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Abstract. We show that if M is a countable transitive model of
ZF and if a, b are reals not in M , then there is a G generic over M
such that b ∈ L[a,G]. We then present several applications such
as the following: if J is any countable transitive model of ZFC and
M 6⊆ J is another countable transitive model of ZFC of the same
ordinal height α, then there is a forcing extension N of J such that
M ∪N is not included in any transitive model of ZFC of height α.
Also, assuming 0# exists, letting S be the set of reals generic over
L, although S is disjoint from the Turing cone above 0#, we have
that for any non-constructible real a, {a ⊕ s : s ∈ S} is cofinal in
the Turing degrees.

1. Introduction

If 0# exists, it is not in any (set) forcing extension of L. On the
other hand, Mostowski showed that for any real x, there are reals g1, g2
both Cohen generic over L such that x is computable from the Turing
join of g1 and g2, written x ≤T g1 ⊕ g2 (see [4] for a proof).

In this paper we investigate the following question (assuming 0#

exists): given an arbitrary g1 ∈ ωω not in L, is there a real g2 generic
over L such that 0# ≤T g1 ⊕ g2? We will see that the answer is yes.
Although there is a limit to what reals are generic over L, there is no
limit to what reals are constructible from a fixed non-constructible real
and a real that is generic over L. Here is the general formulation:

Definition 1.1. Let M be a countable transitive model of ZFC. Let
P ∈ M be a poset. A real ā ∈ ωω is (P,M)-helpful iff for any x ∈ ωω,
there is a G that is P-generic over M such that x ∈ L(ā, G).

Now fix a countable transitive model M of ZFC. Let C be Cohen
forcing.
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1) Fix P ∈ M . No real ā ∈ M is (P,M)-helpful: if x ∈ ωω codes
the ordinal Ord ∩ M , then x 6∈ L(ā, G) for any G that is P-
generic over M .

2) Every real Cohen generic over M is (C,M)-helpful (see Corol-
lary 5.5 of [4]).

3) Miha Habic̆ (unpublished) and the first author (see [3] just after
“nodes of compatibility”) have independently shown that every
real unbounded over M is (C,M)-helpful.

4) The first author has shown that every real Sacks generic over
M is (C,M)-helpful (unpublished).

5) The central result of this paper (Theorem 1.3) is that every real
not in M is (H,M)-helpful, where H is “Tree-Hechler” forcing.

6) The question of whether every real not in M is (C,M)-helpful
remains open.

Definition 1.2. The forcing H, called Tree-Hechler forcing, consists of
all trees T ⊆ <ωω such that for all t w Stem(T ) in T ,

{z ∈ ω : t_z 6∈ T} is finite.

The ordering is by inclusion.

That is, a condition in Tree-Hechler forcing has cofinite splitting
beyond its stem.

Consider a tree T ⊆ <ωω and a node t ∈ T . By a successor of t we
always mean some t_z ∈ T for z ∈ ω. By T � t we mean the set of all
s ∈ T that are comparable to t. Stem(T ) is the longest element of T
that is comparable with all other elements of T .

Let M be a transitive model of ZF and suppose G is HM -generic over
M . Let g =

⋃⋂
G. That is, g : ω → ω is the union of all the stems of

the trees T ∈ G. The set G can be recovered from g (and M). We will
treat g : ω → ω as the object which is encoding information.

The poset H is σ-centered, because any two conditions with the
same stem are comparable. Thus, H is c.c.c. Combining this with the
fact that |H| = 2ω, we have the following: there are only 2ω maximal
antichains in H. So, if M is a transitive model of ZFC and (2ω)M is
countable, then there is an HM -generic over M .

The forcing H is discussed in [9], along with other versions of Hech-
ler forcing, where it is called Dtree. A key ingredient for us is that
H admits a “rank analysis” of its dense sets (see Definition 5.9 and
Lemma 5.10). In [2], Jörg Brendle and Benedikt Löwe carry out a
rank analysis of H. The original rank analysis of a Hechler-like forcing
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was done by James Baumgartner and Peter Dordal in [1] for the non-
decreasing function version of Hechler forcing (although we discovered
“reachability” independently of these works).

Here is our main result:

Theorem 1.3 (Generic Coding with Help). Let M be a transitive
model of ZF such that PM(HM) is countable. Then given any ā, x ∈ ωω
such that ā 6∈ M , there is a G that is HM -generic over M such that
x ≤T ā⊕ (

⋃⋂
G).

