ1 L[A] and p, p∗, d, w̃ ∈M ,

2. for any initial segment of M containing p, p∗, d, w̄ we have N 6≺Σ1 M ,

3. M � (p, p∗, d) is ≤L[A-least such that Φ1(p, p∗, d, w̃).

We may choose w̄ recursively such that for each ξ < λ, Φ(wξ, w̄ � ξ) holds:
Observe that if such wξ exists, it is unique. For limit ν, we may assume by
induction that w̄ � ν is a canonical witness for p̄ � ν, allowing us to infer p̄ � ν
is adequate and that pν and hence wν exists. At successor stages ξ+ 1, wξ+1

always exists, and so w̄ is well-defined.
Lastly, we show w̄ is ΠT

1 (x): this is because w = wξ if and only if w
is a quintuple with last coordinate w̄ such that Φ(w, w̄) holds, and w̄ is a
sequence such that for each ξ ∈ dom(w̄), Φ(w̄(ξ), w̄ � ξ). This finishes the
proof of the lemma.

Having shown that p̄ may be chosen as a (λ, x)-adequate sequence, we
are finished with the proof of the theorem.
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Lemma 3.15. For each ξ < λ, let Dξ be an open dense subset of R. Let

X = {q ∈ R | ∃D∗ ∀ξ < λ q λ-reduces Dξ to D∗}.

Then X is dense in 〈R,4λ〉 and open in 〈R,≤〉.
If ṡ is a name such that p  ṡ : λ → V , the set of q such that ṡ is

λ-chromatic below q is dense in 〈R(≤ p),4λ〉 and open.

Proof. Let D̄ = (Dξ)ξ<λ be a sequence of dense open subsets of R. Build a
sequence as before: let

x = 〈p0,4
λ,2λ,Cλ,P(R), D̄, y〉.

At successor steps ξ, choose pξ and wξ such that pξ 4λ pξ−1 and pξ ∈
D(λ, (x, w̄ � ξ + 1), pξ−1) and such that we can pick D∗ξ such that pξ reduces
Dξ to D∗ξ . As in lemma 3.14, argue this can be done in such a way that the
resulting sequence p̄ is (λ, x)-adequate. So a greatest lower bound pλ exists
and for each ξ < λ, pλ reduces Dξ to

⋃
ξ<λD

∗
ξ .

Now let p  ṡ : λ → V . Let Dξ be the set of conditions p ∈ R which
decide ḟ(ξ). As above, find q reducing all Dξ to D∗. We now find a spectrum
for ṡ: For χ < λ, if w ≤ q decides ṡ(ξ) and χ ∈ Cλ(w), there is also d ∈ D∗
which decides ṡ(ξ) and such that χ ∈ Cλ(d). Fix z such that d  f(ξ) = ž.
Then we may set Hξ(χ) = z. It is easy to check that for each ξ < λ, Hξ is a
spectrum for ṡ(ξ) (and thus (Hξ)ξ<λ is a spectrum for ṡ): Say w ≤ q decides
ṡ(ξ) and fix some χ ∈ Cλ(w). Then there is d ∈ D∗ with χ ∈ Cλ(d) such
that d  s(ξ) = Hξ(χ). As d ∈ D∗, q 2λ d. So as χ ∈ Cλ(w)∩Cλ(d), w and
d are compatible and thus w  s(ξ) = Hξ(χ).

Corollary 3.16. Cofinalities greater than λ remain greater than λ after forc-
ing with R and (2λ)V = (2λ)V [G] for any R-generic V .

3.4 Composition of stratified forcing
In the main theorem of this section, theorem 3.17 below, we show stratifi-
cation is preserved by composition. In the proof, we use “guessing systems”,
which we shall motivate now, before we state and prove the theorem.

Say P is stratified and Q̇ is forced by P to be stratified on I, and let λ ∈ I
be fixed. We know P has a centering relation C and Q̇ is forced to have a
centering relation Ċ in the extension. Similar to the proof that composition
of centered forcing stays centered, we want to gain some control over Ċ in the
ground model. If we ignore the requirements 3.7(S 4) density and 3.8(S 5)
continuity, we could define C̄ on P ∗ Q̇ in the following way:

(χ, ξ) ∈ C̄(d, ḋ) ⇐⇒ χ ∈ C(d) and d  ξ̌ ∈ Ċ(ḋ)
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Then dom(C̄) is dense and 3.8(S III) centering holds.
The following definition also satisfies 3.7(S 4) density : let

(χ,X) ∈ C̄(d, ḋ) ⇐⇒
(
χ ∈ C(d) and for some ξ̇ and λ′ ∈ Reg ∩ [λ0, λ),

X is a λ′-spectrum for ξ̇ below d and d  ξ̇ ∈ Ċ(ḋ)
)
. (3.1)

Let’s check 3.7(S 4) density holds: Given a condition p̄ = (p, ṗ) and λ′ ∈
Reg ∩ [λ0, λ), we can find d̄ = (d, ḋ) such that d̄ 4̄λ

′
p̄, d ∈ dom(C) and d 

ḋ ∈ dom(Ċ). Moreover, we can assume that for some name χ̇, d  χ̇ ∈ Ċ(ḋ)
and χ̇ is λ′-chromatic. We have d̄ ∈ dom(C̄). Let’s also check that 3.8(S III)
centering holds: say d̄ 2̄λ p̄ and (χ,X) ∈ C̄(p̄) ∩ C̄(d̄). First, observe that
p and d are compatible. Fix χ̇0, χ̇1 such that both p  χ̇0 ∈ Ċ(ṗ) and
d  χ̇1 ∈ Ċ(ḋ) and X is a spectrum for χ̇0 below p and for χ̇1 below d. As
p · d  χ̇0 = χ̇1 ∈ Ċ(ḋ) ∩ Ċ(ṗ), by centering for Q̇ in the extension, p · d  ḋ
and ṗ are compatible, whence d̄ and p̄ are compatible.

To show stratification is preserved at limits, we will have to use Continuity
of the centering function; Unfortunately, the approach described above does
not yield a continuous centering function in the sense of (S 5). For say
d̄ξ = (dξ, ḋξ) form a λ′-adequate sequence of length ρ, and for each ξ < ρ,
dξ  χ̇ξ ∈ Ċ(ḋξ) and Xξ is a λξ-spectrum for χ̇ξ below dξ. By Continuity for
the components of the forcing, if (d, ḋ) is a greatest lower bound, we know
d  ḋ ∈ dom(Ċ); but there is no reason to assume that there exists a P -name
γ̇, such that d  γ̇ ∈ Ċ(ḋ) and γ̇ is λ′′-chromatic for some λ′′ < λ.

The solution to this problem is to allow a more general set of values for
C̄(d̄): in the situation described above, e.g. the sequence (Xξ)ξ<ρ be used in
much the same way as the single spectrum X. This leads to the notion of a
guessing system, which will be precisely defined in 3.18.

Theorem 3.17. Say P is stratified on I and Q̇ is forced by P to be stratified
on I. Then P̄ = P ∗ Q̇ is stratified (on I).

Proof. Say stratification of P is witnessed by D,Cλ,4λ, 2λ for each regular
λ ∈ I, and we have class Ḋ, definable with parameter ċ and names Ċλ, 4̇

λ,
2̇
λ for λ regular which are forced by P to witness the stratification of Q̇. We

now define D̄, C̄λ, 4̄λ and 2̄λ for regular λ ≥ λ0 to witness stratification of
P ∗ Q̇.

The auxiliary orderings

Let λ ∈ I be regular. We say (p, q̇)4̄λ(u, v̇) if and only if p 4λ u and
p P q̇4̇

λ
v̇. This defines a pre-order stronger than the natural ordering on
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P ∗Q̇ (i.e. 3.1(C 2) holds). Define p̄ 2̄λ q̄ if and only if p 2λ q and if p ·q 6= 0,
p · q P ṗ 2λ q̇.

The ordering axioms

Let p̄ = (p, ṗ), q̄ = (q, q̇) and r̄ = (r, ṙ) be conditions in P̄ .
We check that 3.1(C 3) holds: Say p̄ ≤P̄ q̄ ≤P̄ r̄ and p̄ 4̄

λ
r̄. Then p 4λ r

by 3.1(C 3) for P . Moreover, p forces 3.1(C 3) for Q̇ as well as ṗ ≤ q̇ ≤ ṙ

and ṗ4̇λṙ. So p P ṗ4̇λq̇, and we conclude p̄ 4̄λ q̄.
Check that 3.7(S 2) holds: Say p̄ ≤P̄ q̄ 2̄

λ
r̄. By (S 2) for P , p 2λ r. If

p · r 6= 0,
p · r P ṗ ≤Q̇ q̇ 2

λ ṙ,

and so p · r P ṗ 2λ ṙ. Thus p̄ 2̄λ r̄.
Next, check 3.7(S I). Say p̄ 2̄λ q̄ and q̄ 4̄λ 1P̄ . By (S I) for P , p ≤ q.

So p  ṗ2̇λq4̇λ1Q̇, so by (S I) applied in the extension, p  ṗ ≤Q̇ q̇, whence
p̄ ≤P̄ q̄. We leave it to the reader to check 3.1(C 4) and 3.8(S 3).

Quasi-Closure

Define (p, ṗ) ∈ D̄(λ, x, (q, q̇)) if and only if p ∈ D(λ, x, q) and p  ṗ ∈
Ḋ(λ, x, q̇). It is straightforward to see that this definition is ΠT

1 ((c, ċ)).
Clearly, this defines a “dense and open” set, i.e. (C 1) and (C I) are sat-
isfied.

Now say (pξ, q̇ξ)ξ<ρ is (λ, x)-adequate. We show this sequence has a great-
est lower bound. Let w̄ be a strategic guide and a canonical witness for
(pξ, q̇ξ)ξ<ρ. We can immediately infer by the definition of D̄ that w̄ is a
strategic guide for (pξ)ξ<ρ. It is also clear that w̄ is a canonical witness, since
pξ can be obtained from (pξ, q̇ξ) by projecting to the first coordinate, and
this map is ∆0. Thus there is a greatest lower bound pρ of (pξ)ξ<ρ.

It is easy to see now that pρ P “(q̇ξ)ξ<ρ is (λ, x)-adequate”: Fix a ΠT
1 (λ∪

{x}) formula Φ(x, y) such that for ξ < ρ we have

Φ(x, ξ) ⇐⇒ x = wξ.

Then the relativization Φ(x, y)L[A] witnesses that 1P forces that w̄ is Π1(λ ∪
{x}) in the extension by P , as well. For a ΣT

1 (λ∪{x})-function G, (pξ, q̇ξ) =
G(w̄ � ξ + 1) for each ξ < ρ, and so q̇ξ = π1(G(w̄ � ξ + 1)), where π1 is
the projection to the second coordinate. As G(x) = y is ΣT

1 , clearly the
relativized formula (π1(G(x)) = y)L[A] is also ΣT

1 (λ ∪ {x}) in the extension
by P . So w̄ is forced to be canonical witness. Moreover, it is clear that pρ
forces that w̄ is a strategic guide for (q̇ξ)ξ<ρ, by the definition of D̄.
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So we can find q̇ρ such that pρ P “ q̇ρ is a greatest lower bound of (q̇ξ)ξ<ρ”,
whence (pρ, q̇ρ) is a greatest lower bound of the original sequence. Leaving
the last sentence of (C II) to the reader, we conclude that 〈P ∗Q̇, 2̄λ, (c, ċ), D̄〉
is λ-quasi-closed above on I.

To define C̄λ, we first define the notion of a guessing system. Roughly
speaking, a guessing system consists of conditions which are organized in
levels; the conditions on the bottom have a C̄λ-value in the sense of (3.1).
Conditions on higher levels are greatest lower bounds of conditions on the
levels below, and we have some control over their Ċλ-value by continuity for
Q̇.

Definition 3.18. Say (p, q̇) ∈ P ∗ Q̇ and λ is regular and uncountable. A
λ-guessing system for q̇ below p is a quadruple (Tg, Hg, λg, qg) such that

1. Tg is a tree, Tg ⊆ <ωγ, where γ = width(T ) < λ and C (initial segment)
is reversely well founded on Tg. The root of Tg is ∅ (i.e. the empty
sequence).

2. For s ∈ Tg, ρg(s) = {ξ | s _ ξ ∈ Tg} is an ordinal. Write T 0
g for the set

of C-maximal s ∈ Tg, i.e. T 0
g = {s ∈ Tg | ρg(s) = 0}.

3. qg is a function from Tg into the set of P -names for conditions in Q̇ and
λg : Tg → λ ∩Reg.

4. For s ∈ Tg \ T 0
g , {qg(s _ ξ)}ξ<ρg(s) is a λg(s)-adequate sequence and p

forces that qg(s) is a greatest lower bound of {qg(s _ ξ)}ξ<ρg(s).

5. dom(Hg) = T 0
g .

6. For s ∈ T 0
g , there is a P -name χ̇ such that p P χ̇ ∈ Cλ(qg(s)) and

Hg(s) is a λg(s)-spectrum of χ̇ below p.

7. qg(∅) = q̇.

Now we are ready to define C̄λ: let s ∈ C̄λ(p, q̇) if and only if either

(a) s ∈ Cλ(p) and p  q̇4̇λ1Q̇ holds or else

(b) if λ > min I, s = (χ, Tg, Hg, λg) where χ ∈ Cλ(p) and for some qg,
(Tg, Hg, λg, qg) is a λ-guessing system for q̇ below p.

(c) if λ = min I, s = (χ, ξ), where χ ∈ Cλ(p) and p P ξ̌ ∈ Ċλ(q̇).

It is straightforward to check that ran(C̄λ) has size at most λ. Thus we may
assume C̄λ ⊆ (P ∗ Q̇)× λ, although this is not literally the case.

We have finally defined the stratification of P̄ = P ∗ Q̇. Let’s check the
remaining axioms.
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Continuity

Say λ′ ∈ I, λ′ < λ), both p̄ = (pξ, ṗξ)ξ and q̄ = (qξ, q̇ξ)ξ are λ′-adequate se-
quences of length ρ and for each ξ < ρ, C̄λ(pξ, ṗξ)∩C̄λ(qξ, q̇ξ) 6= ∅. Moreover,
let (p, ṗ) and (q, q̇) denote greatest lower bounds of p̄ and q̄, respectively.

First, by Continuity for P , we can find χ ∈ Cλ(p) ∩ Cλ(q). For each
ξ < ρ, fix (T ξg , H

ξ
g , λ

ξ
g) such that for some χ′,

(χ′, T ξg , H
ξ
g , λ

ξ
g) ∈ C̄λ(pξ, ṗξ) ∩Cλ(qξ, q̇ξ).

and find pξg such that (T ξg , H
ξ
g , λ

ξ
g, p

ξ
g) is a guessing system for ṗξ below pξ.

Now construct a guessing system (Tg, Hg, λg, pg) for ṗ below p, showing
(p, ṗ) ∈ dom(C̄λ). It will be clear from the construction that Tg, Hg and λg
do not depend on the sequence of pξg, ξ < ρ. Let s ∈ Tg if and only if s = ∅ or
ξ _ s ∈ T ξg . Let λg(∅) = λ′, and of course pg(∅) = ṗ. Now let s ∈ Tg \ {∅} be
given and define λg(s), pg(s) and, in the case that s ∈ T 0

g , also define Hg(s).
Find s′ such that s = ξ _ s′. Let λg(s) = λξg(s

′) and let Hg(s) = Hξ
g (s′) if

s ∈ T 0
g (or equivalently, if s′ ∈ (T ξg )0). Let pg(s) = pξg(s

′).
To check that (Tg, Hg, λg, pg) is a guessing system, first observe that C is

reversely well-founded on Tg. Moreover, ρg(∅) = ρ is an ordinal and λg(∅) <
λ. Also, clause 4. holds for s = ∅, by construction. The rest of the conditions
are straightforward to check; they hold by construction and because for each
ξ < λ′, (T ξg , H

ξ
g , λ

ξ
g, p

ξ
g) is a guessing system.

If we carry out the same construction for (q, q̇), we obtain qg such that
(Tg, Hg, λg, qg) is a guessing system for q̇ below q. Thus,

(χ, Tg, Hg, λg) ∈ C̄λ(p, ṗ) ∩ C̄λ(q, q̇).

Interpolation

Say (d, ḋ) ≤P̄ (r, ṙ). First find p ∈ P such that p 2λ d and p 4λ r. If
p · d 6= 0, then p · d P ḋ ≤Q̇ ṙ, so we can find ṗ such that p · d P ṗ2̇

λ
ḋ and

p P ṗ4̇
λ
ṙ.

Centering

Say p̄ 2̄λ d̄, where p̄ = (p, ṗ) and d̄ = (d, ḋ), and assume C̄λ(p̄) ∩ C̄λ(d̄) 6= ∅.
First assume we can find (χ, Tg, λg, Hg) ∈ C̄λ(p̄) ∩ C̄λ(d̄) (i.e. (b) holds in
the definition of C̄λ). As χ ∈ Cλ(p)∩Cλ(d), by centering for P there exists
w such that for all regular λ′ ∈ 0 ∪ I ∩ λ, both w 4λ′ p and p 4λ′ d.

Now fix pg and dg such that (Tg, λg, Hg, pg) is a guessing system for ṗ
below p and (Tg, λg, Hg, dg) is a guessing system for ḋ below d. We show by
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induction on the rank of s (in the sense of the reversed C-order) that for
each s ∈ Tg,

p · d P Ċλ(pg(s)) ∩ Ċλ(dg(s)) 6= 0. (3.2)

First, let s ∈ T 0
g . By definition 3.18, 6. we can find P -names α̇ and β̇ such

that both have spectrum Hg(s) below p and d, respectively, and moreover:

p P α̇ ∈ Ċλ(pg(s))

and
d P β̇ ∈ Ċλ(dg(s)).

Thus, as α̇ and β̇ have a common spectrum below p · d, (3.2) holds.
For s of greater rank, we may assume by induction that for each ξ < ρg(s),

p · d P Ċλ(pg(s
_ ξ)) ∩ Ċλ(dg(s

_ ξ)) 6= 0. (3.3)

As p forces that

{pg(s _ ξ)}ξ<ρg(s) is a λg(s)-adequate sequence and pg(s) is a
greatest lower bound of {pg(s _ ξ)}ξ<ρg(s),

(3.4)

and as d forces the corresponding statement for dg(s) and {dg(s_ ξ)}ξ<ρg(s),
Continuity for Q̇ in the extension allows us to infer (3.2) for this s. This
finishes the inductive proof on the rank of s.

Finally, (3.2) holds for s = ∅, so as pg(∅) = ṗ and dg(∅) = ḋ, by centering
for Q̇ in the extension, w  there exists ẇ such that for all regular λ′ ∈
0 ∪ I ∩ λ, both ẇ4̇λ

′
ṗ and ẇ4̇λ

′
ḋ. Then w̄ = (w, ẇ) is as desired.

Now secondly assume we have χ ∈ C̄λ(p̄) ∩ C̄λ(d̄) and (a) holds in the
definition of C̄λ. In this case χ ∈ Cλ(p) ∩ Cλ(d). Let w ∈ P such that
w 4<λ p and w 4<λ d. By assumption, w  ḋ4̇λ1Q̇ and ṗ2̇λḋ. By expansion
(S I) for Q̇, we conclude w  ṗ ≤ ḋ. We claim w̄ = (w, ṗ) is the desired
lower bound: w̄ 4̄<λ p̄ holds because 4̇λ is a pre-order. We show w̄ 4̄<λ d̄:
we have w  ṗ ≤ ḋ ≤ 1Q̇ and by assumption w  ṗ4̇

λ
1Q̇. So by (C 3), we

conclude w  ṗ 4̇<λ ḋ and are done.

Density

Let (p0, q̇0) ∈ R̄. First, assume minI < λ and fix a regular λ′ ∈ I ∩ λ. By
Density for Q̇ in the extension, we can find P -names χ̇ and q̇1 such that
P “ q̇14̇

λ′
q̇1 and χ̇ ∈ Cλ(q̇1)”. By lemma 3.15, we can find p1 4λ

′
p0 such

that χ̇ is λ′-chromatic below p1, and by Density for P we can find p2 4λ
′
p1

and ζ such that ζ ∈ Cλ(p2).
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Let Tg = {∅}, qg(∅) = q̇1, λg(∅) = λ′ and let Hg(∅) be a λ′-spectrum of χ̇
below p2. Thus (Tg, λg, Hg, qg) is a guessing system for q̇1 below p2—the only
non-trivial clause is (6.), which holds as Hg(∅) is a λ′-spectrum of χ̇ below
p1 and p2 ≤P p1. So (ζ, Tg, λg, Hg) ∈ C̄λ(p2, q̇1), and (p2, q̇1)4̄λ

′
(p0, q̇0).

It remains to show dom(Cλ) is dense in the case that minI = λ. Find
(p1, q̇1) ≤R̄ (p0, q̇0) such that for some ordinals ζ, χ < λ, ζ ∈ Cλ(p) and
p1 P χ̌ ∈ Ċλ(q̇1). Then (ζ, χ) ∈ C̄λ(p1, q̇1).

3.5 Stratified iteration and diagonal support

We now proceed to show the notion of stratified forcing is iterable, if the right
support is used. To this end, let’s define stratified iteration with diagonal
support.

To motivate this, imagine we want to take a product of forcings Pξ ∗ Q̇ξ,
of the type of example 3.11. The present approach to showing these forcings
preserve cofinalities makes use of the fact that for large enough λ0, Pξ is
closed under sequences of length λ0 while Q̇ξ has a (strong form of) (λ0)+-
chain condition. If we want to preserve the latter, we should use support of
size less than λ0; if we want to preserve the first, our choice would be to use
support of size λ0. This calls for a kind of mixed support: i.e. define

Πd
ξ<λ0

(Pξ ∗ Q̇ξ)

to be the set of all sequences (p(ξ), q̇(ξ))ξ<λ0 ∈ Πξ<λ0(Pξ ∗ Q̇ξ) such that for
all but less than λ0 many ξ,

p(ξ) P q̇(ξ) = 1̇ξ. (3.5)

Using the stratification of P ∗ Q̇, (3.5) may be written as

(p(ξ), q̇(ξ)) 4λ0 1Pξ∗Q̇ξ .

The use of the term “diagonal” is motivated by the intuition that we allow
large support on Pξ, which we regard as the “upper” part, and small support
on Q̇ξ, which we regard as the “lower” part of the forcing Pξ ∗ Q̇ξ.

Definition 3.19. 1. We say the iteration Q̄θ = 〈Pν ; Q̇ν ,≤ν , 1̇ν〉ν<θ has
stratified components if and only if for every ν < θ, Q̇ν is a Pν-name
and Pν forces Q̇ν is a stratified partial order as witnessed by the system

S̄ = (4̇λν , ċν , 2̇
λ
ν , Ḋν , Ċν)λ∈Reg,ν<θ.
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(which is called its stratification). Formally, the reader may wish to
replace Ḋν in the above by a name for the Gödel number of a formula
defining the class Ḋν with parameter ċν . Moreover, we demand that for
all regular λ there is λ̄ < λ+ such that suppλ(p) ⊆ λ̄, where suppλ(p)
is defined as

suppλ(p) = {ξ | p � ξ 6ξ p(ξ)4̇ξ1̇ξ}.

2. Pθ is the diagonal support limit of the iteration with stratified compo-
nents Q̄θ with stratification S̄ if and only if Pθ is the set of all threads
though Q̄θ such that for each regular λ, suppλ(p) has size less than λ.

3. We say Q̄θ is an iteration with diagonal support if for all limit ν < θ,
Pν is the diagonal support limit of Q̄ν.

We omit the proof of the following theorem, since it will follow from
theorem 5.23 and lemma 5.20 as corollary 5.26. In the proof of the main
theorem, we will need to use these stronger lemmas, theorem 3.20 does not
suffice.

Theorem 3.20. Say Q̄ = 〈Pν , Q̇ν〉ν<θ is an iteration with stratified compo-
nents and diagonal support. Then Pθ is stratified.



Chapter 4

Easton Supported Jensen Coding

In this section we shall discuss Easton supported Jensen coding. To avoid
repetition, see the beginning of section 7 (definition 7.1 and the preceding
discussion) for a comprehensive motivation.

4.1 A variant of Square
The variant of square we discuss in this section is a technical prerequisite
which we use to obtain a smooth transition from inaccessible to singular
coding at certain points in our construction, an approach we shall refer to as
fake inaccessible coding. We will say more about this when we use it.

Lemma 4.1. There is a class (Eα)α∈Card such that for all α ∈ Card which
are not Mahlo, Eα is club in α, Eα ⊆ Sing and whenever β is a limit point of
Eα we have Eβ = Eα∩β and Eα ∈ JA∩αδ+2 whenever JA∩αδ |=“α is not Mahlo.”

Proof. Let (Cα)α∈Sing be the standard global square on singulars, constructed
as in [Sch14, 11.63, p. 228]. For α ∈ Sing, let η∗(α) be the maximal limit
ordinal such that α is regular in JA∩αη∗(α) and letM∗

α = JA∩αη∗(α). Observe that if β
is a limit point of Cα, there is σ : M∗

β →M∗
α which is (at least) Σ0-elementary

such that crit(σ) = β and σ(β) = α.
Say α is not Mahlo. Let η be least such that JA∩αη |=“α not Mahlo”, let

mα = JA∩αη , η(α) = η + 1 and let Mα = JA∩αη(α) .
1

Case 1 If α ∈ SingMα we let Eα = Cα, where the latter comes from the
standard square.

1Observe we could write η(α) = η above. Then mα would be minimal with a definable
club of definably singular cardinals. This is still enough to make the rest of the argument
go through, as our goal was to witness the non-Mahlo-ness in a way that is preserved with
Σ0-embeddings with large enough range.

28
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Case 2 Otherwise, if α is Σ1-singular in Mα, to ensure coherency we define
Eα to be the tail of Cα obtained by requiring that the maps witnessing
that ξ ∈ Cα have mα in their range.

In detail: Note that ρ1(M∗
α) = α. Let p(α) be the 1st standard param-

eter and let
W (α) = {W ν,p1(M∗α)

M∗α
| ν ∈ p1(M∗

α)}
be the appropriate “solidity witness” (following the notation in [SZ10]).
Observe that by construction, we can find a minimal θ(α) < α such
that hM

∗
α

Σ1
(θ(α) ∪ {p(α)}) is unbounded in α.2 Let E∗α consist of those

β ∈ α ∩ Sing such that there is a Σ0-elementary map σ : JA∩βη̄ → M∗
α

such that {α, p(α),mα} ∪W (α) ⊆ ran(σ), crit(σ) = β and σ(β) = α.
As in the proof of �, we show that if E∗α is bounded in α, cf (α) = ω.
In this case, we can set Eα = Cα.

Fact 4.2. If E∗α is bounded in α, cf (α) = ω.

Sketch of the proof. We need to find an embedding σ witnessing β ∈ E∗α
for some large enough β. Let ξ < α be given and let M ≺ Mα

be a countable elementary submodel such that {ξ,mα} ⊆ M and
let π : M̄ → M be the inverse of the collapsing map. Let E be the
(crit(π), β)-extender, where β = sup(ran(π) ∩ α), derived from π. Let
σ : Ult(M̄, E) → Mα be the factor map. Check that σ is as required,
in particular it has critical point β and mα ∈ ran(σ).

If E∗α is unbounded in α, we define two sequences as follows. Let
γ0 = minE∗α. Given γξ, let δξ be the least δ such that hM

∗
α

Σn(α)
(δ ∪

{p(α)}) \ (γξ + 1) 6= ∅. Let

γξ+1 = min[E∗α \ h
M∗α
Σn(α)

(δξ ∪ {p(α)})].

Here, assume that hMα
Σn(α)

to be defined such that its range grows by one
element for every ordinal, slightly abusing notation.

At limit points λ, let γλ =
⋃
ξ<λ γξ, if this yields a point below α.

Otherwise set λ = θ̄(α) and stop the construction. Observe that δξ <
θ(α) and the δξ are increasing, so the ordertype θ̄ of the sequence
constructed is at most θ(α) < α. Set

Eα = {γξ | ξ < θ̄(α)} ∩Card.

2Pick a minimally definable function F witnessing that α is singular; the parameter
of F , if any, can be absorbed into θ(α) since Mα projects to α; now the Skolem hull is a
fortiori unbounded.
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Note the only difference to � is the requirement mα ∈ ran(σ) when
η∗(α) = η(α), i.e. Mα = M∗

α.

Case 3 α is Σ1-regular over Mα. So

Eα = {β < α | hMα
Σ1

(β ∪ {mα}) ∩ α = β}

defines a club. Observe that for some C ∈ mα , we have mα |= C ⊆
Sing and C is club in α; moreover, {α,C} ⊆ hMα

Σn
(∅ ∪ {mα}) (α is

the cardinity of mα). So for every n and β ∈ En
α, we have β ∈ C by

elementarity, and thus β ∈ Sing.3

It remains to see that (Eα)α∈Sing is coherent. So let α ∈ Sing and β be
a limit of Eα. We must check that β falls into the same case as α.

Assume α falls into case 1. We know that there is a Σ0-elementary
σ : M∗

β → M∗
α. Since η∗(α) < η(α), it must be the case that η∗(β) < η(β):

otherwise, mβ is a J-structure which is a model of “β is not Mahlo” and by
elementarity σ(mβ) is a J-structure and σ(mβ) |=“α is not Mahlo,” contra-
dicting η∗(α) < η(α). Thus β also falls into case 1 and coherency follows by
the coherency of �.

Assume α falls into case 2. It follows that η∗(α) = η(α). We know
that there is σ : JA∩βη̄ → M∗

α as in the definition. Standard fine structural
arguments (e.g. see [Sch14]) show that η∗(β) = η̄, i.e. JA∩βη̄ = M∗

β and β is
Σ1-singular in M∗

β . We have mα ∈ ran(σ), so by Σ0-elementarity σ−1(mα)

must be a J-structure and σ−1(mα) = JA∩βη∗(β)−1, for otherwise the rudimentary
closure of mα∪{mα} would have to exist inMα. Thus η∗(β) = η(β), for by a
similar argument, JA∩βη∗(β)−2 |=“β is Mahlo.” Thus β falls into case 1. Now the
same arguments as in the proof of � show that Eβ = Eα ∩ β (maps factor
because W (α) ⊆ ran(σ)).

Now assume α falls into case 3. Let σ : JA∩βη̄ →Mα be the inverse of the
collapsing map of hMα

Σ1
(β ∪ {mα}), and let m̄ = σ−1(mα). Clearly σ(β) = α,

crit(σ) = β. By elementarity, m̄ is the first J-structure witnessing that β
is not Mahlo. Thus, η̄ = η(β). Also, by elementarity and since β is a limit
point of Eα, β is Σ1-regular in Mβ = JA∩βη̄ . Thus β falls into case 2. It is
easy to check that Eβ = Eα ∩ β.

3The same argument would work in case 1.



4.2. NOTATION 31

4.2 Notation

Definition 4.3 (Notation). In the following we shall use a convenient parti-
tion of the ordinals into 4 components: for 0 ≤ i ≤ 4, write [On]i for the set
of ξ which is equal to i modulo 4. Write (ξ)i for the ξ-th element of [On]i .
Given a set (or class) B, write [B]i = {(ξ)i | ξ ∈ B}; this is consistent with
the notation [On]i for the i-th component. When we say A codes B on its
i-th component, we mean A∩ [On]i = [B]i; that is ξ ∈ B ⇐⇒ (ξ)i ∈ A. We
also write [A]−1

i for {ξ | (ξ)i ∈ A}, so that [A]−1
i is the set coded by the i-th

component of A. We shall sometimes write B ⊕ C for [B]0 ∪ [C]1.
If s and t are strings of 0’s and 1’s, we shall write s_t for the concatenation

of s and t.4 If X ⊂ On, we write s _ X for s _ χX , the concatenation of
s with the characteristic function of X. Write s _ i for s _ t where t is the
string with length 1 and value i.

Let 〈. , .〉 denote the Gödel pairing function.

We work in the following settting, which captures the essence of the sit-
uation we shall find ourselves in at (some of the) successor stages in our
iteration. Again, see the beginning of section 7 (definition 7.1 and the pre-
ceding discussion) for a comprehensive motivation.

Say κ is the only Mahlo and V = L[Go][B̄−], where, Go ⊆ H(κ+) and
B̄− ⊆ H(κ++). We also assume H(κ++) = Lκ++ [Go] (intuitively, B̄− con-
tributes no subsets of κ+ — in fact, it comes from a κ++-distributive forcing).
Lastly, for some reals x0, CardV = CardL[x0].

Let T̄ (σ, n, i) be a constructible, canonically definable sequence of κ++-
Suslin trees, indexed by (σ, n, i) ∈ κ × ω × 2. Further, assume that in
L[Go][B̄−A], there is a set I of size κ and a real r such that B̄−(σ, n, i) is a
branch through T (σ, n, i) if and only if r(n) = i and σ ∈ I; otherwise, we
assume B̄−(σ, n, i) = ∅, and T (σ, n, i) remains κ++-Suslin in L[Go][B̄−].5

Find A0 ⊆ κ++ such that for each cardinal α ≤ κ++, we have H(α) =
Lα[A0]. We can also assume that A0∩ [On]0 = [I]0, A0∩ [On]1 = [x0⊕{2n+
i | r(n) = i}]1 and A0 ∩ [κ+, κ++) ∩ [On]1 is the set {(#(σ, n, i, t))1 | r(n) =
i, σ ∈ I, t ∈ B̄(σ, n, i) \ H(κ+)}. Thus we have V = L[Go][B̄−] = L[A0]
and for each cardinal α, we have H(α) = Lα[A0]. Moreover, CardV =
CardL[A0∩ω].

4That is, supposing dom(s) = α and dom(t) = β, we have dom(s _ t) = α + β,
(s_ t) � α = s and s_ t(α+ ξ) = t(ξ) for ξ ∈ [α, β).

5The current proof could be formulated without this last requirement, but this would be
cumbersome. Also, to show both quasi-closure of our iteration Pκ and that r is projective
in the generic extension via Pκ, we must work in a model where the requisite trees remain
Suslin when we define Easton supported Jensen coding.
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We shall write sκ+ for the characteristic function of A0 ∩ [κ+, κ++), as
we will sometimes treat this set similar to conditions in our forcing (the top
“string”). Our goal is to find a forcing P which codes L[A0] into a subset of
ω1, using David’s Trick (or Killing Universes), with Easton support. This
means that if G is P -generic over L[A], L[G] = L[G∩ ω1] and A0 is “locally”
definable in L[G]. It is then easy to code L[G ∩ ω1] into a real.

4.3 Coding structures and coding apparatus

We now define the building blocks of our forcing. These consist of three types
of almost-disjoint coding (for successor cardinals, for inaccessible cardinals,
and for singular cardinals) using a specific coding apparatus.

We will make use of our partition in the following way: the coding of
A0 by G uses [On]0, the “successor coding” of G ∩ [α+, α++) uses [On]1, the
“inaccessible limit coding” (from G∩ [α, α+) to G∩α for inaccessible α) uses
[On]2, except at the Mahlo, where [On]3 is used. Finally, the singular limit
coding (from G ∩ [α, α+) to G ∩ α for singular α) uses [On]3.

The definition of the building blocks will be relative to a set A, which
stands in lieu of A0 above. We will later not use A0 itself, but a slightly
adapted A = Ap, depending on p ∈ P (and in notation from below, on α).
This is due to the nature of the Mahlo coding from κ+ into κ and can be
circumvented by doing the coding as a three step iteration.

Definition 4.4 (The locally regular case). Let α be an uncountable cardinal
≤ κ++ and let A ⊆ On. Let 〈♦α;α ∈ On〉 be the global ♦-sequence of L
concentrating on the inaccessibles below κ (i.e. the following holds in L: if
X ⊆ κ, the set {α | ♦α = X ∩α}∩ Inacc is stationary). For a more uniform
notation, write Eκ = ∅.

Basic Strings Let Sα = S(A)α denote the set of s : [α, |s|) → 2, where
α ≤ |s| < α+. We abuse notation by writing ∅α for the empty string
at α and note |∅α| = α.

Steering Ordinals For ξ ∈ [α, α+), define µξ0 = µ(A)ξ0 and µ<ξ0 simultane-
ously by induction: Let µ<α0 be least µ such that Eα,♦α ∈ Lµ[A ∩ α]6

6We want Eα in the coding structures of locally inaccessibles, whence Eα is hit and we
can easily distinguish between conditions as they turn out in the distributivity proof and
those as built to show extendibility. The presence of ♦α is important for a kind of κ-chain
condition in 7.6, when we show that κ is not collapsed in our iteration and stays Mahlo
until the last stage.
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and for ξ > α let
µ<ξ0 = sup

ν<ξ
µν .

Define σ(ξ) to be least above µ<ξ0 such that Lσ(s) �“α is the greatest
cardinal.” Let µξ0 = σ(ξ) + α.

Note that by induction ξ ≤ µ<ξ0 . If α ∈ Reg, we write µξ and µ<ξ for
µξ0 and µ<ξ0 . We write µs0 and µ<s0 for µ|s|0 and µ<|s|0 ; similarly for µs and
µ<s.

Coding structures We let As0 = A(A)s0 denote Lµs0 [A ∩ α, s]. If α ∈ Reg,
we write As for As0 and Aξ for Aξ0.

Coding apparatus For cardinals α < κ, s ∈ Sα such that α is regular in
As0, let

Hs
i = H(A)si = h

As0
Σ1

(i ∪ {A ∩ α,Dα, Eα, s})

and let f s(i) be the order type of Hs
i ∩On. If α = β+ for β ∈ Card, let

Bs be {i ∈ [β, α) | Hs
i ∩α = i} and let bs = {〈i, f s(i)〉 | i ∈ Bs} (where

〈. , .〉 denotes the Gödel pairing function). If α is inaccessible in As0, let
Bs = {β+ | Hs

β ∩ α = β, β ∈ Card ∩ α} and let bs = ran(f s �Bs).7

The intuition is that we want to code s via almost-disjoint coding, using
the almost disjoint family {bs�ν | ν ∈ [α, |s|)} (but in fact, s will grow at
the same time). The particular form of the bs is very convenient when α ∈
Sing (see the proof of extendibility 4.14). For successor α, using the pair
〈i, otp(Hi ∩ On)〉 is vital to ensure that the bs are almost disjoint. Observe
that by definition, for s ∈ Sα when α < κ is locally inaccessible (that is,
inaccessible in As0) we have ‖ξ‖− ∈ Eα for any all ξ ∈ bs. For s ∈ Sα when α
is inaccessible and ♦α is club in α, also ‖ξ‖− ∈ ♦α for any all ξ ∈ bs.8

As we will see later, fake inaccessible coding makes it necessary that we
be able to put all of bs into the support of a condition in P ; otherwise the
coding structures will change as conditions are extended (see below). Thus
we want bs to be Easton. This, together with coherency issues arising in the
proof of extendibility at singular α (see 4.14 below), is why we use Eα. In
said proof, we shall have no control over what happens at limits of Eα, which
is why we use successors for Bs.

7For α < κ inaccessible in As0, we could also just let Bs = {β+ | β ∈ ♦α ∩ Eα} if this
is unbounded in α and Bs = {β+ | β ∈ Eα} otherwise. We could let Bs = Succ ∩ κ for
s ∈ Sκ.

8As mentioned before, this is needed in the proof of 7.6.
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Now we define coding structures for singular α. This is complicated by
the fact that a discontinuity arises when α is not seen to be singular by a
structure arising in the proof of distributivity. In this proof, we will build
conditions p which inevitably use inaccessible coding at α which are really
singular. This is the phenomenon we call “fake inaccessible coding.” The idea
behind my solution is that we make singular coding structures (say, at α)
large enough to “see” the fake inaccessible coding. This requires that we can
distinguish wether or not fake inaccessible coding has occurred at all. Also
the coding structures now depend on the condition below α and we have to
be careful they be stable with respect to extending p.

Definition 4.5 (The singular case). Let α be a limit cardinal now. Except
for the first definition, we will always assume α is singular. The following
definitions will be relative to some (partial) function p : α → 2. We extend
the definition of support to such p by supp(p) = Card ∩ dom(p).

Given p as above and a function f with dom(f) ⊆ Card such that f ∈∏
β∈dom(f)[β, β

+), we let fp be the partial function where fp(β) is the least
η ∈ [On]3 such that f(β) < η and p(η) = 1.

Regular decoding First, define s(A, p) = s(p) ∈ Sα. To this end, define
a sequence (sγ)γ < γ(p) of basic strings in Sα. Let k = 1 if α ∈
Succ ∩ κ+ + 1 and k = 2 if α ∈ Inacc ∩ κ + 1. Let s0 = ∅. Given sγ,
first assume bsγ ⊆ dom(p) and α is regular in Asγ0 . In this case let sγ+1

be sγ _ j, where j is such that p((i)k) = j for cofinally many i ∈ bsγ
(and s _ t denotes concatenation of strings of 0’s and 1’s). This is
well-defined as long as α is regular in Asγ0 (bs is not defined otherwise).

If bsγ 6⊆ dom(p), or if Asγ0 � α is singular, let s(p) = sγ and γ(p) = γ.
Write µ(p) for µsγ(p).

Steering Ordinals at singulars Inductively define µ(A, p)ξ, µ̃(A, p)ξ and
µ(A, p)<ξ or more simply, µ(p)ξ, µ̃(p)ξ and µ(p)<ξ by induction on
ξ ∈ [α, α+):

If p((β+)2) = 1 for a cofinal set of β ∈ Eα, we let µ(p)<α = µ(p) and
we say p uses fake inaccessible coding9.

Otherwise, let µ(p)<α be the least µ such that Eα,♦α ∈ Lµ[A∩ α], i.e.
µ(p)<α = µ<α. We say in this case that p immediately uses singular
coding.10

9Conditions with this property have to be dealt with when we prove quasi-closure.
10such conditions are built in a straightforward manner in the proof of extendibility

4.14.
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For ξ > α, let
µ(p)<ξ = sup

ν<ξ
µν .

and for ξ ≥ α let, first let σ(p)ξ > µ<ξ be least such that Lσ(ξ) �“α is
the greatest cardinal and α ∈ Sing”. Now let µ̃(p)ξ = σ(p)ξ + α and
µ(p)ξ = σ(p)s + ω · α. Notice that by induction ξ ≤ µ(p)<ξ (equality
may hold if ξ is a limit) and µ(p)ξ ≥ µξ0.