Here, ā is the “help” which is being used to code x. Theorem 1.3
has several interesting applications, which we will present first. Then
for completeness we will include a proof of Theorem 1.3.

One striking application is Theorem 2.1, which shows that given two
distinct countable transitive models M,J of ZFC of the same height
(meaning Ord ∩ M = Ord ∩ J), there is a forcing extension of one
which does not amalgamate with the other (where two models of the
same height α are said to amalgamate iff they are both included in
a countable transitive model W of ZFC of height α). This answers
a question posed by the first author [3] concerning the Hyperuniverse
Program: the model Lα is the only node of compatibility of height α.

Theorem 1.3 is a consequence of Lemma 5.11, the “Main Lemma”.
However, this was not the Main Lemma’s original purpose in the liter-
ature. This lemma originated from the second author’s thesis [7] where
it appeared in a game theoretic form that does not explicitly refer to
forcing. In that version, Players I and II play to build a descending
sequence through H, where Player I makes ≤-extensions but Player II
makes ≤A-extensions (to be defined later). The goal of this game was
to prove results like Proposition 5.12. In [5] and [6] such results are
proved, and the current version of the Main Lemma appears in [5]. We
want to emphasize that the Main Lemma may have applications other
than Theorem 1.3 and Proposition 5.12.

2. Amalgamation failure for C.T.M.’s

The Generic Coding with Help theorem implies in a strong way that
c.t.m.’s (countable transitive models) of ZFC of the same ordinal height
cannot be amalgamated:

Theorem 2.1. Let J be a c.t.m. of ZFC of ordinal height α < ω1. Let
M 6⊆ J be another c.t.m. of ZFC of height α. Then there is a forcing
extension N of J such that M ∪N is not included in any c.t.m. of ZFC
of height α.



4 SY-DAVID FRIEDMAN AND DAN HATHAWAY

Proof. Fix λ < α and x ⊆ λ such that x ∈ M − J . This is possible
because J and M are models of ZFC and M 6⊆ J . That is, following the
proof of Theorem 13.28 in [8], first fix X ∈M−J . Now let x ∈M be a
bounded subset of Ord∩M = α such that X is in any transitive model
of ZFC which contains x: such an x can be formed by first bijecting
the transitive closure tc(X) of X with an ordinal λ′ < α, and then
encoding the binary relation ∈� tc(X) as a subset of λ′ × λ′, and then
encoding that binary relation by a single set x ⊆ λ for some λ < α.
Such an x cannot be in J .

Let g′0 and g′′0 be mutually Col(ω, λ)-generic over J . Since they are
mutually generic, J [g′0]− J and J [g′′0 ]− J are disjoint. Let g0 be one of
g′0 or g′′0 such that x 6∈ J [g0].

Now g0 codes a surjection from ω to λ. Let x̃ ⊆ ω be induced from
this surjection and x. By this we mean if W is any transitive model of
ZFC with contains g0, then x ∈ W iff x̃ ∈ W . Now x̃ 6∈ J [g0].

Let y ∈ ωω be a real that codes a well-ordering of ω of order type α
(so y cannot be in any c.t.m. of ZFC of height α). By Theorem 1.3, let
g1 be HJ [g0]-generic over J [g0] such that

y ≤T x̃⊕ (
⋃⋂

g1).

Let N = J [g0][g1]. Now suppose, towards a contradiction, that there
is some transitive model W ⊇ M ∪ N of ZFC of ordinal height α.
Because x ∈ M ⊆ W and g0 ∈ N ⊆ W , we have x̃ ∈ W . But also
g1 ∈ N ⊆ W , so y ∈ W , which is impossible. �

We say two c.t.m.’s N,M of ZFC of height α are compatible iff there
is a c.t.m. W of ZFC of height α such that N ∪M ⊆ W .

Corollary 2.2. Given any two distinct c.t.m.’s of ZFC of the same
height, there is a forcing extension of one that is not compatible with
the other.

The first author asked (see [3]) if for a given α < ω1, whether Lα
was the only c.t.m. of ZFC of height α that was compatible with every
c.t.m. of ZFC of height α (that is, whether Lα was the only node of
compatibility of height α in the Hyperuniverse). Now we see the answer
is yes: If M 6= Lα is a c.t.m. of height α, then M is not compatible
with a certain forcing extension of Lα.