Again, write µ(p)s, µ̃(p)s, µ(p)<s for µ(p)|s|, µ̃(p)|s|, µ(p)<|s|.

We say p recognizes the singularity of α if and only if α is singular in
As(p)0 . Observe this is never relevant when p immediately uses singular
coding.

Coding structures at singulars We let

B(A, p)s = B(p)s = Lµ(p)s [A ∩ α, s(p), s]
B̃(p)s = Lµ̃(p)s [A ∩ α, s(p), s],

where we set s(p) = ∅ if p immediately uses singular coding. Note that
B(p)s |= α ∈ Sing whenever |s| > 0 or p immediately uses singular
coding. Again note that Eα ∈ B(p)∅α and As0 ⊆ B(p)s.

Coding apparatus at singulars For s ∈ Sα, let

H(A, p)i = H(p)i = h
B(p)s

Σ1
(i ∪ {A ∩ α, s(p), s})

and let f(p)s(i) be the order type of H(p)i ∩ On. Note again that
f(p)∅α = f ∅α .

Singular coding with delays We define t(A, p) = t(p) ∈ Sα. To this end,
we define a sequence (t(p)ξ)ξ<δ(p). Let t(p)0 = ∅. For limit δ, let
t(p)δ =

⋃
δ′<δ t(p)δ′ . Now suppose t = t(p)δ is defined. For γ ∈ Card

let f tp(γ) be the least η such that f(p)t(γ) ≤ η < γ+ and p((η)3) = 1.
If f tp(β+) is undefined for cofinally many β ∈ Eα, let δ(p) = δ and
t(p) = t(p)δ. Otherwise, if possible define X = X(p, δ) ⊆ α by η ∈ X
if and only if p((f sγp (β) + 1 + η)3) = j for a tail of successor cardinals
β < α. If X(p, δ) is undefined, again stop the construction at γ and let
δ(p) = δ and t(p) = tδ

11

11This will never occur. Note that it follows from later definitions that the construction
of t(p) finishes only for one reason, namely that f tp(β+) is undefined for cofinally many
β ∈ Eα. For since we require p � α exactly codes pα, the construction cannot stop before
we have t(p) = pα, where we halt for the given reason, by the requirement that p � α ∈
B(p<α)pα .
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If [X(ξ)]−1
0 precodes a string t ∈ Sα which end-extends t(p)δ and such

that f sγp ∈ B(p)t, let t(p)δ+1 = t.

Otherwise let t = t(p)δ
_[X]3. If f sγp ∈ B(p)t, let t(p)δ+1 = t. If not,

again stop the construction at γ and let δ(p) = δ and t(p) = tδ (we will
later see this case never occurs). We say p exactly codes t if and only
if t = t(p).

Definition 4.6 (Decoding). We now describe the process of decoding. This
will be run in the generic extension L[A0][G], the P -generic extension and
there, s0 =

⋃
p∈G pω1 will yield A0 via this process. We shall also run this

process “locally” in the transitive collapse M̄ of certain (small) elementary
submodels M . In this case, the reader should anticipate that a condition
of the forcing may be sufficiently generic over M to ensure correct coding
e.g. in the sense that if κ++ ∈M , the decoding process relative to M yields
A0 ∩M — whereas of course conditions will never code anything non-trivial
over L[A0] as they are bounded. If the following is run over M̄ , all definitions
should be relativized to M̄ , so that κ is replaced by the least Mahlo in M̄ ,
coding structures are as defined in M̄ etc.

The following definition is by induction on cardinals β ∈ [β0, κ
+). Assume

β0 ∈ Card, A′ ⊆ β0 and pβ0 : [β0, β0
+) → 2, or pβ0 : β0 → 2 and β0 = κ (or,

respectively, the least Mahlo in M̄). We inductively construct A∗ ⊆ κ, setting
A∗ ∩ β = A′.

If β ∈ [β0, κ) and we have constructec A∗ ∩ β and pβ : [β, β+) → 2,
define pβ+ : [β+, β++) → 2 via the decoding process at regulars described
in definition 4.5 from pβ, i.e. let pβ+ = s(A∗ ∩ β, pβ). Also, let ξ ∈ A∗ ∩
[β, β+3) ⇐⇒ pβ((〈ξ, ν〉)0) = 1 for β+-many ν ∈ [β, β+).

At limit β < κ, let p<β =
⋃
β′<β sβ′ and let sβ = s(A∗ ∩ β, p<β) when β is

inaccessible and sβ = t(A∗ ∩ β, p<β) when β is singular.
When β is the least Mahlo κ, first extract A∗0 ∩ κ and the generic for the

Mahlo-coding from A∗: let A∗0 ∩ κ = [A∗ ∩ κ]−1
0 , let p<κ = [A∗ ∩ κ]−1

1 , and let
pκ = s(A∗0 ∩ κ, p<κ) (when β = β0 = κ and we are at the beginning of the
induction, we just set A∗0∩κ = A′). Let ξ ∈ A∗0∩ [κ, κ+) ⇐⇒ pκ((〈ξ, ν〉)0) =
1 for κ+-many ν ∈ [κ, κ+).

For β = κ+, we continue exactly as we did below κ, but with A∗0 instead
of A∗: let pβ+ = pκ++ = s(A∗0 ∩ κ+, pκ+) and let A∗0 ∩ [κ+, κ++) be the set
whose characteristic function is pκ+ . The set A∗0 ⊆ κ++ is the outcome of
the decoding procedure run up to κ++ and we write A∗(pβ0) = A∗(A′, pβ0)
for this set.

Definition 4.7 (Strings). We now define S∗α = S(A)∗α. Let Φ(r) be the
statement “r(n) = i ⇒ for cofinally many σ < κ̄, T̄ (σ, n, i) has a branch,
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where T̄ is the canonical κ̄-sequence of κ̄++L-Suslin trees and κ̄ is the least
Mahlo in L.” We also say r is coded by branches for Φ(r).

We say s ∈ S∗α if and only if s ∈ Sα and for all ζ ≤ |s| and all η, κ̄ such
that N = Lη[A ∩ α, s � ζ] �“ζ = α+, κ̄ is the least Mahlo in L, κ̄++ exists,
Card = CardL[A∩ω] and ZF− holds”, we have that L[A∗] � Φ(r), where
A∗ = A∗(A ∩ α, s � ζ) is the predicate Jensen-coded by s � ζ over N . When
s ∈ Sα, we call N as in the hypothesis a test model for s. Thus, s ∈ S∗α if
and only if for every test model N for s, LN [A∗(s � α+N)] |= r is coded by
branches. 12

Let S<κ denote the set of s : [0, |s|) → 2, where |s| < κ. We say s ∈ S∗<κ
if and only if s ∈ S<κ and for all κ̄ ∈ Card ∩ |s| + 1 and all η such that
N = Lη[A0 ∩ κ̄, s � κ̄] � “κ̄ is the least Mahlo in L, κ̄++ exists, Card =

CardL[A0∩ω] and ZF− holds”, we have that N � Φ(r). Similarly to the above,
when s ∈ S<κ we call N as in the hypothesis a < κ-test model for s.

Definition 4.8 (Building blocks). We now define three partial orders, each
of which codes a set via almost disjoint coding using the almost disjoint
family (bt)t and simultaneously localizes it. These partial orders serve as
building blocks for the final forcing.

Successor coding Let either α = κ+, β = κ and s = sκ+ or let β ∈
Card ∩ κ, α = β+ and s ∈ S∗α and let A ⊂ α. We define the partial
order Rs = R(A)s to consist of conditions p = (pβ, p

∗) such that p ∈ S∗β
and p∗ ⊆ {bs�ξ | ξ ∈ [α, |s|)} ∪ |p| of size at most β. It is ordered by:
(q, q∗) ≤ (p, p∗) if and only if q end-extends p, p∗ ⊆ q∗ and

1. If bs�ξ ∈ p∗ and s(ξ) = 0 then for any γ ∈ (|p|, |q|) ∩ bs�ξ we have
q((γ)1) = 0.

2. If ξ ∈ p∗ ∩ |s| and ξ ∈ A then if γ is such that 〈ξ, γ〉 ∈ (|p|, |q|),
we have q((〈ξ, γ〉)0) = 0.

Inaccessible coding Let α ≤ κ be inaccessible, s ∈ S∗α. We define the
partial order Rs = R(A)s to consist of conditions (p, p∗) such that p is
a partial function p : α→ 2 and p∗ ⊆ {bs�ξ \ η | ξ ∈ [α, |s|), η < α} ∪ α
of size less than α and α ∩ p∗ is an ordinal. We write ρ(p∗) for this
ordinal. For α = κ, we additionally demand that p<κ ∈ S∗<κ. Rs is
ordered by: (q, q∗) ≤ (p, p∗) if and only if q end extends p, p∗ ⊆ q∗ and

12Observe that requiring N |= ZF− ∧ ∃κ̄++ ensures that LN thinks that the canonical
κ̄-sequence of κ̄++-Suslin trees exists, but this is not the only reason to make this require-
ment. Rather, we will this requirement and s � ζ to ensure ζ collapses to α “quickly”. In
effect, this allows us to use s to thin out the set of test models. We could do the same
without ZF− but that would take an argument.
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1. If b = bs�ξ \ η, b ∈ q∗ \ p∗ then

b ∩ (ρ(p∗) ∪ sup dom(p)) ⊆
⋃
{b′ | b′ ∈ p∗}.

2. If bs�ξ \ η ∈ p∗ and s(ξ) = 0 then for any γ ∈ (|p|, |q|) ∩ (bs�ξ \ η)
we have q((γ)2) = 0.

The additional construct ρ(p∗) and its use in the definition of ≤ for inac-
cessible coding is necessary to preserve requirement (??) of the definition of
P (A0) at the limit (see also definition 4.21, item (D 1)), Also, together with
the similar use of sup(dom(p<α)) this becomes important in the proof that κ
is not collapsed in the limit of our iteration (see 7.6). With the intuition that
our iteration can almost be decomposed into an upper and a lower part, the
idea is that this device ensures some independence of upper and lower parts
in that argument, since restraints are the only possible interaction. This
also means that the part of the restraint below ρ(p∗) ∪ sup dom(p<α) as well
as ρ(p∗) itself must part of the value of the “centering function” Cλ(p) (see
4.9). The use of sup(dom(p<α)) can be eliminated (but renders the argu-
ment slightly more elegant). The use of sup(dom(p<α)) cannot obviate that
of ρ(p∗) because of the last clause in (C I).

4.4 Definition of the forcing P (A0)

Definition 4.9 (The conditions). Let Card′ for now denote (Card\ω)∪∅∅.
A condition in P = P (A0) is a sequence

p = (p<α, pα, p
∗
α)α∈Card′∩κ++1.

For limit cardinals α < κ, we demand p<α =
⋃
δ<α pδ (so p<α is redundant

unless α = κ).
For p as above to be a condition, we demand:

1. pκ+ = sκ+ (where sκ+ is the characteristic function of A ∩ [κ+, κ++])
and pα ∈ S∗α for all α ≤ κ, while p<κ ∈ S∗<κ (this is redundant by the
definition of the Mahlo coding). We write supp(p) = {α | pα 6= ∅α}
and α(p) = sup(supp(p) ∩ κ).

2. supp(p) ∩ κ is an Easton subset of |p<κ|. For α ∈ {κ, κ+} we let Apα
be defined relative to A0. For 0 < α ≤ |p<κ|, we let Apα and B(p<α)pα

be defined relative to

Ap = A0 ⊕ {ξ < α | p<κ(ξ) = 1}.
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Observe that we will order P in such a way that coding structures never
change when p is extended, that is, the dependence on p is “static”. In
the following, Rs is defined relative to these coding structures.

3. For all α ∈ supp(p), (pα, p
∗
α+) ∈ Rpα+ , where we let Rpω denote the

standard almost disjoint coding of pω by a real relative to some conve-
nient almost disjoint family in L[A0 ∩ ω].

4. For all inaccessible α ≤ κ, (p<α, p
∗
α) ∈ Rpα , remembering p<α =⋃

α′<α pα for α < κ.

5. For all singular α < κ, p � α ∈ B(p<α)pα , t(p<α) = pα and if p<α is un-
bounded below α and uses fake inaccessible coding, then p<α recognizes
singularity of α.13

6. For α ∈ Reg, there is a γ < α such that for all δ ∈ Inacc \ α + 1 and
all (ξ, η) ∈ p∗δ we have bpδ�ξ \ η ∩ α ⊆ γ.

Note again we have pκ+ = sκ for every condition p ∈ P . We say q ≤ p
if and only if for all α ∈ supp(p), (qα, qα+) ≤ (pα, pα+) in Rpα+ and for all
inaccessible α ∈ supp(p), (q<α, qα) ≤ (p<α, pα) in Rpα .

Observe that the limit coding from κ+ into κ takes a slight detour, via
p<κ; The reason for this is that the coding into κ is easier if we use strings
(mainly because of the proof that κ isn’t collapsed, 7.6). In contrast, p<α
can be seen as a shorthand for

⋃
δ<α pδ; we use these “broken strings” to code

into inaccessible α < κ, which is the natural choice.
We will need that being a condition, and in fact all of the definitions in

4.4 and 4.5 are absolute for ΣA
1 -correct models. In fact, all these notions are

Boolean combinations of ΣA
1 statements.14

For p ∈ P and α ∈ Card, let Bα
p ⊆ α be defined by

Bα
p =

⋃
{b ∩ α | b = bs \ η ∈ p∗γ, γ ∈ Inacc \ α + 1},

and let bp ∈
∏

α∈Card∩κ++ α be defined by

bp(α) = supBα
p

13We let the fake inaccessible coding stop when the singularity of α is realized; without
this natural stopping point, the coding structure for singulars will change when a condition
is extended below α, i.e. B(q<α)∅α 6= B(p<α)∅α for q ≤ p, because q might carry new
information in t(q<α). Intuitively, p hasn’t exhausted the room for fake inaccessible coding.

14more generally, it would suffice that they be provably ∆A
2 in a weak enough theory.
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That is, Bα
p is the set of coding ordinals used by inaccessibles above α, and

bp locally bounds the height of this set.

Remark 4.10. Note that 6 of 4.9 (the definition of P ), is equivalent to
asking bp(α) < α for every α ∈ Reg.

4.5 Doing the same in three steps.
To aid the readers intuition, we describe the same forcing as a three-step
iteration. This illustrates further the special role of p<κ and the detour in
the Mahlo coding, but will not be needed for the rest of the proof.

1. The first step is to force with the successor coding RA0 . We will later
see this forcing is fully stratified. Let G1 be the generic and let

A1 = {ξ ∈ [κ, κ+) | ∃(p, p∗) ∈ P p(ξ) = 1} ∪ A0 ∩ κ.

Observe that A1 has the following property: For any N = Lη[A1 � ζ]
such that ζ ≥ κ and

2. The second step is to force with the Mahlo coding RA1 in L[A1] =
L[A0][G1]. We will later see this too, preserves all cardinals and κ is
still Mahlo. Let G2 be the generic and let

A2 = {ξ ∈ κ | ∃(p, p∗) ∈ P p(ξ) = 1}.

Observe that A2 satisfies the following:

for all κ̄ ∈ Card, η ∈ On such that N = Lη[A2 � κ̄] � “κ̄
is the least Mahlo, κ̄++ exists and ZF− holds”, we have that
N � Φ(r).

(4.1)

Lastly, we define P (A2) which codes A2 by a subset of ω1. For this sake,
let A denote A2, and let all coding structures be defined relative to this A.

Definition 4.11 (The conditions for coding below κ). A condition in P (A)
is a function p : Card ∩ κ→ V , p(α) = (pα, p

∗
α) such that

1. (pκ, p
∗
κ+) ∈ Rsκ+ .

2. supp(p) = {α < κ | pα 6= ∅} is an Easton set.

3. For all α ∈ supp(p), (pα, p
∗
α+) ∈ Rpα+ .
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4. For all inaccessible α ∈ supp(p), (p<α, pα) ∈ Rpα , where we define
p<α =

⋃
α′<α pα for any α.

5. For all singular α ∈ supp(p), p � α ∈ B(p<α)pα , t(p<α) = pα and if
p<α is unbounded below α and uses fake inaccessible coding, then p<α
recognizes singularity of α.15

6. For α ∈ Reg, there is a γ < α such that for all δ ∈ Inacc \ α + 1 and
all (ξ, η) ∈ p∗δ we have bpδ�ξ \ η ∩ α ⊆ γ.

We say q ≤ p if and only if for all α ∈ supp(p), (qα, qα+) ≤ (pα, pα+) in Rpα+

and for all inaccessible α ∈ supp(p), (q<α, qα) ≤ (p<α, pα) in Rpα .

This ends our description of P as a three-step iteration. We find it more
convenient to talk about P instead of this iteration, and this is the forcing
we work with in all of the following.

4.6 Extendibility
Lemma 4.12 (Extendibility for the Mahlo coding). Let t ∈ Sκ or

t : [κ, κ+)→ 2.

For any α < κ and any p ∈ Rt there is q ∈ Rt such that q ≤ p and |q<κ| ≥ α.
In addition, we can demand that q<κ(ν) = 0 for ν ∈ [|p<κ|, |q<κ|) ∩Card.

Proof. Let α be the least counterexample. If α 6∈ Card it suffices to extend
p<κ to p1

<κ with |p1
<κ| ≥ ‖α‖. We can then further extend p1

<κ by appending
0s to obtain q. If α ∈ Succ, the proof is similar (as no test model will think
that α is Mahlo). So assume α is a limit cardinal.

Let C ⊂ α be club in α, otpC = cf α, C ⊆ Sing and let (βξ)ξ≤ρ be the
increasing enumeration of C ∪ {α}. Moreover we demand that β0 > ρ if α
is singular. Let p0 ≤ p such that |p0

<κ| = β0 and build a descending chain of
conditions. Assume you have pξ such that |pξ<κ| = βξ. Extend to get p′ with
|p′| = βξ+1. Let pξ+1 be obtained from p′ by shifting values of p′<κ above βξ
away from the cardinals in a gentle manner, putting a 1 on βξ and padding
with 0s, as follows: let pξ+1

<κ � βξ = p′<κ � βξ = pξ<κ � βξ and for ν ∈ [βξ, βξ+1),
let

pξ+1
<κ (ν) =


p′<κ(δ + k) if ν = δ + k + 1 for some δ ∈ Card, k ∈ ω,
1 if ν = βξ,
0 if ν ∈ Card ∩ (βξ, βξ+1).
p′<κ(ν) otherwise.

15See footnote 13
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Observe that pξ+1 ≤ pξ since no restraints b ∈ (pξ)∗ are violated, as we
have δ + k 6∈ [b]3 for δ ∈ Card, k ∈ ω. We still have pξ+1

<κ ∈ S∗<κ, as
Lη[A ∩ κ̄, pξ+1

<κ � κ̄] = Lη[A ∩ κ̄, p′<κ � κ̄] for all relevant η, κ̄. At limit ξ ≤ ρ, if
N = Lη[p

ξ
<κ � κ̄], note that C ∩ βξ ∈ N and so N |= κ̄ is not Mahlo. Thus

q = pρ is as desired.

Lemma 4.13 (Extendibility for the successor coding.). For each p ∈ P ,
ξ ∈ κ+ there is q ≤ p such that ξ ∈ dom(q<κ+). Equivalently, let α ∈
Card ∩ |p<κ| ∪ {κ}, A ⊆ On when α = κ and A = Aq otherwise and let
s ∈ S(A)∗α+ or s = sκ+. Any p = (pα, p

∗) ∈ R(A)s can be extended to q ≤ p
such that |q| ≥ ξ, for any ξ ∈ [α, α+) ∩Card.

Proof. The two statements are equivalent by lemma 4.12. To avoid repeti-
tion, we leave the proof of this lemma as a by-product of lemma 4.21: any
q ∈ DL[A](0, p, {ξ}) does the trick.

The next lemma allows us to extend conditions at a singular cardinal α
without violating that the extension be coded exactly below α. By the last
item below, we may at the same time capture a set X locally (in a sense);
this included for completeness and is not needed in the rest of the proof.

Lemma 4.14 (Extendibility at singulars). Let p ∈ P , α ∈ Sing ∩ |p<κ| and
s ∈ S(Ap)α such that pαC s, further say X ⊆ On and X ∈ B(p<α)s. We can
find q ∈ P , such that

• q � (α,∞] = p � (α,∞],

• qα = s,

• for each each β which is a limit point of Eα (in fact, for all β = δ+ for
some δ ∈ Eα), X ∩ β ∈ B(q<α)qβ .

We write A = Ap for the discussion of this lemma. Before we proof this
lemma, we make two technical observations:

Lemma 4.15. Let s, t ∈ Sα, p be a condition such that p � α ∈ B(p<α)s and
s a proper initial segment of t. Then f(p<α)s ∈ B(p<α)t. In fact, f(p<α)s ∈
Lµ(p<α)s+α+1[A ∩ α, s(p), s].

Proof of lemma 4.15. This is because the Skolem hulls are definable over
B(p<α)s, and the transitive collapse of the Skolem hull of γ < α is con-
structible at most f(p<α)s(γ) + 1 steps above B(p<α)s, by the recursive def-
inition of the transitive collapse. Thus, f(p<α)s is a definable subset of
Lν(p<α)s+α[A ∩ α, s], and f(p<α)s ∈ Lν(p<α)s+α+1[A ∩ α, s]. Since possibly,
ν(p<α)s + α = ν̃(p<α)t, it needn’t be the case that f(p<α)s ∈ B̃(p<α)t but
clearly, f(p<α)s ∈ B(p<α)t.
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Note that if the length of lh(t) > lh(s) + 1, then we even have f(p<α)s ∈
B(p<α)<t.

Lemma 4.16. If β ∈ Card∩α+1, t ∈ Sβ, B(p<β)t = B(q<β)t and f(q�β)t =
f(p � β)t.

Proof. Fix t and β as in the first statement. First, assume p � β does not use
fake inaccessible coding. Then neither does q. In this case, µ(q<β)∅β = µ∅β

and p �β and q �β play no role at all in the definition of f(q<β)t and f(p<β)t.
In the other case, when p � β uses inaccessible coding, by definition we

have bs̄ ⊆ dom(p) for any s̄C s(p � β). But then as q ≤ p, s(p � β) = s(q � β)
and again µ(q<β)∅β = µ(p<β)∅β by definition. Thus in this case as well, we
have f(q<β)t = f(p<β)t.

Observe that for limit cardinals β < α, [Y ]−1
0 ∩β correspond to the Gödel-

numbers of true Σ1 sentences of B̃(p<α)s with parameters from β∪{A∩α, s}.
Similarly for [Y ]−1

1 ∩ β. Also observe that for large enough β < α, we never
have Hβ ∩α = β. This means also that Y ∩ β does not precode a t ∈ Sβ, for
[Y ]−1

0 ∩ β codes a model where β+ exists.

Proof of lemma 4.14. The proof is by induction on α. PickM = Lµ[A∩α, s]
so that µ is a limit ordinal, µ̃(p<α)s < µ < µ(p<α)s and p,X, bαp ∈M . Let

Hβ = hMΣ1
(β ∪ {A ∩ α, s}),

let πβ : Hβ → M̄β be the transitive collapse. Let g be defined by g(β) =
(β+)M̄β for successor cardinals β < α, noting that this is well defined since
β ∈ Hβ.

Pick Y such that [Y ]−1
0 = Th

B̃(p<α)s

Σ1
(α ∪ {A ∩ α, s}), while [Y ]−1

1 =

ThMΣ1
(α ∪ {A ∩ α, s}). Observe that Y pre-codes s. Moreover, demand

that [Y ]−1
2 = X.

The same construction works, wether or not pα 6= ∅α. For β ∈ Eα, let
qβ+ = pβ+

_ 0g(β) _ 1 _ ([Y ]3 ∩ β) (where 0ν denotes a string of 0’s of length
ν). For β which is a limit point of Eα, let qβ = pβ

_ ([Y ]3 ∩ β). Note that
clearly, if p didn’t use fake inaccessible coding, neither does q.

We now show that this definition works for β large enough.
First, note that

Hα = hMΣ1
(α ∪ {A ∩ α, s}) = M,

since M can be characterized as the minimal model such that the Σ1 state-
ment asserting the existence of B̃(p<α)s and certain statements describing the
height of the M via ordinal addition hold inside M . Thus, M =

⋃
β<αHβ.
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Lemma 4.17. Assume β is large enough so that p ∈ Hβ, and also large
enough so that letting β̃ = minHβ∩[β, α], we have β̃ 6= α. Then πβ(pβ̃) = pβ.

Proof. If β̃ = β, there is nothing more to proove.
Otherwise, first note that Eβ̃ ∈ Hβ by elementarity and πβ(Eβ̃) = Eβ̃ ∩

β = Eβ. In fact, that p � β̃ exactly codes pβ̃ is expressible as a Σ1 statement
inside Lα[A]. By elementarity, this statement also holds of πβ(p � β̃) and
πβ(pβ̃) in M̄β and is upwards absolute, so πβ(p�β̃) = p�β exactly codes πβ(pβ̃).
But since by definition of P , p �β exactly codes pβ, we have pβ = πβ(pβ̃).

Lemma 4.18. The following hold:

1. g � β eventually dominates f(q � β)pβ for large enough β ∈ Card ∩ α.

2. If pα is a proper initial segment of s, g eventually dominates f(q �α)pα.

3. On the other hand f(q<α)s eventually dominates g, in fact g ∈ B(q<α)s.

Proof. Let β ≤ α be a limit cardinal large enough so that p ∈ Hβ. In case
β = α, note that pα ∈M . We may assume that either β = α or Hβ ∩ α 6= β
(as α is singular in M).

Let β̃ = minHβ ∩ [β, α]. For the case α = β, we may assume pα is a
proper initial segment of s. Then f(p � α)pβ̃ ∈ M (by lemma 4.15 and the
previous remark if β = α), and in fact it is the solution to a Σ1-formula inM
with parameters β̃ and p - or pα, in case β = α. Thus f(p � α)pβ̃ ∈ Hβ. Say
γ < β is a successor large enough so that f(p � α)pβ̃ ∈ Hγ. Observe γ ∈ Hγ.
Thus by elementarity, M̄γ �“f(p � α)pβ(γ) has size γ”.

Finally, as M ∈ B(p<α)s, clearly g(γ) < otp(On∩Hγ) < otp(On∩Hs
γ)

and so g(γ) < f(p �α)s(γ) for all γ < β. Thus g is slower than f(p �α)s.

We now show that for any limit β ≤ α, q � β ∈ B(p<α)qβ and exactly
codes qβ.

First, let β = α. Since B̃(p<α)s ∈ M̄ ∈ B(p<α)s = B(q<α)qα , we have
Y ∈ B(q<α)qαand g ∈ B(q<α)qα (because the height of the latter model is a
limit mutiple of β, we can argue as in lemma 4.15). So also q �α ∈ B(q<α)qα .

Say pα = s = qα. Then we have seen that f(p � α)s dominates g, so q � α
exactly codes pα just as p � α does.

Now say pα is a proper initial segment of s = qα. Moreover, we have seen
that g eventually dominates f(p � α)pβ . So f(p � α)pαq�α is defined, the limit
coding for q � α goes on for one more step than for p � α and we obtain Y
pre-coding s = qα. Also, the argument of lemma 4.15 shows that f(p�α)

pβ
q�α ∈

B(p<α)s. Observe that also B(p<α)s = B(q<α)qα by lemma 4.16. Since also
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Y ∈ B(q<α)qα , q � α codes qα. As q � α ∈ B(q<α)qα , the coding stops there
and q � α exactly codes qα.

Now say β < α. Remember Hβ ∩ α 6= β. Clearly, Y ∩ β ∈ B(q<β)qβ as
qβ = pβ

_ [Y ∩ β]3. The Σ1-theory of M̄β allows us to reconstruct g inside
B(q<β)qβ using an argument like that of lemma 4.15. Thus, q � β ∈ B(q<β)qβ .
Moreover, in this case we have also shown that g � β eventually dominates
f(p � α)pβ , and as before we obtain Y ∩ β in the next step of the limit
coding (after the exact coding of pβ by p<β, which could of course be trivial
if pβ = ∅β). We have seen Y ∩ β does not pre-code an element of Sβ, so
q � β exactly codes qβ = pβ

_ [Y ∩ β]3, provided that f(p<β)
pβ
q�β ∈ B(q<β)qβ .

This holds again by an argument similar to that of lemma 4.15. Again, as
q � β ∈ B(q<β)qβ , the coding stops there and q � β exactly codes qβ.

Finally, we obtain a q such that the desired properties hold except for
the capturing of X, which only holds for a tail of β; we can use induction to
get q that works for all β. Obviously, q ≤ p (we have never put 1s on any
partition affected by restraints). For the beginning of the induction, assume
α is the least limit cardinal. Argue as in the general limit case described
above to get a condition q that works on a tail below α. Now make finitely
many extensions to obtain a q that works everywhere.

Note the subtle role of the proof of 4.14 in my choice to work with the
Eβ’s: it seems I could have easily done with the standard Cβ from � instead.
Fake inaccessible coding requires an Easton set, but this is also no reason to
go beyond �. It is the mechanism of distinguishing between fake inaccessible
coding and immediate singular coding which requires that Eβ appear in the
smallest relevant type of structure—where β is seen to be non-Mahlo, but
not necessarily singular. Without this distinction, we could choose to always
do fake inaccessible coding—but then the proof of 4.14 seems to fail.

4.7 The main theorem for quasi-closure of P (A0)

We shall now define D and 4λ witnessing that P is quasi-closed.

Definition 4.19. We define p 4λ q just if p ≤ q, for all δ ∈ Reg ∩ λ both
pδ = qδ and p∗δ+ = q∗δ+ . In accordance with the section 3.1, define p 4<λ q
just if p ≤ q and both pδ = qδ and p∗δ = q∗δ for all δ ∈ Reg ∩ λ when λ is a
limit cardinal.

The class D is defined in a more elementary way than might be expected
from the literature (e.g. [BJW82] or [Fri00]), ensuring a more basic kind of
genericity over certain Skolem-hulls, owing to the fact that we’ve assumed
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Card = CardL[A0∩ω]. The proof that this class is dense, i.e. (C I), takes
the form of an intricate inductive argument using that quasi-closure already
holds over smaller (in the sense of the induction) coding structures.

The next theorem treats two situations simultaneously: the first is a
localized version of quasi-closure which will carry us through the singular
limit step of the inductive argument we just mentioned (to show D is dense).
The second is the global version of quasi-closure. The proof readily suggests
such an aggregation. We shall work under the following assumption.

Assumption 4.20. Let β ∈ Card∩κ or β =∞. In the first case, let q ∈ P ,
M = Aqβ+ ; also demand that |q<κ| ≥ β+ (we need to ask this so A = Aq is
defined, since Aqβ+ = A(A)qβ+ ). Define

P (q)β
+

= {p � β+ | p ∈ P ∧ p ≤ q ∧ pβ+

= qβ
+},

and let R = P (q)β
+ . In the second case let M = L[A] and R = P .

The definition of P (q)β
+ was chosen so that for p ∈ P (q)β

+ , p · q ∈ P and
P (q)β

+ generically codes both A∩β and qβ+ over Aqβ
+

. In fact, (p ·q)�β++ =
p. Equivalently, p ∈ R if and only if p ≤ q � β++, pβ+

= qβ
+ and p obeys all

restraints from q for inaccessibles δ > β.

Definition 4.21. Given p ∈ P , λ ∈ Reg, λ < β ∈ Card, x ∈ M arbitrary,
we now define DM

[λ,β)(p, ~x) ⊆ P . For δ ∈ On, let

Hδ = HM
δ (p, ~x) = hMΣ1

(δ ∪ {~x}),
H<δ = HM

<δ(p, ~x) = hMΣ1
(sup(supp(p) ∩ δ) ∪ {~x}).

We define DM
[λ,β)(p, ~x) as the set of q ∈ P such that if τ = min(supp(p)∩[λ, β))

exists then q 4τ p and

(D 1) if τ > λ and τ ∈ Inacc then ρ(q∗τ ) ≥ λ (of course, this is vital to
preserve 6 in the definition of P (A0); see also the last clause of (C I));

(D 2) for all δ ∈ [τ, β) such that δ ∈ H<δ ∪ supp(p)

(a) |qδ| > Hδ ∩ δ+; for δ = κ in addition, |q<κ| > sup(H|p<κ| ∩ κ).

(b) if ν ∈ H<δ ∩ [δ, δ+) then bpδ�ν \ η ∈ q∗δ for some η ∈ [λ, δ);

(c) if ξ ∈ Hδ ∩ [δ, δ+) there is ν > |pδ| such that pδ((〈ξ, ν〉)0) = 1 if
ξ ∈ A and pδ((〈ξ, ν〉)0) = 0 if ξ 6∈ Ap;

(d) if bpδ+ �ν ∈ p∗δ+ there is ζ > |pδ| such that qδ((ζ)1) = pδ+(ν);
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(e) if δ ∈ Inacc ∩ κ there is β ∈ Eδ \ sup(supp(p) ∩ δ)) such that
qβ+((β+)2) = 1;16

(f) if δ ∈ Inacc∩ κ+ and bpδ�ν \ η ∈ p∗δ then there is ξ ∈ bpδ�ν \ η such
that ξ > sup(supp(p) ∩ δ)) and q<δ((ξ)2) = pδ(ν) (note that this
clause elegantly covers both the Mahlo coding and the inaccessible,
non-Mahlo coding);

(g) if δ ∈ Inacc and b ∈ p∗δ \On then b∩sup(supp(p)∩δ) ⊆ dom(q<δ);

We also write

U(p) = UM(p, ~x) = {δ ∈ Card ∩ δ | δ ∈ H<δ ∪ supp(p)}.

Finally, for the proof of quasi-closure we set D(λ, ~x, p) = D
L[A]
[λ,∞)(p, ~x).

Remark 4.22. To show that P is stratified, we also need to put something
like the first clause into the definition of dom(Cλ). The easiest is to require
λ ∈ supp(p).

Note that we define DM
[λ,β)(p, ~x) as a subset of P , and for p ∈ P rather

than as a subset of R and for p ∈ R. This is a notational convenience we will
make use of when we show that these sets are non-emty. To build sequences
with greatest lower bounds, it is only the restriction to R of DM

[λ,β)(p, ~x) which
is useful.

We also introduce the following terminology, which provides good intu-
ition and will be useful when we show the least Mahlo is not collapsed in our
iteration (see 7.6).

Definition 4.23. Let H be any set and let p, q ∈ P , q ≤ p. We say that q
is basic generic for (H, p) at δ+ if and only if

1. |qδ| > H ∩ δ+;

2. if ν ∈ H ∩ [δ+, δ++) then bpδ+�ν ∈ q∗δ+ ;

3. if ν ∈ H ∩ [δ+, δ++) then there is ζ > |pδ| such that qδ((ζ)1) = pδ+(ν);

4. if ξ ∈ H ∩ [δ, δ+) there is ν > |pδ| such that qδ((〈ξ, ν〉)0) = 1 if ξ ∈ A
and qδ((〈ξ, ν〉)0) = 0 if ξ 6∈ Ap;

16This somewhat technical requirement makes it easy to distinguish the fake inaccessible
coding from the singular coding. Conditions which immediately use singular coding, i.e.
those constructed in the extendibility lemma will have qβ+((β+)2) = 1 on a tail of β ∈ Eδ.
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When δ ∈ Inacc, we say that q is basic generic for (H, p) at δ if and only
if

1. |q<δ| ≥ sup(H ∩ δ).

2. if ν ∈ H ∩ [δ, δ+) then bpδ�ν \ η ∈ q∗δ for some η;

3. if ν ∈ H ∩ [δ, δ+) then there is ξ ∈ bpδ�ν \ η such that ξ ≥ |p<δ| and
q<δ((ξ)2) = pδ(ν);

4. if ξ ∈ H ∩ δ there is ν > |pδ| such that q<δ((〈ξ, ν〉)0) = 1 if ξ ∈ A and
q<δ((〈ξ, ν〉)0) = 0 if ξ 6∈ Ap;

The second definition we shall only use for δ = κ (in 7.6).

Theorem 4.24. Let ρ ≤ λ ≤ β, λ ∈ Reg. If β <∞, let (βξ)ξ<ρ ∈M be an
increasing sequence of cardinals such that supξ<ρ βξ = β and set βξ =∞ for
ξ < ρ if β =∞. Say (pξ)ξ<ρ ∈M is a sequence of conditions in R which has
w̄ = (wξ)ξ<ρ ∈ M s.t. M |= w̄ is a (λ, x)-canonical witness. Moreover say
(pξ)ξ<ρ is strategic in the following sense:

(A) for any ξ < ξ̄ < ρ, pξ̄ 4λ pξ,

(B) for any ξ < ρ, there is λξ such that pξ ∈ D[λξ,βξ)(p
ξ, {w̄ � ξ + 1, x}) and

pξ+1 4λξ+1 pξ,

(C) in case β < ∞ , letting H = hMΣ1
(βξ ∪ {w̄ � ξ + 1, x}), pξ+1 is (H, pξ)-

generic at β+, which means in the present case:

(1) |pξ+1
β | > H ∩ β+;

(2) if ν ∈ H ∩ [β+, |s|) then bs�ν ∈ (pξ+1)∗β;

(3) if ξ ∈ H ∩ [β, β+) there is ν > |pξβ| such that pξ+1
β ((〈ξ, ν〉)0) = 1 if

ξ ∈ Ap and pξ+1
β ((〈ξ, ν〉)0) = 0 if ξ 6∈ Ap;

(4) if bs�ν ∈ (pξ)∗β+ there is ζ > |pξβ| such that pξ+1
β ((ζ)1) = s(ν);

Then p̄ has a greatest lower bound pρ ∈ R ∩M .

Corollary 4.25. Say p̄ is a (λ, x)-adequate sequence. Then p̄ has a greatest
lower bound.

Proof of corollary. In case β = ∞, strategic in the sense of the theorem
means exactly that w̄ is a strategic witness, except for one point: we must
check is that the proof of the theorem goes through even if the hypothesis
that p̄ is adequate is only satisfied on a tail, so we shall pay some attention
to this in the proof of the theorem.
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Proof of theorem. The proof is split over several lemmas. Fix a sequence
(pξ)ξ<ρ and w̄ as in the hypothesis. For each ξ < ρ, pick λξ ∈ Reg as in
(B). Note we may assume λξ ≥ λ, for we may replace λξ by λ whenever this
assumption fails: firstly, (A) holds, and secondly, DM

[λξ,βξ)
(pξ, {x, w̄ �ξ+1}) ⊆

DM
[λ,βξ)

(pξ, {x, w̄ � ξ + 1}) if λξ ≤ λ.
Let p = pρ be the obvious candidate for a greatest lower bound, i.e. for

δ ∈
⋃
ξ<ρ supp(pξ),

(pδ, p
∗
δ) = (

⋃
ξ<ρ

pξδ,
⋃
ξ<ρ

(pξ)∗δ),

p<κ =
⋃
ξ<ρ

pξ<κ, if κ ≤ β.
(4.2)

Most of this proof will now be devoted to check that for each δ ∈ supp(p)
both

pδ ∈ S∗δ (4.3)
p � δ ∈ B(p<δ)

pδ if δ ∈ Sing. (4.4)

After that we conclude by checking that p∗<κ ∈ S∗<κ.
Let λ̄ be minimal such that for an unbounded set of ξ < ρ, we have

λξ ≤ λ̄. Obviously, if δ ∈ Card ∩ λ̄, pρδ = pξδ for some ξ, and so (4.3) and
(4.4) hold. So let δ ≥ λ̄. Let

Xξ =

{
hMΣ1

(δ ∪ {x, w̄ � ξ + 1}) for δ < β,

hMΣ1
(βξ ∪ {x, w̄ � ξ + 1}) for δ = β.

Let X =
⋃
ξ<ρX

ξ, let π : X̄ → X be the transitive collapse. Let j = π−1.
Write Ā =

⋃
ν∈X π(A ∩ ν) and (if β <∞) s = qβ+ , s̄ = π(s), so that

X̄ =

{
Lµ̄[Ā] in case β =∞,M = L[A]

Lµ̄[Ā, s̄] when β <∞,M = As.

We now embark on a series of lemmas which will be used several times when
prooving (4.3) and (4.4) in various cases.

Lemma 4.26 (Definability). The sequence (π(pξ))ξ<ρ (or at least a tail) is
a definable class in X̄.

Proof of lemma 4.26. The notion of canonical witness was chosen precisely
to ensure this definability, and in a sense, the lemma is trivial. We proove
the lemma under the weaker assumption that w̄ is a (λ, x)-canonical witness
for (pξ)ξ<ρ holds only for ξ0 < ξ < ρ, as in the definition of quasi-closure 3.4.
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We show that there is a formula Θ such that M � Θ(ξ, p∗) ⇐⇒ p∗ = pξ
for ξ ∈ [ξ0, ρ).

Let Ψ and G be as in the definition of canonical witness, i.e. Ψ is the
formula defining w̄ and G is the ΣT

1 (λ∪{x}) function s.t. pξ = G(w̄ �ξ+1, ~x)
for ξ < ρ. Let Γ be a ΣT

1 (λ ∪ {x}) formula representing G. The formula
Θ(ξ, p∗) is

∃w̄∗ = (w∗ν)ν<ξ+1 s.t. w̄∗ � ξ0 = w̄ � ξ0

∧ [∀ν ∈ [ξ0, ξ + 1] Ψ(w∗ν , w̄
∗ � ν, x)]

∧ Γ(p∗, (w∗ν)ν<ξ+1, x)

As ρ ⊆ X ≺Σ1 M and {pξ, w̄ � ξ + 1} ⊆ X for each ξ < ρ, the same formula
defines (a tail of) p̄ in X. Now apply π.

Observe that only δ such that

δ ∈ supp(pρ) or δ =
⋃
ξ<ρ

sup(supp(pξ) ∩ δ) (4.5)

are relevant to the proof of (4.3) and (4.4). Thus we restrict our attention
to such δ in the following.

We shall now show that because of (B), pρ enjoys a basic type of genericity
over X. First, note that Card∩X ∩ (κ+ + 1) ⊆ supp(pρ), because of (D 2a)
and the following:

Lemma 4.27. If γ̃ ∈ Card ∩ X, then γ̃ ∈ UM(pξ, {w̄ � ξ + 1, ~x}) for large
enough ξ < ρ.

Proof. Fix ξ large enough such that γ̃ ∈ Xξ. If first alternative of (4.5)
obtains, we may assume ξ is large enough such that δ ∈ supp(pξ). We
can assume γ̃ > δ as trivially, supp(pξ) ⊆ UM(pξ, {w̄ � ξ + 1, ~x}). Then
sup(supp(pξ)∩ γ̃) ≥ δ, and so γ̃ ∈ HM

γ̃ (pξ, {w̄ �ξ+1, ~x}). Now say the second
alternative of (4.5) obtains. Then we may assume ξ is large enough so that
γ̃ ∈ hMΣ1

((sup(supp(pξ) ∩ δ) ∪ {w̄ � ξ + 1, ~x}). Since δ ≤ γ̃, we immediately
conclude γ̃ ∈ HM

γ̃ (pξ, {w̄ � ξ + 1, ~x}).

For γ ∈ CardX̄ , let
p̄γ =

⋃
ξ<ρ

π(pξ)γ.

In fact, j(γ)+ ∩X =
⋃
ξ<ρ |pξσ(γ)|, i.e.

|p̄γ| = γ+Lµ̄ , (4.6)
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by the following:

Lemma 4.28. If ν ∈ [γ, γ+X̄) and either ν > δ or the second alternative of
(4.5) obtains, then j(ν) ∈ HM

<j(γ)(p
ξ, {w̄ � ξ + 1, ~x}), for large enough ξ < ρ.

Proof. Exactly as the previous lemma.

So clearly by (D 2a), we have ν < |p̄ξ+1
γ | for ξ, ν as above, prooving (4.6).

Similarly, (D 2a) makes sure |p̄ξγ| strictly increases with ξ < ρ.

Remark 4.29. Observe for (4.6) we can assume ν > δ in the hypothesis of
the lemma, but the full generality of the lemma will be needed in 4.30.

Thus, letting
p̄ =

⋃
γ∈CardX̄

p̄γ

we see p̄ : µ̄→ 2 is a total function. We continue exploiting the basic gener-
icity of p̄ over X̄, in the sense that p̄δ codes all of Ā and p̄:

Lemma 4.30 (Local coding). Provided δ satisfies (4.5) and letting

Y = Lµ̄[A ∩ δ, p̄δ]

we have X̄ ⊆ Y and X̄ is a definable class in Y . In fact, for each ν < µ̄,
Ā∩ ν and p̄ � ν are definable in (A<p̄‖ν‖�ν)Y if Y |= ‖ν‖ ∈ Reg and definable
in (B(p̄<‖ν‖)

<p̄‖ν‖�ν)Y if Y |= ‖ν‖ ∈ Sing.

Proof of lemma 4.30. We show the definability of p̄ and Ā by checking they
can be reconstructed from Ā∩δ and p̄δ by the decoding procedure run over X̄
(see the last item of definition 4.5). We now describe this procedure, which is
carried out in Lµ̄[Ā∩δ, p̄δ], making three claims which we proove thereafter.17

Observe that CardX̄ = CardLµ̄ .

(i) Say for γ ∈ SingLµ̄ we have already constructed Ā∩ γ and p̄ � γ inside
Lµ̄[Ā∩δ, p̄δ]. We claim that p̄�γ codes p̄γ via singular limit coding using
as coding apparatus the functions f p̄γ�ν as defined in Lµ̄[Ā ∩ γ, p̄γ � ν],
for ν < γ+Lµ̄ . Observe this is well defined as Lµ̄[Ā∩ γ, p̄γ � ν] ⊆ X̄ and
so γ is a singular cardinal in that model (this needn’t be the case for
Lµ̄[Ā ∩ γ, p̄ � γ, p̄γ � ν]).

17A lot of the technical complexity of the following stems from the fact that we do not
know the cardinals of Lµ̄[A ∩ δ, p̄ρδ ]. Thus we have to work in a mixture of models below.
If the sets D are defined to provide stronger genericity over X, the construction can be
carried out entirely over the natural model, namely Lµ̄[A ∩ δ, p̄ρδ ].
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(ii) Say for γ ∈ RegLµ̄ below the Mahlo of Lµ̄ (if there is one) and ν ∈
[γ, γ+Lµ̄) we have already constructed Ā∩γ and p̄�ν inside Lµ̄[Ā∩δ, p̄δ].
Letting k = 1 if γ ∈ SuccLµ̄ and k = 2 if γ is inaccessible in Lµ̄, for
each ν ∈ [γ, γ+Lµ̄) we claim

p̄γ(ν) = 1 ⇐⇒
{ξ < γ | ξ ∈ bp̄γ�ν ∧ p̄((ξ)k) = 1} is unbounded below γ,

where by bp̄γ�ν we mean (bp̄γ�ν)Lµ̄[Ā∩γ,p̄γ�ν].

(iii) Say for γ = κ̄, the Mahlo of Lµ̄, and ν ∈ [κ̄, κ̄+Lµ̄), say we have already
constructed Ā ∩ κ̄ inside Lµ̄[Ā ∩ δ, p̄δ]. Let p̄<κ̄ = [Ā]1 and Ā0 = [Ā]0.
For each ν ∈ [κ̄, κ̄+Lµ̄) we claim

p̄κ̄(ν) = 1 ⇐⇒
{ξ < κ̄ | ξ ∈ bp̄κ̄�ν ∧ p̄<κ̄((ξ)3) = 1} is unbounded below γ,

where by bp̄κ̄�ν we mean (bp̄κ̄�ν)Lµ̄[Ā∩κ̄,p̄κ̄�ν].

(iv) Say for γ ∈ CardLµ̄ below the Mahlo of Lµ̄ (if there is one), we have
already constructed Ā ∩ γ and p̄ � γ inside Lµ̄[Ā ∩ δ, p̄δ]. We claim:

ν ∈ Ā ∩ [γ, γ+Lµ̄) ⇐⇒
{ξ ∈ [γ, γ+Lµ̄) | p̄γ((〈ξ, ν〉)0) = 1} is unbounded below γ+Lµ̄ .

The same holds for Ā0 if γ = κ̄, the Mahlo of Lµ̄.

From these claims, the lemma follows by induction. In a sense the proof
of these claims is again trivial, by definition of D, i.e. by strategicity or
(B). The claim in (i) is a straightforward consequence of elementarity: since
p̄γ � ν ∈ X̄ for ν < |p̄γ|, j(f p̄γ�ν) = fp

ξ
j(γ) � j(ν) for large enough ξ < ρ, and

X �“pξ � j(γ) exactly codes pξj(γ). By the obvious continuity of singular limit
coding, the claim in (i) follows.

Now for the claim in (ii). We restrict our attention to the exemplary case
that γ < β and is inaccessible in Lµ̄. Observe for the claim we can assume
δ < γ, but note for later that the present proof also works if δ = γ and the
second alternative of (4.5) obtains.

Now say ν ∈ [γ, γ+Lµ̄) and show the claim in (ii). We have seen for
γ ∈ UM(pξ, {w̄ �ξ+1, ~x}) and j(ν) ∈ Hj(γ)(p

ξ, {w̄ �ξ+1, ~x}) for large enough
ξ < ρ (we assume for now that ν > δ, but note for later reference the present
proof also goes through if the second alternative of (4.5) obtains). Thus by
(D 2b), bp

ξ
j(γ)
�j(ν) = bp

ρ
j(γ)
�j(ν) ∈ (pξ)∗j(γ) for large enough ξ < ρ, restraining
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extensions of pξ, i.e. making sure pρ<j(γ)((ζ)1) = 0 for a tail of ζ ∈ bp
ρ
j(γ)
�j(ν)

if pρj(γ)(j(ν)) = 0. Moreover, (D 2f) makes sure pρ<j(γ)((ζ)1) = 1 for a tail of

ζ ∈ bp
ξ
j(γ)
�j(ν) if pρj(γ)(j(ν)) = 1. Together, for large enough ξ < ρ we have

pξj(γ)(j(ν)) = 1 ⇐⇒ X |= “pξ<j(γ)((ζ)1) = 1

for unboundedly many ζ ∈ bp
ξ
j(γ)
�j(ν)”

and since
σ(bp

ξ
j(γ)
�j(ν)) = (bp̄γ�ν)Lµ̄[Ā∩γ,p̄�ν]

applying σ proves the claim.
The other case of the claim in (ii) is entirely analogous, substituting the

use of (D 2f) by (D 2d) if γ < β and using (C) if γ = β. Claim (iii) is proved
in the same manner, once more using (D 2f). The claim in (iv) is proved
using using (D 2c).

Lemma 4.31. Provided δ satisfies (4.5), X̄ ∈ Ap̄δ0

Proof of lemma 4.31. It suffices to observe that Lµ̄[A∩δ] � |p̄δ| = π−1(δ+) ∈
Card. Thus by the definition of steering ordinal, µ̄ + ω < µp̄δ . Since by
lemma 4.30, Ā and (in case β < ∞) s̄ are definable over Lµ̄[A ∩ δ, p̄δ] ∈
Lµp̄δ [A ∩ δ, p̄δ] = Ap̄δ0 .

Lemma 4.32. If δ =
⋃
ξ<ρ sup(supp(pξ) ∩ δ),

p � δ ∈ Ap̄δ0 . (4.7)

Proof of lemma 4.32. As π(pξ) � δ = pξ � δ, lemmas 4.26 and 4.31 together
yield pρ � δ ∈ Ap̄δ0 .

We proceed to show (4.3) and (4.4). Let δ̃ = min On∩X \ δ, so that
π(δ̃) = δ. First, say δ < δ̃. Then we must have X |= δ̃ ∈ Inacc (δ is the
critical point of π). Observe that for each ξ < ρ, by Easton support and
since sup(supp(pξ) ∩ δ̃) ∈ X we have sup(supp(pξ) ∩ δ̃) < δ. Thus (4.3) is
trivially satisfied as pρδ = ∅δ. We may assume without loss of generality that

δ = sup
ξ<ρ

(supp(pξ) ∩ δ̃) (4.8)

hold, for otherwise (4.4) is trivially satisfied and we are done. This means
δ ∈ Sing (ρ ≤ λ and we must have λ < δ as the conditions grow below δ).



54 CHAPTER 4. EASTON SUPPORTED JENSEN CODING

Fake inaccessible coding: We show that p̄δ is coded using fake inacces-
sible coding, i.e.

s(p̄<δ) = p̄δ (4.9)

(of course p̄<δ = p<δ). We adapt the proof of claim (ii), lemma 4.30.18

Because of (D 2e), p<δ does not immediately use singular coding. We remind
the reader that the proof of the claim in (ii), lemma 4.30 also goes through
if ν = γ = δ because (4.8) holds. This means that for ν ∈ [δ, δ+Lµ̄) we have

p̄δ(ν) = 1 ⇐⇒ p̄<δ((ζ)1) for a tail of ζ ∈ (bp̄δ�ν)X̄ .

By (4.7) bp̄δ is eventually disjoint from p̄<δ. Moreover p � δ ∈ Ap̄δ0 so the
coding stops there. It remains to show that

∀ν ∈ [δ, |p̄δ|) bp̄�ν ⊆∗ dom(p̄<δ). (4.10)

Fixing ν as above, in the proof of lemma 4.30 we’ve seen j(δ) ∈ UM(pξ, {w̄ �
ξ + 1, ~x) and j(ν) ∈ HM

<δ(p
ξ, {w̄ � ξ + 1, ~x) for large enough ξ < ρ, as the

second alternative of (4.5) obtains. So by (D 2g) (which we haven’t used up
to now) and (4.8) it follows that

bp̄
ρ
j(δ)
�j(ν) ∩ [η, δ) ⊆ dom(pρ<δ)

for some η < δ. Now use elementarity and apply σ to get (4.10).
By (4.10) and (4.9), we have Ap̄δ0 = B(pρ<δ)

∅δ , so (4.4) follows from (4.7)
and we are done.

Now say δ ∈ Xρ
δ . Since p̄δ = pρ

δ̃
and Apδ0 ⊆ B(p<δ)

pδ if δ ∈ Sing, (4.4)
immediately follows from (4.7). It remains to show (4.3) (definition 4.7).

We only need to check the requirement given in definition 4.7 for ζ = |pρδ |,
for when ζ < |pρδ |, the requirement is met as ζ < |pξδ| for some ξ < ρ and
pξδ ∈ S∗δ . So let N = Lη[A ∩ δ, pρδ ] be a test model, i.e. let η, κ̄ be such that

N � ZF−and |pρδ | = δ+, (4.11)

N � Card = CardL[A∩ω] (4.12)
Lη |= κ̄ is the least Mahlo, κ̄++ exists. (4.13)

We must show that Lη[Ā∗] |= r is coded by branches, where we let Ā∗ =
A∗(A ∩ δ, pδ)N , i.e. the set obtained when running the decoding procedure
(see 4.6) relative to N . By lemma 4.26 and 4.30 and as π(pξδ) = pξδ for ξ < ρ

the sequence (|pξδ|)ξ<ρ is definable over Lµ̄[A ∩ δ, pρδ ]. Thus (4.11) implies
η < µ̄ = X̄ ∩On. Let α = CardLµ̄ ∩ η. Clearly η ∈ [α, α+X̄).

18At this point we need lemma 4.28 for the second alternative of (4.5).



4.7. THE MAIN THEOREM FOR QUASI-CLOSURE OF P (A0) 55

Case 1: α ≥ κ̄+X̄ . Observe η > κ̄+N = κ̄+X̄ , where the first inequality
holds by (4.13). Thus also X̄ � κ̄ is the least Mahlo and j(κ̄) = κ. It also
easily follows by elemenarity of j : X̄ → M that β = κ or β = ∞: if β < κ,
M = Aqβ+ � there is no Mahlo cardinal.

By lemma 4.30 and by (4.12), the decoding procedure of p̄δ over Lη[A ∩
δ] run up to κ++N yields Ā0 ∩ κ̄++N , where of course Ā0 = Ā = π[A0].
By elementarity, Lµ̄[Ā0] |= Φ(r) and also Lη[Ā0 ∩ κ̄++N ] |= Φ(r) by the
construction of T̄ .19

Case 2: Otherwise, assume α ≤ κ̄ and if α = κ̄, then κ̄ is Mahlo in X̄.
Write ζ̄ for α+N = α+Lη . Observe that as in the previous case, by the

proof of lemma 4.30 and as CardN = CardLη , the decoding procedure of
p̄δ � ζ̄ over Lη[A ∩ δ] run up to α yields Ā ∩ ζ̄ and p̄ � ζ̄. In the case α = κ̄,
this uses the assumption that κ̄ is Mahlo in X̄ so that N contains enough of
the coding apparatus of X̄ to run the proof of lemma 4.30 inside N .

As ζ̄ < α+X̄ = supξ<ρ |pξα|, we can pick ξ < ρ such that ζ̄ < |pξα|. By
elementarity,

Ñ = Lj(η)[A ∩ j(α), pξj(α) � j(ζ̄)],

is a valid test-model for s̃ = pξj(α) � j(ζ̄) and as s̃ ∈ S∗j(α), this string codes
a predicate A∗ over Lj(η)[A ∩ j(α)] such that Lj(η)[A

∗] |= Φ(r). By the way
the coding works and using elementarity of π, p̄δ also codes Ā∗ = π(A∗) and
Lη[Ā

∗] |= Φ(r).

Case 3: It remains to deal with the case α = κ̄ when κ̄ is not Mahlo in X̄.
Let’s assume for simplicity that κ ∈ X, or equivalently, β ≥ κ. The other
case differs only in notation. Again using the proof of lemma 4.30 and as
CardN = CardLη [A∩ω], the decoding procedure of pδ over Lη[A ∩ δ] run up
to κ̄ yields p̄<π(κ) � κ̄ (or if β < κ, the appropriate collapse of p0

<κ � X). As
κ̄ < π(κ), we can find ξ < ρ such that |pξ<κ| > j(κ̄) (if β < κ, this holds for
ξ = 0). Since N is a model of ZF−, the construction can be carried out in
N . By elementarity,

Ñ = Lj(η)[A ∩ j(κ̄), pξ<κ � j(κ̄)],

is a valid test-model for s̃ = pξ<κ � j(κ̄) and as s̃ ∈ S∗<κ, this string codes a
predicate A∗ over Lj(η)[A ∩ j(κ̄)] such that Lj(η)[A

∗] |= Φ(r). By the way

19In more detail: If If η = µ̄, this is obvious, so assume η < µ̄. Then j(Ā0 ∩ κ̄++N ) =
B̄− � κ̃, where κ̃ = j(κ̄++N ) = κ++Lj(η) and Lj(η) is a model of ZF−. Thus the trees
defined in Lj(η) are just initial segments of the real ones, and the respective components
of B̄ � κ̃ are branches through the local versions.
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the coding works and using elementarity of π, p̄δ also codes Ā∗ = π(A∗) and
Lη[Ā

∗] |= Φ(r). Analogously for β < κ.
Finally, we prove pρ<κ ∈ S∗<κ, i.e. the requirement in definition 4.7 is met

(to avoid trivialities, we assume λ < κ). So let N be a test-model and let
κ̄ be the least Mahlo in N . We assume κ̄ = |pρ<κ|, as otherwise (as before)
there is nothing to prove. Let

X =
⋃
ξ<ρ

H|pξ<κ|
,

let π : X → X̄ be the the collapsing map, j = π−1, µ = X ∩ On and
µ̄ = X̄ ∩ On. By (D 2a), we have X = Hκ̄, κ̄ = |pρ<κ| and j(κ̄) = κ (so
crit(j) = κ̄).

As before, let η = N ∩On. Since the sequence {|pξ<κ|}ξ<ρ is definable over
X̄, we can argue as previously that η < µ. Also, as before, p̄κ̄ =

⋃
ξ<ρ π(pρκ)

is decoded from pρ<κ relative to X̄, and p̄κ̄ � κ̄+N is decoded relative to N .
Writing η̃ = j(η) it follows that the model Ñ = Lη̃[A ∩ κ, pρκ � j(κ̄+N)] is a
valid test-model for κ and so we finish the argument once more using that
pρκ ∈ S∗κ.

4.8 The strategic class D is dense

The next lemma shows density of D, i.e. (C I): in a sort of bootstrapping
process using theorem 4.24 in its local version, we shall see that the auxiliary
sets DM

[λ,γ)(p, ~x) 6= ∅, for larger and larger γ. To be able to meet (D 2g), we
have to strengthen our inductive hypothesis and assume that densely, any
Easton set can be “covered” by the domain of a condition.

Lemma 4.33. Let γ ∈ Card. For any q ∈ P and both β ≥ γ and M as in
assumption 4.20, the following holds: For any λ ∈ Reg and p ∈ P ,

1. for any ~x ∈M , there is p′ ∈ P such that p′ 4λ p and p′ ∈ DM
[λ,γ)(p, ~x)

2. for any Easton set B ⊆ [λ, γ) there is p′ ∈ P such that p′ 4λ p and
B ⊆ dom(p′<γ).

In the proof, you will notice a somewhat unexpected role-reversal of γ and
M : the induction is over γ while q, β and M vary freely. Also, note how
DM

[λ,γ)(p, ~x) has been decoupled from R; we talk about density in P and q is
merely a parameter.
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To make life a little easier, we could proove from (1) the seemingly
stronger fact that for any γ̄ ≥ γ and r ∈ P such that r ≤ p, DM

[λ,γ)(p, ~x)

is 4λ-dense in P (r)γ̄
+ (but we only use it in this proof, so we leave it im-

plicit).

Corollary 4.34. P is quasi-closed: Setting β =∞, M = L[A] and γ = κ+3,
it clearly follows that for any p ∈ P , λ ∈ Reg and ~x ∈ L[A], there is
q ∈ D(λ, p, ~x) such that q 4λ p. This complements theorem 4.24 in its global
form (corollary 4.25).

Proof of the lemma. The proof is by induction on γ, so say both statements
are true for all cardinals γ′ < γ ∈ Card. Fix q, M , λ ∈ Reg, ~x ∈M and an
Easton set B as in the hypothesis, and let p ∈ P be arbitrary. We shall find
p′ 4λ p satisfying both p′ ∈ DM

[λ,γ)(p, ~x) and B ⊆ dom(p′<γ).
For the succcessor case, assume γ = δ+, for δ ∈ Card. We need to take

care of (D 1) and (D 2a) to (D 2g) (in definition 4.21, p. 46) for δ, and then
we can finish this case quickly by induction. So let ι0 be least above |pδ|+ δ
such that any pair b, b′ ∈ p∗δ+ is disjoint above ι0 and let

ι = sup(Hδ ∩On) ∪ sup
b∈p∗

δ+

(min(b \ ι0))1 ∪ supB

Note that ι < δ+ and let

p1
δ = (p0

δ
_ E) ∪ Z

where E ⊆ δ codes the relation ∈ �ι× ι in some recursive way and where

Z : [|p0
δ|+ δ, ι)→ 2

Z(ζ) =


1 if ζ = (〈ξ, |p0

δ|〉)0 for some ξ ∈ [δ, |p0
δ|),

1 if ζ = (ξ)1 for some ξ ∈ b \ ι0 and b ∈ p∗δ+,
0 otherwise.

Moreover, let η = ρ(p∗δ) ∪ sup(U ∩ δ) ∪ ‖p∗δ‖ ∪ λ and let

(p1)∗δ = (p0)∗δ ∪ {bpδ�ν \ η | ν ∈ H<δ} ∪ λ.

If δ ∈ Sing, we must find p1 � δ so that it exactly codes p1
δ , using the

extendibility lemma 4.14. Otherwise we can set p1 � δ = p0 � δ. It is clear
that p1 satisfies (D 2b) and also requirement (D 1) in definition of D. Also,
by the choice of Z and since ι was chosen large enough, p1 satisfies (D 2a),
(D 2c) and (D 2d). It is easy to see that p1

δ ∈ S∗δ : by choice of E, p1
δ collapses
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the size of ι to δ over every ZF− model.20 Thus any test model for p1 is a
test model for p0 and we are done.

We must also arrange (D 2g) for δ. For this we made the inductive
assumption that (2) holds below δ. Let γ′ = sup(supp(p) ∩ δ) and let

B′ =
⋃
{b ∩ γ′ | b ∈ p∗δ \On}.

By (2) we can find p2 4λ p1 such that B′ ∪ (B ∩ δ) ⊆ dom(p2
<δ).

By induction hypothesis, we can find p′ 4λ p2 such that

p′ ∈ DM
[λ,δ)(p

2, ~x) ⊆ DM
[λ,δ)(p, ~x).

It follows that p′ ∈ DM
[λ,γ)(p, ~x) and B ⊆ dom(p′<γ), finishing the successor

case.
Let’s say γ is a limit ordinal. We can assume γ ∈ Sing, for otherwise

supp(p) ∩ γ and B are both bounded below γ and we can simply use the
induction hypothesis. So let (β′ξ)ξ<ρ be the increasing enumeration of a club
in β′ = γ, ρ = cf (β′) and β′0 > ρ.

We can assume without loss of generality that |p<κ| ≥ β+ (by 4.12, ex-
tendibility for the Mahlo coding). Let R′ = P (p)β

′+ ,M ′ = Apβ′+ = A(Ap)
pβ′+

and let p0 = p � β′+ + 1, observing p0 ∈ R′. For ξ < ρ, let

Dξ = DM
[λ,β′ξ)

(p, ~x) ∩ Lβ′+ξ [A]

and let ~x′ = {λ, p0, (β′ξ)ξ<ρ), (Dξ)ξ<ρ, B}, noting that ~x′ ∈ M ′. The point
here is that for any p′ ∈ P ,

p′ ∈ DM
[λ,β′ξ)

(p, ~x) ⇐⇒ p′ � β′ξ ∈ Dξ,

so that we can talk about DM
[λ,β′ξ)

(p, ~x) inside M ′.
We shall now use theorem 4.24 for M ′ and R′ to construct a sequence

whose greatest lower bound will be the desired condition. Let X0 be least
such that X0 ≺1 M

′, x′ ∈ X0 and X0 ∈M ′; we can find such X0 by the fact
that cf (M ′ ∩On) = β′+.

We now find a sequence w̄ = (wξ)ξ<ρ such that for each ξ < ρ, wξ =
(Xξ, pξ, w̄ � ξ) and

wξ ∈M ′

Xξ = hM
′

Σ1
({pξ, w̄ � ξ}),

20Of course, much less than ZF− is needed here.



4.8. THE STRATEGIC CLASS D IS DENSE 59

and if ξ is limit, then pξ is a greatest lower bound of p̄�ξ+1 in R′. Note that
this implies (Xν)ν<ξ ∈ Xξ (also note the sequence (Xξ)ξ<ρ is not continuos).
To complete the definition of w̄, we must specify how to construct pξ+1 in
the successor case.

By induction, assume we have built such a sequence w̄ � ξ + 1. Now let
pξ+1 ∈ R′ be least such that

• pξ+1 � β′ξ ∈ Dξ—equivalently, pξ+1 ∈ DM
[λ,β′ξ)

(p, ~x),

• pξ+1 ∈ DM ′

[λ,β′ξ)
(pξ, {~x′, w̄ξ + 1}) (note this is ΠT

1 ({~x′, w̄ξ + 1, pξ, ξ}) in
M ′)

• B ∩ β′ξ ⊆ dom(pξ+1)<β′+ξ
,

• the clauses in (C) of theorem 4.24 hold for pξ+1 with β, βξ, M , ~x in
(C) replaced by β′, β′ξ, M ′, and ~x′ (note this is ΠT

1 ({~x′, w̄ξ + 1, pξ, ξ})
in M ′ as well).

The last point can be arranged as in the first part of the argument in the
successor case (using extendibility, 4.14). The first point can be arranged
as the induction hypothesis implies that Dξ is dense in R′.21 If in doubt,
here is a pedestrian proof: since pξ ∈ R′ = P (p)β

′+ , we know pξ · p 6= 0; so
there is p′ 4λ pξ · p such that p′ ∈ DM

[λ,β′ξ)
(pξ · p, ~x); But then since trivially

DM
[λ,β′ξ)

(pξ · p, ~x) ⊆ DM
[λ,β′ξ)

(p, ~x),

p′ � β′+ξ ∪ p
ξ � [β′+ξ , β

′) ∈ DM
[λ,β′ξ)

(p, ~x) ∩R′.

Similar arguments work for the remaining two points. Note that the con-
junction of theses items can be expressed by a ΠT

1 (~x′ ∪ {pξ, ξ}) formula (say
Φ(pξ+1, ~x′, w̄ � ξ + 1)) inside M ′.

The sequence w̄ is well defined since by the following fact and theorem
4.24, the sequence p̄ � ρ′ has a greatest lower bound pρ′ when ρ′ ≤ ρ is a limit
ordinal.

Finally, we have that pρ ∈
⋂
ξ<ρDξ = DM

[λ,γ)(p, ~x) and B ⊆ dom(pρ<γ).
Since also pρ ∈ R′ = P (p)γ

+ , p′ = (pρ · p) is the desired condition. It remains
to proove:

Fact 4.35. The sequence w̄ = (wξ)ξ<ρ′ = (Xξ, pξ)ξ<ρ′ is a (λ, x′)-canonical
witness for p̄ � ρ′ = (pξ)ξ<ρ′ inside M ′

21Literally, the induction hypothesis talks about P , not R′. In fact, we have that
DM

[λ,γ)(p, ~x) is dense in P below p if and only if it has non-empty intersection with P (q)γ̄
+

for any q ≤ p and any γ̄ ≥ γ.
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Sketch of proof. The idea is that wξ is the unique x = (X, p, w̄′) such that

X = hM
′

Σ1
({p, w̄∗}) and

X |= p is ≤M ′-least such that Φ(p, ~x′, w̄)
(4.14)

where Φ comes from the inductive definition of p̄ discussed above, and w̄∗ =
w̄ � ξ. We leave it to the reader to check that (4.14) can be expressed by a
ΠT

1 (~x′)-formula Ψ(X, p, w̄′).
Now it is easy to see the fact holds: x = wξ if and only if x = (X, p, w̄∗),

Ψ(X, p, w̄∗) holds and w̄∗ is a sequence of length ξ such that for each ν < ξ,
we have Ψ(w̄∗(ν)0, w̄

∗(ν)1, w̄
∗ � ν). This is obviously ΠT

1 (~x′) if Ψ is. See fact
3.15, especially lemma 3.14 for a similar (but harder) argument.

4.9 Stratification of P (A0)

We now define the stratification system for P (A0). Remember 4λ and D
was defined in 4.21.

Definition 4.36. 1. Let q 2λ p just if q � [λ,∞) ≤ p � [λ,∞) in P (A0).

2. For any p ∈ P (A0), writing ρ for ρ(p∗λ) ∪ sup dom(p<λ), let Cλ(p) =
{(p<λ, ρ, Bρ

p)}.

We remind the reader that we take the singleton on the right-hand side
in the above equation only to satisfy the abstract definition of stratification,
which allows for a “multifunction” Cλ, as this is necessary for iterations.

A more straightforward definition would be Cλ(p) = {p<λ} for all p ∈
P (A0). This would work with the more traditional definition of ≤ in [Fri00].

The problem is that we had to introduce ρ(p∗λ) for inaccessible λ. Recall
that ≤ was defined so that “new restraints” (those in q∗λ for q ≤ p) may only
differ from old ones (those already in p∗λ) above ρ(p∗λ). This means that with
the more straightforward definition, in (S III), when Cλ(p) ∩Cλ(q) 6= ∅ and
p 2λ q, and we want to form q · p, the natural candidate (the point-wise
union) might not actually lie below p and q: not if any “new” restraints
disagree with old restraints below ρ(p∗λ) (or ρ(p∗λ), respectively). Thus, it is
natural to make ρ(p∗λ) and the restraints below it part of Cλ.

Having checked quasi-closure, we invite the reader to check the rest of
stratification, all of which is outright trivial.
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Extension and iteration

The proof of the main result makes it necessary to consider iterations Q̄θ

such that each initial segment Pι is stratified on [λι, κ], but it is not forced
that Q̇ι be stratified for all ι < θ—amalgamation is one example; also, I don’t
see a proof that P (A) “codes no unwanted branches” if we don’t use forcings
from an inner model, and these are not quasi-closed in the model where we
force with them. We deal with this difficulty by introducing the concept of
(Pι, Pι+1) being a stratified extension. With diagonal support, this ensures
that the initial segments are sufficiently coherent so that we can conclude
that Pθ is stratified. This coherency provided by extension is vital: e.g. an
iteration whose proper initial segments are all σ-strategically closed can add
a real (see [KS10]).

To further complicate things, λι is not the same fixed cardinal throughout
the iteration.

We treat quasi-closed and stratified extension separately (sections 5.1
and 5.2). Each axiom of stratified (or quasi-closed) extension corresponds
to an axiom of stratification (or quasi-closure)—in fact, interestingly, P is
stratified if and only if ({1P}, P ) is a stratified extension. To prove the
iteration theorem, we also have to add some additional axioms concerning
the interplay of the pre-stratification (pre-closure) systems on Pι and Pι+1;
see definitions 5.1 and 5.18.

In section 5.3 we show products of stratified forcings are stratified ex-
tensions. Finally, we introduce the stable meet operator in section 5.4 and
remote sub-orders in section 5.5. See the beginning of those sections for a
motivating discussion.

61
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5.1 Quasi-closed extension and iteration
In this section, we show that composition of quasi-closed forcing is a special
case of quasi-closed extension. We give a sufficient condition which makes
sure that if (P0, P1) is a quasi-closed extension, then P1 is quasi-closed. We
prove that the relation of being a quasi-closed extension is transitive. Finally,
we formulate and prove an iteration theorem for quasi-closed forcing.

Let P0 be a complete sub-order of P1 and let π : P1 → P0 be a strong
projection. Moreover, assume we have a system si = (Di, ci,4λi )λ∈I for
i ∈ {0, 1} such that Di ⊆ I × V × (Pi)

2 is a class definable with parameter
ci and for every λ ∈ I, 4λi is a binary relation on Pi.

Definition 5.1. We write s0 C s1 to mean for every x and every λ ∈ I,

(Cc1) For all p, q ∈ P0, p 4λ0 q ⇒ p 4λ1 q.

(Cc2) For all p, q ∈ P1, p 4λ1 q ⇒ π(p) 4λ0 π(q).

(Cc3) For all p, q ∈ P1, p ∈ D1(λ, x, q)⇒ π(p) ∈ D0(λ, x, π(q)).

Observe that if s0 C s1 we can drop the subscripts on 4λ0 , 4λ1 and just write
4λ without causing confusion.

Definition 5.2. We say the pair (P0, P1) is a quasi-closed extension on I,
as witnessed by (s0, s1) if and only if s0 witnesses that P0 is quasi-closed on
I, s1 is a pre-closure system on P1, s0 C s1 and for λ, λ̄ ∈ I such that λ ≤ λ̄,
the following conditions hold:

(EcI) If p ∈ P1 and q ∈ P0 is such that q 4λ π(p) and q ∈ D(λ, x, π(p)), there
is r 4λ p such that r ∈ D(λ, x, p), r 4λ p and π(r) = q. Moreover
we can ask of r that for any λ′ ∈ I such that p 4λ′ π(p) we also have
r 4λ

′
π(r).

(EcII) If p̄ = (pξ)ξ<ρ is a sequence of conditions in P1 such that for some
q ∈ P0 and some w̄

(a) q is a greatest lower bound of the sequence (π(pξ))ξ<ρ and for all
ξ < ρ, q 4λ π(pξ),

(b) w̄ is a (λ, x)-strategic guide and a (λ̄, x)-canonical witness for p̄,

(c) either λ = λ̄ or pξ 4λ̄1 π(pξ) for each ξ < ρ,

then p̄ has a greatest lower bound p in P1 such that for each ξ < ρ,
p 4λ pξ and π(p) = q. Moreover, if pξ 4λ̄1 π(pξ) for each ξ < ρ, then
also p 4λ̄1 π(p).
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As before, if we say (P0, P1) is a quasi-closed extension and don’t mention
either of s0, s1 or I, that entity is either clear from the context or we are
claiming that one can find such an entity.

We will grow tired of repeating all the conditions p̄ has to satisfy in (EcII),
so we issue the following definition:

Definition 5.3. We say p̄ is (λ, λ̄, x)-adequate if and only if λ, λ̄ ∈ I, λ ≤ λ̄
and p̄ satisfies conditions (EcIIb) and (EcIIc) above. We say q is a π-bound
if and only if (EcIIa) holds.

Of course, the obvious example for quasi-closed extension is provided by
composition of forcing notions:

Lemma 5.4. If P is quasi-closed on I and P Q̇ is quasi-closed on I, then
(P, P ∗ Q̇) is a quasi-closed extension on I.

To be more precise, let s0 denote the pre-quasi-closure system witnessing
that P is quasi-closed and let s1 = (D̄, c̄, 4̄λ)λ∈I be the pre-quasi-closure
system constructed as in the proof of 3.17, where we showed that P ∗ Q̇ is
stratified. Then (s0, s1) witnesses that (P, P ∗ Q̇) is a quasi-closed extension
on I.

We give the proof after we prove the following simple lemma, which will be
useful in several contexts.

Lemma 5.5. Say R carries a pre-closure system s on I and p̄ = (pξ)ξ<ρ has
a (λ, x)-strategic guide w̄ which is also a (λ̄, x)-canonical witness. If for all
ξ < ρ, pξ 4λ̄ 1R, then p̄ is in fact (λ̄, x)-adequate.

Proof of lemma 5.5. For arbitrary ξ < ξ̄ < ρ, by 3.1(C 3), as pξ̄ ≤ pξ ≤ 1R
and pξ̄ 4

λ̄ 1R, we have pξ̄ 4λ̄ pξ. Thus w̄ is in fact a (λ̄, x)-strategic guide
for p̄ and so p̄ is (λ̄, x)-adequate.

Proof of lemma 5.4. Just by looking at the definition of 4̄λ and F̄, it is
immediate that s0 C s1 and that s1 is a pre-closure system. To check that
s1 is a pre-closure system, observe 3.1(C 3) has already been checked in the
proof of theorem 3.17. The other conditions we leave to the reader.

Condition 5.2(EcI) holds since P forces 3.4(C I) for Q̇: say we have (p, ṗ) ∈
P ∗ Q̇ and q ∈ P such that q ∈ D(λ, x, p). By fullness we may find q̇ such
that p  q̇ ∈ D(λ, x, q̇) and p  q̇ 4λ ṗ. We have (q, q̇) 4λ (p, ṗ) and
(q, q̇) ∈ D̄(λ, x, (p, ṗ)). Moreover, by the last clause of 3.4(C I), we can
demand that p  for any λ′ ∈ I, ṗ 4λ′ 1Q̇ ⇒ q̇ 4λ

′
1Q̇. Thus, for any λ′ ∈ I

such that (p, ṗ) 4̄λ
′

(p, 1Q̇) we also have (q, q̇) 4̄λ
′

(q, 1Q̇), which proves the
last statement of 5.2(EcI).
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Now to the main point, that is 5.2(EcII): Say p̄ = (pξ, ṗξ)ξ<ρ is sequence
of conditions in P1 which is (λ, λ̄, x)-adequate. That is, we may fix w̄ which
is a (λ, x)-strategic guide and a (λ̄, x)-canonical witness. We may also fix
q ∈ P0 which is a π-bound—i.e. (EcIIa) holds.

We have already seen that q forces that w̄ is a (λ̄, x)-canonical witness
for (ṗξ)ξ<ρ (this is the same argument as in the proof of theorem 3.17).

It is easy to check that q also forces that w̄ is a (λ, x)-strategic guide for
(ṗξ)ξ<ρ.

If λ = λ̄, we conclude that q forces that (ṗξ)ξ<ρ is λ-adequate in Q̇. Thus
we may pick a P -name q̇ such that q forces q̇ ∈ Q̇ is the greatest lower bound
of (ṗξ)ξ<ρ in Q̇. Then (q, q̇) is the greatest lower bound of p̄ and we are done
with the proof of 5.2(EcII) in this case.

If on the other hand, λ < λ̄, we have that for all ξ < ρ, (pξ, ṗξ) 4λ̄1 (pξ, 1Q̇).
Thus by lemma 5.5 we have that q forces (ṗξ)ξ<ρ is λ̄-adequate. Thus q also
forces that this sequence has a lower bound, for which we may fix a name q̇.
By quasi-closure for Q̇ in the extension and since for all ξ < ρ we have

q  ṗξ4̇
λ̄
1Q̇,

we conclude that for any ξ < ρ we have

q  q̇4̇
λ̄
q̇ξ.

Thus (q, q̇) is a greatest lower bound of p̄ and

(q, q̇)4̄λ̄(q, 1Q̇).

We now embark on a series of lemmas culminating in the insight that the
second forcing of a quasi-closed extension (P0, P1) is itself quasi-closed. Thus,
we obtain a second proof that P ∗ Q̇ is quasi-closed (under the assumptions
of the previous lemma). This makes use of the fact that the projection map
π0 : P ∗ Q̇→ P is definable. In general, we shall see that we have to assume
that the strong projection map from P1 to P0 is sufficiently definable.

Lemma 5.6. Assume for i ∈ {0, 1}, Pi carries a pre-closure system si on
I and s0 C s1. If p̄ = (pξ)ξ<ρ is a sequence of conditions in P1 and w̄ is a
(λ, x)-strategic guide with respect to s1, then w̄ is also a (λ, x)-strategic guide
for (π(pξ))ξ<ρ with respect to s0.

Proof. Suppose we are given p̄ and w̄ as in the hypothesis. If ξ < ξ̄ < ρ, since
pξ 4λ1 pξ̄, by 5.1(Cc2), π(pξ) 4λ0 π(pξ̄). Let ξ < ρ be arbitrary. Fix a regular
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λ′ such that pξ+1 4λ
′

1 pξ and pξ+1 ∈ D1(λ′, (x, w̄ � ξ + 1), pξ) By 5.1(Cc2),
π(pξ+1) 4λ

′
0 π(pξ) and by 5.1(Cc3), π(pξ+1) ∈ D1(λ′, (x, w̄ � ξ + 1), , π(pξ)),

finishing the proof.

Lemma 5.7. Assume (Pi, si), i ∈ {0, 1} are as in lemma 5.6. Further,
assume that the strong projection map π : P1 → P0 is ΣT

1 (λ ∪ {x}). If p̄ =
(pξ)ξ<ρ is a sequence of conditions in P1 which is (λ, x)-adequate with respect
to s1, then (π(pξ))ξ<ρ is (λ, x)-adequate with respect to s0.

Proof. Fix w̄ which is both a (λ, x)-strategic guide and a (λ, x)-canonical wit-
ness for p̄. By the previous lemma, w̄ is a (λ, x)-strategic guide for (π(pξ))ξ<ρ.
We may find a ΣT

1 (λ∪{x}) function G such that pξ = G(w̄ � ξ+ 1). As π ◦G
is also ΣT

1 (λ ∪ {x}), w̄ is also a (λ, x)-canonical witness for (π(pξ))ξ<ρ.

The following is useful e.g. when we show a condition has legal support.
Here lies one of the reasons for asking (C 3).

Lemma 5.8. Assume (Pi, si), for i ∈ {0, 1} are as in lemma 5.6. For any
p ∈ P1 and any regular λ ∈ I we have:

(∃q ∈ P0 p 4λ1 q) ⇐⇒ p 4λ1 π(p) (5.1)

Proof. One direction is clear, so say p 4λ1 q for some q ∈ P0. Apply 3.1(C 3):
As π is a strong projection, p ≤ π(p) ≤ q and so p 4λ1 π(p).

The intuition behind definition 5.2 is that P0 and P1 are both quasi-closed,
not independently of each other, but in a very coherent way. That P1 is quasi-
closed is almost implicit in definition 5.2—it depends on a further assumption
about the definability of π (this is responsible for the distinct flavor of quasi-
closure, setting it apart from the other axioms of stratification):

Lemma 5.9. If (P0, P1) is a quasi-closed extension on I and π is ΣT
1 (min I∪

{c1}), then P1 is quasi-closed on I.

Before we give the proof, note that this assumption on π is not entirely trivial:
in an iteration, the canonical projection π : Pθ → Pι is ∆0 in the parameter
ι; it is not in general ΣT

1 (min I). Also we would like to note in passing that
in fact P is quasi-closed exactly if ({1P}, P ) is a quasi-closed extension; the
same will be true for stratified forcing.