Remark 2.3. Mostowski’s result in the introduction was used by him
for a result about amalgamation (see [4]): Let J be a c.t.m. of ZF of
ordinal height α < ω1. Let x be a real which codes α. Let c1, c2 be
two reals Cohen generic over J such that x ≤T c1⊕ c2. Then J [c1] and
J [c2] are not compatible.
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3. A complex set disjoint from a Turing cone

As mentioned before, if 0# exists (or even just ω1 is inaccessible in
L), then given any real x, there are two Cohen generics s1, s2 over L
such that x ≤T s1 ⊕ s2. So, let S be the complement of the Turing
cone above 0# (the Turing cone above a ∈ ωω is the set of all b ∈ ωω
such that b ≥T a). Every real generic over L is in S. Now S is small
in one sense, because it is disjoint from a Turing cone. But it is large
in another sense, because {s1 ⊕ s2 : s1, s2 ∈ S} is cofinal in the Turing
degrees. We get a variation of this phenomenon using the Generic
Coding with Help Theorem (1.3). Let [x] denote the Turing degree of
x ∈ ωω.

Proposition 3.1. Assume 0# exists. Let S ⊆ ωω be the set of all reals
of the form s =

⋃⋂
G for some G that is HL-generic over L. The set

S is disjoint from the Turing cone above 0#. On the other hand for
any real ā not in L, the set S∗ := {[ā ⊕ s] : s ∈ S} is cofinal in the
Turing degrees.

Also, if x is any real such that x ≥T ā and x computes a length ω
enumeration of R ∩ L, then [x] ∈ S∗ (so S∗ contains a Turing cone).

Proof. It is well known that no generic extension of L contains 0#.
Hence, 0# is not Turing reducible to any s =

⋃⋂
G for a G that is

HL-generic over L. That is, S is disjoint from the Turing cone above
0#.

Now fix a real ā not in L. Pick any x ∈ ωω. By Theorem 1.3 there
is some G that is HL-generic over L such that letting s =

⋃⋂
G, we

have x ≤T ā⊕ s. Hence, S∗ is cofinal in the Turing degrees.
For the last part, again fix a real ā 6∈ L and let x ≥T ā be a real

which computes a length ω enumeration of R∩L. There is some G that
is HL-generic over L such that letting s =

⋃⋂
G, we have x ≤T ā⊕ s.

However, by the proof of Theorem 1.3, fix an s like this that can be
built using ā, x, and a length ω enumeration of R ∩ L (using that the
dense subsets of HL in L are coded by reals in L). So we can have
s ≤T ā⊕ x. We now have

x ≤T ā⊕ s ≤T ā⊕ (ā⊕ x) ≤T ā⊕ x = x,

so x =T ā⊕ s, and so [x] ∈ S∗. �

4. Larger sets are generically generic

The Generic Coding with Help theorem shows that reals not in M
are “helpful”. The following theorem shows that any set of ordinals
not in M is helpful, provided M contains the supremum of the set of
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ordinals and that we pass to an outer model of V in which a large
enough cardinal has become countable.

Theorem 4.1. Let M be a transitive model of ZF. Let λ be a cardinal
such that λ ∈M . Let P = (Col(ω, λ)∗H)M . Let Ṽ be an outer model of

V in which PM(P) is countable. Let X ∈ P Ṽ (λ). Let A ∈ P Ṽ (λ)−M .
Then there is a G in Ṽ such that

1) G is P-generic over M ,
2) X ∈ L(A,G).

Proof. Using the same mutual generic technique as in the second para-
graph of the proof of Theorem 2.1, let g0 ∈ Ṽ be Col(ω, λ)-generic over
M so that A 6∈ M [g0]. Let ã ∈ ωω be such that for every transitive
model N of ZF such that g0 ∈ N , we have A ∈ N iff ã ∈ N . Now
ã 6∈ M [g0]. Let x̃ ∈ ωω be such that for every transitive model N of
ZF such that g0 ∈ N , we have X ∈ N iff x̃ ∈ N .

Force over M [g0] by HM [g0] to get g1 so that x̃ ≤T ã⊕ (
⋃⋂

g1). Let
G := g0 ∗ g1, so G ∈ Ṽ is P-generic over M . L(A,G) is a model of ZF
and it contains g0 and A, so it contains ã. It also contains g1, therefore
it contains x̃. Since it contains g0 and x̃, it contains X. �

Note that if λ = ω in the theorem above, then we can simply take P
to be HM .