Proof. First check 3.4(C I): Say p ∈ P1, λ ∈ I and x are given. Use (C I)
for P0 to find q ∈ P0 such that q 4λ π(p) and q ∈ D0(λ, x, π(p)). Now apply
(EcI) to get p′ 4λ p such that p′ ∈ D0(λ, x, p) and π(p′) = q.

For the last clause of 3.4(C I), we can assume that q has been chosen so
that for any λ′ ∈ I, if π(p) 4λ

′
0 1P0 , then q 4λ

′
0 1P0 . We can also assume that
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p′ has been chosen so that for any λ′ ∈ I, if p 4λ′1 π(p), then p′ 4λ
′

1 π(p′).
Thus, p′ 4λ′1 π(p) 4λ

′
1 1P1 .

It remains to check 3.4(C II), so say w̄ witnesses that p̄ = (pξ)ξ<ρ is (λ, x)-
adequate for P1. Observe we assume that x is a tuple with c1 among its
components. By assumption, π is ΠT

1 (λ ∪ {x}), so by lemma 5.7, (π(pξ))ξ<ρ
is also (λ, x)-adequate. Since P0 is quasi-closed, (π(pξ))ξ<ρ has a greatest
lower bound q. Thus, applying 3.4(C II) for λ̄ = λ, we conclude that p̄ has
a greatest lower bound.

The next lemma will be used in 5.12 when we show that if the initial segments
of an iterations form a chain of quasi-closed extensions, then the limit is
itself a quasi-closed extension. It says that the relation of being a quasi-
closed extension is transitive. Let P0, P1 and P2 be pre-orders such that for
i ∈ {0, 1}, Pi is a strong sub-order of Pi+1.

Lemma 5.10. Say π1 : P2 → P1 and π0 : P2 → P0 are strong projection
maps and π1 is ΣT

1 (min I ∪ {c2}). If both (P0, P1) and (P1, P2) are quasi-
closed extensions on I, then (P0, P2) is also a quasi-closed extension on I.

Proof. Let (s0, s1) and (s1, s2) witness that (P0, P1) and (P1, P2) are quasi-
closed extensions.

We now check all the conditions of 5.2 for (P0, P2) and (s0, s2). That s2

is a pre-closure system holds by assumption, and that s0 C s2 is obvious.
Observe that by 5.1(Cc1), we don’t need to distinguish between 4λ0 , 4λ1

and 4λ2 and therefore we drop the subscripts in what follows.
We check 5.2(EcI): Say p ∈ P2 and q ∈ D0(λ, x, π0(p)). As in the previous

proof, we can find p′ ∈ P1 such that π0(p′) = q, p′ 4λ1 π0(p) and p′ ∈
D1(λ, x, π1(p)) and then r such that r ∈ D2(λ, x, p), with π1(r) = p′ and
r 4λ2 p.

Now if λ′ ∈ I and p 4λ
′
π0(p), we also have p 4λ′ π1(p) by lemma 5.8.

This means we have both p′ 4λ
′
π0(p′) and r 4λ

′
π1(r). As π1(r) = p′, it

follows that r 4λ′ π0(r).
It remains to check 5.2(EcII). So let p̄ = (pξ)ξ<ρ be a (λ, λ̄, x)-adequate

sequence of conditions in P2 and let q0 be a greatest lower bound of (π0(pξ))ξ<ρ
as in the hypothesis. Fix w̄ which is a (λ, x)-strategic guide and a (λ̄, x)-
canonical witness for p̄. Show exactly as in the proof of lemma 5.9 that w̄ is
both a (λ̄, x)-canonical witness and a (λ, x)-strategic guide for (π1(pξ))ξ<ρ in
P1. Denote this sequence by q̄. Moreover, if it is the case that λ̄ > λ, then

∀ξ < ρ pξ 4
λ̄ π0(pξ). (5.2)

By 3.1(Cc2), we have that

∀ξ < ρ π1(pξ) 4
λ̄ π0(pξ). (5.3)
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Thus q̄ satisfies the hypothesis of 5.2(EcII) for (P0, P1) and we may find a
greatest lower bound q1 ∈ P1 with π0(q1) = q. Now use 5.2(EcII) for (P1, P2)
to find a greatest lower bound q of p̄ such that π1(q) = q1 and so π0(q) = q0.

If λ < λ̄, lemma 5.8 and (5.2) yield

∀ξ < ρ pξ 4
λ̄ π1(pξ). (5.4)

So finally, as q 4λ π1(q) by (5.4), and π1(q) = q1 4λ̄ π0(q1) by (5.3), we
conclude q 4λ̄ π0(q).

Definition 5.11. Say θ is a limit ordinal, and Q̄θ is an iteration such that
for each ι < θ, Pι carries a pre-closure system sι on Reg ∩ [λι, λ

∗), where
the sequence λ̄ = (λι)ι<θ is a non-decreasing sequence of regulars. All of the
following definitions are relative to these pre-closure systems and to λ̄.

1. For a thread p through Q̄θ, let

suppλ(p) = {ι < θ | λι ≤ λ and πι+1 64λι+1 πι(p)},

and let σλ(p) be the least ordinal σ such that suppλ(p) ⊆ σ.

2. Let λ∗ be regular such that λ∗ ≥ λι for all ι < θ. We say Pθ is the
λ∗-diagonal support limit of Q̄θ if and only if Pθ consists of all threads
p through Q̄θ such that for each regular λ ≥ λ∗, suppλ(p) has size less
than λ and σλ∗(p) < θ.

3. We define the natural system of relations on Pθ as follows

(a) p 4λθ q ⇐⇒ ∀ι < θ πι(p) 4λι πι(q);

(b) p ∈ D(λ, x, q) ⇐⇒ ∀ι < θπι(q) ∈ D(λ, x, πι(q).

(c) The parameter cθ has as the first of its components a sequence
c̄ = (cι)ι<θ, where cι is the parameter from sι.

We shall see in the proof of theorem 5.12 that under natural assump-
tions the natural system of relations is a pre-closure system.

4. We say Q̄θ is a λ̄-diagonal support iteration if and only if for any limit
ι < θ, Pι is the λι-diagonal support limit of Q̄ι.

Theorem 5.12. Let Q̄θ be an iteration such that for each ι < θ, Pι carries
a pre-closure system sι on [λι, κ

∗), where the sequence λ̄ = (λι)ι<θ is non-
decreasing. Moreover, let λθ = min(Reg \ supι<θ λι) and assume

1. For all ι < θ, (Pι, Pι+1) is a quasi-closed extension on [λι, κ
∗).
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2. If ῑ < θ is limit, sῑ is the natural system of relations on Pῑ on [λι, κ
∗)

and Q̄ι is a λ̄ � ι-diagonal support iteration.

3. We have cf (θ) < κ.

Let Pθ be the λθ-diagonal support limit of Q̄θ. Then Pθ is quasi-closed on
Iθ = [λθ, κ

∗), as witnessed by the natural system of relations sθ.

In the proof of the theorem, we need the following lemmas 5.13–5.16, showing
that the notion of λ-support behaves as we expect. So fix an iteration Q̄θ+1

and pre-closure systems as in the hypothesis of the theorem. These lemmas
are somewhat technical but straightforward to show.

Lemma 5.13. For each λ ∈ [λθ, κ
∗) and p ∈ Pθ,

suppλ(p) =
⋃
ι<θ

suppλ(πι(p)).

Proof. First, prove ⊇: Say ξ is a member of the set on the right. Thus there
is some ι < θ such that

πξ+1(πι(p)) 64λ πξ(πι(p)). (5.5)

We consider two cases: first, assume ι ≤ ξ. Then πξ+1(πι(p)) = πι(p) =
πξ(πι(p)), and so as 4λ is a pre-order, (5.5) is false. Thus this case never oc-
curs, and we can assume ι > ξ. Then πξ+1(πι(p)) = πξ+1(p) and πξ(πι(p)) =
πξ(p), so (5.5) is equivalent to πξ+1(p) 64λ πξ(p). We infer that ξ ∈ suppλ(p).
All of the above inferences can be reversed, so ⊆ holds as well.

Lemma 5.14. If λ, λ̄ are regular such that λθ ≤ λ ≤ λ̄ < κ∗ and p 4λ̄ q,
then suppλ(p) ⊆ suppλ(q).

Proof. Left to the reader.

Observe though that ⊇ does not necessarily hold: in a two-step iteration
P ∗ Q̇, we could have and (p, 1Q̇) 4̄λ (q, q̇) but q 6P q̇4̇

λ
1Q̇ (say e.g. p  q̇ =

1Q̇). In this example we have suppλ(p, 1Q̇) = {0} 6⊇ suppλ(q, q̇) = {0, 1}.

Lemma 5.15. Fix ῑ < θ. If p ∈ Pθ and λ, λ̄ are regular such that λθ ≤ λ ≤
λ̄ < κ∗ and p 4λ̄ πῑ(p), then

suppλ(p) = suppλ(πῑ(p)).
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Proof. A short proof: ⊇ holds by lemma 5.13 and ⊆ is a consequence of
lemma 5.14. We also give a direct proof: If ι < ῑ, πι(πῑ(p)) = πι(p), so for
such ι,

ι ∈ suppλ(p) ⇐⇒ ι ∈ suppλ(πῑ(p)).

If ι ≥ ῑ, we have πι+1(p) ≤ πι(p) ≤ πῑ(p). By assumption and by 5.1(Cc2)
for (Pι+1, Pθ), we have πι+1(p) 4λ̄ πῑ(p). So by lemma 5.8, πι+1(p) 4λ πι(p).
We conclude that for ι ≥ ῑ, we have ι 6∈ suppλ(p).

Lemma 5.16. Let λ1 ∈ [λθ, κ
∗) such that λ1 ≥ cf (θ). Say q = (qι)ι<θ is a

thread through Q̄θ (see definition 2.6, p. 9 for this terminology) and say there
is w ∈ Pθ such that for all ι < θ, qι 4λ1 w. Then q has legal support, i.e.
q ∈ Pθ.

Proof. Let λ be regular. First consider the case λθ ≤ λ ≤ λ1. As q 4λ1 w, by
lemma 5.14, suppλ(q) ⊆ suppλ(w), which satisfies the requirement of diagonal
support by assumption. Now say λ > λ1 and fix a sequence (θ(ζ))ζ<cf (θ)

which is cofinal in θ. By lemma 5.13

suppλ(q) =
⋃

ζ<cf (θ)

suppλ(qθ(ζ)),

and by assumption the right hand side is a union over bounded subsets of λ.
Thus suppλ(q) is a bounded subset of λ.

Proof of theorem 5.12: Observe we must make the assumption that x
includes the parameters Lµ[A] and (πι)ι≤θ, where µ is a cardinal and and µ >
θ, to make sure we can talk about the least sequence witnessing the cofinality
of θ in a ΣT

1 (x) manner (alternatively, one could include this sequence in cθ;
also note that in practice, we can replace (πι)ι≤θ as a parameter by just θ
since it and (Pι)ι≤θ will be recursive in θ and Lµ[A] and we can usually also
drop θ since it will be definable from any condition p ∈ Pθ).

We will show by induction on θ that for each pair ι < ῑ ≤ θ, (Pι, Pῑ) is
a quasi-closed extension. Thus (P0, Pθ) is a quasi-closed extension and so
by lemma 5.9, Pθ is quasi-closed. The inductive hypothesis thus says that
for each pair ι < ῑ < θ, (Pι, Pῑ) is a quasi-closed extension as witnessed by
(sι, sῑ). We may assume θ is limit: For if θ is a successor ordinal, πθθ−1 is a
∆1-definable function and thus by induction hypothesis and lemma 5.10, for
any ι < θ, (Pι, Pθ) is a quasi-closed extension.

So assume θ is limit and let sθ be the natural system of relations on the
diagonal support limit Pθ. Fix an arbitrary ι∗ < θ. We show that (Pι∗ , Pθ)
is a quasi-closed extension witnessed by (sι∗ , sθ). By definition of sθ, we



70 CHAPTER 5. EXTENSION AND ITERATION

have sι∗ C sθ. It is straightforward to show that sθ is a pre-closure system
(as defined in 3.1, p. 12). It is obvious that Dθ is ΠT

1 (cθ): Letting Φ be a
universal ΠA

1 formula, by definition of the natural system of relations we can
assume the first component c̄ = (cι)ι<θ of cθ is such that for each ι < θ and
each p, q ∈ Pι,

q ∈ Dι(λ, x, p) ⇐⇒ Φ(cι, q, λ, x, p).

Thus Φ and c̄ witness that Dθ is ΠT
1 ({cθ}): for q ∈ Dθ(λ, x, p) is equivalent

to
∀ι ∈ dom(p) Φ(cι, πι(q), λ, x, πι(p)).

We finish the proof that sθ is a pre-closure system by proving 3.1(C 3),
as the remaining conditions have similar proofs: Say p ≤θ q ≤θ r and p 4λθ r.
Fixing an arbitrary ι < θ, we have πι(p) ≤ι πι(q) ≤ι πι(r) and πι(p) 4λι πι(r).
Thus, by 3.1(C 3) for Pι, πι(p) 4λι πι(q). As ι < θ was arbitrary, p 4λθ q
holds. So as mentioned earlier, the natural system of relations is a pre-closure
system.

We check 5.2(EcI). Say p ∈ Pθ and q∗ ∈ Pι∗ are such that q∗ 4λι∗ πι∗(p)
and q∗ ∈ Dι∗(λ, x, πι∗(p)). Assume first that cf (θ) ∈ I and cf (θ) > λ. Let
σ = σcf (θ)(p) and observe that σ < cf (θ) ≤ θ by diagonal support. If σ ≤ ι∗,
set r0 = q∗ and let (θ(ζ))ζ<cf (θ) be the least normal sequence cofinal in θ
such that θ(0) = ι∗. Otherwise, let (θ(ζ))ζ<cf (θ) be the least normal sequence
cofinal in θ such that θ(0) = σ. Use 5.2(EcI) for (Pι∗ , Pσ) to get r0 ∈ Pσ
such that r0 ∈ D(λ, x, πσ(p)), r0 4λσ πσ(p) and πι∗(r0) = q∗. Observe that in
either case, p 4cf (θ) πθ(0)(p).

Let (θ(ζ))ζ<cf (θ) be the least normal sequence cofinal in θ such that θ(0) =
σ. Now construct, by induction on ζ < cf (θ), a thread (rζ)ζ<cf (θ): having
rζ ∈ Pζ , use 5.2(EcI) for (Pθ(ζ), Pθ(ζ+1)) to get rζ+1 ∈ D(λ, x, πθ(ζ+1)(p)) such
that rζ+1 4λθ(ζ+1) πθ(ζ+1)(p)), πθ(ζ)(rζ+1) = rζ and in addition, rζ+1 4

cf (θ)
θ(ζ+1) rζ .

Let r be the unique condition in Pθ defined by the thread (rζ)ζ<cf (θ). Since
r 4cf (θ) r0, lemma 5.16 allows us to conclude that r has legal support. By
construction, r ∈ Dθ(λ, x, p), r 4λθ p and πι∗(r) = q∗.

If cf (θ) ≤ λ, we can skip the first step in the above: we just let r0 = q∗.
At the end, we use r 4λ p and lemma 5.16 allows us to conclude that r has
legal support. We leave the rest of 5.2(EcI) to the reader, as it is similar to
previous arguments.

Main point of the argument: Now check 5.2(EcII), the existence of
greatest lower bounds. Say p̄ = (pξ)ξ<ρ is a (λ, λ̄, x)-adequate sequence of
conditions in Pθ; then λ and λ̄ are both regular, λθ ≤ λ ≤ λ̄ < κ∗. We may
fix w̄ which is both a (λ, x)-strategic guide and a (λ̄, x)-canonical witness for
p̄. Moreover, let q∗ be a greatest lower bound of the sequence (πι∗(pξ))ξ<ρ.
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The construction of q is by induction on ζ < cf (θ), and we shall use
a sequence (θ(ζ))ζ<cf (θ). The construction is split in cases for the following
reasons: When cf (θ) > λ̄, the definability of each πθ(ζ) poses a problem,
and so we first have to find a πcf (θ)-bound. Moreover, the argument that
supports are legal goes differently depending on wether cf (θ) ≤ λ or not.
There are several possibilities for distinguishing cases as the trick for dealing
with cf (θ) > λ̄ can be applied whenever cf (θ) > λθ, but in my opinion this
obscures the argument.

First, assume that cf (θ) ≤ λ̄. Let (θ(ζ))ζ≤cf (θ) be the ≺-least increasing
continuous sequence such that θ(0) = ι∗ and θ(cf (ζ)) = θ. By induction on
ζ, we now construct a lower bound qζ ∈ Pθ(ζ) of the sequence (πθ(ζ)(pξ))ξ<ρ
for each ζ ≤ cf (θ). Set q0 = q∗. Now assume we have qζ and show how
to find qζ+1. It is easily checked that (πθ(ζ+1)(pξ))ξ<ρ is (λ, λ̄, x)-adequate in
(Pθ(ζ+1), Pθ(ζ)), because by the presence of Lµ[A] and θ in x we only need
bounded quantifiers (which we may assume come after the unbounded ones)
to be able to talk about the sequence (θ(ζ))ζ .1 If θ is, as usual, equal to
dom(p) for p ∈ Pθ, we don’t need θ in x. By 5.2(EcII) we obtain a greatest
lower bound qθ(ζ+1) ∈ Pθ(ζ).

Now let ζ ≤ cf (θ) be limit. By construction and by (EcII), the qζ
′ , for

ζ ′ < ζ form a thread. Define qθ(ζ) to be this thread. To show it has legal
support, first assume that cf (θ) ≤ λ. By construction and by (EcII), for
each ζ, we have qζ 4λ p0. As λ is greater than the maximum of λθ and
cf (θ), lemma 5.16 allows us to infer that qζ has legal support, and thus is a
condition in Pθ(ζ) and a πθ(ζ)-bound of p̄ (in the sense of definition 5.3). The
final condition qcf (θ) is a greatest lower bound of (pξ)ξ<ρ and for all ξ < ρ,
qcf (θ) 4λ pξ.

To finish the case where cf (θ) ≤ λ̄, we have to consider the sub-case
where cf (θ) ≤ λ fails, i.e. we assume λ < λ̄ and cf (θ) ∈ (λ, λ̄]. In this case
we have pξ 4λ̄ πι∗(pξ) for all ξ < ρ. By 5.2(EcII) and by induction, we have
qζ 4λ̄ qι

∗ for each ζ < cf (θ), and so q 4λ̄ qι∗ . Moreover, as λ̄ is greater than
both cf (θ) and λθ, qζ has legal support by lemma 5.16. Thus we are finished
with the case cf (θ) ≤ λ̄.

Now assume cf (θ) > λ̄. We will now find ι′ and q′ such that q′ is a
πι′-bound of p̄ and for each ξ < ρ,

pξ 4
cf (θ) πι′(pξ). (5.6)

As ρ ≤ λ < cf (θ) and σcf (θ)(pξ) < cf (θ) for each ξ < ρ, letting

ι′ = sup
ξ<ρ

σcf (θ)(pξ),

1In fact, again, it seems we could have done with a more restricted class of functions
G in definition 3.3 (of canoncal witnesses).
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we have ι′ < cf (θ) and so ι′ < θ.
Fix a ν < ρ and let σ(ν) = σcf (θ)(pν). Let q̄ν be the sequence defined by

qνξ = πσ(ν)(pξ) for ξ ≥ ν. For ξ < ν, the value of qνξ is arbitrary as long as
q̄ν has w̄ as a canonical witness (e.g. set qνξ = π1(p0)). It is straightforward
to check that w̄ is a (λ̄, x)-canonical witness and a (λ, x)-strategic guide for
each sequence q̄ν , for ν < ξ — this is why we only make demands on a tail in
the definition of a strategic guide. It is also clear that we can build a thread
(qν)ν<ρ using (EcII), where qν is a greatest lower bound of q̄ν . Let q′ be this
thread. We invite the reader to check that q′ is a greatest lower bound of
the sequence (πι′(pξ))ξ<ρ and that q′ 4λι′ πι′(p0). Thus, q′ has legal support
as λ ≥ cf (ρ) and by lemma 5.16. By choice of ι′, (5.6) holds. Observe that
in the case λ < λ̄, (EcII) also entails q′ 4λ πι∗(q′) = q∗.

Now we argue exactly as in the case where cf (θ) ≤ λ, but this time setting
q0 = q′ and θ(0) = ι′. Again we build a sequence (qζ)ζ<cf (θ) by induction.
At each succesor step, {πθ(ζ+1)(pξ) | ξ < ρ} is (λ, cf (θ), x)-adequate in
(Pθ(ζ), Pθ(ζ+1)). By 5.2(EcII) we obtain a greatest lower bound qζ+1 ∈ Pθ(ζ)
such that qζ+1 4cf (θ) qζ . By induction, this entails qι′ 4cf (θ) q0 = q′. Thus at
each limit stage ζ ≤ cf (θ), qζ 4cf (θ) q′ and lemma 5.16 allows us to conclude
that qζ has legal support. Lastly, if λ < λ̄, as qζ 4cf (θ) q′ 4λ q∗, we also have
qζ 4λ q∗ = πι∗(q

ζ).
We conclude this section with an observation about the support of a

greatest lower bound of an adequate sequence.

Lemma 5.17. Say p̄ = (pξ)ξ<ρ is a (λ, x)-adequate sequence with greatest
lower bound p. Then for any regular λ̄,

suppλ̄(p) ⊆
⋃
ξ<ρ

suppλ̄(pξ).

Proof. Assume ι < θ and ι 6∈
⋃
ξ<ρ suppλ̄(pξ). We may assume ι < λ̄ (since

p has diagonal support). Then as πι+1 is ΠT
1 (λ̄), the sequence (πι+1(pξ))ξ<ρ

is ΠT
1 (λ̄ ∪ {x})-definable, and for all ξ < ρ, πι+1(pξ) 4λ̄ πι(pξ). Therefore

we can apply 5.2(EcII) for (Pι, Pι+1) (see 5.2, p. 62). We conclude that
πι+1(p) 4λ̄ πι(p) and so ι 6∈ suppλ̄(p).

5.2 Stratified extension and iteration
In this section, we show that composition of stratified forcing is a special
case of stratified extension. We show that the second forcing in a stratified
extension is stratified. Finally we prove an iteration theorem for stratified
forcing.
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Let P0 be a complete sub-order of P1 and let π : P1 → P0 be a strong
projection and let I be an intervall of regular cardinals. Moreover, assume
for i ∈ {0, 1}, we have a system

Si = (Di, ci,4
λ
i ,2

λ
i ,C

λ
i )λ∈I

such that D ⊆ I × V × (Pi)
2 is a class which is definable with parameter ci,

and for every λ ∈ I, 4λi and 2λi are binary relations on Pi and Cλ
i ⊆ Pi × λ.

Definition 5.18. We write S0CS1 if and only if in addition to (Cc1), (Cc2)
and (Cc3) (see 5.1, p. 62), the following hold:

(Cs1) If q, q′ ∈ P0 and p, p′ ∈ P1 are such that q′ 4λ0 q ≤ π(p′) and p′ 4λ1 p,
then q′ · p′ 4λ1 q · p.

(Cs2) For all p, q ∈ P0, p 2λ0 q ⇒ p 2λ1 q.

(Cs3) For all p, q ∈ P1, p 2λ1 q ⇒ π(p) 2λ0 π(q).

(Cs4) If w ≤ π(d), π(r) and d 2λ r then w · d 2λ w · r.

(Cs5) If Cλ
1(p) ∩Cλ

1(q) 6= 0 then Cλ
0(π(p)) ∩Cλ

0(π(q)) 6= 0.

Observe that if S0 C S1, we can drop the subscripts on 2λ0 , 2λ1 and just
write 2λ without causing confusion. Observe also that by corollary 3.10, we
can assume that r 4|P1| p holds exactly if p = r. This implies2

∀p ∈ P1

(
p 4|P1| π(p) ⇐⇒ p ∈ P0

)
. (5.7)

We could assume that Cλ
0 = Cλ

1 ∩ P0 × λ. For if not, simply replace Cλ
1

by the following relation Cλ
∗ : s ∈ Cλ

∗(p) if and only if s ∈ ≤2λ such that
s(0) ∈ Cλ

0(π(p)) and if p 6∈ P0 then 1 ∈ dom(s) and s(1) ∈ Cλ
1(p) (now in

fact we get Cλ
0(p) = {s � 1 | s ∈ Cλ

1(p)} for p ∈ P0). To sum up, we could
in principle completely eliminate any mention of S0 from the definition of
stratified extension.

Replacing (Cs1)by the following two conditions yields an equivalent ver-
sion of the above definition:

(CsA) w 4λ0 π(p)⇒ w · p 4λ1 p.

(CsB) If w ≤ π(p′) and p′ 4λ p then w · p′ 4λ w · p.
2Interestingly, (5.7) also follows just from the assumption that for any r, p ∈ P1, r 2|P1|

p, together with (EsI) coherent expansion
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Sometimes it is more convenient to check both of these rather than (Cs1),
which is concise but cumbersome to show. Further notice that (CsB) implies

(Csb) If w ≤ π(p) and p 4λ π(p) then w · p 4λ w.

This is weaker than (CsB). We note in passing that we could do entirely with
(CsA) and (Csb) and without (CsB). Neither condition (Cs1) nor any of its
variants were included in 3.1, the definition of a pre-closure system simply
because they are not needed to preserve quasi-closure in iterations—rather
we need (Csb) to preserve coherent centering, and (CsA) helps to preserve
density at limits; see below.

We fix some convenient notation: If d ≤ r, we say p λ-interpolates d and
r to mean that p 2λ d and p 4λ r. We say p 4<λ q to mean that for all
λ′ ∈ I ∩ λ, we have p 4λ′ q.

Definition 5.19. Let I be an intervall of regular cardinals. We say the pair
(P0, P1) is a stratified extension on I, as witnessed by (S0,S1) if and only if
S0 witnesses that P0 is stratified on I, S1 is a pre-stratification system on P1

and S0CS1; Moreover, for all λ ∈ I we have that (EcI), (EcII) and all of the
following conditions hold:

(EsI) Coherent Expansion: For p, d ∈ P1, if p 2λ d, d 4λ π(d) and π(p) ≤
π(d), we have that p ≤ d.

(EsII) Coherent Interpolation: Given d, r ∈ P1 such that d ≤ r and p0 ∈ P0

such that p0 λ-interpolates π(d) and π(r) we can find p ∈ P1 which
λ-interpolates d and r such that π(p) = p0. If moreover d 4<λ̄ π(d),
we can in addition assume p 4<λ̄ π(p) · r.

(EsIII) Coherent Centering : Say d, p ∈ P1, d 2λ p and Cλ
1(d) ∩ Cλ

1(p) 6= ∅.
Given w0 ∈ P0 such that both w0 4<λ π(d) and w0 4<λ π(p), we can
find w ∈ P1 such that w 4<λ p, d and π(w) = w0.

We find it relieving to notice that P is stratified exactly if ({1P}, P ) is a
stratified extension. Again, if we don’t mention S0, S1 or I we are either
claiming that they can be appropriately defined or they can be inferred from
the context.

Lemma 5.20. If P is stratified on I and P Q̇ is stratified on I, then
(P, P ∗ Q̇) is a stratified extension on I.

To be more precise, let S0 denote the pre-stratification system witnessing
that P is stratified and let S1 = (D̄, c̄, 4̄λ, 2̄λ, C̄λ)λ∈I be the pre-stratification
system constructed as in the proof of 3.17, where we showed that P ∗ Q̇ is
stratified. Then (S0,S1) witnesses that (P, P ∗ Q̇) is a stratified extension on
I.
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Proof. We have already checked (Cc1), (Cc2), (Cc3), (EcI) and (EcII)—i.e.
that (P,P ∗ Q̇) is a quasi-closed extension—in lemma 5.4. We showed that
S1 is a pre-stratification system when we proved theorem 3.17. It’s technical
but straightforward to check that S0 C S1 (see definition 5.18, p. 73):

Fix p̄ = (p, ṗ) ∈ P ∗ Q̇ and w ∈ P , w ≤ p. For (CsA), say w 4λ p.
Then as p  ṗ4̇

λ
p, we have (w, p) 4̄λ p̄. For (CsB), fix another condition

q̄ = (q, q̇) ∈ P ∗ Q̇ such that p̄ 4̄λ q̄. Then p  ṗ4̇λq̇, whence w  ṗ4̇λq̇ and
so (w, p) 4̄λ (w, 1Q̇), done. For (EsI) and (Cs4), let r̄ = (r, ṙ) ∈ P ∗ Q̇ and
say p̄ 2̄λ r̄, i.e. p 2λ r and if p · r > 0 then p · q  ṗ2̇

λ
ṙ. To check (EsI)

coherent expansion, assume r̄ 4̄λ (r, 1Q̇) and p ≤ r. Then p  ṗ2̇
λ
ṙ. As

P forces expansion for Q̇, p  ṗ ≤ q̇ and we are done with (EsI). To check
(Cs4), say w ≤ p. Then w · r ≤ p · r, and so if w · r > 0, it forces ṗ2̇λṙ. Since
w 2λ w, we infer that (w, ṗ) 2̄λ r̄. The remaining (Cs2), (Cs3) and (Cs5)
are immediate by the definition.

Now we check the conditions of 5.19 (see p. 74). For (EsII) coherent
interpolation, just look at how we found an interpolant in the proof of theorem
3.17. Do the same for (EsIII) coherent centering.

The following is the analogue of 5.9 for quasi-closed extension:

Lemma 5.21. If (P0, P1) is a stratified extension on I and π is ΣT
1 (min I ∪

{c1}), then P1 is stratified on I.

Proof. The proof is a straightforward consequence of the definition and lemma
5.9. We leave it to the reader.

Definition 5.22. Say Q̄θ is an iteration such that each initial segment Pι
carries a pre-stratification system Sι on Iι = Reg∩[λι, κ), where the sequence
λ̄ = (λι)ι≤θ is a non-decreasing sequence of regulars. Let Pθ be its λθ-diagonal
support limit. We now add to the definition of the natural system of relations
on Pθ. Let λ ∈ Iθ, where we set Iθ = [λθ, κ)∩Reg. The relations 4λ and D
are defined as in 5.11, p. 67. Let

1. p 2λθ q ⇐⇒ ∀ι < θ πι(p) 2λι πι(q);

2. p ∈ dom(Cλ) if and only if for all ι < σλ(p), πι(p) ∈ dom(Cλ
ι );

3. s ∈ Cλ
θ (p) if and only if s : σλ(p)→ λ and for all ι < dom(s), we have

s(ι) ∈ Cλ
ι (πι(p)).
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As before, the above yields a pre-stratification system under natural assump-
tions, as we shall see in the proof of theorem 5.23.

Theorem 5.23. Let Q̄θ be an iteration such that for each ι < θ, Pι car-
ries a pre-stratification system Sι on Iι = Reg ∩ [λι, κ), where the se-
quence λ̄ = (λι)ι<θ is a non-decreasing sequence of regulars. Moreover, let
λθ = min(Reg \ supι<θ λι), let Iθ = [λθ, κ) and assume

1. For all ι < θ, (Pι, Pι+1) is a stratified extension on Iι.

2. If ῑ < θ is limit, Sῑ is the natural system of relations on Pῑ and Pῑ is
the λῑ-diagonal support limit of Q̄ῑ.

3. For each regular λ ∈ [λθ, λ
∗) there is ι < λ+ such that for all p ∈ Pθ

we have suppλ(p) ⊆ ι.

Let Pθ be the λθ-diagonal support limit of Q̄θ. Then Pθ is stratified on Iθ.

Remark 5.24. In our particular application we will have that for each reg-
ular λ < κ, there is ι < λ+ such that λ < λι. Observe that by the definition
of suppλ(p), this implies that the last clause of the above is satisfied.

Of course, the following proof can be easily adapted to show that under the
same hypothesis, for every ι < θ, (Pι, Pθ) is a stratified extension on Iθ; while
this approach facilitated the inductive proof in the case of quasi-closure, it
would serve no purpose in the present context.

Proof of theorem 5.23. By lemma 5.21, we may assume θ is limit. That Pθ is
stratified on Iθ is witnessed by the natural system of relations Sθ, as defined
in 5.22. The proof of the following lemma is a straightforward induction,
which we leave to the reader:

Lemma 5.25. For any ι < ῑ ≤ θ, Sι C Sῑ.

Next, we check that Sθ is a pre-stratification system (see 3.7 p. 15): Condi-
tions (S 1), (S 2) and (S 3) are immediate by the definition of 2λθ and the
fact that for each ι < θ, Sι is a pre-stratification system. The proofs resemble
that of (S I), see below.

The non-trivial condition is 3.7(S 4), Density. First we must check that
ran(Cλ

θ ) has size at most λ: this is because by the last assumption of the
theorem and by diagonal support, suppλ(p) ∈ [ι]<λ for some ι < λ+.

For the more interesting part of the argument, we use density and conti-
nuity for the initial segments Pι, ι < θ together with quasi-closure. Observe
that by theorem 5.12, for any ι < ῑ ≤ θ, (Pι, Pθ) is a quasi-closed extension
on Iθ. Say we are given p ∈ Pθ. Let σ = σλ(p). We may assume that σ = θ,



5.2. STRATIFIED EXTENSION AND ITERATION 77

for otherwise we can use induction and Density for Pσ and are done. Thus
we can assume λθ < λ, for otherwise, since Pθ is a diagonal support limit,
suppλ(p) is bounded below θ.

So say we are given λ′ ∈ [λθ, λ). We must find q 4λ
′
p such that q ∈

dom(Cλ). Let δ = cf (θ) and assume without loss of generality λ′ ≥ δ
(otherwise we may increase λ′). Fix a normal sequence (σ(ξ))ξ≤δ such that
σ(δ) = θ. We inductively construct a δ-adequate sequence (pξ)ξ<δ such that
p0 = p and for any ν, ξ such that ν < ξ < δ,

πσ(ν)(pξ) ∈ dom(Cλ
σ(ν)). (5.8)

Fix appropriate x so that the following sequence can be built in a (δ, x)-
adequate fashion and such that (σ(ξ))ξ≤δ is a component of x. Let p0 = p.
Assuming we have pξ and w̄ � ξ + 1, find pξ+1 as follows.

We may find q ∈ Pθ such that q ∈ Dθ(λ
′, (x, w̄ � ξ + 1), pξ) and q 4λ′ pξ.

Also, there is q′ 4λ′ πσ(ξ)(q) such that q ∈ dom(Cλ
σ(ξ)). Let pξ+1 = q′ · q.

Since Sσ(ξ) C Sθ, by 5.18(CsA), pξ+1 ∈ Dθ(λ
′, x, pξ), and also pξ+1 4λ

′
pξ.

Moreover, by 5.18(Cs5), for any ν ≤ ξ,

πσ(ν)(pξ+1) ∈ dom(Cλ
σ(ν)).

Apply the usual trick (see lemma 3.14) to find wξ+1 and pξ+1 as above so as to
obtain a (δ, x)-adequate sequence. At limit stages ξ̄ ≤ δ, pξ̄ is a greatest lower
bound in Pθ of the sequence constructed so far. It exists by quasi-closure for
Pθ. We show

πσ(ξ̄)(pξ̄) ∈ dom(Cλ
σ(ξ̄)). (5.9)

Let ν < ξ̄ be arbitrary. As (Pσ(ν), Pθ) satisfies (C II),

πσ(ν)(pξ̄) =
∏

ξ∈(ν,ξ̄)

πσ(ν)(pξ). (5.10)

We want to apply (S 5) for Pσ(ν). By choice of x, (πσ(ν)(pξ))ξ∈(ν,ξ̄) is a λ′-
adequate sequence; and so we may use continuity for Pσ(ν). Now by induction
hypothesis, (5.8) holds for all ξ ∈ (ν, ξ̄) and so by (S 5) we have πσ(ν)(pξ̄) ∈
dom(Cλ

σ(ν)). As ν < ξ̄ was arbitrary and by definition of Cλ
σ(ξ̄)

we conclude
that (5.9) holds. In particular, for the last stage of our construction, we set
ξ̄ = δ in (5.9) and conclude pδ ∈ dom(Cλ

θ ), finishing the proof of Density. So
Sθ is a pre-stratification system.

Quasi-closure was shown in lemma 5.12. First we check conditions (S I)–
(S III) of 3.8, stratification (see p. 16). Expansion (S I) is trivial: If d 2λθ r
and r 4λθ 1, then for all ι < θ, πι(d) 2λι πι(r) and πι(r) 4λι 1. By induction,
we may assume expansion holds for each Pι, ι < θ. Thus d ≤ r.



78 CHAPTER 5. EXTENSION AND ITERATION

We show interpolation (S II) holds. So fix d, r ∈ Pθ such that d ≤ r holds.
We construct the interpolant p by induction on its initial segments p � ι, for
ι < θ. Say we have already constructed p � ι. Use coherent interpolation for
(Pι, Pι+1) to obtain p � ι+ 1 interpolating πι+1(d) and πι+1(r): demand that

p � ι+ 1 4<λ̄(ι) πι+1(r) · p � ι, (5.11)

where λ̄(ι) is the maximal λ̄ with the property that πι+1(d) 4<λ̄ πι(d).3 We
claim that for any γ ∈ Iθ,

ι 6∈ suppγ(d) ∪ suppγ(r)⇒ p � ι+ 1 4γ p � ι. (5.12)

So fix γ ∈ Reg and assume the hypothesis of (5.12). As d � ι+ 1 4γ d � ι, by
3.1(C 4) and by definition of λ̄(ι), we have γ < λ̄(ι). Thus, (5.11) yields

p � ι+ 1 4γ πι+1(r) · p � ι. (5.13)

Since r � ι+ 1 4γ r � ι, by 5.18(Csb) we infer

πι+1(r) · p � ι 4γ p � ι. (5.14)

From (5.13) and (5.14) we get p � ι+ 1 4γ p � ι.
At limit stages ῑ ≤ θ of the construction of the interpolant p, (5.12) holds

for all ι < ῑ, and so p � ῑ satisfies the support requirement. This completes
the proof of interpolation.

Now for centering (S III). Say p 2λ d and fix s ∈ Cλ
θ (p) ∩Cλ

θ (d).
Write σ for dom(s). By definition of Cλ

θ , σ = σλ(p) = σλ(d). First,
assume σ = θ. In this case, we have λ > λθ by definition of diagonal support.
We construct w by induction on its initial segments w � ι, for ι < σ. To start,
use centering for P1 to obtain w � 1. Assume we have w � ι; just use coherent
centering for (Pι, Pι+1) to obtain w � ι + 1. At limits ι ≤ σ, use lemma 5.16
and the fact that cf (σ) < λ and so w0 � ι 4cf (σ) πι(d).

Secondly, if σ < θ, we can use centering for Pσ to obtain a lower bound
w0 of πσ(p) and πσ(d) with the desired properties. We claim that w = w0 · d
is the desired condition, i.e. w 4<λ p, d. The proof is of course by induction
on ι ≤ θ. For limit ι, just use the induction hypothesis and the definition of
4<γι . For the successor case, write

d∗ = πι+1(d),

p∗ = πι+1(p),

w∗0 = w0 · πι(d)

3actually, it would suffice to demand this whenever ι ≥ σλ(d)
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and let π denote πι. We may assume by induction that w∗0 4<λ π(d∗), π(p∗).
In the following, use that Sι+1 is a pre-stratification system, Sι C Sι+1 and
5.18(EsI), coherent expansion.

Firstly, since d∗ 4λ π(d∗) and w∗0 ≤ π(d∗), by 5.18(Csb), we have

w∗0 · d∗ 4λ w∗0. (5.15)

In the same way, we can argue that

w∗0 · p∗ 4λ w∗0. (5.16)

Equation (5.15) and w∗0 4
<λ π(d∗) give us w∗0 · d∗ 4<λ π(d∗), and together

with w∗0 · d∗ ≤ d∗ ≤ π(d∗) and 3.1(C 3) we infer that w∗0 · d∗ 4<λ d∗.
Since d∗ 2λ p∗ and w∗0 ≤ π(d∗), π(p∗), we may conclude by Sι C Sι+1 and

5.18(Cs4) that
w∗0 · d∗ 2λ w∗0 · p∗.

This together with (5.16), by coherent expansion 5.18(EsI) yields

w∗0 · d∗ ≤ w∗0 · p∗.

Thus w∗0 · d∗ ≤ p∗ ≤ π(p∗) while at the same time w∗0 · d∗ 4λ w∗0 4<λ π(p∗).
Another application of 3.1(C 3) yields w∗0 ·d∗ 4<λ p∗. This ends the successor
step of the inductive proof that w 4<λ p, d, and we are done with coherent
centering.

Finally, check (S 5)Continuity : Fix λ∗, λ ∈ Iθ such that λ∗ < λ. Say p̄
and q̄ are (λ∗, x)-adequate sequences of length ρ with greatest lower bound
p and q respectively, and for each ξ < ρ, Cλ

θ (pξ)∩Cλ
θ (qξ) 6= ∅. We show that

p, q ∈ dom(Cλ
θ ) and Cλ

θ (p) ∩Cλ
θ (q) 6= ∅.

For ν < ρ, let σ(ν) = σλ(pν). Look at the sequence p̄ν = (pνξ )ξ<ρ of
conditions in Pσ(ν), defined by pνξ = 1Pσ(ν)

for ξ < ν and pνξ = πσ(ν)(pξ) for
ξ ∈ [ν, ρ). As in the proof of theorem 5.12, it is easy to see pνξ = G(w̄�ξ+1) for
some ΣT

1 (λ∗ ∪ {x}) function G, where w̄ is a canonical witness and strategic
guide for p̄. Also as in the proof of theorem 5.12, p̄ν is (λ∗, x)-adequate. Its
greatest lower bound is πσ(ν)(p). Thus by continuity for Pσ(ν), πσ(ν)(p) ∈
dom Cλ

σ(ν).
Observe that by definition of Cλ

θ , we have σλ(pξ) = σλ(qξ) for all ξ < ρ.
Analogously, define adequate sequences q̄ν in Pσ(ν) with greatest lower bound
πσ(ν)(q). By continuity for Pσ(ν), we infer Cλ

σ(ν)(πσ(ν)(p))∩Cλ
σ(ν)(πσ(ν)(q)) 6= ∅

for each ν < ρ. Letting σ = supν<ρ σ(ν), we infer Cλ
σ(πσ(p))∩Cλ

σ(πσ(q)) 6= ∅,
by the definition of Cλ

σ. As σλ(p), σλ(q) ≤ σ by lemma 5.17, this means
Cλ
θ (p) ∩Cλ

θ (q) 6= ∅, by the definition of Cλ
θ . We are done with the proof of

continuity.



80 CHAPTER 5. EXTENSION AND ITERATION

Corollary 5.26. Theorem 3.20 holds, that is, iterations with stratified com-
ponents and diagonal support are stratified.

Proof. By lemma 5.20, composition is an example of stratified extension. By
theorem 5.23, since the iteration has diagonal support and its initial segments
form a sequence of stratified extensions, the whole iteration is stratified.

5.3 Products

So far, stratified extension has only given us an overly complicated proof that
iterations with stratified components are stratified. Here is a first non-trivial
application: as a consequence of the next lemma, one can mix composition
and products of stratified forcing freely in iterations with diagonal support,
and the resulting iteration will be stratified.

Lemma 5.27. If P and Q are stratified on I, (P, P × Q) is a stratified
extension (on I).

Proof. The proof is entirely as you expect. Fix pre-stratification systems
SP = (DP , cP ,4λP ,2

λ
P ,C

λ
P )λ∈I and SQ = (DQ, cQ,4λQ,2

λ
Q,C

λ
Q)λ∈I . We now

define a stratification system S̄ = (D̄, c̄, 4̄λ, 2̄λ, C̄λ)λ∈I on P ×Q in the most
natural way: let D̄(λ, x, (p, q)) = DP (λ, x, p)×DQ(λ, x, q) and let

(p, q) 4̄λ (p̄, q̄) ⇐⇒ p 4λP p̄ and q 4λP q̄

(p, q) 2̄λ (p̄, q̄) ⇐⇒ p 2λP p̄ and q 2λP q̄

s ∈ C̄λ(p, q) ⇐⇒
[
s ∈ Cλ

P (p) and q 4λ 1Q

]
or
[
s = (χ, ζ)

where χ ∈ Cλ
P (p) and ζ ∈ Cλ

Q(q)
]
.

That S̄ is a pre-stratification system requires but a glance at the definitions
(see 3.1, p. 12 and 3.7, p. 15). For example, Continuity, (S 5) is a straight-
forward application of continuity for both P and Q.

The same holds for (Cc1), (Cc2) and (Cc3) (see p. 73 for the definition
of SP C S̄, and see p. 62 for (Cc1), (Cc2) and (Cc3). For the following,
let (p, q) ∈ P × Q, w ∈ P . For your entertainment, we check 5.18(CsA)
(see page 73). Say w 4λp p. Then clearly (w, q) 4̄λ (p, q), done. Now
5.18(Csb): say w ≤ p and (p, q) 4̄λ (p, 1Q). This means q 4λQ 1Q and so
(w, q) 4̄λ (w, 1Q), which is what we wanted to prove.
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For the next two conditions, let d̄ = (d, d∗), r̄ = (r, r∗) ∈ P × Q satisfy
d̄ 2̄λ r̄. We jump ahead and check (EsI) of 5.19 (see p. 74): say d ≤ r and
r̄ 4̄λ (r, 1Q). Then r∗ 4λQ 1Q and d∗ 2λQ r∗ by assumption, so by 3.7(S I) for
Q, d∗ ≤ r∗ and thus d̄ ≤ r̄.

Let’s check (Cs4)). Say w ≤ d and w ≤ r. By 3.7(S 1) for P , w 2λP w

and so (w, d∗) 2̄λ (w, r∗). We omit the rest of 5.18 and conclude that SP C S̄.
The most interesting part of the present proof is that of quasi-closed

extension (definition 5.2, see p. 14), of which we check (EcII) , leaving (EcI)
to the reader. So say (pξ, qξ)ξ<ρ is (λ, x)-strategic and ΠT

1 (λ̄ ∪ {x}), and
(pξ)ξ<ρ has a greatest lower bound p. Firstly, since we can assume x contains
a parameter X such that P ⊆ X, we conclude that q̄ = (qξ)ξ<ρ is ΠT

1 (λ̄∪{x})
(by lemma 5.7). If λ = λ̄, we are done as q̄ is λ-adequate and Q is quasi-
closed. If on the other hand, λ < λ̄, we have that for all ξ < ρ, qξ 4λ̄Q 1Q. By
lemma 5.5, q̄ is λ̄-adequate. Moreover, if q is a greatest lower bound of q̄, by
quasi-closure for Q, we have q 4λ̄Q 1Q. So (p, q)4̄λ̄(p, 1Q) and we are done.

To conclude that (P, P × Q) is a stratified extension, we check the re-
maining conditions of 5.19 (see p. 74). Coherent interpolation, 5.19(EsII)
and Coherent centering, 5.19(EsIII) are identical to interpolation and center-
ing for Q in this context.

5.4 Stable meets for strong sub-orders

In the next section, we introduce the operation of amalgamation and show
that the amalgamation of a stratified forcing P is a stratified extension of
P . In that proof, we must show that a certain dense subset of P is closed
under taking meets with conditions from an “initial segment” (or rather, a
strong sub-order) Q (see lemma 6.15, p. 98). This will be facilitated by the
so-called Q-stable meet operation p ∧Q r, which we introduce in the present
section. In a standard iteration this is a simple operation: p∧Q r “starts like
p on Q” and then continues “like r” (as closely as possible) on P : Q. What
makes it useful is the following: if r is “a direct extension on the tail P : Q”
of a condition p, then p∧Q r is a de-iure direct extension of p, and moreover
r can be obtained straightforwardly from p ∧Q r.

We now give a formal definition of such an operation, and then show that
we can always define an operation ∧ on products and compositions. Then we
show how to define ∧ for infinite iterations. In the next section we shall see
we also have a stable meet operator for amalgamation. We take this formal,
inductive approach (rather than defining ∧ directly on the iteration used in
the main theorem) since amalgamation necessarily introduces an element of
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recursion into the definition of this operation.
Let Q be a strong sub-order of P , and let π : P → Q be the strong

projection. Say S = (. . . ,4λ, . . .)λ∈I is a pre-stratification system on P .

Definition 5.28. We call ∧ a Q-stable meet operator on P with respect to
S or a stable meet on (Q,P ) if and only if

1. ∧ : (p, r) 7→ p ∧ r is a function with dom(∧) ⊆ P 2 and ran(∧) ⊆ P .

2. dom(∧) is the set of pairs (p, r) ∈ P 2 such that r ≤ p and

∃λ ∈ I r 4λ π(r) · p (5.17)

3. Whenever r ≤ p and r 4λ π(r) · p, the following hold:

p ∧ r 4λ p (5.18)
π(p ∧ r) = π(p) (5.19)
π(r) · (p ∧ r) ≈ r (5.20)

As usual, we don’t mention S when context permits.

A few remarks are in order to clarify this definition.

• We certainly don’t have p ∧ r = r ∧ p.

• The gist of (5.17) is that we try to express that π(r) forces that in
P : Q, the “tail” of r is a direct extension (in the sense of 4λ) of p;
(5.17) captures the essence of this even when P : Q is not stratified.

• Observe that r ≤ p implies π(r) ≤ π(p) and so π(r) ·p ∈ P ; thus (5.17)
makes sense.

• By π(r) ·(p∧r) ≈ r we mean that π(r) ·(p∧r) ≤ r and π(r) ·(p∧r) ≥ r.
Admittedly, we are very careful here.

• Observe that there could be more than one map ∧ satisfying the defi-
nition. Intuitively, this is because (5.18) is not strong enough to fully
determine p∧ r on π(p)−π(r). If we add to the above the requirement
that −π(r) · (p∧ r) = p hold in r.o.(P ), this uniquely determines ∧. In
fact this entails

p ∧ r = r + (p− π(r)) (5.21)

in r.o.(P ). 4 For our purposes, this point is moot.
4In all the applications we have in mind, the natural definition of ∧ satisfies (5.21)—

provided we work with the separative quotient of P .
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To understand the concept of stable meet operators, it is best to consider
an instance of such an operator.

Lemma 5.29. Say P̄ = Q0 × Q1, and say for each λ ∈ I, 4̄λ is obtained
from 4λ0 and 4λ1 as in the proof of 5.27 (where of course 4λi⊆ (Qi)

2). Then
there is a stable meet operator on (Q0, P̄ ) with respect to 4̄λ.

Proof. Let π denote the projection to the first coordinate. Define dom(∧) to
be the set of pairs prescribed in definition 5.28. Say r = (r0, r1) ∈ Q0 × Q1

and p = (p0, p1) ∈ Q0 ×Q1 are such that (r, p) ∈ dom(∧). Define

(p0, p1) ∧ (r0, r1) = (p0, r1).

As (r, p) ∈ dom(∧), we can fix λ such that (r0, r1) 4̄λ π(r) · p = (r0, p1), and
so r1 41 p1. Thus (p0, r1) 4̄λ (p0, p1). To check the other properties is left to
the reader.

Lemma 5.30. Say P̄ = Q ∗ Ṙ, and say for each λ ∈ I, 4̄λ is obtained from
4λ and 4̇λ as in the proof of 3.17. Then there is a stable meet ∧ on (Q0, P )

with respect to 4̄λ.

Proof. Let π denote the projection to the first coordinate. Again, define
dom(∧) to be the set of pairs prescribed in definition 5.28. Say r̄ = (r, ṙ)
and p̄ = (p, ṗ) are such that (r̄, p̄) ∈ dom(∧). Define p̄ ∧ r̄ = (p, ṙ∗), where
ṙ∗ is such that r  ṙ∗ = ṙ and −r  ṙ∗ = ṗ. Fixing a λ witnessing that
(r̄, p̄) ∈ dom(∧), so that we have (r, ṙ) 4̄λ π(r̄) · p̄ = (r, ṗ), and so r  ṙ4̇λṗ.
Then (p, ṙ∗) 4̄λ (p, ṗ), since r  ṙ∗ = ṙ4̇

λ
ṗ and p− r  ṙ∗ = ṗ4̇

λ
ṗ. To check

the other properties is left to the reader.

The stable meet operator behaves very nicely in iterations:

Lemma 5.31. Let Q̄θ+1 be an iteration with diagonal support and say for
each ι < θ, Pι carries a pre-stratification system Sι on I and

1. For all ι < θ, we have Sι C Sι+1.

2. If ῑ ≤ θ is limit, Sῑ is the natural system of relations on Pῑ.

Moreover, say for each ι < θ, there is a stable meet operator ∧ι+1
ι on (Pι, Pι+1)

with respect to Sι+1. Then for each ι < θ such that ι > 0 there is a Pι-stable
meet operator on Pθ.
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Proof. By induction on θ, we show that for each pair ι, η such that 0 < ι <
η ≤ θ, there is a stable meet operator ∧ηι for (Pι, Pη). For ι, η as above and
for p, r ∈ P such that r ≤ p and (5.17) hold, define

p ∧ηι r =
∏
ι≤ν<η

πν+1(p) ∧ν+1
ν πν+1(r). (5.22)

We prove by induction on θ that

1. For ι, η such that 0 < ι < η ≤ θ and for (p, r) ∈ dom(∧θι ),

πη(p ∧θι r) = πη(p) ∧ηι πη(r). (5.23)

The sequence of πη(p)∧ηι πν(r), for η ∈ (ι, θ] determines a thread in Pθ,
in the sense of definition 2.6.

2. For ι and η as above, ∧ηι is a stable meet operator on (Pι, Pη).

Fix ι < θ. Let (p, r) ∈ dom(∧θι ) be arbitrary and let λ be an arbitrary
witness to (5.17). For the rest of the proof let tηι denote πη(p) ∧ηι πη(r), for
0 < ι < η ≤ θ.

First assume θ is limit. By induction hypothesis, (tηι )η∈(ι,θ) is a thread
through Q̄θ; by definition (5.22), this thread is p ∧θι r = tθι . We must show
that tθι has legal support. It suffices to show that for each γ ∈ I, suppγ(tθι ) ⊆
suppγ(p) ∪ suppγ(r). So fix such a γ and a ξ < θ such that we have

πξ+1(p) 4γ πξ(p), (5.24)
πξ+1(r) 4γ πξ(r). (5.25)

We have πξ+1(r) ≤ πξ(r) · πξ+1(p) ≤ πξ(r) (simply because r ≤ p) and so by
(C 3) and (5.25), we have πξ+1(r) 4λ πξ(r) · πξ+1(p). Since ∧ξ+1

ξ is a stable
meet operator, and by (5.24) we have

πξ+1(p) ∧ξ+1
ξ πξ+1(r) 4γ πξ(p).

In other words, tξ+1
ξ 4γ πξ(p) and thus, taking the boolean meet with tξι on

both sides,
tξ+1
ι = tξ+1

ξ · tξι 4γ πξ(p) · tξι = tξι ,

where the last equation holds since ∧ξι is a stable meet operator by induction.
So we have tξ+1

ι 4γ tξι ∈ Pξ. We conclude by lemma 5.8 that ξ 6∈ suppγ(tθι ),
finishing the proof that tθι has legal support.

It is straightforward to prove equations (5.18), (5.19) and (5.20) for tθι =
p∧θι r, assuming by induction that for each η < θ, ∧ηι is a stable meet operator
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(tθι is a thread whose initial segments satisfy these equations). We leave this
to the reader.

Now let θ = η+ 1. To see that (tνι )ν≤θ is a thread, it suffices to show that
πη(t

θ
ι ) = tηι . In order to show this, observe

πη(t
θ
ι ) = tηι · πη(tθη) = tηι · πη(p) = tηι ,

where the last equation holds since by induction, tηι ≤ πη(p). It follows by
the induction hypothesis that (tνι )ν≤θ is a thread.

It remains to show that ∧θι is a Pι-stable meet on Pθ, i.e we must show
(5.18), (5.19) and (5.20). Firstly, by induction,

tηι 4
λ πη(p),

and as ∧θη is a Pη-stable meet on Pθ,

πη(p) = πη(t
η+1
η ).

By 5.18(CsA), this entails

tηι · tη+1
η 4λ tη+1

η .

As ∧θη is a Pη-stable meet on Pθ, we have tη+1
η 4λ p, whence tθι = tηι ·tη+1

η 4λ p,
proving (5.18). Secondly,

πι(t
θ
ι ) = πι(t

η
ι · πη(tη+1

η )) = πι(t
η
ι ) = πι(p).

The first equality here is trivial. The second holds since tηι ≤ πη(p) by
induction hypothesis and since by the assumption that ∧η+1

η is a Pη-stable
meet, we have πη(p) = πη(t

η+1
η ). The last equality of holds by induction.

Finally, we prove (5.20). We have

πι(r) · tθι = πι(r) · tηι · tη+1
η = πη(r) · tη+1

η = r,

where the first equation holds by definition, the second by induction hypoth-
esis, and the last one since ∧η+1

η is a Pη-stable meet. We are done with the
successor case of the induction, and thus with the inductive proof of the
lemma.

By the lemma, if Q̄θ is an iteration as in the hypothesis of the lemma and
ι < η < θ, the map ∧ηι is the same as ∧θι � (Pη)

2. So as we do for strong
projections, we just write ∧ι and we speak of the Pι-stable meet operator
(without specifying the domain). Moreover, we can formally set p ∧0 r = r
and p ∧ι r = p for ι ≥ θ.
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5.5 Remoteness: preserving strong sub-orders
Let C,Q be complete sub-orders of P , and say πC : P → C and πQ : P → C
are strong projections. We want to find a sufficient condition to ensure that
C is a complete sub-order of P : Q, after forcing with Q. In our application
C will just be κ-Cohen forcing of L, for κ the least Mahlo. Our iteration
will be of the form P = Q ∗ (Q̇0 × C) ∗ Q̇1, so after forcing with Q, C is a
complete sub-order of P : Q = (Q̇0 × C) ∗ Q̇1. We want the same to hold
for Φ[C] (where Φ is a member of a particular family of automorphisms of
P which we construct using the technique of amalgamation); this helps to
ensure “coding areas” don’t get mixed up by the automorphisms, see lemma
7.4 and lemma 8.2. So we have to introduce a property sufficient for C to be
a complete sub-order of P : Q, in such a way that this condition is inherited
by Φ[C]. For this, we use of course the stratification of P . This is necessary
since forming P : Q will not only “take away an initial segment” and leave
Φ[C] in the tail in same obvious fashion as for C; instead forming P : Q will
also “take away” a small sub-algebra of P (a copy of the random algebra).

Fix a pre-order P which is stratified on I. The following definition is, as
usual, relative to a particular pre-stratification system.

Definition 5.32. We say C is remote in P over Q (up to height κ) if and
only if for all c ∈ C and p ∈ P such that c ≤ πC(p), we have

1. p · c 4λ p for every λ ∈ I ∩ κ);

2. πQ(p · c) = πQ(p).

Observe that if we drop the first clause, this just says that C is independent
in P over Q (see definition 2.4).

For a P -name Ċ, we say Ċ is remote in P over Q if and only if it is a name
for a generic of a remote complete sub-order of P ; i.e. there is a complete
sub-order RC of P (with a strong projection πC : P → RC) such that RC is
dense in 〈Ċ〉r.o.(P ) and RC is remote in P over Q.

Lemma 5.33. If Ċ is a P -name which is remote over Q, then Ċ is not in
V Q.

Proof. An immediate consequence of lemma 2.5



Chapter 6

Amalgamation

Amalgamation is a technique to build iterations which admit a homomor-
phism. We need two types of amalgamations: using type-1 amalgamation,
we make sure a stage of our iteration has an automorphism extending an
isomorphism of two complete sub-algebras B0, B1 of the previous stage of
the iteration. Using type-2 amalgamation, we take care that we can extend
automorphisms of initial segments (e.g. those created by type-1 amalgama-
tion). The technique presented here differs substantially from that of [She84]
(described also in [JR93]) in two important (and related) aspects: firstly, it
has a “full support” flavour rather than a “finite support” flavour; secondly,
additional fine tuning was needed to allow for amalgamation to preserve
stratification (most instances are discussed in detail below).

In 6.1, we define the forcing P Z
f which will be put to use when we de-

fine either type of amalgamation. Before issuing this definition, we pause to
analyze P Z

f and find that it can be decomposed as a product after forcing
with B0 (section 6.2; this will be put to use in lemmas 6.8 and 7.4 to show
we can close off Γ0 under automorphisms). In section 6.3 we define type-1
amalgamation (denoted by Am1) and show it is a stratified extension (by
finding a dense set where “boolean values are stable”; two small details here
are the use of “reduced pairs of random reals” in lemma 6.12, and the stable
meet operator in lemma 6.14 to preserve that Q is a strong sub-order), and
in section 6.4 we do the same for the simpler type-2 amalgamation (denoted
by Am2). In the last section, we construct a stable meet operator for amal-
gamation and discuss remote sub-orders. There, we prove lemma 6.30 which
helps to ensure “coding areas” don’t get mixed up by the automorphisms (it
will be put to use in lemmas 7.4 and 8.2). Also, we show that indeed there
is a stable meet for amalgamation, which completes the inductive proof that
there is a stable meet for each stage of the iteration.

87
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6.1 Basic amalgamation

Let P be a forcing, Q a complete sub-order of P such that π : P → Q is
a strong projection (see 2.3, p. 8 and the preceding discussion). For i ∈
{0, 1}, let Ḃi be a Q-name such that Q Ḃi is a complete sub-algebra of
P : Q. Moreover, say we have a Q-name ḟ such that Q ḟ : Ḃ0 → Ḃ1 is an
isomorphism of Boolean algebras.

Our task is to find P ′ containing P as a complete sub-order, carrying an
automorphism Φ: P ′ → P ′ which extends the isomorphism of Ḃ0 and Ḃ1 (in
the extension by Q) and which is trivial on Q. Moreover, we want to preserve
stratification: say (Q,P ) is a stratified extension on I = [λ0, κ)∩Reg, where
we allow κ = ∞. We want λ1 < κ (possibly strictly) greater than λ0 such
that (P ′, P ) is a stratified extension above λ1. We shall assume for this
purpose that κ is a limit cardinal (or ∞).

We first make some observations: Let r.o.(Q) ∗ Ḃi be denoted by Bi.
This is a complete sub-algebra of B = r.o.(P ), consisting Q-names (or if you
prefer, r.o.(Q)-names) ḃ such that 1Q Q ḃ ∈ Ḃi. Keep in mind that we can
canonically identify the partial order Q∗(Ḃi\{0}) with the set of b ∈ B0 such
that πQ(b) ∈ Q. Also, don’t confuse this with the set of b ∈ B0 such that
πQ(b) = 1—or, equivalently, 1Q Q [b]Ġ > 0, which is called the term-forcing,
usually denoted by (Ḃi \ {0})Q.

Let πi denote the canonical projection from P to Bi. Then πi coincides
with π on Q (by 2.2). Moreover, ḟ can be viewed as an isomorphism f of B0

and B1 (mapping names to names). We have

π ◦ f = f ◦ π = π. (6.1)

In fact, for any pair of sub-algebras B0, B1 of r.o.(P ) such that Q ⊆ B0 ∩B1

and an isomorphism f : B0 → B1, equation (6.1) holds if and only if f gener-
ates an isomorphism of the pair Bi : Q, i ∈ {0, 1} in any Q-generic extension.
Thus instead of starting with ḟ and Ḃ0, Ḃ1 as in the first paragraph, we could
also have started with f , B0 and B1 as above, satisfying (6.1).

In a first step, we define P Z
f , the amalgamation of P over f . P Z

f contains
P as a complete sub-order and has an automorphism Φ extending f .

Remark 6.1. If we want to preserve stratification of P , we have to be more
careful: we must carefully pick a dense subset D of P , such that P ′ = DZ

f

is stratified. The partial order DZ
f is in general not equivalent to P Z

f , but
solves the problem described in the first paragraph. Finally, we will define a
forcing Am1 which is equivalent to DZ

f , and moreover (P,Am1) is a stratified
extension. Let’s postpone these complications, and first look at P Z

f .
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Amalgamation is not a canonical operation. Firstly, if D is a dense subset
of P , we cannot infer that DZ

f is dense in P Z
f . This in combination with the

fact that stratification is also not canonical is the main obstacle in this proof.
Secondly, even the weaker statement fails: if r.o.(P ) = r.o.(R), we cannot
conclude r.o.(P Z

f ) = r.o.(RZ
f ).

Without precautions, we cannot even preclude P Z
f = {1P}, although this

pathology does not arise if we ask B0 ∪ B1 ⊆ P . On the other hand, we
cannot simply work with r.o.(P ); for although r.o.(P ) has a dense stratified
subset (namely P ), this doesn’t mean that r.o.(P )Zf will have a dense stratified
subset. Therefore, we want to stick as closely to P as possible, but still have
B0, B1 ⊆ P , so we define a “hybrid”:

Definition 6.2. Consider the set P ×B0×B1, i.e. the set of triples (p, ḃ0, ḃ1)
where p ∈ P and Q ḃi ∈ Ḃi for i ≤ 2. Order this set by (p, ḃ0, ḃ1) ≤ (q, ḋ0, ḋ0)
if and only if p ≤ q and p · ḃ0 · ḃ1 ≤ q · ḋ0 · ḋ1 in r.o.(P ). This makes sense since
we can canonically identify ḃj, ḋj with elements of Bj. We call P̂ = P̂ (Q, f)
the set of (p, ḃ0, ḃ1) ∈ P ×B0 ×B1 such that

π(p)  p · ḃ0 · ḃ1 6= 0, (6.2)

or equivalently,
π(p · ḃ0 · ḃ1) = π(p). (6.3)

For p̂ ∈ P̂ , when we refer to the components of p̂, we use the notation
p̂ = (p̂P , p̂0, p̂1). When appropriate, we identify p̂ with p̂P · p̂0 · p̂1, i.e. the
meet of the components in r.o.(P ). In particular, if g is a function such that
dom(g) = r.o.(P ), we write g(p̂) for g(p̂P · p̂0 · p̂1).

Clearly, P is isomorphic to the subset of P̂ where the two latter compo-
nents are equal to 1r.o.(P ), and this set is in turn dense in P̂ . So P can be
considered a dense subset of P̂ . Thus, the separative quotient of P̂ is the
completion under · of P ∪ B0 ∪ B1 in r.o.(P ) (leaving aside the 0 element).
Observe, moreover, that if D ⊆ P is dense in P , then {p̂ ∈ P̂ | p̂P ∈ D} is
the same as D̂, and we shall often use this fact tacitly. Lastly, observe that

p̂ ≤ q̂ ⇐⇒
[
p̂P ≤ q̂P and πj(p̂) ≤ πj(q̂) for j ∈ {0, 1}

]
(6.4)

and p̂ ≈ (p̂P , π0(p̂), π1(p̂)).1 These two observations together would make
for an equivalent, more strict definition of P̂ , yielding separative P̂ pro-
vided P is separative. Notwithstanding, we find the current definition more

1We may regard (p̂P , π0(p̂), π1(p̂)) the canonical representative of p̂ if P is separative.
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convenient—if less elegant. In the following, we identify P with {p̂ ∈ P̂ | p̂0 =
p̂1 = 1}.

Much of the following would work if we replace (6.3) by the weaker p ·
ḃ0 · ḃ1 6= 0. The advantage of asking (6.3) is that it makes the projection
π̄ : P Z

f → P take a simple form.

Definition 6.3. We define P Z
f to consist of all sequences p̄ : Z → P̂ such

that for all but finitely many k we have p̄(k)P 4λ0 π(p̄(k)P ) and for all k we
have

f(π0(p̄(k + 1)P · p̄(k + 1)0 · p̄(k + 1)1)) = π1(p̄(k)P · p̄(k)0 · p̄(k)1),

or, simply
f(π0(p̄(k + 1))) = π1(p̄(k)). (6.5)

The ordering on P Z
f is given by r̄ ≤ p̄ if and only if for all k, r̄(k) ≤ p̄(k) in

P̂ . We define a map Φ: P Z
f → P Z

f by:

Φ(p̄)(i) = p̄(i+ 1) for i ∈ Z.

Obviously, Φ is one-to-one and onto, and Φ(p̄) ≤ Φ(q̄) ⇐⇒ p̄ ≤ q̄.

Observe that (6.1) together with (6.5) and (6.3) imply that for all i ∈ Z,

π(p̄(i)) = π(p̄(0)) = π(p̄(0)P ). (6.6)

Let F : P̂ → B1 be defined by F (x) = f(π0(x)) and let G : P̂ → B0 be
defined by G(x) = f−1(π1(x)).

It may seem more natural to replace (6.5) by the weaker requirement that
f(π0(p(k + 1))) and π1(p(k)) be compatible; however, I’m not sure how to
show P is a complete sub-order in this case. Moreover, (6.6) simplifies the
proof that D remains dense in a stratified extension, as it allows to build
conditions in D in a coherent way, that is, without changing initial segments
over and over again (see (EcI)).

We now define a complete embedding e : P̂ → P Z
f and a strong projection

π̄ : P Z
f → P̂ . For û ∈ P̂ define e(û) : Z→ P̂ by

e(û)(i) =


(π(ûP ), Gi(û), 1) for i > 0,
û for i = 0,
(π(ûP ), 1, F i(û)) for i < 0.

For p̄ ∈ P Z
f , define π̄(p̄) ∈ P̂ by π̄(p̄) = p̄(0).

Lemma 6.4. The map π̄ is a strong projection, that is: if ŵ ≤ π̄(q̄) in P̂ ,
we may find e(ŵ) · q̄ ∈ P Z

f .
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Proof. Let ŵ ≤ π̄(p̄). We define w̄ by induction, as follows:

w̄(0) = ŵ

Assume w̄(i) ∈ P̂ has already been defined. We know π(w̄(i)) = π(w̄(i)P ).
Assume by induction that π(w̄(i)P ) = π(ŵP ). Also, assume by induction
that w̄(i) ≤ p̄(i) and w̄(i) ≤ e(ŵ)(i) in P̂ . To inductively define w̄ on the
positive integers, assume i ≥ 0 and define:

w̄(i+ 1) = (π(ŵ) · p̄(i+ 1)P , p̄(i+ 1)0, p̄(i+ 1)1 · F (w̄(i))).

The definition of w̄ on the negative integers is also by induction. Assum-
ing i ≤ 0, we set:

w̄(i− 1) = (π(ŵ) · p̄(i− 1)P , p̄(i− 1)0 ·G(w̄(i)), p̄(i− 1)1)

For i ≥ 0, as w̄(i) ≤ p̄(i), we have

f(π0(w̄(i))) = F (w̄(i)) · f(π0(p̄(i)))

= F (w̄(i)) · π1(p̄(i+ 1))

= π1(π(ŵP ) · p̄(i+ 1) · F (w̄(i))

where the second equation holds as (6.5) holds for p̄, and the last equation
follows from F (w̄(i)) ≤ π(w̄(i)) = π(ŵP ). We conclude, by definition of
w̄(i+ 1), that

f(π0(w̄(i))) = π1(w̄(i+ 1)). (6.7)

Applying π to (6.7), we see π(w̄(i+ 1)) = π(w̄(i)), and so

π(w̄(i+ 1)) = π(ŵP ) =

π(π(ŵP ) · p̄(i+ 1)P ) = π(w̄(i+ 1)P ),

where the first equation follows from the induction hypothesis and the second
follows from

π(ŵP ) ≤ π(p̄(0)P ) = π(p̄(i+ 1)P ).

Thus, w̄(i+ 1) ∈ P̂ , π(w̄(i)) = π(ŵP ) and by construction, both w̄(i+ 1) ≤
p̄(i+ 1) and w̄(i+ 1) ≤ e(ŵP )(i+ 1) hold.

Replacing F by G in the above, we obtain a similar argument for the
inductive step from i ≤ 0 to i− 1; we leave the details to the reader. Finally
we have that w̄(i) ∈ P̂ and (6.7) holds for all i ∈ Z, whence w̄ ∈ P Z

f . We
have already shown w̄ ≤ p̄ and w̄ ≤ e(ŵ).
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We now show w̄ ≥ e(ŵ) · p̄: Say r̄ ∈ P Z
f such that r̄ ≤ e(ŵ) · p̄. Clearly

r̄(0) ≤ w̄(0) = w. Now assume by induction that r̄(i) ≤ w̄(i). Then by (6.5),

r̄(i+ 1) ≤ π1(r̄(i+ 1)) ≤ F (w̄(i))

so as r̄(i+ 1) ≤ p̄(i+ 1), we have r̄(i+ 1) ≤ w̄(i+ 1).
A similar argument shows r̄(i − 1) ≤ w̄(i − 1), so we we’ve shown by

induction that r̄ ≤ w̄. So finally, w̄ = e(ŵ) · p̄.

For i ∈ Z, we write ei for Φi ◦ e and π̄i for π̄ ◦ Φi.

Corollary 6.5. For each i ∈ Z, the map ei is a complete embedding of P̂ into
P Z
f . It is well-defined and injective on the separative quotient of P̂ . The map
π̄i : P

Z
f → P̂ is a strong projection. The map ei � P is a complete embedding

of P into P Z
f . Letting R = {p̄ ∈ P Z

f | p̄(i)0 = p̄(i)1 = 1}, R is dense in P Z
f ,

we have ei[P ] ⊆ R and π̄i �R : R→ P is a strong projection.

Proof. The first claim is an obvious corollary of the lemma. The rest follows
straightforwardly from elementary properties of e and π̄.

From now on, we identify P̂ with e[P̂ ] and accordingly P with {e(p, 1, 1) | p ∈
P}.

Corollary 6.6. Φ is an automorphism of P Z
f extending f .

Proof. Let b ∈ B0. We may assume π(b) ∈ Q (this holds for a dense set of
conditions in B0). Thus b ∈ P̂ (to be precise, we should write (π(b), b, 1)
instead of b). Now as F n(f(b)) = F n+1(b) and Gn+1(f(b)) = Gn(b),

Φ(e(b)) = Φ((. . . , G2(b), G(b),

0
↓
b, f(b), F 2(b), . . .)) =

(. . . , G2(b), G(b), b,

0
↓

f(b), F 2(b), . . .) = e(f(b))

So since Φ and f agree on a dense set of conditions in B0, they are equal on
B0.

6.2 Factoring the amalgamation
Interestingly, we can factor the amalgamation over a generic for B0. We
will put this to use when we investigate the tail Am1 : P . In particular, it
enables us to show that if ṙ is a P -name which is unbounded over V Q, Φ(ṙ)
will be unbounded not just over V Q but over V P . This will play a crucial
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role in the proof of the main theorem, ensuring that when we make the set
without the Baire property definable, the coding (ensuring its definability)
doesn’t conflict with the homogeneity afforded by the automorphisms. The
main point of the present section is lemma 6.8; it is used in section 7.3 on
p. 123, to prove lemma 7.4. This is in turn used in section 8 to prove the
crucial lemma 8.2.

For an interval I ⊆ Z, let P I
f be the set of p̄ : I → P̂ such that whenever

both k ∈ I and k + 1 ∈ I, (6.5) holds. In other words

P I
f = {p̄ � I | p̄ ∈ P Z

f }.

It is clear that for each k ∈ I, the map eIk : P̂ → P I
f , defined by eIk(p) =

ek(p) � I is a complete embedding. Similarly, there is a strong projection
πIk : P I

f → P̂ .

Lemma 6.7. Let G0 = GQ ∗H0 be Q ∗ Ḃ0-generic. Then in V [G0], there is
a dense embedding of P Z

f : G0 into[
P

(−∞,0]
f : e0[GQ ∗H0]

]
×
[
P

[1,∞)
f : e1[GQ ∗ f [H0]]

]
and another one into[

P
(−∞,−1]
f : e−1[GQ ∗H0]

]
×
[
P

[0,∞)
f : e0[GQ ∗ f [H0]]

]
.

Proof. We only show how to construct the first embedding; the second part
of the proof is only different in notation. Let R0 denote P (−∞,0]

f and R1

denote P [1,−∞)
f , let H1 = f [H0] and G1 = GQ ∗ H1. In V , let S denote the

obvious map S : P Z
f → R0 ×R1: S(p̄)0 = p̄ � (−∞, 0] and S(p̄)1 = p̄ � [1,∞).

Let S∗ = S � (P Z
f : G0). We show that the range of S∗ is dense in

(R0 : G0) × (R1 : G1). Since S(p̄) ≤ S(q̄) ⇐⇒ p̄ ≤ q̄, this implies that
S∗ is injective on the separative quotient of its domain and thus is a dense
embedding.

To show that ran(S∗) is dense, let p̄0, p̄1 be given such that p̄i ∈ Ri : Gi,
for i ∈ {0, 1}. Fix i ∈ {0, 1} for the moment. Without loss of generality,
p̄i(i) ∈ P (and not just in P̂ ). Let bi = πi(p̄i(i)) ∈ Ḃ

GQ
i . Then as p̄i ∈ Ri : Gi,

bi ∈ Hi. Find q ∈ GQ and a Q-name ḃ such that q ≤ πQ(p̄0), πQ(p̄1) and q
forces that

ḃ = b0 · f−1(b1) > 0 in (Ḃ0)GQ . (6.8)

We have that q  ḃ· p̄0(0) 6= 0 and f(ḃ)· p̄1(1) 6= 0, or in other words, q · ḃ ∈ P̂ ,
q · ḃ ≤ π̄(p̄0) and q · f(ḃ) ≤ π̄(p̄1). So we can define p̄∗0 = e(q · ḃ) · p̄0 and
p̄∗1 = e1(q · f(ḃ)) · p̄1. As

q ∈ GQ and ḃGQ ∈ H0, (6.9)
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we have p∗0 ∈ R0 : G0 and p∗1 ∈ R1 : G1. Define p̄∗:

p̄∗ = (. . . , p̄∗0(−1), p̄∗0(0), p̄∗1(1), p̄∗1(2), . . .)

Then πQ(p̄∗) = q and by (6.8), q forces that the following hold in (Ḃ0)GQ :

f(π0(p̄∗0(0))) = f(π0(q · p̄0(0) · ḃ)) = f(ḃ)

π1(p̄∗1(1)) = π1(q · p̄1(1) · f(ḃ)) = f(ḃ).

Thus p̄∗ ∈ DZ
f , and again by (6.9), p̄∗ ∈ DZ

f : G0. As S∗(p̄∗) = (p̄∗0, p̄
∗
1) ≤

(p̄0, p̄1), we are done.

Let Ṙi be a Q ∗ Ḃ0-name for Ri, for each i ∈ {0, 1}. We just showed that
Q ∗ Ḃ0 forces that there is a dense embedding from P Z

f : G0 into Ṙ0× Ṙ1. So
there is a dense embedding of P Z

f into Q ∗ Ḃ0 ∗ (Ṙ0 × Ṙ1). Since the latter
is equivalent to P (−∞,0]

f ∗ Ṙ for some Ṙ, we find that P (−∞,0]
f is a complete

sub-order of P Z
f . The same is true for P [0,∞)

f (or more generally, for P I
f , where

I is any interval in Z). In fact, it’s easy to show that the natural embedding
and projection witness this.

The previous lemma affords insight concerning the action of the automor-
phism Φ. E.g. it enables us to show that if ẋ is a P -name which is not in
V B0 (and hence also not in V B1), then for all i ∈ Z \ {0}, Φ(ẋ) 6∈ V P . In
fact, for the proof of the main theorem, we shall need something a bit more
specific:

Lemma 6.8. Assume that ṙ0, ṙ1 be P -names for reals random over V Q, and
assume Q Ḃi = 〈ṙi〉P :Q (as is the case in our application). If ṙ is a P -name
for a real such that ṙ is unbounded over V Q, then for any i ∈ Z \ {0}, Φi(ṙ)
unbounded over V P .

Proof. Firstly, ṙ is unbounded over V Bi , for each i ∈ {0, 1}, since the random
algebra does not add unbounded reals. For a start, let’s assume i = 1.

Let G1 = GQ ∗f [H0] be Q∗ Ḃ1-generic and work in W = V [G1]. We have
that ṙ is a P : G1 name for a real which is unbounded over W in the sense of
definition 2.8—in any P : G1-generic extension of V [G1], the interpretation
of ṙ will be unbounded over V [G1]. Let R0, R1 be defined as in the previous
proof, i.e.

R1 = P
[1,∞)
f : G1,

R0 = P
(−∞,0]
f : (GQ ∗H0),

let Ṙi be a Q ∗ Ḃ0-name for Ri, for each i ∈ {0, 1}, and let I = [1,∞). As
P : G1 is a complete sub-order of R1, eI1(ṙ) is an R1-name which is unbounded
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over W . By lemma 2.9, viewing eI1(ṙ) as a R0 × R1-name, it is unbounded
overWR0 . As G1 was arbitrary, eI1(ṙ) is a Q∗Ḃ0∗(Ṙ1×Ṙ0)-name unbounded
over V Q∗Ḃ0∗Ṙ0 . By the previous theorem this means that e1(ṙ) is a P Z

f -name

unbounded over V Q∗Ḃ0∗Ṙ0 = V P
(−∞,0]
f and hence over V P , since S ◦ e0 = eI0

shows that P is a complete sub-order of Q ∗ Ḃ0 ∗ Ṙ0.
For arbitrary i ∈ Z such that i > 0: We just showed that e1(ṙ) is a

P Z
f -name unbounded over V P

(−∞,0]
f . Since eI−i+1[P ] is a complete sub-order of

P
(−∞,0]
f , we know e1(ṙ) is unbounded over V e−i+1[P ]. Apply Φi−1 to see Φi(ṙ)

is unbounded over V e0[P ], as e0 = Φi−1 ◦ e−i+1. For i < 0, argue exactly as
above but use the second dense embedding mentioned in lemma 6.7.

6.3 Stratified type-1 amalgamation
We now turn to the matter of stratification. Assume (Q,P ) is a stratified
extension on I = [λ0, κ) ∩Reg, as witnessed by

SQ = (DQ, cQ,4
λ
Q,2

λ
Q,C

λ
Q)λ∈I

and SP = (DP , cP ,4λ,2λ,Cλ)λ∈I . As mentioned, we allow κ to be ∞, as
well. We never need to mention 4λQ, 2λQ, Cλ

Q and DQ as we can always use
the corresponding relation from SP (see the remark following definition 5.18,
p. 73). Moreover, assume Q |Ḃ0| ≤ λ0.

The main problem with stratification and amalgamation is quasi-closure:
Consider two sequences (pξ)ξ<ρ and (qξ)ξ<ρ such that pξ and qξ are compatible
for every ξ < ρ, with greatest lower bounds p and q respectively. In general,
p and q don’t have to be compatible. A similar problem occurs with regard
to the defining equation (6.5) of amalgamation: say we have a sequence of
conditions p̄ξ ∈ Am1 and for each i ∈ Z, p̄(i) is a greatest lower bound of
(p̄ξ(i))ξ. Even though (6.5) holds for every p̄ξ, it could fail for p̄.

The solution to this problem is to thin out to a dense subset of P where πi
is stable with respect to “direct extension”, before we amalgamate. That is,
on this dense subset, πi doesn’t change (in a strong sense) when conditions
are extended in the sense of 4λ, for λ ∈ I.

Definition 6.9. Let D = D(Q,P, f, λ0) be the set of p ∈ P such that for all
q ∈ P , if q 4λ0 p we have

∀(b0, b1) ∈ B0 ×B1

(
π(q) · p · b0 · b1 6= 0

)
⇒
(
q · b0 · b1 6= 0

)
(6.10)

Observe that (6.10) is equivalent to:

∀j ∈ {0, 1} π(q) Q ∀b ∈ Ḃ1−j πj(q · b) = πj(p · b), (6.11)
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and also to the following:

∀j ∈ {0, 1} ∀b ∈ B1−j πj(q · b) = π(q) · πj(p · b). (6.12)

Lemma 6.10. D is open dense in 〈P,4λ0〉.

Proof. Let p0 be given. We inductively construct an adequate sequence of
pξ, 0 < ξ ≤ λ0 with pλ0 ∈ D. First fix x such that the following definition is
ΠT

1 in parameters from x. Fix Q-names ḃj such that Q ḃj : λ0 → Ḃj is onto,
for j = 0, 1, and let ξ 7→ (αξ, βξ, ζξ) be a surjection from λ0 onto (λ0)3.

For limit ξ, let pξ be the greatest lower bound of the sequence constructed
so far. Say we have constructed pξ, we shall define pξ+1. Let’s first assume
there are p∗, p̄ such that p̄ 4λ0 pξ, p̄ ∈ D(λ0, x, pξ), p∗ ≤ p̄ and

1. π(p∗)  p̄ · ḃ0(αξ) · ḃ1(βξ) = 0,

2. ζξ ∈ Cλ0(p∗).