5. Proof of Generic Coding with Help Theorem

Theorem 1.3 follows from the Main Lemma of [5]. For completeness
we give a full proof here.

5.1. Evasiveness and the Sticking Out Lemma. We will now start
to prove the theorem. This subsection helps to clarify how we use the
hypothesis ā 6∈M .

Definition 5.1. Let M be a transitive model of ZF. A set A ⊆ ω is
evasive with respect to M iff it is infinite and it has no infinite subsets
in M .

Fact 5.2. Given any ā ∈ ωω, there is a set A ⊆ ω such that ā =T A
and A is computable from every infinite subset of itself.

Thus if M is a transitive model of ZF and ā ∈ ωω −M , then if A
comes from the fact above, then A is evasive with respect to M .

Lemma 5.3 (Sticking Out Lemma). Let M be a transitive model of
ZF. Let A ⊆ ω be evasive with respect to M . Then if B ⊆ ω is infinite
and in M , then B − A is infinite.
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Proof. Assume towards a contradiction that B − A is finite. Then
B−A ∈M . Since both B and B−A are in M , we have B∩A ∈M as
well. At the same time, since B is infinite and B − A is finite, B ∩ A
must be infinite. So now we have shown that B∩A is an infinite subset
of A that is in M , which contradicts A being evasive with respect to
M . �

5.2. Decoding an x ∈ ωω from an H generic and an A ⊆ ω.
Suppose G is generic for H. Recall that g :=

⋃⋂
G is a function

from ω to ω. The idea is to look at each n ∈ ω such that g(n) ∈ A.
Which element of A this g(n) actually is will give us a piece of encoded
information. For each n such that g(n) 6∈ A, no information is being
encoded. Here is what we mean precisely:

Definition 5.4. Fix a computable function θ : ω → ω such that

(∀m ∈ ω) θ−1(m) is infinite.

Given an infinite A ⊆ ω, let eA : ω → A be the strictly increasing
enumeration of A. Let ηA : A→ ω be the function θ ◦ e−1A .

Note that for each m ∈ ω, η−1A (m) ⊆ A is infinite.

Definition 5.5. Let M be a transitive model of ZF. Let G be HM -
generic over M . Let A ⊆ ω.

Then the real that is A-encoded by G is

〈ηA(g(ni)) : i < ω〉,
where g :=

⋃⋂
G and

n0 < n1 < ...

is the increasing enumeration of the set of n ∈ ω such that g(n) ∈ A.
However, if there are only finitely many such n’s, then the real A-
encoded by G is the zero sequence.

Observation 5.6. Let x ∈ ωω be the real A-encoded by G. Then

x ≤T A⊕ (
⋃⋂

G).

5.3. The stronger ≤A ordering and the Main Lemma. Given
A ⊆ ω, there is an ordering ≤A defined on H which is stronger than
≤. Intuitively, T ′ ≤A T iff T ′ ≤ T and the stem of T ′ does not “hit” A
any more than the stem of T already does:

Definition 5.7. Let A ⊆ ω. Then given t, t′ ∈ <ωω, we write t′ wA t
iff t′ w t and

(∀n ∈ Dom(t′)−Dom(t)) t′(n) 6∈ A
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Definition 5.8. Let A ⊆ ω. Given T, T ′ ∈ H, we write T ′ ≤A T iff
T ′ ≤ T and Stem(T ′) wA Stem(T ).

The content of the Main Lemma soon to come is that as long as A is
evasive with respect to M , we can hit dense subsets of H (that are in
M) by making ≤A extensions. So, we can construct a generic without
being forced to encode unwanted information. Hence, we can alternate
between 1) making ≤A extensions in order to build an H generic but not
encoding any information and 2) making non-≤A extensions to encode
information. We use a rank analysis to prove the Main Lemma:

Definition 5.9. Given S ⊆ <ωω and t ∈ <ωω,

• t is 0-S-reachable iff t ∈ S;
• t is α-S-reachable for some α > 0 iff

{z ∈ ω : t_z is β-S-reachable for some β < α}

is infinite;
• t is S-reachable iff t is α-S-reachable for some α.

Notice that if t is not S-reachable, then only a finite set of successors
of t can be S-reachable.

Lemma 5.10. Let D ⊆ H be dense. Let

S = {s ∈ <ωω : (∃T ∈ D) Stem(T ) = s}.

Fix t ∈ <ωω. Then t is S-reachable.