In this case pick pξ+1 such that pξ+1 4λ0 p̄ and pξ+1 2λ0 p∗ (using interpola-
tion). If, on the other hand, no such p̄, p∗ exist, just pick pξ+1 ∈ D(λ0, x, pξ).

We now show (6.11) holds for the final condition pλ0 : say, to the contrary,
we can find j ∈ {0, 1} and ḃ ∈ B1−j together with q̄ 4λ0 pλ0 such that

π(q̄) 6Q πj(q̄ · ḃ) = πj(pλ0 · ḃ).

Without loss of generality say j = 0. We can find q∗ ≤ q̄ such that for some
α, β < λ0

(i) π(q∗)  π0(pλ0 · ḃ)− π0(q̄ · ḃ) = ḃ0(α) 6= 0,

(ii) π(q∗)  ḃ = ḃ1(β),

(iii) q∗ ∈ dom(Cλ0).

Find ξ < λ0 so that α = αξ, β = βξ and ζξ ∈ Cλ0(q∗). By construction,
at stage ξ of our construction we had p̄ and p∗ satisfying (1) and (2). As
Cλ0(p∗) ∩ Cλ0(q∗) 6= 0 and q∗ ≤ pξ+1 2λ0 p∗, we can find w ≤ p∗, q∗. But
by ((i)) and ((ii)), π(w)  pλ0 · ḃ0(α) · ḃ1(β) 6= 0. But since w ≤ p∗, π(w) 
p̄ · ḃ0(α) · ḃ1(β) = 0 and so also π(w)  pλ0 · ḃ0(α) · ḃ1(β) = 0, contradiction.

Now we show D is open: For any r 4λ0 q, j = 0, 1 and ḃ ∈ B1−j, since
r 4λ0 p, we have π(r)  πj(r · ḃ) = πj(p · ḃ). Since π(q)  πj(q · ḃ) = πj(p · ḃ)
and r ≤ q, π(r)  πj(r · ḃ) = πj(q · ḃ). So q ∈ D.
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Having Q ⊆ D helps in many circumstances, in particular we like to have
1P ∈ D. To this end we introduce the notion of B0, B1 being λ0-reduced.

Definition 6.11. We say the pair B0, B1 is λ-reduced over Q if and only if
whenever p ∈ P , p 4λ q for some q ∈ Q and b ∈ Bj for j = 0 or j = 1, we
have

π1−j(p · b) = π(p) · π(b).

Henceforth assume B0, B1 is a λ0-reduced pair. We will later see that
this is a very mild assumption, see lemmas 6.13 and 7.3.

Lemma 6.12. If p 4λ0 q for some q ∈ Q and j ∈ {0, 1} we have

π(p)  ∀b ∈ Ḃ1−j \ {0} πj(p · b) = 1,

and moreover, p ∈ D. In particular, we have Q ⊆ D.

Proof. Fix p as in the hypothesis. Say r ∈ Q, r ≤ π(p) and b ∈ B0 such that
r  b ∈ Ḃ0 \ {0}. Then r ≤ π(b). So as B0, B1 is λ0-reduced, r ≤ π1(p · b),
whence r  π1(p · b) = 1. This proves the first statement for j = 1, and in
the other case the proof is the same.

We now show p ∈ D: Say p′ 4λ0 p. Since also p′ 4λ0 q, we have

π(p′)  ∀b ∈ Ḃ1−j \ {0} πj(p
′ · b) = 1 = πj(p · b),

and thus p ∈ D.

In fact, the first statement of lemma 6.12 is equivalent to B0, B1 being a
reduced pair (this is really just a slight variation of lemma 6.13).

The following provides a hint as to how we can assume that B0, B1 is
λ0-reduced:

Fact 6.13. Assume that ṙ0, ṙ1 are P -names for reals random over V Q, and
assume Q Ḃi = 〈ṙi〉P :Q (as is the case in our application). Say j = 0 or
j = 1. The following are equivalent (interestingly, in (2), there is no mention
of j):

1. Whenever p ∈ P , p 4λ q for some q ∈ Q and b ∈ Bj, we have

π1−j(p · b) = π(p) · π(b).

2. Whenever p ∈ P , p 4λ q for some q ∈ Q and b0, b1 are Q-names for
Borel sets such that for some w ≤ π(p), w Q“ both b0 and b1 are not
null”, there is p′ ≤ p such that p′ P ṙ0 ∈ b0 and ṙ1 ∈ b1.
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Proof. First, assume (2). We carry out the proof for j = 0 (the other case
is exactly the same). Let p ∈ P such that for some q ∈ Q, p 4λ0 q and
let b0 ∈ B0. As for any r ∈ r.o.(P ), r ≤ πj(r) ≤ π(r) holds, we have
πj(p · b0) ≤ π(p) · π(b0). We now show πj(p · b0) ≥ π(p) · π(b0). It suffices to
show that whenever b1 ∈ B1 is compatible with π(p) · π(b0), it is compatible
with p · b0. So fix b1 ∈ B1. We have π(b1) · π(b0) · π(p) 6= 0, so we may pick
w ≤ π(b1) · π(b0) · π(p). For j = 0, 1, let ḃj be a Q-name for a Borel set such
that bj = ‖ṙj ∈ ḃj‖r.o.(P ). The last inequality means w  ḃ0 and ḃ1 are not
null. So by assumption, we can find p′ forcing ṙj ∈ ḃj for both j = 0, 1. In
other words, p′ ≤ p · b0 · b1, whence b1 is compatible with p · b0.

For the other direction, assume (1) and again assume j = 0, fix p as
above, and say ḃ0, ḃ1 are Q-names such that w  ḃ0, ḃ1 ∈ Borel+ for some
w ≤ π(p). Let bj = ‖ṙj ∈ ḃj‖r.o.(P ). As π(b0) ·π(b1) ·π(p) 6= 0, b1 is compatible
with π(b0) · π(p) = π1(p · b0). Thus b1 is compatible with p · b1. So we may
pick p′ ∈ P , p′ ≤ p · b0 · b1.

Definition 6.14. Under the assumptions of the previous lemma, we also say
the pair ṙ0, ṙ1 is λ-reduced.

We shall need the next lemma to show that P completely embeds into
Am1 (see 6.17). Observe that the next lemma does not make the assumption
that B0, B1 is a λ0-reduced pair obsolete, i.e. by itself the lemma does not
imply Q ⊆ D.

Lemma 6.15. Assume that there exists a Q-stable meet operator ∧Q on P
with respect to S. Then Q · D ⊆ D. More precisely, if p ∈ D and q ∈ Q are
such that q ≤ π(p), we have q · p ∈ D. Moreover, if (p, r) ∈ dom(∧Q) and
p ∈ D, for any j ∈ {0, 1} and b ∈ B1−j we have πj((p ∧Q r) · b) = πj(p · b).

Proof. Let p ∈ P , q ∈ Q and q ≤ π(p). We check that q · p ∈ D. So let

r 4λ0 q · p, (6.13)

and fix j ∈ {0, 1} and b ∈ B1−j. To prove that q · p ∈ D, it suffices to show

πj(r · b) = π(r) · πj(q · p · b). (6.14)

Observe that (6.13) implies that r 4λ0 π(r) · p—for by 5.1(Cc2), π(r) 4λ

π(q · r) = q; now use 5.18(CsA). Thus (p, r) ∈ dom(∧Q) and p ∧Q r 4λ0 p.
Thus p ∧Q r ∈ D and

πj((p ∧Q r) · b) = π(p ∧Q r) · πj(p · b) = πj(p · b),

where the last equation holds because π(p ∧Q r) = π(p) ≥ πj(p · b). Note in
passing that this proves of the “moreover” clause of the lemma. We continue
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with the proof of the remaining part of the lemma. By the previous, as
r = π(r) · (p ∧Q r),

πj(r · b) = π(r) · πj((p ∧Q r) · b) = π(r) · πj(p · b) = π(r) · πj(q · p · b).

The last equation holds as π(r) ≤ q. This finishes the proof of the lemma.

From now on, assume we have a Q-stable meet ∧Q on P .
While it is true that (D̂,DZ

f ) is a stratified extension, this is not quite
the partial order we use in the main theorem: for this construction would
require to repeatedly thin out to a dense set. As a consequence, we would
need the main iteration theorem 5.23 not just for iterations but rather for
sequences (Dξ)ξ<θ where (Dξ, Dξ+1) is a stratified extension, but we do not
have strong projections from Dξ̄ to Dξ for ξ < ξ̄ ≤ θ. Moreover, we would
need to prove that the limits in this directed system of partial orders are
what we expect them to be (in particular, that each Dξ is embedded in this
limit as a complete sub-order).2 Instead, we have a much simpler solution.

Definition 6.16 (Type-1 amalgamation). Let Am1 = Am1(Q,P, f, λ) be
the set of p̄ : Z→ P̂ such that the following conditions are met.

1. For all i ∈ Z, π(p̄(i)P ) = π(p̄(0)P ).

2. For all but finitely many i ∈ Z, p̄(k)P 4λ0 π(p̄(k)P ).

3. For all i ∈ Z\{−1, 0}, f(π0(p̄(i))) = π1(p̄(i+1)) — that is, (6.5) holds.

4. p̄(0) ∈ P , i.e. p̄0(0) = p̄1(0) = 1 and

f(π0(p̄(−1))) ≥ π1(p̄(0)), (6.15)
f(π0(p̄(0)) ≤ π1(p̄(1)). (6.16)

5. For i ∈ Z \ {0}, p̄(i)P ∈ D(Q,P, f, λ).

Observe we can replace (6.15) and (6.16) by

p̄(0)P ≤ f(π0(p̄(−1))) · f−1(π1(p̄(1))). (6.17)

and obtain an equivalent definition. Thus, p̄ ∈ Am1 if and only if the
following conditions are met:

1. p̄(0) ∈ P ,
2It seems plausible that theorem 5.23 would go through in this broader case. This

provided, it is possible, but lengthy to show that limits contain the Dξ’s.
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2. p̄ � [1,∞) ∈ D[1,∞)
f and p̄ � (−∞,−1] ∈ D(−∞,−1]

f

3. for both j ∈ {−1, 1} we have π(p̄(0)) = π(p̄(j)) and (6.17) holds.

Let a : P → Am1 be defined by a(p)(0) = (p, 1, 1) and a(p)(i) = (π(p), 1, 1)
for all i ∈ Z \ {0}. As before, let π̄(p̄) = p̄(0)P (we see no problem in using
the same designation as for the projection from DZ

f to D—see the remark
after the next lemma).

Lemma 6.17. The map a : P → Am1 is a complete embedding and

π̄ : Am1 → P

is a strong projection.

Proof. Let p̄ ∈ Am1, w ∈ P , and w ≤ p̄(0). Define p̄′ by

p̄′(i) =

{
w for i = 0,
(π(w) · p̄(i)P , p̄(i)0, p̄(i)1) for i ∈ Z \ {0}.

Clearly p̄′ ∈ Am1, p̄′ ≤ a(w) and p̄′ ≤ p̄. Moreover, for arbitrary q̄ ∈ Am1,
if q̄ ≤ a(w) and q̄ ≤ p̄, clearly q̄ ≤ p̄′; so p̄′ = a(w) · p̄. This shows that π̄ is
a strong projection and accordingly, a is a complete embedding.

In what follows, we identify P and a[P ]—except when we feel this would
hide the point of the argument. Next we show that in fact, Am1 and DZ

f are
presentations of the same forcing.

Lemma 6.18. The set D∗ = {p̄ ∈ DZ
f | p̄(0)0 = p̄(0)1 = 1} is dense in both

DZ
f and Am1.

Proof. First, we notice that D∗ ⊆ Am1 and that the ordering of DZ
f and

that of Am1 coincide on D∗. Given p̄ ∈ DZ
f , find d ∈ D such that d ≤

p̄(0)P · p(0)0 · p(0)1; clearly, d · p̄ ∈ D∗.
Now let p̄ ∈ Am1. We find w̄ ≤ p̄, such that w̄ ∈ D∗. Find d ∈ D

such that d ≤ p̄(0). First let I = (−∞, 0] and construct w̄− = w̄ � I. Let
b0 = f(π0(p̄(−1))) and define p̄− ∈ DIf by

p̄− = (. . . , p̄(i), . . . , p̄(−1), b0),

where of course we identify b0 and (1P , π(b0), b0) ∈ D̂. Since d ≤ p̄(0) ≤ b0

and b0 = π̄I0(p̄−), we can let w̄− = d · p̄− ∈ DIf . Observe that π̄I0(w̄−) = d.
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Now let I = [0,∞). In an analogous fashion, define w̄+ ∈ DIf such that
w̄+ ≤ p̄ � I and πI0(w̄+) = d. Letting

w̄(i) =

{
w̄−(i) for i < 0,
w̄+(i) for i ≥ 0,

we conclude w̄ ∈ Am1. Moreover, π̄(w̄) = d ∈ D whence w̄ ∈ D∗, and w̄ ≤ p̄
in Am1.

Thus, although Φ is not an automorphism of Am1, since it is an auto-
morphism of DZ

f , it gives rise to an automorphism of the associated Boolean
algebra. We call Φ the automorphism resulting from the amalgamation, and
we refer to Q as the base of the amalgamation or, interchangeably, the base
of Φ.

That r.o.(Am1) = r.o.(DZ
f ) justifies that we use the same notation for

the strong projections π̄ : Am1 → P and π̄ : DZ
f → D—as we know a strong

projection coincides with the canonical projection on (the separative quotient
of) its domain. The next lemma clarifies the role of D.

Lemma 6.19. Let p̄ ∈ Am1 and say q̄ : Z → P × B0 × B1 satisfies the
following conditions:

1. for each i ∈ Z, π(q̄(i)P ) = π(q̄(0)P ).

2. q̄(0)0 = q̄(0)1 = 1.

3. ∀i ∈ Z \ {0} q̄(i)P 4λ0 p̄(i)P .

4. ∀i ∈ Z \ {0} πj(q̄(i)) = π(q̄(i)P ) · πj(p̄(i))

Then q̄ ∈ Am1.

Proof. First, let I = [1,∞) and show q̄ � I ∈ DIf . Let i ∈ I be arbitrary. By
4 above, we have

πj(q̄(i)) = π(q̄(i)P ) · πj(p̄(i)) (6.18)

for j ∈ {0, 1}. Since by 1 we have π(q̄(i)P ) = π(q̄(0)P ) ≤ π(p̄(0)P ) = π(p̄(i)),
applying π to (6.18) yields

π(q̄(i)) = π(q̄(i)P ) · π(p̄(i)) = π(q̄(i)P ), (6.19)

which means
q̄(i) ∈ P̂ . (6.20)
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Since p̄ ∈ Am1 and since (6.18) holds, we have

f(π0(q̄(i))) = π(q̄(0)) · f(π0(p̄(i))) = π(q̄(0)) · π1(p̄(i+ 1)) = π1(q̄(i))

Thus q̄ � I ∈ DIf . Repeat the argument above to show p̄ � (−∞,−1] ∈
D(−∞,−1]
f . As q̄(0)0 = q̄(0)1 = 1 by assumption, (6.20) holds for i = 0. Let

b = f(π0(p̄(−1))) · f−1(π1(p̄(1))). As q̄(0) ≤ p̄(0) ≤ b, clearly

q̄(0) ≤ π̄(q̄(0)) · b = f(π0(q̄(−1))) · f−1(π1(q̄(1))).

Thus, finally q̄ ∈ Am1.

Finally, we are ready to state and prove the main theorem of this section:

Theorem 6.20. (P,Am1) is a stratified extension on J = [(λ0)+, κ).

Proof. We proceed to define a stratification of Am1. Am1 is going to be
stratified above (λ0)+, but in general not above λ0, which comes from the
fact that possibly B0 and B1 conspire to yield antichains of size (λ0)+. 3

For notational convenience, we define q̄ 4̄λ p̄ for arbitrary Z-sequences
q̄, p̄ ∈ Z(P × B0 × B1) and for λ ≥ λ0: q̄ 4̄

λ
p̄ exactly if for every i ∈ Z,

q̄(i)P 4λ p̄(i)P and for every i ∈ Z \ {0} we have π(q̄(i)P ) Q πj(q̄(i)) =
πj(p̄(i))—or equivalently,

πj(q̄(i)) = π(q̄(i)P ) · πj(p̄(i)) (6.21)

for both j ∈ {0, 1}.

Corollary 6.21. Using this notation we can state lemma 6.19 in the follow-
ing way: If for some regular λ ≥ λ0, p̄ ∈ Am1 and q̄ : Z → P × B0 × B1

satisfy q̄ 4̄λ p̄ and moreover q̄(0) ∈ P and for all i ∈ Z, π(q̄(i)P ) = π(q̄(0)P )
holds, then q̄ ∈ Am1.

Lemma 6.22. Observe that if q̄ : Z → P × B0 × B1 and p̄ ∈ Am1 satisfy
q̄(i)P 4λ p̄(i)P for all i ∈ Z and q̄(i)j = p̄(i)j for all i ∈ Z\{0} and j ∈ {0, 1},
then q̄ 4̄λ p̄.

Proof. For i ∈ Z \ {0} and j ∈ {0, 1}, we have

πj(q̄(i)) = p̄(i)j · πj(q̄(i)P · p̄(i)1−j)

= p̄(i)j · π(q̄(i)P ) · πj(p̄(i)P · p̄(i)1−j) = π(q̄(i)P ) · πj(p̄(i)).

where the second line is equal to the first as p̄(i)P ∈ D and q̄(i)P 4λ p̄(i)P .
Thus, q̄ 4̄λ p̄.

3This is the case if we amalgamate e.g. over copies of the Cohen algebra, as was shown
by Shelah, which is why he invented sweetness. The same seems to occur for Random
algebras, although I have no concrete example.
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Now let p̄, q̄ ∈ Am1 and say λ ∈ I and λ > λ0. Define

q̄ ∈ D̄(λ, x, p̄) ⇐⇒ ∀i ∈ Z q̄(i)P ∈ D(λ, x, p̄P (i)).

We say q̄ 2̄λ p̄ exactly if

∀i ∈ Z q̄(i)P 2λ p̄(i)P .

Next we define C̄λ. Fix a name Ḃ such that

P Ḃ : Ḃ0 ∪ Ḃ1 → λ̌0 is a bijection.

Let dom(C̄λ) be the set of all p̄ ∈ Am1 such that for each i ∈ Z, we have
p̄(i)P ∈ dom(Cλ) and if i 6= 0, there is λ′ ∈ λ ∩ I such that for j ∈ {0, 1}
we have that Ḃ(πj(p̄(i))) is λ′-chromatic below π(p̄(i)P ). If p̄ ∈ dom(C̄λ),
we define C̄λ(p̄) to be the set of all (c(i), λ′(i), H0(i), H1(i))i∈Z such that for
all i ∈ Z, c(i) ∈ Cλ(p̄(i)) and for all i ∈ Z \ {0} and j ∈ {0, 1}, Hj(i) is
a λ′(i)-spectrum of Ḃ(πj(p̄(i))) below π(p̄(0)P ). Observe that λ′(0), H0(0)
and H1(0) can be chosen arbitrarily—they merely serve as place-holders to
facilitate notation. This finishes the definition of the stratification of DZ

f .
First we check that D̄ and (4̄λ)λ∈I give us a pre-closure system, see 3.1,

p. 12. That D̄ is ΠT
1 is immediate (without any further assumptions on the

parameter x). For the following, let p̄, q̄, r̄ ∈ Am1, λ ∈ I and x be arbitrary.
It is clear that (C 1) holds, for if q̄ ≤ p̄ ∈ D̄(λ, x, r̄), then q̄(i)P ≤ p̄(i)P ∈

D̄(λ, x, r̄(i)P ) for each i ∈ Z. Thus by (C 1) for P , q̄(i)P ∈ D̄(λ, x, r̄(i)P )
for each i ∈ Z and we are done. For (C 2), we must prove transitivity, so
say p̄ 4̄λ q̄ 4̄λ r̄ and show p̄ 4̄λ r̄. Fix i ∈ Z and j ∈ {0, 1}. Clearly,
p̄(i)P 4λ r̄(i)P . As π(p̄(i)P ) Q πj(p̄(i)) = πj(q̄(i)) and πj(q̄(i)) = πj(r̄(i)),
we get π(p̄(i)P ) Q πj(p̄(i)) = πj(r̄(i)) and so as i, j were arbitrary, p̄ 4̄λ r̄.
It remains to show that p̄ 4̄λ q̄ ⇒ p̄ ≤ q̄. So assume p̄ 4̄λ q̄ and fix
i ∈ Z. Firstly, p̄(i)P ≤ q̄(i)P ; moreover, (6.21) implies πj(p̄(i)) ≤ πj(q̄(i)) for
j ∈ {0, 1}, and so as i ∈ Z was arbitrary and by (6.4), we infer p̄ ≤ q̄.

(C 3): Say p̄ ≤ q̄ ≤ r̄ and p̄ 4̄λ r̄. Let i ∈ Z be arbitrary; clearly
p̄(i)P 4λ q̄(i)P . Let j ∈ {0, 1} be arbitrary; as

πj(p̄(i)) ≤ π(p̄(i)P ) · πj(q̄(i)) ≤ π(p̄(i)P ) · πj(r̄(i))

and the terms on the sides of the equation are equal, we conclude p̄ 4̄λ q̄.
Condition (C 4) is trivial.

We continue by checking the remaining conditions of 3.7, i.e. that we
have a pre-stratification system on Am1. The conditions (S 1), (S 2) and
(S 3) are immediate by definition. We prove (S 4):

Lemma 6.23. Density holds; i.e for λ ∈ J , p̄ ∈ Am1 and λ′ ∈ [λ0, λ) there
is q̄ ∈ Am1 such that q̄ ∈ dom(C̄λ) and q̄ 4̄λ

′
p̄.
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Proof. First, look through the following definition and find a set of parame-
ters x such that it is ΠT

1 in parameters from x. We define conditions pni ∈ P
for n ∈ N and i ∈ Z and qn ∈ Q for n ∈ N. We do so by induction on n, in
each step using induction on i. First, as Q is stratified we can find q0 ∈ Q
such that q0 4λ

′
π(p̄(0)P ) and for all i ∈ Z and both j ∈ {0, 1}, πj(p̄(i)) is

λ′-chromatic below q0.
Set p0

i = p̄(i)P , for i ∈ Z.
Now say we have already defined a Z-sequence p̄n = (pni )i∈Z of conditions

in P and qn ∈ Q. We will define a stronger Z-sequence p̄n+1 = (pn+1
i )i∈Z of

conditions in P and a qn+1 ∈ Q. We first define p̄n+1 on the positive integers
by induction, then on the negative ones. At the end we find qn+1 ∈ Q.

So find pn+1
i ∈ P for i ≥ 0, by induction on i. Find pn+1

0 4λ
′
qn · p̄n0 such

that pn+1
0 ∈ D(λ′, x, qn · p̄n0 ) and pn+1

0 ∈ dom(Cλ). Assume by induction that
for all i ∈ Z, qn 4λ′ π(pni ), whence also π(pn+1

0 ) 4λ
′
qn 4λ

′
π(pni ). Continue

by induction, choosing, for each i ∈ N \ {0}, a condition pn+1
i such that

pn+1
i 4λ

′
π(pn+1

i−1 ) · pni
pn+1
i ∈ D(λ′, x,π(pn+1

i−1 ) · pni )
(6.22)

and pn+1
i ∈ dom(Cλ). By induction hypothesis, π(pn+1

i−1 ) 4λ
′
qn 4λ

′
π(pni ), so

π(pn+1
i−1 ) · pni is a well defined condition in P and π(pn+1

i−1 ) · pni 4λ
′
pni . Thus we

have defined pn+1
i for i ≥ 0. Before we consider the case i < 0, observe that

for any i ∈ N \ {0}, by (6.22), 5.1(Cc2) and (Cc3), we have

π(pn+1
i ) 4λ

′
π(pn+1

i−1 )

π(pn+1
i ) ∈ D(λ′, x,π(pn+1

i−1 )).

We also use that by construction, π(pn+1
i−1 ) ≤ qn+1 ≤ π(pni ). Thus, (π(pn+1

i ))i∈N
is (λ′, x)-strategic and we may assume by choice of x and by lemma 3.14 that
it is (λ′, x)-adequate. Let q∗ be a greatest lower bound for (π(pn+1

i ))i∈N.
Now we define pn+1

i , by induction on i for i < 0: Find pn+1
−1 ∈ P such that

pn+1
−1 4 q∗ · pn−1

pn+1
−1 ∈ D(λ′, x, q∗ · pn−1)

and such that pn+1
−1 ∈ dom(Cλ). Again, continue choosing for each i ∈ N,

i > 1 a condition pn+1
−i ∈ dom(Cλ) such that the sequence (π(pn+1

−i ))i∈N is
(λ′, x)-adequate. Finally, let qn+1 be a greatest lower bound of (π(pn+1

−i ))i∈N.
This finishes the inductive definition of p̄n.

For each i ∈ Z, (pni )n∈N is a λ′-adequate sequence and thus has a greatest
lower bound which we call q̄(i)P . By lemma 5.7 and by choice of x, {π(pni )}n∈N
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is a λ′-adequate sequence in Q. Since (Q,P ) is a quasi-closed extension,
by (C II) π(q̄(i)P ) is a greatest lower bound of this sequence. As for each
n ∈ N, qn+1 4λ

′
π(pni ) 4λ

′
qn, (qn)n∈N also has greatest lower bound π(q̄(i)P ),

whence for all i ∈ Z, π(q̄(i)P ) = π(q̄(0)P ). Set q̄(i)j = p̄(i)j for j = 0, 1 and
observe that q̄4̄λ

′
p̄. Thus as λ′ ≥ λ0, we see q̄ satisfies the hypothesis of

lemma 6.19 and thus q̄ ∈ Am1. Lastly, as q̄(i)P is a greatest lower bound of
{pni }n∈N, we conclude q̄(i)P ∈ dom(Cλ). For each i ∈ Z, fix c(i) ∈ Cλ(q̄(i)P ).

Fix i ∈ Z \ {0} and j ∈ {0}. At the beginning, we chose q0 such that
πj(p̄(i)) is λ′-chromatic below q0. So we may fix a λ′-spectrum Hj(i) of
πj(p̄(i)) below q0—and hence also below π(q̄(0)P ) ≤ q0. As q̄ 4̄λ

′
p̄ we have

πj(q̄(i)) = π(q̄(i)P ) · πj(p̄(i)). Thus, as i ∈ Z \ {0} and j ∈ {0, 1} were
arbitrary,

(c(i), λ′, H0(i), H1(i))i∈Z ∈ C̄λ(q̄).

Now we check that the pre-stratification system on Am1 extends that of P .
Conditions (Cc1), (Cc2) and (Cc3) are immediate. For (Cs1), it suffices to
check (CsA) and (CsB).

(CsA): Say q ∈ P and p̄ are such that q 4λ π̄(p̄). Let i ∈ Z \ {0}. By
(CsA) for (Q,P ) we have π(q) · p̄(i)P 4λ p̄(i)P . Moreover, πj((p̄ · q)(i)) =

π(q) · πj(p̄(i)), so as (p̄ · q)(0) = q 4λ p̄(0)P , we conclude p̄ · q 4̄λ p̄.
(CsB): Say q ∈ P and p̄, r̄ ∈ Am1 are such that q ≤ π̄(r̄) and r̄ 4̄λ p̄.

Let i ∈ Z \ {0}. By (CsB) for (Q,P ) we have π(q) · r̄(i)P 4λ π(q) · p̄(i)P .
Moreover,

πj((r̄ · q)(i)) = π(q) · πj(r̄(i))
= π(q) · π(p̄(0)P ) · πj(p̄(i)) = π(q) · πj(p̄(i)) = πj((p̄ · q)(i)),

so as r̄ · q(0) = q = p̄ · q(0), we conclude r̄ · q 4̄λ p̄ · q. Conditions (Cs2),
(Cs3) and (Cs5) are left to the reader. Being cautious, we check (Cs4). Say
w ∈ P , d̄, r̄ ∈ Am1 and w ≤ π̄(d̄) while d̄ 4̄λ r̄. By (Cs4) for (Q,P ), we
have w · d̄(i)P 2λ w · r̄(i)P . As d̄ · w(0) = w = r̄ · w(0), we conclude that
w · d̄ 2λ w · r̄.

We check (5.2), i.e. that (P,Am1) is a quasi-closed extension. Start with
(EcI), that D̄ is coherently dense. Observe that to find q̄ ∈ D̄(λ, x, p̄), with
a given q̄(0)P , we need only make a direct extension q̄(i)P of p̄(i)P for every
i ∈ Z \ {0} such that q̄(i)P = π(q̄(0)P ). This is possible by (5.2) for (Q,P ).
We obtain q̄ wich satisfies all the requirements of 6.19. Thus we can find
such q̄ ∈ D̄(λ, x, p̄) without falling out of Am1 and without changing q̄(0)P .
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We prove (EcII): So say λ̄ < λ and ¯̄p = (p̄)ξ<ρ is a (λ∗, λ̄, x)-adequate
sequence in Am1 with a π̄-bound p ∈ P . Towards finding a greatest lower
bound p̄, set p̄(0) = p. Fix i ∈ Z \ {0}. By definition of D̄ and 4̄λ, the
sequence {p̄ξ(i)P}ξ<ρ is (λ∗, λ̄, x)-adequate in P . Since {π(p̄ξ(0)P )}ξ<ρ is the
same as {π(p̄ξ(i)

P )}ξ<ρ, the condition π(p̄(0)) = π(p(i)P ) ∈ Q is a π-bound
of {π(p̄ξ(i)

P )}ξ<ρ. Thus by (EcII) for (Q,P ), the sequence {p̄(i)P}ξ<ρ has
a greatest lower bound pi ∈ P such that for all ξ < ρ, pi 4λ

∗
p̄ξ(i)

P and
π(pi) = π(p̄(0)P ). Moreover, if λ∗ < λ̄, we have pi 4λ̄ π(pi). For each
i ∈ Z, let p̄(i)P = pi and for j ∈ {0, 1} let p̄(i)j = p̄0(i)j. By corollary 6.21,
p̄ ∈ Am1 and p̄ 4̄λ

∗
p̄0. We must check that for all ξ < ρ, p̄ 4̄λ

∗
p̄ξ. This

is clear as for every i ∈ Z we have p̄(i)P 4λ∗ p̄ξ(i)P by construction, and for
every i ∈ Z \ {0} and j ∈ {0, 1} we have

πj(p̄(i)) = π(p̄(i)P ) · πj(p̄0(i)) = π(p̄(i)P ) · πj(p̄ξ(i)),

where the first equation holds since p̄ 4̄λ
∗
p̄0 second equation holds since

π(p̄(i)P ) = π(p) ≤ π(p̄ξ(i)
P )

and p̄ξ 4̄
λ∗
p̄0 gives us

πj(p̄ξ(i)) = π(p̄ξ(i)
P ) · πj(p̄0(i)).

We check the remaining conditions of 5.19, showing that (P,Am1) is a strat-
ified extension on J .

(S 5): Say ¯̄p = (p̄)ξ<ρ and ¯̄q = (q̄)ξ<ρ are both (λ∗, λ̄, x)-adequate for
λ̄ < λ, such that

∀ξ < ρ C̄λ(p̄ξ) ∩ C̄λ(q̄ξ) 6= ∅. (6.23)

Say the sequence ¯̄p = (p̄)ξ<ρ has a greatest lower bound p̄, the sequence
¯̄q = (q̄)ξ<ρ has a greatest lower bound q̄. We show

C̄λ(p̄) ∩ C̄λ(q̄) 6= ∅. (6.24)

First, observe that in each P -component we obtain a common colour for p̄
and q̄: For each i ∈ Z, as in the previous proof, {p̄ξ(i)P}ξ<ρ and {q̄ξ(i)P}ξ<ρ
are (λ∗, λ̄, x)-adequate and so by (S 5) for P we can find c(i) ∈ Cλ(p̄(i)P ) ∩
Cλ(q̄(i)P ). To obtain the colours fo the boolean values, we can use the spectra
of the first condition on either sequence, say q̄0: fix (c0(i), λ′0(i), H0

0 (i), H1
0 (i))i∈Z ∈

C̄λ(p̄0) ∩ C̄λ(q̄0). We shall now check that

(c(i), λ′0(i), H0
0 (i), H1

0 (i))i∈Z ∈ C̄λ(p̄) ∩ C̄λ(q̄). (6.25)
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This is clear by definition: fix i ∈ Z \ {0} and j ∈ {0, 1}. Firstly, p̄ 4̄λ p̄0

and so
πj(p̄(i)) = π(p̄(i)P ) · πj(p̄0(i)).

Moreover, by choice of λ′0(i) and Hj
0(i) there is bj ∈ Bj such that we have

πj(p̄0(i)) = π(p̄0(i)P ) · bj.

and Hj
0 is a λ′0(i)-spectrum for bj below π(p̄(i)P ). The last two equations

together yield
πj(p̄(i)) = π(p̄(i)P ) · bj,

and so (6.25) holds. This finishes the proof of (S 5).
(EsI), coherent expansion: Assume q̄ 2̄λ p̄ and p̄ 4̄λ ā(p̄(0)). Moreover,

assume q̄(0) ≤ p̄(0). We show q̄ ≤ p̄. Let i ∈ Z \ {0} be arbitrary. As
q̄(i)P 2λ p̄(i)P and p̄(i)P 4λ a(p̄(0)P )(i)P = π(p(i)P ), and as π(q̄(0)P ) ≤
π(p̄(0)), we have p̄(i)P ≤ q̄(i)P by (EsI) for (Q,P ). Say i 6= 0 and j ∈ {0, 1}.
Then

πj(p̄(i)) ≤ π(p̄(i)) = π(p̄(0)P ) ≤ π(q̄(0)P ) = π(q̄(i)) = πj(q̄(i)),

where the last equality holds as q̄(i)P 4λ π(q̄(0)P ) ∈ Q ⊆ D. By (6.4), q̄ ≤ p̄,
and we are done.

We show coherent interpolation (EsII): Let d̄, r̄ ∈ Am1 be such that
d̄ 4̄λ r̄, and say p ∈ P interpolates π̄(d̄) and π̄(r̄). We find p̄ ∈ Am1 such
that p̄ 4̄λ r̄ and p̄ 2̄λ d̄ and moreover π̄(p̄) = p. For i ∈ Z\{0}, use coherent
interpolation for (Q,P ) to find pi ∈ P such that pi 4λ r̄(i)P and pi 2λ d̄(i)P

and moreover π(pi) = π(p). Now we define a sequence p̄ : Z→ P ×B0 ×B1.
Set p̄(0) = (p, 1, 1) and set p̄(i) = (pi, r̄(i)

0, r̄(i)1) for i ∈ Z \ {0}. Clearly,
p̄ 4̄λ r̄ and so p̄ ∈ Am1. By construction, p̄ 2̄λ d̄ and π̄(p̄) = p̄(0)P = p.

It remains to demonstrate (EsIII):

Lemma 6.24. Coherent centering holds: Say λ ∈ J , p̄ 2̄λ d̄ and C̄λ(p̄) ∩
C̄λ(d̄) 6= ∅. Say further we have w0 ∈ P such that w0 4<λ p̄(0)P and
w0 4<λ d̄(0)P . Then there is w̄ ∈ Am1 such that π̄(w̄) = w0 and both
w̄ 4̄<λ p̄ and w̄ 4̄<λ d̄.

Proof. Fix p̄, d̄ and w0 as in the hypothesis. Fix i ∈ Z \ {0} for the moment.
Observe we have Since Cλ(p̄(i)P ) ∩ Cλ(d̄(i)P ) 6= ∅, by coherent centering
for (Q,P ) we can find w̄i ∈ P such that π(wi) = π(w0). If the additional
assumption at the end of the lemma holds, we may assume wi 4<λ p̄(i)P and
wi 4<λ d̄(i)P . For i ∈ Z, set

w̄(i) = (wi, p̄(i)
0, p̄(i)1).



108 CHAPTER 6. AMALGAMATION

Since w̄ 4̄λ0 p̄ and π(w̄(i)P ) = π(w0) for each i ∈ Z, by lemma 6.19, w̄ ∈
Am1.

Now say the additional assumption holds. By construction, w̄(i)P 4<λ p̄
for each λ′ ∈ [λ0, λ). Fix i ∈ Z. Since C̄λ(p̄) ∩ C̄λ(d̄) 6= ∅, p̄(i)j and d̄(i)j

have a common λ-spectrum below π(w0), and so

π(w0) Q p̄(i)
j = d̄(i)j. (6.26)

Thus for each i ∈ Z,

w̄(i) = w(i)P · d(i)0 · d(i)1 ≤ d̄(i)

whence w̄ ≤ d̄. In fact, as w̄(i)P 4λ
′
d̄(i)P and (6.26) holds, w̄ 4̄λ

′
d̄ for each

λ′ ∈ [λ0, λ).

6.4 Stratified type-2 amalgamation
We now consider the simpler case when we want to extend an automorphism
already defined on an initial segment of the iteration. Let P be a forcing,
Q a complete sub-order, f an automorphism of Q and π : P → Q a strong
projection. Assume λ0 is regular and (Q,P ) is a stratified extension on
I = [λ0, κ). We denote the stratification on Q by 4λQ, 2λQ, . . . and write 4λ,
2λ, . . . for the stratification of P .

Further we assume that for each regular λ ∈ I and q, r ∈ Q,

1. q 4λQ r ⇐⇒ f(q) 4λQ f(r);

2. q 2λQ r ⇐⇒ f(q) 2λQ f(r);

3. p ∈ DQ(λ, x, q)) ⇐⇒ f(p) ∈ D(λ, x, f(q));

4. Cλ
Q(q) ∩Cλ

Q(r) 6= ∅ ⇐⇒ Cλ
Q(f(q)) ∩Cλ

Q(f(r)) 6= ∅.

We define the type-2 amalgamation Am2(Q,P, f) (or just Am2 where the
context allows) as the set of all p̄ : Z→ P such that for all but finitely many
i ∈ Z we have p̄(i) 4λ0 π(p̄(i)) and for all i ∈ Z,

f(π(p̄(i))) = π(p̄(i+ 1)). (6.27)

The ordering is p̄ ≤ q̄ if and only if for each i ∈ Z, p̄(i) ≤ q̄(i).
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Define π̄ : Am2 → P by π̄(p̄) = p̄(0). The map ē : P → Am2 is defined
by ē(p)(0) = p and ē(p)(i) = π(p) for all i ∈ Z, i 6= 0.

It is straightforward to check that ē is a complete embedding and π̄ is the
restriction of the canonical projection from r.o.(Am2) to r.o.(ē[P ]). More-
over, if q ∈ P , p̄ ∈ Am2 and q ≤ π̄(p̄), then q · p̄ ∈ Am2.

We now define the stratification of Am2, consisting of C̄λ, F̄λ, 4̄λ, 2̄λ

for each regular λ ∈ I. We say q̄ 4̄λ p̄ exactly if for every i ∈ Z, q̄(i) 4λ p̄(i),
and q̄ 2̄λ p̄ exactly if for every i ∈ Z, q̄(i) 2λ p̄(i). Similarly for D̄(λ, x, p̄(i)).
For p̄ such that for each i ∈ Z, p̄(i) ∈ dom(Cλ), we define C̄λ(p̄) to be the
set of all c : Z→ λ such that for each i ∈ Z, c(i) ∈ Cλ(p̄(i)).

Lemma 6.25. (P,Am2) is a stratified extension on I.

Proof. The proof is a slight modification of the argument for type-1 amalga-
mation. Therefore, we only touch the main points, and leave the rest to the
reader.

Lemma 6.26. (P,Am2) is a quasi-closed extension on I.

Proof. Let λ ∈ I. Let (p̄ξ)ξ<θ be λ-adequate. Fix i ∈ Z and let p̄(i) be the
greatest lower bound of the λ-adequate sequence (p̄ξ(i))ξ<θ. By coherency,
(π(p̄ξ(i)))ξ<θ is also adequate and its greatest lower bound is π(p̄(i)). As f
is an automorphism, for each i ∈ Z, f(π(p̄(i))) is a greatest lower bound of
(qξ(i))ξ<θ, where q̄ξ(i) = f(π(p̄ξ(i))). As the latter is equal to π(p̄ξ(i − 1)),
we obtain (6.27) for p̄. So p̄ ∈ Am2; it is straightforward to check it is a
greatest lower bound of (p̄ξ)ξ<θ.

Lemma 6.27. Coherent interpolation holds, i.e whenever r̄, d̄ ∈ Am2, d̄ ≤ r̄
and p0 ∈ P such that p0 4λ π̄(r̄) and p0 2λ π̄(d̄), there is p̄ ∈ Am2 such that
p̄ 4̄λ r̄, p̄ 2̄λ d̄ and π̄(p̄) = p0.

Proof. Let λ ∈ I. Given r̄, d̄ and p0 as above, first set p̄(0) = p0. As
π(r̄(i)) = π(r̄(0)) and π(d̄(i)) = π(d̄(0)), p0 2λ π(d̄(i)) and p0 4λ π(r̄(i)),
for all i ∈ Z. Coherent interpolation for (Q,P, π) allows us to find, for each
i ∈ Z, i 6= 0 a condition p̄(i) ∈ P such that π(p̄(i)) = π(p0), p0 2λ d̄(i) and
p0 4λ r̄(i). As for each i ∈ Z, π(p̄(i)) = π(p0), p̄ ∈ Am2.

Lemma 6.28. Coherent centering holds. That is: Say p̄ 2̄λ d̄ and either of
the following holds: C̄λ(p̄)∩ C̄λ(d̄) 6= ∅ or for some q ∈ Q, p̄ 4̄λ q or d̄ 4̄λ q.
Say further w0 ∈ D such that for each regular λ′ ∈ [λ0, λ), w0 4λ

′
π̄(p̄) and

w0 4λ
′
π̄(d̄). Then there is w̄ ∈ Am2 such that for each regular λ′ ∈ [λ0, λ),

w̄ 4̄λ
′
p̄, w̄ 4̄λ

′
d̄ and π̄(w̄) = w0.
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Lemma 6.29. If p̄ ∈ Am2 and λ′, λ ∈ I and λ′ < λ, there is q̄ ∈ Am2 such
that q̄ ∈ dom(C̄λ) and q̄ 4̄λ

′
p̄.

Proof. We define a sequence (qi)i∈Z of conditions in P , by induction on i. As
usual, read through the following definition and pick x such that it is ΠT

1 with
parameters in x. First, find q0 4λ

′
p̄(0)P such that q0 ∈ dom(Cλ). Continue

by induction, choosing, for each n ∈ N\{0}, a condition qn 4λ
′
p̄(n) ·π(qn−1)

such that π(qn) ∈ DQ(λ, x, π(qn−1)) qn ∈ dom(Cλ). Let q∗1 be a greatest lower
bound for (π(qk))k∈N; it exists by quasi-closure for Q. Find q1 4λ

′
q∗1 · p̄(1)

such that q1 ∈ dom(Cλ). Again, continue by induction, choosing for each
n ∈ N\{0, 1}, a condition q−n ∈ dom(Cλ) ensuring that (π(q−k))k∈N form an
adequate sequence. Finally, let q be a greatest lower bound of (π(q−k))k∈N.
For each i ∈ Z, q 4λ′ π(qi), so q · qi 4λ

′
qi 4λ

′
p̄(i). Observe that by coherent

stratification, q · qi ∈ dom(Cλ) for each i ∈ Z. Setting q̄(i) = q · qi, we have
π(q̄(i)) = q, for all i ∈ Z. Thus q̄ ∈ Am2, q̄ 4̄

λ′
p̄ and q̄ ∈ dom(C̄λ).

We leave the rest of the proof that (P,Am2) is a stratified extension on
I to the reader.

6.5 Remoteness and stable meets

The following lemma helps to ensure “coding areas” don’t get mixed up by
the automorphisms, as we shall see in lemmas 7.4 and 8.2. Also see the
discussion at the beginning of section 5.5.

Lemma 6.30. Say C is remote in P over Q (up to some height κ′, where
κ′ ≤ κ). Then Φk[C] is remote in Am1 over P (up to the same height) for
any k ∈ Z \ {0}.

Proof. Let D∗ = π̄−1[D] ⊆ Am1 ∩ DZ
f as in lemma 6.18. Let j ∈ {0, 1}

arbitrary. If p̂ ∈ D̂, c ∈ C and c ≤ πC(p̂P ), by the definition of D,

πQ(p̂ · c)  πj(p̂ · c) = πj(p̂),

that is, πj(p̂ · c) = πj(p̂) · πQ(p̂P · c), so as C is independent over Q and thus
πQ(p̂P · c) = πQ(p̂P ), we have πj(p̂ · c) = πj(p̂). In fact, if we have p̂P ∈ D, we
have c · p̂ ∈ D̂. Observe further that for any c ∈ C, πj(c) = 1, and moreover,
C ⊆ D. Thence, C ⊆ D∗ ⊆ dom(Φk). Moreover, Φk(c)(0) = ek(c)(0) =
(1, 1, 1) and so Φk(c) ∈ D∗ ⊆ Am1.

We now show Φk[C] = ek[C] is independent in Am1 over P : Let c ∈ C,
p̄ ∈ Am1 and say c ≤ (π̄k ◦ πC)(p̄) = πC(p̄(k)).
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Since πj(c · p̄(k)) = πj(p̄(k)), for every i ∈ Z,

i 6= k ⇒ ek(c) · p̄(i) = p̄(i). (6.28)

Thus ek(c) · p̄ ∈ Am1. This firstly shows that π̄k ◦ πC is a strong projection
from Am1 to C. Moreover π̄(p̄ · ek(c)) = p̄(0) = π̄(p̄), and we are done with
the proof that Φk[C] = ek[C] is independent in Am1 over P .

It follows that Φk[C] is remote in Am1 over P , by definition of 4̄λ: let
λ ∈ [λ0, κ

′). Say c ≤ π̄k(p̄). Then ek(c) · p̄(k) = (p̄(k)P · c, p̄(k)0, p̄(k)1) and
p̄(k)P ·c 4λ p(k)P , by clause (1) of definition 5.32. So by (6.28), ek(c)· p̄ 4̄λ p̄,
and we are done.

The last lemma of this section is the counterpart of lemmas 5.29 and
5.30. Together these lemmas make sure that in the iteration used in our
application, we have stable meet operators for every initial segment. We
assume P is stratified on J .

Lemma 6.31. There is a P -stable meet operator ∧P on Am1.

Proof. Of course we set

dom(∧P ) = {(p̄, r̄) | ∃λ ∈ J r̄ 4̄λ π̄(r̄) · p̄}.

Say we have p̄, r̄ ∈ Am1 such that (p̄, r̄) ∈ dom(∧P ). This means we can fix
a regular λ ∈ J such that for each i ∈ Z \ {0}, r̄(i)P 4λ π(r̄(i)P ) · p̄(i)P . Let
wi = p̄(i)P ∧ r̄(i)P for i ∈ Z \ {0} and set

p̄ ∧P r̄ =

{
(wi, p̄(i)

0, p̄(i)1) for i ∈ Z \ {0}
p̄(0) for i = 0.

Let p̄ ∧P r̄ be denoted by w̄. By lemma 6.15, for i ∈ Z \ {0} and j ∈ {0, 1}
we have

πj(w̄(i)) = p̄(i)j · πj(wi · p̄(i)1−j)

= p̄(i)j · πj(p̄(i)P · p̄(i)1−j) = πj(p̄(i)).
(6.29)

In particular, as wi 4λ p̄(i)P and i was arbitrary, we have

p̄ ∧P r̄ 4̄λ p̄. (6.30)

Moreover, π(wi) = π(p̄(i)P ) = π(p̄(0)) = π(w̄(0)). So w̄ satisfies the hypoth-
esis of lemma 6.19 and therefore w̄ ∈ Am1. Clearly, π̄(p̄ ∧P r̄) = p̄(0). It
remains to see that π̄(r̄) · (p̄ ∧P r̄) ≈ r̄; we have

π̄(r̄) · w̄ =

{
(π(r̄(0)P ) · wi, p̄(i)0, p̄(i)1) for i ∈ Z \ {0}
r̄(0) for i = 0.
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Write ū = π̄(r̄) · w̄ and write v̄ = π̄(r̄) · p̄. For arbitrary i ∈ Z \ {0} and
j ∈ {0, 1} we have

πj(ū(i)) = π(r̄(0)P ) · πj(w̄(i)) = π(r̄(0)P ) · πj(p̄(i)) by (6.29),
= π(r̄(0)P ) · πj(v̄(i)) = πj(r̄(i)) as r̄ 4λ v̄.

Thus by (6.4), ū(i) ≈ r̄(i). As i ∈ Z \ {0} was arbitrary and as ū(0) = r̄(0),
we conclude ū ≈ r̄, finishing the proof that ∧P is a P -stable meet on Am1.



Chapter 7

Projective measure without Baire

We begin with the assumption V = L and fix κ, the least Mahlo. The first
step is to force with T̄ =

∏
ξ<κ T (ξ), the (full) product κ-many independent,

κ+-closed κ++-Suslin trees. In fact, T̄ itself has the κ++-cc, by construction.
This adds a sequence of branches B̄ = (B(ξ))ξ<κ, where B(ξ) denotes the
branch through T (ξ). As a notational convenience, we often assume the
sequence of trees (resp. branches) is indexed by elements of

J = κ× <κ2× ω × 2× 2

rather than by ordinals in κ, that is as B(ξ, s, n, i, j) and T (ξ, s, n, i, j) for
ξ < κ, s ∈ <κ2, n ∈ N and i, j ∈ {0, 1}.

Since T̄ is κ++-cc, it is also κ++-distributive, whence W = L[B̄] has the
same cardinals and the same subsets of κ+ as L and the GCH still holds in
W . In particular, L and W have the same reals.

We now define (Pξ)ξ≤κ, by induction on ξ. We start with P0 = T̄ and
identify B̄ with G0. Working in W , setting P ∗0 = ∅ and interpreting the
following definition verbatim in W , we obtain (P ∗ξ )ξ≤κ. The only formal
difference being limit and amalgamation stages, there is a very canonical
equivalence of T̄ ∗ Ṗ ∗ξ with Pξ. Note though that the proof shows (Pξ+1, Pξ)
to be a stratified extension on [λξ, κ], but the same is not directly obvious
for (P ∗ξ+1, P

∗
ξ ) in W . We shall call Gξ the Pξ generic over L and G∗ξ the

(P ∗ξ )-generic over W .
We construct this iteration to deal with the following tasks:

Task 1 Add a set of reals Γ0 such that Pκ forces that the Baire-property
fails for Γ0;

Task 2 For each real r added by Pκ, make sure that Pκ forces r ∈ Γ0 ⇐⇒
Ψ(r, 0) ⇐⇒ ¬Ψ(r, 1), where Ψ(x, y) is Σ1

3.
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Task 3 Make sure every projective set of reals is Lebesgue-measurable in
the extension by Pκ.

Task 4 To make the construction more uniform, we force with a Levy-
collapse at certain stages.

We force with the Levy-collapse for two reasons: firstly, when we amalgamate,
and at limits, whether we collapse the continuum depends on factors beyond
our control. So we always make sure we collapse the current continuum at
the next stage. Secondly, for the purpose of task 2 (which involves Jensen
coding), we want to make sure CH holds all the time.

Task 2 requires the sophisticated technique of Jensen coding, which made
its first appearance in [BJW82] and has since undergone a long development
culminating in [Fri00]. We will make the real r (along with information about
its membership in Γ) definable by coding a subset of our set of branches B̄
by a real s, where s is generic for Jensen coding. Say we have iterated for ξ
steps and are in L[Gξ]. For now, let’s call the set of branches we “code” at
the ξ + 1-th step B̄− = {B(ζ) | ζ ∈ I}, where I ⊆ κ of size κ.

Why do we use a subset of size κ? Since a real carries only a countable
amount of information, one would think that a countable set of branches
would suffice. The point here is that the automorphisms that arise from
amalgamation (task 3) will make any such coding “unreadable” (see section
8). This is not surprising since by [She84], a definable well-ordering of a
set of reals of length ω1 yields a definable non-measurable set. In fact, if the
present construction is altered so that each real is coded using a block of trees
of length ω, we must fail since this would add such a well-order (since the set
of trees is of course well-ordered). It is also easy to see how such a coding is
made unreadable: if the trivial condition forces that the real ṙ is coded using
the branches indexed by the block [ξ, ξ + ω), for any automorphism Φ, also
Φ(ṙ) would be coded on the same block. See section 8 for the solution.

We shall pick a set Aξ ⊆ κ+ such that (Hα)L[Aξ] = Lα[Aξ] for every
cardinal α ≤ κ and {B(ξ) | ξ ∈ I} is definable in some simple recursive
fashion from Aξ (see below). Note L[Aξ] will be a proper sub-model of L[Gξ]
(since we don’t want to code all of B̄). We shall then force with P (Aξ) of
section 4 as defined in the model L[Aξ] to obtain a real s such that Aξ ∈ L[s]
and moreover the following is true in the extension:

for all α, β < κ if Lβ[s] is a model of ZF− and of “α is the
least Mahlo and α++ exists” then:
I ∩ α ∈ Lβ and Lβ[s] |=“∀ξ ∈ I ∩ α T̄ β(ξ) has a branch,”

(7.1)
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where T̄ β denotes the outcome of the construction of T̄ carried out in Lβ.
This is the vital use Jensen coding with localization (also called “David’s
trick” or killing universes). In order to make lemma 7.6 below go through,
we have modified it in several ways (the use of ♦, ρ(p∗δ) and most notably,
we use Easton support). Note that forcing over L[Aξ], a proper sub-model
of L[Gξ], means we shall have to argue that this step represents a stratified
extension.

There are 4 types of forcing involved, so we fix a simple and convenient
partition E0, . . . , E3 of κ: let En, for 0 ≤ n ≤ 3, denote the set of ordinals
ξ < κ such that for some limit ordinal η and k ∈ ω, ξ = η + k and k ≡ n
(mod 4). For an ordinal ξ < κ, let En(ξ) denote the ξ-th element of En.
Also fix, for each ρ < κ, an increasing sequence ᾱρ = (αζρ)ζ<κ of ordinals > ρ
cofinal in κ: we let αζρ = G(ζ, ρ), where G is the Gödel pairing function.

As we have to tackle certain tasks for every real of the extension, our
definition will make use of two book-keeping devices, s̄ = (ṡξ)ξ<κ and r̄ =
(ῑ(ξ), ṙ0

ξ , ṙ
1
ξ)ξ<κ. We define s̄ to list all reals which end up in the complement

of Γ0, in order to handle task 2 for each of these. To make sure all projective
sets of reals are measurable (task 3) we ask that for each ι < κ, the set of
ṙ0
ξ , ṙ

1
ξ such that ῑ(ξ) = ι list all the pairs of reals in L[Gκ] which are random

over LPι . We also ask that each pair ṙ0
ξ , ṙ

1
ξ be λ-reduced over Pῑ(ξ) for some

large enough λ. We shall first proceed with the definition of the iteration,
and after that argue that a book-keeping with the requisite properties can
be defined at the same time.

We define a sequence λ̄ = (λξ)ξ≤κ by induction, so that for each ξ ≤ κ,
Pξ will be stratified on [λξ, κ]. We let λ0 = ω. For limit ξ, let λξ be the
minimum of Reg \

⋃
ν<ξ λν . For successors, define

λξ+1 =

{
(λξ)

+ if ξ ∈ E0 or ∃ρ s.t. ξ = E3(α0
ρ),

λξ otherwise.
(7.2)

For the readers orientation, be aware we will always have that Pξ collapses
λξ, except when ξ is limit or Pξ is an amalgamation of type-1. In those cases
Pξ may or may not preserve λξ. The continuum of L[Gξ] is always at most
(λξ)

+ so CH always holds in L[Gξ], except when Pξ does not collapse λξ.
When we define Pξ, we will also define some auxiliary sets Dξ. At stages

where we do type-1 amalgamation, they are similar to D of section 6.3; at
other stages Dξ = Pξ. At all limit stages ξ ≤ κ, we define Pξ to be the λ̄-
diagonal support limit of the iteration up to that point. We generally write
Bξ = r.o.(Pξ) for ξ ≤ κ. In the inductive definition of the iteration, we also
define

1. A sequence of sets Go
ξ, for ξ < κ; these arise because at coding stages,
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the next forcing is not taken from the natural model L[Gξ] but from
a smaller model L[B̄−][Go

ξ] (of course, since we do not want to code
all of B̄). The Go

ξ help to “integrate out the T̄ -part” and to show
that the (Pξ, Pξ+1) is a stratified extension. Note that we will have
P(ω)L[G�ξ] = P(ω)L[Goξ ]. 1

2. A sequence c̄ = (ċξ)ξ<κ of names for reals where each ċξ is Cohen over
L[G � E0(ξ)].

3. A sequence (Cξ)ξ<κ of so-called coding areas, where each Cξ ∈ κ2 is
generic over L[G � E1(ξ)] but has constructible initial segments.

4. Maps Φζ
ρ, for ρ, ζ < κ, where Φζ̄

ρ extends Φζ
ρ for ζ < ζ̄. Finally,

⋃
ζ<κ Φζ

ρ

uniquely determines an automorphism Φρ of r.o.(Pκ) such that Φρ(ṙ
0
ρ) =

ṙ1
ρ and Φρ � Pῑ(ρ) is the identity. For a more uniform notation, we
also write Φκ

ρ for Φρ. We call any stage of the iteration Pξ+1 such
that ξ = E3(αζρ) for some ζ < κ and thus such that Φκ

ρ extends Φζ
ρ,

associated to Φρ.

7.1 The successor stage of the iteration
For the successor stage, assume by induction that we have already defined
Pξ for ν < ξ and ṙ0

ν , ṙ
1
ν , ṡν for ν ≤ ξ. Fix k and η such that ξ = Ek(η). In

any case except when ξ ∈ E3(α0
ρ), for some ρ < κ—that is, ξ is a stage where

we do type-1 amalgamation—we let Dξ = Pξ. Let Gξ denote a generic for
Pξ. We may assume we have already defined Go

ξ, letting Go
0 = ∅.

k = 0 At this stage we collapse the continuum of L[Gξ] and make sure the
GCH holds (task 4). Let Pξ+1 = Pξ ∗ Q̇ξ, where

ξ Q̇ξ = Coll(ω, λξ+1),

and let G(ξ) be the Coll(ω, λξ+1)-generic. Observe that λξ+1 = (λξ)
+ ≥

2ω in L[Gξ], so we can pick a Pξ+1-name which is fully Cohen over Pξ,
and define ċη to be this name. In L[G � ξ + 1], simply let Go

ξ+1 =
Go
ξ ×G(ξ).

k = 1 Let Pξ+1 = Pξ × (Add(κ))L. We denote by G(ξ) the generic and by
Cη the new subset of κ it represents (and let Ċη denote its canonical
Pξ+1-name). This will be the generic “coding area” used in the next
step. Again let Go

ξ+1 = Go
ξ ×G(ξ).

1Moreover, L[Goξ] = L[G∗ξ ] ( L[B̄][G∗ξ ] = L[Gξ]; we only introduce the sets Goξ because
L[Goξ] and L[B̄−, Goξ] are less ambiguous than L[G∗ξ ] and L[B̄−, G∗ξ ].
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k = 2 We take care of task 2, making sure Ψ(c, j), holds for some real c given
to us by book-keeping (j = 0, 1 indicates whether c ∈ Γ0). If η is a
limit or η = 0, let c denote ċGξη (the Cohen real defined at stage E0(η)),
and let j = 0 (indicating that c will be in Γ0). If η is a successor,
let c denote ṡGξη−1, and let j = 1 (indicating that c will not be in Γ0).
We wish to code a branch through T (s, n, i, j) if and only if s is an
initial segment of C = Cη (the coding area from the previous step) and
c(n) = i. That is, we let

B(η, C, c, j) = {B(η, s, n, i, j) | sC C, c(n) = i}

be the set of branches to code, and represent it in a ∆1 way as a subset
of κ++:

B̄− = {#(η, s, n, i, j, t) | sC C, c(n) = i, t ∈ B(s, n, i, j)}

where #x denotes the order-type of x in the well-ordering of L[B̄−][Go
ξ].

Working in L[B̄−][Go
ξ], define Aξ ⊆ κ++ as in 4.2 so that L[B̄−][Go

ξ] =
L[Aξ] and let P (Aξ) be the forcing discussed in section 4. Finally, define

Qξ = P (Aξ)
L[Aξ],

and let Q̇ξ be a Pξ-name for this forcing. Observe that it takes an
argument to show we get a stratified extension; Q̇Gξ

ξ isn’t obviously
stratified (on any interval) in L[Gξ].

Letting G(ξ) denote the generic, let Go
ξ+1 = Go

ξ × {p<κ++ | p ∈ G(ξ)}.

k = 3 Say η = αζρ. We first treat the case where ζ = 0: By induction the
book-keeping device r̄ gives us r̄(ρ) = (ῑ(ρ), ṙ0

ρ, ṙ
1
ρ), where ῑ(ρ) < ξ (in

fact, < ρ) and the pair of names reals ṙ0
ρ, ṙ

1
ρ is fully random over LPῑ(ρ)

and λξ-reduced over Pῑ(ρ).

Let f be the automorphism of the complete Boolean algebras generated
by ṙ0

ρ and ṙ1
ρ in Bξ and let Pξ+1 be the type-1 amalgamation of Pξ over

f and Pῑ(ρ):
Pξ+1 = Am1(Pῑ(ρ), Pξ, f, λξ).

Set Dξ = D(Pῑ(ρ), Pξ, f, λξ). The resulting automorphism of Pξ+1 we
denote by Φ0

ρ.

Observe that, in general, this automorphism need not extend to an
automorphism of Bκ. Also observe that by induction and theorem 6.20
(Pξ,Am1(Pῑ(ρ), Pξ, f, λξ)) will be a stratified extension above λξ+1.
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In the second case, when η = αζρ and ζ > 0, we make sure Φ0
ρ is extended

by an automorphism of Pξ+1. So we let

Pξ+1 = Am2(dom(Φ), Pξ,Φ),

where Φ is (an extension of) Φ0
ρ, constructed at an earlier stage of the

iteration:

If ζ is a successor ordinal, at a previous stage E3(αζ−1
ρ ), we defined

Φζ−1
ρ extending Φ0

ρ. Set Φ = Φζ−1
ρ .

If ζ is a limit, we have a sequence (Φν
ρ)ν<ζ , forming an increasing chain,

and all extending Φ0
ρ. Letting δ =

⋃
ν<ζ α

ν
ρ < ξ, there is a unique auto-

morphism of Pδ, extending each of them. Let Φ be this automorphism.

The resulting automorphism of Pξ+1 we denote by Φζ
ρ. In both cases

we say ξ + 1 or Pξ+1 is an amalgamation stage associated to Φζ
ρ.

Go
ξ+1 is defined to be the Z-sequence of the sets defined like Go

ξ in each
of the Z-many components of the amalgamation.

We see that in a very concrete sense, we can identify G∗ � ξ, the Ṗ B̄
ξ -generic

over L[B̄] with Go
ξ.

Lemma 7.1. 1. For all ξ < κ, (Pξ, Pξ+1) is a stratified extension on
[λξ+1, κ].

2. For all ξ ≤ κ, P̄ξ is stratified on [λξ, κ].

3. For all ξ, Pξ  2ω ≤ (λξ)
+ over W .

4. If ξ is not of the form E3(α0
ρ) for some ρ, i.e. if Pξ+1 is not a type-1

amalgamation, we have that Pξ+1  |λξ+1| = ω over W and Pξ+1 
GCH over W .

5. In W , for each ξ ≤ κ, Ṗ B̄
ξ is κ+-centered.

Observe it follows that Pξ preserves all cardinals greater than λξ, for
ξ < κ. We will show later that it also preserves Mahlo-ness of κ and that Pκ
preserves κ.

Proof. When ξ 6∈ E2, the first item holds by induction and lemmas 5.20
(composition), 5.27 (products) and theorem 6.20 (amalgamation); the pre-
stratification systems are the ones stemming from the constructions in lem-
mas 5.20, 5.27 and theorem 6.20 of course.

It remains to show (Pξ, Pξ+1) is a a stratified extension on [λξ+1, κ] when ξ
is a coding stage. We let q ∈ Dξ+1(λ, p, x) if and only if q � ξ ∈ Dξ(λ, p � ξ, x),
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q�ξ  q(ξ) ∈ Ḋξ(λ, p(ξ), x)L[Aξ] and both p(ξ)<κ+ and p(ξ)∗κ+ are κ-chromatic
names (with Aξ defined above in the definition of forcing at coding stages);
observe this makes sense since we may view p(ξ)<κ+ and p(ξ)∗κ+ as functions
with domain κ, and since by induction Pξ is stratified at κ. The proof of the
density property of D goes through verbatim (since we only have to look at
λ ≤ κ). The rest Cλ, 2λ, 4λ can be defined in a straightforward manner as
in the proof for composition of stratified forcings 3.17.

To see that this is a stratified extension, let p̄ = pνν<ρ be a (λ, λ̄, x)-
adequate sequence of conditions in Pξ+1 with (λ̄, x)-canonical witness w̄ and
let q�ξ be a greatest lower bound of (pν�ξ)ν<ρ. It suffices to show that q forces
that (pν(ξ))ν<ρ is (λ̄, x)-adequate in L[Aξ] = L[B̄−, Go

ξ] (where B̄− is defined
as above in the definition of forcing at coding stages). That w̄ is a strategic
guide is clear by definition of D and the usual argument for composition;
so we check that it is a canonical witness. We check w̄ is Π

Aξ
1 ({x} ∪ λ̄);

this is clear (as in 3.17), since it is Π1({x} ∪ λ̄) in L and thus also in L[Aξ].
Since each Pξ-name qν(ξ) is κ-reduced, it’s interpretation can be found inside
L[G0

ξ ] and hence in L[Aξ]. In fact, the (partial) function assigning to qν(ξ)
its interpretation is Σ

Aξ
1 ({x}∪ λ̄) provided κ+++ is among the parameters in

x—in fact, the existential quantifier can be bounded by Lκ+++ [Aξ] since we
only have to find a κ-spectrum witnessing the interpretation. Thus qν(ξ)Gξ

can be obtained by application of a Σ
Aξ
1 (x) (partial) function from the name

qν(ξ), which can in turn be obtained by application of recursive function from
qν , which can be obtained by applying a Σ1({x} ∪ λ̄)

L (partial) function to
wν . Thus, qν(ξ)Gξ can be obtained by applying a ΣAξ({x} ∪ λ̄)-function to
wν in L[Aξ]. This shows that w̄ is a canonical witness.

The second item holds by theorem 5.23. The third one is a corollary of
the previous ones and lemma 3.15and the next follows since we collapse λξ
at the right stage.

Lastly, the centeredness follows since stratification at κ allows us to de-
fine Cκ+ ; If (t, p), (s, q) ∈ T̄ ∗ Ṗξ are such that t and q are compatible and
Cκ+

(t, p) ∩Cκ+
(s, q) 6= ∅ then clearly s · t forces that p · q 6= 0. This implies

that cardinals above κ are preserved, which is by the way not essential.

Remark 7.2. Note that we can also use Cλ of the following explicit form.
The abstract definition with guessing systems serves the purpose of proving
an abstract iteration theorem. and may help to aid the intuition of the
reader. The two forms are equivalent for successor λ, modulo a recursive
translation. For λ ∈ Inacc this equivalence holds on a set which is dense in
the same sense as dom(Cλ).

Let λ ≤ κ be regular and let σ < λ. First, define Dσ
λ ⊆ Pκ, by induction

on the length of a condition. For the successor step, say p ∈ Pν+1. We let
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p ∈ Dσ
λ if and only if πν(p) ∈ Dσ

λ and the following hold:
1. in case ν ∈ E0 (i.e. Q̇ν is Coll(ω, λν)), we require that πν(p) 

ran(p(ν)) ⊆ σ,

2. in case ν ∈ E2 (i.e. Q̇ν is Jensen coding of L[Aν ]), we require that
πν(p)  for all sup dom(p(ν)<λ) = σ and ρ(p(ν)∗λ) = σ, if λ ∈ Inacc.

3. in case ν ∈ E3 (i.e. Pν+1 is an amalgamation), we require that for all
i ∈ Z \ {0} we have p(i)P ∈ Dσ

λ (it would be redundant to require this
also for i = 0).

For p ∈ Pν where ν ≤ κ is a limit ordinal, let p ∈ Dσ
λ if and only if for all

ν ′ < ν, πν′(p) ∈ Dσ
λ . Finally, define p ∈ DΣ

λ if and only if there is σ < λ such
that p ∈ Dσ

λ ; if λ ∈ Inacc, we require that σ ∈ Card. Also, for any p ∈ DΣ
α ,

let σ2
λ(p) be the least σ < α such that p ∈ Dσ

λ and suppλ(p) ∩ λ ⊆ σ.
The sets Cλ can now be defined in a similar fashion: they are binary

relations,
Cλ ⊆ { sequences of length ≤ κ} × Pκ.

that is, for any such sequence H, Cλ(H) ⊆ Pκ.
So let λ ≤ κ be regular. The definition of Cλ(H) is by induction on the

length of conditions: for the successor step, assume we have already defined
Cλ on

{ sequences of length ≤ ν} × Pν .
Fix an arbitrary sequence H. Assume p ∈ Pν+1 and let p ∈ Cλ(H) if and
only if πν(p) ∈ Cλ(H � ν) and either p 4α πν(p) or the following hold:

1. H = (H(ξ))ξ<ν+1 is a sequence of length ν + 1,

2. p ∈ DΣ
α ,

3. in case ν ∈ E0, we require that p(ν) (a collapsing condition) is β-
chromatic below πν(p), for some β < α, with spectrum H(ν),

4. in case ν ∈ E2, we require that H(ν)((ζ)0) is defined for each for each
ζ < δ = σ2

λ(p(ν)) and we have p(ν)<δ(ζ) is β-chromatic below πν(p),
for some β < λ, with spectrum H(ν)(ζ). In a similar manner, for
inaccessible λ, require H(ν)((ζ)1) is a spectrum for the characteristic
function of Bρ

p(ν).

5. in case ν ∈ E3, we require that H(ν) = (H̄P
i , H̄

0
i , H̄

1
i )i∈Z\{0} and for all

i ∈ Z \ {0}, p(i)P ∈ Cλ(H̄P
i ) and for j ∈ {0, 1}, p(i)j is β-chromatic

with spectrum H̄j
i below πι(p(0)P ) for some β < λ—where ι is chosen

so that Pι is the base of the amalgamation Pν+1 (see p. 101 for the
definition of base).
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7.2 A word about book-keeping
We give a recipe for cooking up a definition of r̄ = (ῑ(ρ), ṙ0

ρ, ṙ
1
ρ)ρ<κ. The

definition is given by induction “on blocks”. Assume r̄ � ξ has been defined.
We shall now define r̄ and ῑ on [ξ, (λξ)

+)—the “next block”.
First, consider some fixed ι < ξ (or, for the induction start, assume

ξ = ι = 0). As λξ+1 ≥ 2ω in L[Gξ], we can enumerate all the reals in LPξ

which are random over LPι in order type λξ+1. In other words, find names
Pξ-names (ẋιν)ν<β such that

Pξ  R \ Ṅ = {ẋιν}ν<β,

where Ṅ is a name for the union of the Borel null sets with code in LPι and
β = λξ+1. By assumption, ξ ∈ E0 is a limit ordinal or 0, so the last forcing
of Pξ+1 collapses λξ+1 to ω.

For each ν, ν ′ < β, apply the lemma 7.3 below. You obtain a set Y =
Y (ν, ν ′, ι) of size β consisting of pairs which are λξ+1-reduced over Pξ. If
there are no reals in LPξ which are random over LPι , let Y be any set of pairs
of random reals in LPξ+1 which are λξ+1-reduced over Pξ (such a set exists—if
in doubt, look at the proof of lemma 7.3).

Now define r̄ �β and ῑ�β (using a bijection of β with ξ×β3) in such a way
that all pairs obtained in this way are listed, i.e. for each ι < ξ, each pair
and ν, ν ′ < β and each y ∈ Y (ν, ν ′, ι) there is ρ ∈ [ξ, β) such that ῑ(ρ) = ι
and (ṙ0

ρ, ṙ
1
ρ) = y.

Note that by lemma 7.6, we catch our tail and r̄ enumerates all the pairs
of random reals of the final model L[Gκ] (see lemma 7.12).

Lemma 7.3. Let ι < ξ, where ξ ∈ E0and say 1Pξ forces ẋ
0, ẋ1 are Pξ-names

random over LPι. Then there is a set Y = {(ẏ0
ν , ẏ

1
ν)}ν<λξ+1

such that

1  (ẋ0, ẋ1) ∈ {(ẏ0
ν , ẏ

1
ν)}ν<λξ+1

and each pair in Y is λξ+1-reduced over Pξ.

Proof. Write β = λξ+1. Find {q̇ζ}ζ<β such that ξ {q̇ζ}ζ<β is a maximal
antichain in Q̇ξ = Coll(ω, β). Note that {(1Pξ , q̇ζ)}ζ<β is maximal antichain
in Pξ+1. Fix a map

b : ζ 7→ (ḃ0(ζ), ḃ1(ζ))

such that ξ b : β → (Borel+)2 is onto, where Borel+ denotes the set of
Borel sets with positive measure coded in L[Gξ]. For each ζ < β and j = 0, 1
pick R0

ζ , R
1
ζ such that (1Pξ , q̇ζ) forces Rj

ζ is random over LPξ and Rj
ζ ∈ ḃj(ζ)

for both j = 0, 1. This is possible since Coll(ω, β) collapses the continuum of
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L[Gξ]. Fix ν < θ for the moment, in order to define ẏ0
ν , ẏ

1
ν : for both j = 0, 1,

pick ẏjν such that (1Pξ , q̇ν)  ẏjν = ẋj and for each ζ ∈ β \ {ν} we have
(1Pξ , q̇ζ)  ẏ

j
ν = Ṙj

ζ .
As {(1Pξ , q̇ζ)}ζ<β is maximal, 1Pξ forces ṙj is random over LPι . For each

ν < θ, the pair ẏ0
ν , ẏ

1
ν is β-reduced over Pξ: Let p 4β q ∈ Pξ, let ḃ0, ḃ1 be

Pξ-names and fix w ≤ πξ(p) such that w ι ḃ0 and ḃ1 are codes for positive
Borel sets. Find w′ ∈ Pξ and ζ < θ, such that w′ ≤ w, ζ 6= ν and

w′  ḃj(ζ) ⊆ ḃj for j = 0, 1. (7.3)

We can ask ζ 6= ν because we are content with ⊆ instead of = in (7.3). As
w′  p(ξ)4̇

β

ξ 1, w′·p is compatible with (1Pξ , q̇ζ). If p′ ≤ w′·p and p′ ≤ (1Pξ , q̇ζ),
we have p′  ẏjν ∈ ḃj(ζ) ⊆ ḃj. Clearly, this also shows that ẏ0

ν , ẏ
1
ν is β-reduced

over Pι: any code for a positive Borel set in L[Gι] is remains one in L[Gξ].
Lastly, as {(1Pξ , q̇ζ)}ζ<θ is maximal and (1Pξ , q̇ν)  ẋ

j = ẏjν ,

1  (ẋ0, ẋ1) ∈ {(ẏ0
ν , ẏ

1
ν)}ν<λ.

We now define Γ0
ξ , an approximation of Γ0 at stage ξ < κ of the iteration.

Let Γ0
ξ be the smallest superset of {ċη | E0(η) < ξ and η is limit or η = 0}

(for limit η of course E0(η) = η, but never mind) closed under all of the
functions F = Φζ

ρ, (Φ
ζ
ρ)
−1 such that domF ⊆ Pξ, i.e. closed under functions

in
{Φζ

ρ, (Φ
ζ
ρ)
−1 | E3(αζρ) ≤ ξ}

Let
Γ̇0
ξ = {(1Pξ , ċ) | ċ ∈ Γ0

ξ},
that is, Γ̇0

ξ is the canonical choice for a name whose interpretation consists
of the interpretations of the elements of Γξ.

When defining s̄ at stage ξ, we need to make sure that all Pξ-names for
reals ṡ which have the following property are listed (in the course of the
iteration) by s̄: for any ṙ ∈ Γ0

ξ , Pξ ṙ 6= ṡ. We can easily make sure this is
the case using arguments as above. As Pξ forces |R| < κ (in fact ≤ κ would
suffice), we can find ḟξ such that

ξ ḟξ : κ→ R \ Γ̇ξ is onto.

We may assume (by induction hypothesis) we have such ḟν for ν < ξ. Pick
ṡξ such that for ξ = G(η, ζ), ξ ṡξ = ḟη(ζ).

Later (see lemma 7.5), we show that s̄ lists exactly the reals of the final
model L[Gκ] which are not in Γ0 (which we are about to define). This
concludes the definition of (Pξ)ξ≤κ, c̄, (Cξ)ξ<κ, Φζ

ρ for ζ ≤ κ and ρ < κ, r̄,
and s̄, as well as that of Γ0

ξ and Γ̇0
ξ .
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7.3 Cohen reals, coding areas and the set Γ0

Let Γ0 be the least superset of

{ċξ | ξ < κ, ξ limit ordinal or ξ = 0}.

closed under all functions Φξ, (Φξ)
−1, ξ < κ and let Γ̇0 be the Pκ-name Γ0 ×

{1Pκ}. Recalling Γ0
ξ from the previous subsection (defined in the discussion

of the coding device s̄), note that
⋃
ξ<κ Γ0

ξ ⊆ Γ0; that the two sets are in fact
equal, if not clear, follows from the next lemma. The lemma also helps to see
that Γ0 and Γ1 (defined below) give rise to disjoint sets in the extension, as
intended. Lastly, the lemma also is important to show that the coding areas
Cν behave in the same way as do the reals cν , and this will be used in 8.2 to
show that the coding does not conflict with the automorphisms coming from
amalgamation.

Let Γ1 = {ṡξ | ξ < κ} and let Γ̇1 be the Pκ-name Γ1 × {1Pκ}. Let ẋν
denote either ċν or Ċν . Say ẏ is of the following form:

ẏ = (Φξm)km ◦ . . . ◦ (Φξ1)k1(ẋν)

where ν, ξ1, . . . , ξm < κ and ki ∈ Z for 1 ≤ i ≤ m. For 1 ≤ i ≤ m, write

ẏi = (Φξi)
ki ◦ . . . ◦ (Φξ1)k1(ẋν),

and write ẏ0 for ẋν . Note that we can trivially assume that ξi+1 6= ξi, for
i such that 1 ≤ i < m. We can also assume 6Pκ ẏi+1 = ẏi for such i. We
then call ν, ξ1, . . . , ξm,k1, . . . , km an index sequence of ẏ . Observe that every
ẏ ∈ Γ0 can be written in the form above.

Lemma 7.4. There are ρ0, . . . , ρm < κ such that

1. ν < ρ0 < . . . < ρm,

2. if 1 ≤ i ≤ m, Pρi+1 is an amalgamation stage associated to Φξi,

3. if 0 ≤ i ≤ m, ẏi is a Pρi+1-name not in LPρi . Moreover, ẏi is either
unbounded over LPρi (if ẏ0 = ċν) or remote over Pρi up to height κ (if
ẏ0 = Ċν).

Moreover, for ẏ, ẏ′ ∈ Γ0, either Pκ ẏ = ẏ′ or Pκ ẏ 6= ẏ′. If ẏ and ẏ′
have different index sequences, the latter holds.

Proof. By induction on m. For m = 0, since ẏ0 = ẋν , we pick ρ0 so that Q̇ρ0

adds ẋν (over L[Gρ0 ]). Then all of the above holds.
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Now assume by induction the above holds for i ≤ m. Let ρm+1 be the
least ρ < κ such that Pρ+1 is an amalgamation stage associated to Φξm+1 ,
and ẏm is a Pρ+1-name. Since by induction, ẏm is forced to be different from
any element of LPρm , ρm ≤ ρm+1. Moreover, ρm < ρm+1, for otherwise,
ξm = ξm+1, contrary to assumption.

We have that either Pρm+1+1 = Am1(Pζ , D, ṙ0, ṙ1) (for some ζ, D a dense
subset of Pρm+1 , and some ṙ0, ṙ1), or Pρm+1+1 = Am2(Pζ , Pρm+1 ,Φ) (for
some Φ and ζ). We prove the lemma assuming the first holds; very similar
arguments work for the other alternative, which we leave to the reader.

Observe that ẏm is not a Pζ-name, as otherwise, contrary to assumption,

Pκ ẏm+1 = Φξm+1(ẏm) = ẏm.

We have to consider two cases: If ẋν = ċν , we can assume by induction that
ẏm is unbounded over LPζ and thus also over LPζ∗Ḃ(ṙi) for i = 0, 1. Thus by
lemma 6.8 applied for P = D, ẏm+1 is unbounded over LPρm+1 and we are
done. If on the other hand, ẋν = Ċν , we can assume by induction that ẏm
is remote over Pζ up to height κ and κ > λξm+1 . So by lemma 6.30, ẏm+1

is remote over Pρm+1 . In either sub-case, we conclude that ẏm+1 is not in
LPρm+1 (for the second case, using lemma 5.33).

Lastly, say ν, ξ1, . . . , ξm,k1, . . . , km is an index sequence of ẏ and say
ν ′, ξ′1, . . . , ξ

′
m,k′1, . . . , k′m is an index sequence of ẏ′. Assume 6Pκ ẏ = ẏ′;

we show Pκ ẏ 6= ẏ. Let ρ0, . . . ρm and ρ′0, . . . ρ′m be obtained as above for ẏ
and ẏ′ respectively. Let l be maximal such that ξl 6= ξ′l or kl 6= k′l, if such l
exists. We may assume ρl = ρ′l, for otherwise

Pκ ẏl 6= ẏ′l,

and we can apply (Φξm)km ◦ . . . (Φξl+1
)kl+1 to this to obtain

Pκ ẏ 6= ẏ′,

and we are done. So we may also assume ξl = ξ′l, as otherwise, also ρl 6= ρ′l.
Thus ξl = ξ′l and ρl = ρ′l , but kl 6= k′l. From now on may we write ξ and ρ
for ξl = ξ′l and ρl = ρ′l, respectively.

Observe that ẏl−1 ∈ V Pρl−1+1 , and ẏ′l−1 ∈ V
Pρ′
l−1

+1 where both ρl−1, ρ
′
l−1 <

ρ. Also note that ẏl−1 is either remote or unbounded over V Pρl−1 . Moreover, if
we let Pζ be the base of Φξ, we have ρl−1 ≥ ζ, for otherwise again Φk−l(ẏl−1) =
ẏl−1. Thus we have ẏl−1 is either remote or unbounded over V Pζ .

Now apply lemma 6.8 to see that Pκ ẏ′l−1 6= (Φξl)
−k′l+kl(ẏl−1), noting

again ẏ′l−1 is in V Pρ .
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Apply (Φξl)
kl to see Pκ ẏl 6= ẏ′l. As above, apply (Φξm)km ◦ . . . (Φξl+1

)kl+1

to this to obtain
Pκ ẏ 6= ẏ′.

If no l as above exists, the index sequences for ẏ and ẏ′ are identical except
possibly in the first coordinate. Now observe that Pκ ẏ0 = ẏ′0 if ν = ν ′ and
Pκ ẏ0 6= ẏ′0 if ν 6= ν ′. Apply (Φξm)km ◦ . . . (Φξ0)k0 and we’re done.

Lemma 7.5. Pκ Γ̇0 = R \ Γ̇1.

It would be easier to show this in the following way: Show by induction
on the number of applications of automorphisms that all names ċ in Γ0 \ Γ0

ξ

have the following property: there is ρ ≥ ξ such that ċ is in LPρ+1 but not
in LPρ . This would make the slightly more complicated proof of lemma 7.4
unnecessary.

Proof. First we show Pκ Γ̇0 ∪ Γ̇1 = R. Let r 6∈ (Γ̇0)G. Find ξ < κ such that
r ∈ L[Gξ]. As r 6∈ (Γ̇0

ξ)
Gξ , s̄ was defined to list a name for ṙ, so r ∈ (̇Γ1)G.

Now let ċ ∈ Γ0 and ṡ ∈ Γ1, and show Pκ ṡ 6= ċ. Fix ξ < κ so that ṡ is
a Pξ-name and Pξ ṡ 6∈ Γ0

ξ . Let v, ρ1, . . . , ρn be obtained as in the previous
lemma from an index sequence for ċ and write ρ = ρn. By the last lemma ċ
is a Pρ+1 name not in LPρ . If ρ+ 1 ≤ ξ, we are clearly done, for then ċ ∈ Γ0

ξ .
Otherwise, if ρ ≥ ξ, ċ is not in LPρ ⊇ LPξ , so in any case, Pκ ċ 6= ṡ.