Proof. Assume that some fixed t is not S-reachable. We will construct
a tree T ∈ H with stem t such that no s w t in T is in S. Hence, no
T ′ ≤ T can be in D.

There is only a finite set of z ∈ ω such that t_z is S-reachable. Let
the successors of t in T be those t_z that are not S-reachable. Now
for each t_z0 in T , there is only a finite set of z ∈ ω such that t_z_0 z
is S-reachable. Let the successors of each t_z0 in T be those t_z_0 z
that are not S-reachable. Continuing this procedure ω times yields a
tree T such that all s w t in T are not S-reachable. In particular no
s w t in T is in S. �

Lemma 5.11 (Main Lemma). Let M be a transitive model of ZF. Let
A ⊆ ω be evasive with respect to M . Let P = HM . Let D ∈ PM(P) be
open dense (in M). Let T ∈ P. Then there exists some T ′ ≤A T in D.

Proof. Let t = Stem(T ). Let

S = {s ∈ <ωω : (∃T ′ ∈ D) Stem(T ′) = s}.
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If we can find a s wA t in T ∩ S, then letting T ′ ∈ D be such that
Stem(T ′) = s and letting T ′′ ≤ T be T ′′ = T � s, then T ′ ∩ T ′′ is in D
(because D is open), and Stem(T ′ ∩ T ′′) = s so T ′ ∩ T ′′ ≤A T . Hence,
we will be done.

Now by the previous lemma, fix some ordinal α such that t is α-S-
reachable. If α = 0 we are done, so assume α > 0. The set

B = {z ∈ ω : t_z is β-S-reachable for some β < α}

is infinite and in M . Since A is evasive with respect to M , B−A must
be infinite by the Sticking Out Lemma (Lemma 5.3). Thus, we may
fix some z0 ∈ (B − A) such that t_z0 ∈ T .

Now t_z0 is β-S-reachable for some fixed β < α. If β = 0 we
are done, and otherwise we may find some z1 ∈ (B − A) such that
t_z_0 z1 ∈ T and t_z_0 z1 is γ-S-reachable for some γ < β. We may
continue like this but eventually we will have some t_z_0 ...

_zn that is
in S. �

5.4. Proof of Generic Coding with Help Theorem.

Proof of Theorem 1.3. Let M be a transitive model of ZF. Let P = HM

and assume PM(P) is countable. Let x ∈ ωω. Let ā ∈ ωω −M . By
Fact 5.2, fix A ⊆ ω be such that A =T ā and A is computable from
every infinite subset of itself. Then A is evasive with respect to M . It
suffices to find a P-generic G over M such that x ≤T A⊕ (

⋃⋂
G). By

Observation 5.6, it suffices to find a P-generic G over M such that x is
the real A-encoded by G.

Since PM(P) is countable, let 〈Di : i < ω〉 be an enumeration of
the open dense subsets of P in M . We will construct a decreasing
ω-sequence

T0 ≥ T1 ≥ ...

of P-conditions such that each Ti ∈ Di. Hence

G := {T ∈ P : (∃i)T ≥ Ti}

will be P-generic over M . On the other hand, we will construct the
sequence of conditions so that x is the real A-encoded by G.

Since A is evasive with respect to M , by Lemma 5.11 (the Main
Lemma), let T0 ≤A 1P be such that T0 ∈ D0. Now we will encode
x(0): let T ′0 ≤ T0 be a non-≤A extension of T0, extending the stem of
T0 by one, such that Stem(T ′0) = Stem(T0)

_z for a z ∈ A such that
ηA(z) = x(0). This is possible because

{z ∈ A : ηA(z) = x(0)}



10 SY-DAVID FRIEDMAN AND DAN HATHAWAY

is infinite, and so must intersect

{z ∈ ω : Stem(T0)
_z ∈ T0}.

Next, let T1 ≤A T ′0 be such that T1 ∈ D1. Then, let T ′1 ≤ T1 be such
that Stem(T ′1) = Stem(T1)

_z for a z ∈ A such that ηA(z) = x(1).
Continuing this ω times, we see that x is the real A-encoded by G.

That is, let g :=
⋃⋂

G. The only n’s such that g(n) ∈ A come from
when we made non-≤A extensions. And, if n0 < n1 < ... is the strictly
increasing enumeration of these n’s, then we see that ηA(ni) = x(i) for
each i. �

5.5. Another application of the Main Lemma. As described in
the introduction, here is the original kind of result for which the Main
Lemma was created. A proof can be found in [6].