7.4 The κ-stage of the iteration
The next lemma shows that κ remains a cardinal in the final model, κ remains
Mahlo at each earlier stage, and that all reals appear in some initial segment
of the construction. We write conditions of Pθ as (t, p) in the following only
to have a convenient way to refer to the T̄ part and to aid intuition—we do
not need to work in T̄ ∗ P ∗θ .

Lemma 7.6. Let θ ≤ κ, let (α̇ξ)ξ<κ be a sequence of Pθ-names for ordinals
below κ and let (t, p) ∈ Pθ. Then for any β0 < κ there is an inaccessible
α ∈ (β0, κ) and a condition (t′, p′) ≤ (t, p) such that for all ξ < α, (t′, p′) 
α̇ξ < α. Moreover if θ = κ, there is a sequence of Pα-names (α̇′ξ)ξ<α such
that for each ξ < α, (t′, p′)  α̇ξ = α̇′ξ.

The “moreover” clause is of course meaningless if θ < κ. Before we treat the
lemma, we draw two corollaries.

Corollary 7.7. 1. If r ∈ L[Gκ] is a real, there is α < κ such that r ∈
L[Gα]. In particular, κ remains uncountable in L[Gκ] (i.e. κ = ω1 in
the final model).



126 CHAPTER 7. PROJECTIVE MEASURE WITHOUT BAIRE

2. If θ < κ, κ remains Mahlo in L[Gθ].

Proof. For the first corollary, fix a real r ∈ L[Gκ] and let α̇n be a Pκ-name
for r(n), for each n ∈ N. The lemma shows we can find (t′, p′) ∈ Ḡκ, α < κ
and a sequence of Pα-names {α̇′n | n ∈ N}, such that for each n ∈ N,
(t′, p′)  α̇n = α̇′n. Obviously, r ∈ L[Gα].

For the second, say θ < κ and fix a Pθ-name Ċ for a closed unbounded
subset of κ. Let α̇ξ be a name for the least element of Ċ above ξ. By the
lemma, we may find an inaccessible α ∈ (λθ, κ) and (t′, p′) ∈ Gθ such that
for each ξ < α, (t′, p′)  α̇ξ < α. Thus, (t′, p′)  α̌ ∈ Ċ. Now observe that
as Pθ is stratified above λθ, α is inaccessible in L[Gθ].

Before we begin the proof we’d like to remind the reader of the following
terminology. Let η < θ a coding stage and work in L[B̄−, Go

η] = L[Aη], where
Ḃ−, Go, Aη are as defined in section 7.1 (see p. 116; what we call η here is
called ξ there unfortunately) and Aη is the set to be coded at this stage, as
defined in section 4.2, see p. 31. Let H be any set and let p, q ∈ P , q ≤ p.

We say that q ∈ P (Aη) is basic generic for (H, p) at κ+ if and only if

1. |qκ| > H ∩ κ+;

2. if ν ∈ H ∩ [κ+, κ++) then bpκ+�ν ∈ q∗κ+ ;

3. if ν ∈ H ∩ [κ+, κ++) then there is ζ > |pκ| such that qκ((ζ)1) = pκ+(ν);

4. if ξ ∈ H ∩ [κ, κ+) there is ν > |pκ| such that qκ((〈ξ, ν〉)0) = 1 if ξ ∈ Aη
and qκ((〈ξ, ν〉)0) = 0 if ξ 6∈ Aη;

We say that q ∈ P (Aη) is basic generic for (H, p) at κ if and only if

1. |q<κ| ≥ sup(H ∩ κ).

2. if ν ∈ H ∩ [κ, κ+) then bpκ�ν \ η′ ∈ q∗κ for some η′ < κ;

3. if ν ∈ H ∩ [κ, κ+) then there is ξ ∈ bpκ�ν \ η such that ξ ≥ |p<κ| and
q<κ({ξ}2) = pκ(ν);

4. if ξ ∈ H ∩ κ there is ν > |pδ| such that q<κ((〈ξ, ν〉)0) = 1 if ξ ∈ Aη and
q<κ((〈ξ, ν〉)0) = 0 if ξ 6∈ Aη;

We shall use these notions as a replacement for D in the following proof,
since this approach simplifies the argument showing that the sequence we
build is appropriately definable (or “canonical”). We need to do this because
we build the canonical witness (as usual, a sequence of models, this time of
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two different types) in advance, before we build the associated sequence of
conditions.

Proof of lemma 7.6. The proof is by induction on θ, so assume lemma 7.6
holds for all θ′ < θ. Let {.}i for i ∈ {0, 1} be a pair of recursive functions
such that ξ 7→ ({ξ}0, {ξ}1) ∈ On2 is surjective and each pair in α× α occurs
α-many times as ({ξ}0, {ξ}1) for ξ < α, whenever α ∈ Card. Also, we denote
by h : On → L the map enumerating the constructible universe according
to its canonical well-ordering. We assume without loss of generality that
(t, p) ∈ dom(Cκ) ∩ dom(Cκ+

).
Start by inductively choosing continuous ∈-chains N ξ and M ξ for ξ < κ

as follows. Set

~x = {κ+++, (α̇)ξ<κ, Pθ, (t, p)}
M−1 = ~x

N−1 = κ ∪ {~x}.

Assuming we have M ξ ∈ N ξ, let M ξ+1 ≺Σ1 L be least (of size < κ) such that
N ξ ∈M ξ+1 and M ξ+1 ∩ κ ∈ κ, and choose N ξ+1 ≺Σ1 L least (of size κ) such
that M ξ+1 ∈ N ξ+1 and N ξ+1 ∩ κ ∈ κ+. For limit ρ < κ, let

Mρ =
⋃
ξ<ρ

M ξ

Nρ =
⋃
ξ<ρ

N ξ

and write κ(ξ) = M ξ ∩On. Observe each M ξ and N ξ are closed under h and
h−1 and each κ(ξ) is a strong limit cardinal.

Let C = {κ(ξ) | ξ < κ} and find α ≥ β0, an inaccessible limit point
of C such that ♦α = C ∩ α (remember we have chosen to denote by (♦ξ)ξ
the canonical diamond sequence of L concentrating on inaccessibles below
κ). Pick C∗ ⊆ limC ∩ Sing such that C∗ is club in α (where limC of
course denotes the set of limit point of C). Now we construct a sequence of
(tξ, pξ) ∈ P̄θ by induction on ξ ≤ α, starting with (t0, p0) = (t, p).

The successor step: At successor stages, assume we have constructed
(tξ, pξ) ∈M ξ+1 and when ξ is a limit, also assume that for each coding stage
η < θ,

(tξ, pξ � η)  |pξ(η)<κ| = κ(ξ).
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First pick (t′, p′) 4<κ (tξ, pξ) least such that (t′, p′) ∈ M ξ+1 meeting the fol-
lowing requirements:

1. If ξ is a limit ordinal, then for each coding stage η < θ we have

(t′, p′ � η)  p′(η)<κ(κ(ξ)) = i,

where i = 0 if κ(ξ) ∈ C∗ and i = 1 otherwise.

2. If there is a condition (s0, r0) ≤ (tξ, pξ) with h({ξ}0) ∈ Cκ(ξ)(s0, r0), we
demand that for some (s1, r1) ≤ (s0, r0) such that (s1, r1) ∈ dom(Cκ)∩
dom(Cκ+

) which decides α̇{ξ}1 , we have that

t′ ≤ s1,

for every stage η ∈ E1 were we force with κ-Cohen p′(η) ≤ r1(η) and
for every coding stage η < θ, (t′, p′ � η) forces both that

(p′(η)<κ, p
′(η)∗κ) ≤ (r1(η)<κ), r1(η)∗κ) in P p′(η)κ

and that

(p′(η)κ, p
′(η)∗κ+) ≤ (r1(η)κ), r1(η)∗κ+) in P p′(η)κ+

Moreover we demand (t′, p′)4<κ(tξ, pξ). Write rξi = ri, where i ∈ {0, 1}.
We also define αξν to be the ordinal such that (s1, r

ξ
1)  α̇ν = α̌ξν .

3. For every η < θ, (t′, p′ � η)  ρ(p′(η)<κ) ≥ κ(ξ).

4. For every η < θ which is a coding stage, we have that

(t′, p′ � η) “p′(η)<κ is basic generic for (M ξ, pξ(η)) at κ and
p′(η)κ is basic generic for (N ξ, pξ(η)) at κ+.”

(7.4)

5. Notice that in the previous item we have ensured basic genericity over
subsets of L, while we want to capture some information about L[Aη];
so we ask the following. For every η < θ and every Pη-name for an
ordinal α̇ ∈M ξ there is a set a of size < κ such that (t′, p′ � η)  α̇ ∈ ǎ.
Also, for every η < θ and every Pη-name for an ordinal β̇ ∈ N ξ there
is a set b of size κ such that (t′, p′ � η)  β̇ ∈ b̌.
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All of the above requirements can be expressed by a formula which is Σ1 in
parameters from ~x ∪ {M ξ, (tξ, pξ)}, so if (t′, p′) satisfying the above can be
found at all then we can demand (t′, p′) ∈M ξ+1.

Requirements 2 and 3 are trivial. Requirement 4 can be met by a density
argument identical to the one showing the “density” of strategic class D in
the limit of an iteration. The difference is purely notational (we’ve treated
the Mahlo coding as lower part at κ and as upper part for λ < κ, now we
are “in-between” these cases):

Lemma 7.8. The set of all (t′, p′ � η) such that for every η < θ, (7.4) holds
is dense below (tξ, pξ)

Proof of claim. Say we are given (t′, q) ≤ (tξ, pξ). Exactly as in 5.12, con-
struct p′(η) by induction on η. At successor stages, let p′(η) be a name
for a condition such that (7.4) is met. This is possible as (t′, q � η) forces
such a condition to exist, by corollary 4.34 (see p. 57). Observe that if
(t′, q �η)  q(η)<κ = ∅, then we can choose p′(η) 4κ q(η). Thus, the resulting
condition (t′, p′) has legal support.

Lastly, we can satisfy 5: for the first line, use induction hypothesis and
‖M ξ‖ < κ, for the second use {κ}-stratification. This shows we can find
(t′, p′) as above.

Find (tξ+1, pξ+1) 4<κ (t′, p′) least such that (tξ+1, pξ+1) ∈ dom(Cκ+
) and

(tξ+1, pξ+1) ∈M ξ+1. Now set (tξ+1, pξ+1) to be (t′, p′). Note that by diagonal
support, requirement 5 and since M ξ+1 is Σ1-elementary, for each η < θ we
have

(tξ+1, pξ+1(η))  |pξ+1(η)<κ| < κ(ξ + 1). (7.5)

(and analogously, a similar equation holds for |pξ+1(η)κ|). By induction, we
can infer

(tξ, pξ(η))  {ζ | pξ(ζ)<κ = 1} ∩ limC = C∗ ∩ κ(ξ),

for all limit ξ.

Taking greatest lower bound at the limit step: At limit ρ ≤ α, we
take (tρ, pρ) to be the greatest lower bound of (tξ, pξ)ξ<ρ; this is well-defined:
we show by induction on η < θ that (tρ, pρ � η) is a condition. Since we are
always taking 4<κ-direct extensions, at amalgamation stages we can simply
use induction to take the point-wise limit in each of the Z-many components
and the resulting Z-sequence will be a condition in the amalgamation. By
κ-closure of T̄ and κ-Cohen forcing, we only have to treat coding stages.
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So fix a coding stage η and assume w = (tξ, pξ � η) is a condition. We
let pξ(η) by the name for the obvious candidate for a lower bound of the
sequence (pν(η))ν<η (see (4.2), p. 49).

Claim 7.9. The condition w is Mρ-generic, in the sense that

w Mρ[Ġ � η] ∩On = Mρ ∩On .

It is Nρ-generic in the same sense.

Proof. This follows from requirement 5 in the construction of the sequence
and by Σ1-elementarity.

Observe a consequence of this is that we can treat Mρ[Ġ � η] as a generic
extension of Mρ by Pη; likewise for Nρ[Ġ � η].

Claim 7.10. We have that w  pρ(η)<κ ∈ S∗<κ.

Proof. Let G � η denote an arbitrary Pη-generic for the moment. We work
in L[B̄−, Go � η] = L[Aη], as usual (see sections 4.2 and 7.1). Let N =
Lγ[Aη ∩ α, pξ(η)<κ] be a < κ-test model such that N � α is the least Mahlo.
Let M̄ ξ be the transitive collapse of M ξ for ξ ≤ ρ . Letting µ̄ = M̄ρ∩On, we
show γ < µ̄; for otherwise, since (M̄ ξ)ξ<ρ is definable over M̄ρ = Lµ̄ which is
in turn definable in N , we find C∩α ∈ N and thus limC∗ ∈ N , contradicting
that N � α is Mahlo.

Thus indeed, γ < µ̄. Now we can quote the last part of the proof the-
orem 4.24, which easily shows that by requirement 4 and by claim 7.9 in
the construction of the sequence and by elementarity, for A∗ = A∗(pρ<κ(η)),
Lγ[A

∗] � rη is coded by branches.

Claim 7.11. We have that w  pξ(η)κ ∈ S∗κ.

Proof. This is completely analogous to the previous claim: The proof for
theorem 4.24 on page 48 carries over to the present situation almost verbatim
(in the case δ = κ). As in the previous claim, to show that the height of
any test-model is less than that of the collapse of Nρ, use that (tξ, pξ)ξ<ρ
is appropriately definable over the transitive collapse of Nρ using ~x and C∗
as parameters. The additional parameter is unproblematic since C∗ ∈ H(κ)
and is therefore an element of each Nρ. As in the previous claim, we may
directly use basic genericity (requirement 4 in the construction) and claim
7.9 instead of D as we did in the proof of theorem 4.24.
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Observe when ρ < α is a limit ordinal, have (tρ, pρ) ∈ Mρ+1: this is
because (tξ, pξ)ξ<ρ is definable over 〈Mρ, C∗ ∩ κ(ρ)〉 and C∗ ∩ κ(ρ) ∈ Mρ+1

since κ(ρ̄ + 1) is a strong limit cardinal. This ends the construction of the
sequence (tξ, pξ), for ξ ≤ α.

Finally, we extend (tα, pα) to (tα, p̄α) by making sure α is in the support
at each coding stage, i.e.

∀η < θ ∩ α ∩ E2 (tα, p̄α � η)  α ∈ supp(pα(η)) (7.6)

We show (tα, p̄α)  α̇ν < α, for each ν < α. In fact, letting α̇′ν be the name
such that whenever {ξ}1 = ν and rξ1 is defined, rξ1  α̇′ν = α̌ξν , we will show
that (tα, p̄α)  α̇ν = α̇′ν . Observe that this is a Pα-name whenever α ≤ θ, so
this proves the theorem.

So let ν < α, (s, r) ≤ (tα, p̄α) and assume (s, r) ∈ dom(Cα) and (s, r)
decides α̇ν . Pick ξ such that h({ξ}0) ∈ Cα(s, r), {ξ}1 = ν and also, h({ξ}0) ∈
H(κ(ξ)). The latter may be achieved by increasing ξ if needed, without
changing {ξ}i, i ∈ {0, 1}. Observe that it follows that h({ξ}0) ∈ Cκ(ξ)(s, r),
by definition of C.

Since α is inaccessible, we have ξ < α, and r witnesses that rξ1 is defined.
We now show that (s, r) · (tα, rξ1) 6= 0. This is clear for the T̄ -part, since
s ≤ tα. We show that for each η < θ, (s, r � η · rξ1 � η)  r(η) · rξ1(η) 6= 0. The
only non-trivial cases are amalgamation and coding stages. At amalgamation
stages, for each i ∈ Z, we can takes point wise meets by induction (or by
running the present argument again). Observe that since the outcome is a
4<κ-direct extension of rξ1 � η+ 1, the resulting sequence is a condition in the
amalgamation, i.e. in Pη+1.

Now assume η is a coding stage (η ∈ E2). Letting w = (s, r � η · rξ � η),
we have that w forces that

(r(η)<κ, r(η)∗κ) ≤ (rξ1(η)<κ, r
ξ
1(η)∗κ) in P r(η)κ

and
(r(η)κ, r(η)∗κ+) ≤ (rξ1(η)κ, r

ξ
1(η)∗κ+) in P r(η)κ+ .

Moreover, w forces that rξ1(η) is an extension of a condition rξ0(η) which has
“lower part h(η)”, i.e. h(η) ∈ Cκ(ξ)(rξ0(η)). Since w  h(η) ∈ Cκ(ξ)(r(η)), w
forces that rξ0(η) � κ(ξ) = r(η) � α ≥ rξ1(η) � α(ξ). It follows immediately that
that w  r(η) � [α, κ+] ∪ rξ1 � α is a condition, call it w′. Moreover, note that
w forces that

supp(rξ1(η)) ∩ κ ⊆ κ(ξ + 1). (7.7)

It remains to show that w  w′ = r(η)·rξ1(η). It is clear that w  w′ ≤ rξ1;
in order to see w  w′ ≤ r(η) we must check that making the extension from
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r(η) � α to rξ1(η) below α did not violate any of the restraints in r(η) at and
above α. Since w  ρ(pα(η)κ) ≥ α, w also forces that making the extension
of r(η) � α to rξ1(η) � α respects all restrains in r(η)∗κ. Since the restraints in
r(η)∗α are spaced by ♦α (see the discussion following definition 4.4 on page
32) and by (7.7), making this extension obeys all restraints in r(η)∗α. Lastly,
since (7.6) makes sure that w  α ∈ supp(r(η)), no restraints are violated by
this extension. In other words, we have shown that w  w′ = r(η) · rξ1 6= 0.
This finishes the proof that (tα, rξ1) · (s, r) 6= 0 and so since (s, r) decides α̇ν ,
we must have (s, r)  α̇ν = α̌ξν . This concludes the proof of lemma 7.6

It is crucial that by lemma 7.6, the book-keeping devices r̄ and s̄ “catch”
all the relevant reals in the final extension by Pκ:

Lemma 7.12. If ι < κ, ṙ0, ṙ1 are Pκ-names for reals and p ∈ Pκ forces ṙ0, ṙ1

are random over LPι, there is q ≤ p and ν < κ such that ῑ(ν) = ι

q  ṙj = ṙjν .

If ṡ is a Pκ-name for a real and p ∈ Pκ, there is q ≤ p and ξ < κ such that
either q  ṡ = ṡξ, or q  ṡ ∈ Γξ.

Proof. By lemma 7.6 there is q ≤ p, ξ < κ and Pξ-names ẋ0, ẋ1 such that q 
ṙj = ẋj. As Pκ collapses the continuum of any initial stage of the iteration,
we may assume 1Pκ forces ẋj is random over LPν . Using the notation from
lemma 7.3, find ν, ν ′ and q′ ≤ q such that q′  ẋ0 = ẋν and q′  ẋ1 = ẋν′ ,
and find q′′ ≤ q′ and y ∈ Y (ν, ν ′) such that q′′  (ẋ0, ẋ1) = y. Thus, by
construction of r̄, we may find ν such that ῑ(ν) = ι and y = (ṙ0

ν , ṙ
1
ν), and we

have q′′  ṙ0 = ṙ0
ν and ṙ1 = ṙ1

ν .
The second claim follows immediately from lemmas 7.6, 7.5 and the def-

inition of s̄.

7.5 Every projective set of reals is measurable
Write G = Gκ.

Lemma 7.13. For any ν < κ,
⋃
N∗ν is a null set, where

N∗ν = {N ∈ L[Gν ] | L[Gν ] |= N ⊂ R has measure zero}

Proof. Every null set N ∈ L[Gν ] is covered by a null Borel set whose Borel
code is also in L[Gν ]. The set C∗ of Borel codes for null sets in L[Gν ] is
countable in L[G], so

⋃
N∗ν , which is equal to the union of all the Borel sets

with code in C∗, is a countable union of null sets in L[G].
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The following, together with the last lemma, suffices to show that in the
extension by Pκ, every projective set of reals is measurable.

Lemma 7.14. Let ν < κ. There is a name ṙ∗ which is fully random over
LPν such that the following hold:

1. Let Ḃ(ṙ∗) be a Pν-name for the complete sub-algebra of Bκ : Pν gener-
ated by ṙ∗ in L[Gν ] and let B0 = Pν ∗ Ḃ(ṙ∗). For any b ∈ Bκ \B0, there
is an automorphism Φ of Bκ such that Φ(b) 6= b and Φ �B0 = id.

2. For any Pκ-name ṙ which is random over LPν and any p ∈ Pκ there
is q ≤ p and an automorphism Φ of Bκ such that q  ṙ = Φ(r∗) and
πν ◦ Φ = Φ ◦ πν = πν.

Proof. For ṙ∗ we may use any ṙ0
η (from our list r̄) such that ῑ(η) ≥ ν (i.e. its

fully random over LPν ).
Let π be the canonical projection π : Bκ → B0, where B0 is as in the

hypothesis of item 1 of the lemma. Pick ξ < κ such that

1. πξ(b) 6∈ B0; this holds for large enough ξ since b 6∈ B0;

2. r∗ is a Pξ-name, i.e. B0 is a complete sub-algebra of Bξ.

3. Pξ+1 = Am1(Pι, Dξ, r∗, r∗), where ι ≥ ν.

Let b0 denote πξ(b). Clearly, there is p ∈ Dξ, p ≤ b0 such that π(p) 6≤ b0:
for otherwise, the set

X = {d ∈ B0 | d ≤ b0}

would be predense in Pξ below b0, and thus b0 =
∑
X ∈ B0, contradiction.

So pick p as above and let q ∈ Dξ, q ≤ π(p) such that q · b0 = 0.
Let b1 = π(q). Look at the condition p̄ ∈ (Dξ)

Z
f such that p̄(−1) = q,

p̄(0) = b1 · p and for i ∈ Z \ {−1, 0}, p̄(i) = b1. Then we have p̄ ∈ (Dξ)
Z
f ,

p̄ ≤ p ≤ b0. Letting Φ denote the automorphism of Bκ resulting from Pξ+1,
we have Φ(p̄) ≤ q whence Φ(p̄) · b0 = 0. So as p̄ ≤ πξ(b) and Φ(p̄) · b = 0,
it follows that Φ(b) 6= b; for otherwise since p̄ ≤ πξ(b), we have p̄ · b 6= 0 but
Φ(p̄ · b) = Φ(p̄) · b = 0.

The second claim is clear from the construction, as Φρ(ṙ
0
ρ) = ṙ1

ρ for each
ρ < κ.

Finally, we show in L[G]:

Lemma 7.15. Say s ∈ [On]ω, φ a formula. If X = {r ∈ R | φ(r, s)}, X is
measurable.
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Proof. Let X, s be as above, and say s = ṡG. Without loss of generality, ṡ
is a Pν-name, where ν < κ and ν ṡ ∈ [On]ω (by lemma 7.6). Fix ṙ∗ as in
the previous lemma. Let Ḃ(ṙ∗) be a Pν-name for the complete sub-algebra
of Bκ : Pν generated by ṙ∗ in L[Gν ].

Claim. ‖φ(ṙ∗, ṡ)‖Bκ ∈ r.o.(Pν) ∗B(ṙ∗).

Proof of Claim. Write B0 = Pν ∗ Ḃ(ṙ∗) and b = ‖φ(ṙ∗, ṡ)‖Bκ . Towards a
contradiction, assume b 6∈ B0. By lemma 7.14, (1), there is an automorphism
Φ of Bκ such that Φ(b) 6= b while Φ(ṡ) = ṡ and Φ(ṙ) = ṙ. This is a
contradiction, as we infer

b = ‖φ(ṙ∗, ṡ)‖Bκ = ‖φ(Φ(ṙ∗),Φ(ṡ))‖Bκ = Φ(b).

Let N∗ denote⋃
{N ∈ L[Gν ] | L[Gν ] |= N has measure zero},

and let Ṅ∗ be a Pν-name for this set. N∗ is null in L[G].
We find a Borel set B such that for arbitrary r 6∈ N∗, we have r ∈ X ⇐⇒

r ∈ B. Then X \ N∗ = B \ N∗ is measurable, finishing the proof. We may
regard B(ṙ∗) as identical to the Random algebra in L[Gν ], so we may write
‖φ(ṙ∗, ṡ)‖Bκ:Bν = [B]n for a Borel set B.

To show B is the Borel set we were looking for, let r 6∈ N∗ be arbitrary.
Find ṙ and p ∈ G such that ṙG = r and p  ṙ 6∈ Ṅ∗, i.e. p forces ṙ is random
over LPν . By 2 of the previous lemma, there is an automorphism Φ of Pκ
and q ∈ G such that q  Φ(ṙ∗) = ṙ, and thus Φ(ṙ∗)

G = ṙ
Φ−1[G]
∗ = ṙG. We

also have πν ◦ Φ = Φ ◦ πν = πν and so Φ(ṡ)G = ṡΦ−1[G] = ṡG. We have

φ(ṙG, ṡG) ⇐⇒ ‖φ(ṙ, ṡ)‖ ∈ G ⇐⇒
⇐⇒ Φ̄−1(‖φ(ṙ, ṡ)‖) ∈ Φ̄−1[G] ⇐⇒
⇐⇒ ‖φ(Φ̄−1(ṙ), ṡ)‖ ∈ Φ̄−1[G] ⇐⇒
⇐⇒ ‖φ(ṙ∗, ṡ)‖ ∈ Φ̄−1[G] ∩B(ṙ∗) ⇐⇒ ṙΦ̄−1[G]

∗ ∈ B

As ṙΦ̄−1[G]
∗ = ṙG, we are done.



Chapter 8

The set Γ0 is ∆1
3

We now check that Γ0 is in fact ∆1
3. By [Bar84], this is optimal, since under

the assumption that all Σ1
2 sets are Lebesgue-measurable, all Σ1

2 sets do have
the property of Baire.

Let Θ(r, s, α, β) be the sentence

Lβ[r, s] is a model of ZF− and of “α is the least Mahlo and
α++ exists”.

Definition 8.1. For an ordinal α and C ∈ α2, write σCC to express σ is an
initial segment of C, i.e. for some ρ < α, σ = C � ρ. Let φ(x) be a formula.
When we write ∀∗σ C Cφ(σ), we mean there exists ζ < α such that for all
ρ ∈ (ζ, α), φ(C � ρ) holds. In other words, for almost all initial segments σ
of C, φ(σ) holds.

For j ∈ {0, 1}, let Ψ(r, j) denote the formula

∃s ∈ ω2 ∀α, β < κ if θ(r, s, α, β) then:
Lβ[r, s] |=“∃C ∈ α2 ∀∗σ C C ∀(n, i) ∈ ω × 2
r(n) = i⇒ Tα(σ, n, i, j) has a branch.”

Lemma 8.2. For j ∈ {0, 1} and any real r,

r ∈ (Γ̇j)G ⇐⇒ Ψ(r, j).

Proof. For ξ ≤ κ, let Fξ be the smallest set closed under (relational) com-
position and containing all functions F = Φζ

ρ, (Φ
ζ
ρ)
−1 such that domF ⊆ Pξ.

In other words, Fξ is the closure under relational composition of

{Φζ
ρ, (Φ

ζ
ρ)
−1 | E3(αζρ) < ξ}.

135
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First assume r ∈ (Γ̇j)G and show Ψ(r, j) holds. If j = 0, by definition of
Γ̇0 we can find η < κ and Φ ∈ Fκ such that r = (Φ(ċη))

G. If j = 1, we fix
η < κ such that r = (ṡη−1)G. Let ṙ0 denote ċη if j = 0 and let ṙ0 denote ṡη−1

if j = 1 and let r0 = (ṙ0)G .
In either case, at stage ξ = E2(η) we force with Jensen coding, adding a

real s0 such that

for all α, β < κ, if θ(r0, s0, α, β) then Cη � α, r0 ∈ Lβ[s0] and
Lβ[s0] |= “∀σ such that σ C Cη � α and for all n, i such that
r0(n) = i, Tα(σ, n, i, j) has a branch”.

So
1Pκ  Ψ(ṙ0, j),

which completes the proof in case j = 1. For j = 0, apply Φ to get

1Pκ  Ψ(Φ(ṙ0), j),

and we are done as (Φ(ṙ0))G = r.
Now assume Ψ(r, j) and show r ∈ (Γ̇j)G: Fix s to witness Ψ(r, j). It must

be the case that

L[r, s] |= ∃C ∈ κ2 ∀∗σ C C ∀(n, i) ∈ ω × 2
(r(n) = i)⇒ T (σ, n, i, j) has a branch . (8.1)

For let Lβ[r, s] be isomorphic to an elementary sub-model of Lκ+3 [r, s] which
contains r and s, and let α be the least Mahlo in Lβ[r, s]. Then as θ(r, s, α, β)
holds, by Ψ(r, j),

Lβ[r, s] |= ∃C ∈ α2 ∀∗σ C C ∀(n, i) ∈ ω × 2
(r(n) = i)⇒ Tα(σ, n, i, j) has a branch .

So by elementarity, (8.1) holds.
Fix ξ < κ such that r, s ∈ W [Gξ] and fix C witnessing (8.1). Pick ζ < κ

such that

for Φ ∈ Fξ and ν, ν ′ < ξ such that Φ 6= id and ν 6= ν ′ we have
Φ(Cν) � ζ 6= Cν′ � ζ.

(8.2)

This is possible by lemma 7.4. As (8.1) holds, we can also assume ζ to be
large enough so that whenever r(n) = i, and ρ ≥ ζ, T (C � ρ, n, i, j) has a
branch in L[r, s].

Since r, s ∈ W [Gξ], lemma 8.3 below gives us: for any n and i, if the
tree T (C � ζ, n, i, j) has a branch in L[r, s] then there is Φ ∈ Fξ and η < ξ
such that C � ζ C Φ(Cη). By (8.2), Φ and η are unique and do not depend
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on n and i, so let Φ and η be fixed. By the way, it follows that C = Φ(Cη)
(which we do not use in the following). More importantly, whenever r(n) = i,
T (Φ(Cη) � ζ, n, i, j) has a branch in L[r, s].

Moreover, lemma 8.3 yields that whenever T (C � ρ, n, i, j) has a branch
in L[r, s],

1. if j = 0 then η is a limit and (Φ(ċη))
G(n) = i

2. if j = 1 then η is a successor and (Φ(ṡη−1))G(n) = i.

Thus, in the first case, r = Φ(cη) and so r ∈ (Γ̇0)G. In the second case,
r = (Φ(ṡη−1))G. As (ṡη−1)G ∈ (Γ̇1)G and (Γ̇1)G is closed under all the auto-
morphisms {Φ∗ρ | ρ < κ} (by lemma 7.5), r ∈ (Γ̇1)G.

For ξ ≤ κ, let Iξ be the set of triples (σ, n, i, j) such that for some η < ξ
and Φ ∈ Fξ, σ C Φ(Cη) and

1. if η is limit ordinal, Φ(cη)(n) = i and j = 0

2. if η is a successor ordinal, Φ(sη−1)(n) = i and j = 1.

Lemma 8.3. Say ξ0 < κ and let u an arbitrary real in L[G � ξξ0]. Then
T (η, σ, n, i, j) has a branch in L[u] only if (η, σ, n, i, j) ∈ Iξ0.

Proof. Fix ν ∈ I, ξ0 < κ and p0 ∈ Pξ0 such that p0  ν̌ 6∈ İξ0 in L[B̄], where
ν = (η, σ, n, i, j). Let B̄− denote {B̄(ξ)}ξ∈I\{ν}.

We will show in a moment that Pξ0(≤ p0) is equivalent to a forcing P ∗ξ0 ∈
L[B̄−], whence T̄ ∗ Pξ0(≤ p0) is equivalent to

[( <κ∏
ζ∈I\{ν}

T (ζ)
)
∗ P ∗ξ0(≤ p0)

]
× T (ν).

Assuming this for the moment, we can prove the lemma thus: As T (ν) doesn’t
add reals, any real u ∈ L[B̄][Gξ0 ] is actually an element of L[B̄−][Gξ0 ], and
as T (ν) is Suslin in L[T̄−] and P ∗ξ0 is κ+-centered, T (ν) remains Suslin in
L[B̄−][Gξ0 ] and thus in L[u]. It remains to see that Pξ0(≤ p0) is equivalent to
a forcing which is an element of L[B̄−]. For the purpose of carrying out the
inductive proof, we prove a stronger statement, in the claim below. First,
note that for ξ < ξ̄ ≤ ξ0, as Iξ ⊆ Iξ̄,

‖ν 6∈ İξ̄‖ ≤ ‖ν 6∈ İξ‖,

and so
πξ(‖ν 6∈ İξ̄‖) ≤ ‖ν 6∈ İξ‖
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Let bξ denote ‖ν 6∈ İξ‖Bξ , for ξ < ξ0.

Claim 8.4. For each ξ ≤ ξ0, there is an isomorphism1

jξ : Pξ(≤ bξ)→ P ∗ξ ,

such that

for ξ < ξ̄ ≤ ξ0 and p ∈ Pξ̄(≤ bξ), jξ(πξ(p)) = πξ(jξ̄(p)). (8.3)

Moreover, P ∗ξ ∈ L[B̄−] and P ∗ξ = Pξ(≤ bξ) ∩ Lκ++ [B−].

There is no need to distinguish between Gξ and jξ[Gξ], we write Gξ for
either one. Observe T̄ is κ++-distributive, so we have

H(κ++)L[B̄] = H(κ++)L (8.4)

At heart, the claim is a consequence of this simple observation:

Fact 8.5. If P has the κ++-chain condition and p  ẋ ∈ H(κ++), there is
ẋ′ ∈ H(κ++) such that p  ẋ = ẋ′.

Proof. Use nice names.

The induction splits into cases. For the successor case, assume jξ is al-
ready defined and define jξ+1. Observe that by induction, T̄ ∗Pξ is equivalent
to [( <κ∏

ζ∈I\{ν}

T (ζ)
)
∗ P ∗ξ

]
× T (ν),

and since T (ν) is κ++-distributive in L[B̄−][Gξ] (because it is still Suslin in
that model),

H(κ++)L[B̄][Gξ] ⊆ L[B̄−][Gξ], (8.5)

Easiest Case: As a warm up, assume ξ ∈ E1. Thus Pξ+1 = Pξ × Q for
Q ∈ L. Of course, P ∗ξ ×Q ∈ L[B̄−]. We can set jξ+1(p, q) = (jξ(p), q).

Observe that the claim asks for an isomorphism of P ∗ξ+1 with Pξ∗Q̇ξ(≤ bξ),
not Pξ(≤ bξ) ∗ Q̇ξ. So to formally satisfy the claim – and to make the
induction work in the next step – restrict jξ to Pξ+1(≤ bξ+1). We should
check P ∗ξ ×Q(≤ bξ+1) ∈ L[B̄−], though:

1By isomorphism, we mean of course jξ is injective on the separative quotient of its
domain.
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Lightheartedly identify Pξ+1 names and P ∗ξ × Q-names and assume (by
fact 8.5 and (8.4)) that İξ ∈ L[B̄−]. Then for p ∈ P ∗ξ ×Q,

p  ν ∈ İξ+1

is absolute between L[B̄] and L[B̄−], so P ∗ξ × Q(≤ bξ+1) ∈ L[B̄−]. So set
P ∗ξ+1 = P ∗ξ ×Q(≤ bξ+1).

Jensen Coding (and another easy case): Now, assume ξ ∈ E2, i.e.
Pξ+1 = Pξ ∗ Q̇ξ where Q̇ξ is a name for Jensen coding. Now it is crucial
that we work below bξ = ‖ν 6∈ İξ‖Bξ : Work in L[B̄][Gξ] for now, where
Gξ is P ∗ξ -generic over L[B̄]. Then ν 6∈ (İξ)

Gξ , so the set of branches we
code at this stage does not contain B(ν). Thus Q̇Gξ

ξ is a subset of H(κ++)

(of the extension), which is definable over 〈H(κ++), B̄−〉. By (8.5), Q̇Gξ
ξ ∈

L[B̄−][Gξ]. This immediately implies that Pξ+1 is equivalent to a forcing
which is an element of L[B̄−], but in order to carry out the inductive proof
at limits, we need (8.3). For this, let φ(x) be a formula defining membership
in Q̇Gξ

ξ over 〈H(κ++), B̄−〉 in L[B̄][Gξ]. Set

P ∗ξ+1 = {(p, q̇) | p ∈ P ∗ξ , q̇ ∈ H(κ++) is a P ∗ξ -name, P ∗ξ  φ̇(q)H(κ++)} (8.6)

As P ∗ξ has the κ++-chain condition, any x ∈ H(κ++)L[B̄][Gξ] has a P ∗ξ -name
in H(κ++)L[B̄]. Therefore, by (8.4),

P ∗ξ  φ̇(q)H(κ++)

is absolute between L[B̄] and L[B̄−] and thus (8.6) witnesses that P ∗ξ+1 ∈
L[B̄−]. For (p, q̇) ∈ Pξ+1, we can now define jξ+1(p, q̇). Since

P ∗ξ  jξ(q̇) ∈ jξ(Q̇ξ) ⊆ H(κ++)

using fact 8.5, we can find a P ∗ξ -name q̇′ ∈ H(κ++) such that P ∗ξ  jξ(q̇) = q̇′.
Let jξ+1(p, q̇) = (jξ(p), q̇

′).
Clearly, jξ(p, q̇) ∈ P ∗ξ+1. It is straightforward to check that jξ+1 preserves

the ordering and is onto. It is injective on the separative quotient of Pξ+1.
Again, as in the previous case, restrict jξ to Pξ+1(≤ bξ+1) to formally satisfy
the claim. The case ξ ∈ E0 can be treated in an analogous – but simpler –
way.

Remark 8.6. Observe, by the way that for any P ∗ξ name Q̇ such that P ∗ξ 
Q̇ = jξ(Q̇ξ),

P ∗ξ+1 = (P ∗ξ ∗ Q̇) ∩H(κ++).
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In particular, it follows by induction that P ∗ξ+1 = Pξ+1 ∩H(κ++). Moreover,
if Q̇ ∈ L[B̄−] then

P ∗ξ+1 = ((P ∗ξ ∗ Q̇) ∩H(κ++))L[B̄−].

If Q̇ξ is chosen reasonably (e.g. in the most obvious way), in fact j(Q̇ξ) ∈
L[B̄−]. 2 This means that we could find P ∗ξ by interpreting the definition of
Pξ in L[B−] if we commit to using only names which have size at most κ+.

Amalgamation: Now let ξ ∈ E3 and say ξ = E3(α0
ρ), i.e. Pξ+1 =

Am1(Pι, Pξ, f, λξ), where f is the isomorphism of the algebras generated
by some Pξ-names ṙ0 and ṙ1, and let πi denote the canonical projection from
Pξ to the domain and range of f . Let Φ be the resulting automorphism. Let
R denote the set of p̄ ∈ Pξ+1 such that for all i 6= 0, p̄(i) ∈ D̂ξ(≤ bξ) and
p̄(0) ∈ Pξ(≤ bξ). We show Pξ+1(≤ bξ+1) ⊆ R and that R is in L[B̄−].

For the first, it is crucial that İξ+1 is closed under Φ. Say p̄ ∈ Pξ+1(≤ bξ+1),
that is, p̄  ν 6∈ İξ+1. By the definition of İξ+1, for each i ∈ Z,

Φi(p̄) Pξ+1
ν 6∈ İξ+1,

and so
p̄(i) = π̄(Φi(p̄)) P̂ξ ν 6∈ İξ,

where π̄ denotes the canonical projection from Pξ+1 to P̂ξ. Thus, p̄ ∈ R.
By induction, Pξ(≤ bξ) is isomorphic to P ∗ξ . A little care is needed to

see D̂ξ(≤ bξ) is in L[B̄−]: D̂ξ(≤ bξ) is not the same as ̂Dξ(≤ bξ) in general.
The two orderings are equivalent, but once more, this doesn’t mean that
we can use them interchangeably in the definition of R. At the same time,
(p, ḃ0, ḃ1) ∈ D̂ξ(≤ bξ) does not imply that p ≤ bξ, and so p needn’t be in the
domain of jξ.

So we have to check that in fact, B∗ξ = r.o.(P ∗ξ ) ∈ L[B̄−]. This is because
we may regard B∗ξ the collection of regular open cuts which are given by
antichains in P ∗ξ . As P ∗ξ has the κ++-chain condition all such antichains and
hence all regular cuts are in L[B̄−] (once more by (8.4)). So B∗ξ ∈ L[B̄−] and
jξ can be viewed as an isomorphism of Bξ(≤ bξ) with B∗ξ . Thus, as we have
assumed ṙ0, ṙ1 are in L[B̄−], we can define B(ṙi)

B∗ξ and canonical projections
from B∗ξ to P ∗ι ∗ (〈ṙi〉B

∗
ξ :P ∗ι ) in L[B̄−]. In fact,

P ∗ι ∗ (〈ṙi〉B
∗
ξ :P ∗ι ) = j[C],

2It would be tempting to define jξ+1(p, q̇) = (jξ(p), jξ(q̇)), but we do not know if
jξ(q̇) ∈ L[B̄−].
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where C is the algebra obtained from Pι ∗ (〈ṙi〉Bξ:Pι) by factoring through
the ideal of elements below −bξ. Thus also D∗ξ = jξ[D̂ξ(≤ bξ)] ∈ L[B̄−] (it is
a subset of B∗ξ+1 with a sufficiently absolute definition). We leave it to the
reader to check that this suffices to find an isomorphic copy R∗ of R in L[B̄−].
Finally, let Pξ+1 = R∗(≤ bξ+1) and let jξ+1 be defined by jξ+1(p̄)(i) = jξ(p̄(i)).
A very similar but simpler argument works if ξ = E3(αζρ) for ζ > 0 and
Pξ+1 = Am2(dom(Φ), Pξ,Φ) for some Φ. This completes the successor cases.

For ξ limit, check that the λξ-diagonal limit is absolute between L[B̄−] and
L[B̄]. So let P ∗ξ be the λξ-diagonal limit of the sequence constructed so far,
inside L[B̄−], restricted to conditions below bξ. By (8.3), the isomorphisms
constructed at earlier stages can be glued together to form jξ. This finishes
the proof of the claim.
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