Proposition 5.12. Assume AD+. Fix a ∈ ωω. Then there is a Borel
(in fact, Baire class one) function fa : ωω → ωω such that whenever
g : ωω → ωω is a function whose graph is disjoint from fa, then

a ∈ L[C]

where C ⊆ Ord is any ∞-Borel code for g.

The function (a, x) 7→ fa(x) is Borel as well.

6. HOD

By Vopĕnka’s Theorem, every real is generic over HOD. But one can
ask if there is a single P ∈ HOD such that (|P| ≤ 2ω)HOD and every
real is P-generic over HOD. This is relevant to our paper because by
Theorem 4.1, if Ṽ is an outer model of V in which PHODV

(HHODV
) is

countable, and ā ∈ (ωω)Ṽ −HODV is arbitrary, then for any x ∈ (ωω)Ṽ ,

there is a G that is HHODV
-generic over HODV such that x ∈ L(ā, G).

So the question is whether the ā can be removed. The answer is no:

Proposition 6.1. It is consistent with ZFC that there is a real R that
is not P-generic over HOD for any P ∈ HOD such that (|P| ≤ 2ω)HOD.
Moreover, this persists to any outer model of V . That is, if Ṽ is an
outer model of V , then R is not P-generic over HODV for any P ∈
HODV such that (|P| ≤ 2ω)HODV

.

Proof. Start with L. Let Cω2 ∈ L be the forcing to add a Cohen subset
of ω2. Let A ⊆ ω2 be Cω2-generic over L. Let X ⊆ ω1 be generic over
L[A] by almost disjoint coding such that A ∈ L[X]. Let R ⊆ ω be
generic over L[X] by almost disjoint coding such that X ∈ L[R]. So
now

L ⊆ L[A] ⊆ L[X] ⊆ L[R]
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and P(ω1)
L = P(ω1)

L[A] (because Cω2 is<ω2-closed). LetH = HODL[R].
We will show that L[R] satisfies that R is not generic over H by any
forcing of size (2ω)H . Moreover, fix any outer model N of L[R]. We
will show that N satisfies that R is not generic over H by any forcing
of size (2ω)H .

The forcing Q to go from L[A] to L[R] is homogeneous [11]. This is
subtle, because a three step iteration of almost disjoint coding, to code
a subset of ω3 into a subset of ω, may not be homogeneous [11]. Now
because Q ∈ L[A] is homogeneous, H ⊆ L[A].

Since L ⊆ H ⊆ L[A] and P(ω1)
L = P(ω1)

L[A], we have ωL1 = ωH1 =

ω
L[A]
1 and H satisfies CH. Suppose towards a contradiction that there

is some P ∈ H such that R is in a generic extension of H by P (meaning
there is some G ∈ N that is P-generic over H and R ∈ H[G]) and P
has size (2ω)H = ωH1 . Then because P(ω1)

L = P(ω1)
H , a forcing P̃

isomorphic to P is in L. Also because P(ω1)
L = P(ω1)

H , all dense

subsets of P̃ in H are already in L. Let G ⊆ P̃ in N be P̃-generic over
L such that R ∈ L[G]. Note that this implies A ∈ L[G].

By a density argument for Cω2 , the set A ⊆ ωL2 has no subset of size

ωL2 in L. On the other hand, let Ȧ be a P̃ name for A. For each α ∈ A,

let pα ∈ G be a condition such that pα  α̌ ∈ Ȧ. Since (|P̃| < ω2)
L, fix

a p ∈ G such that p = pα for a size ωL2 set of α ∈ A. Now the set

{α < ωL2 : p  α̌ ∈ Ȧ}

is a size ωL2 subset of A in L, which is a contradiction. �

We mentioned in the proof above that the three step iteration of
almost disjoint coding to code a subset of ω3 into a subset of ω may
not be homogeneous. The argument in the proof above also shows us
why: start with V = L and let A ⊆ ω3 be a Cohen subset of ω3.
Let R ⊆ ω arise from the three step iteration Q ∈ L[A] of almost
disjoint coding to code A ⊆ ω3 into a subset of ω. Suppose towards
a contradiction that Q is homogeneous. Then HODL[R] ⊆ L[A]. By

Vopĕnka’s Theorem, R is generic over HODL[R] by a forcing of size ω2.
Since P(ω2)

L = P(ω2)
L[A] and HODL[R] is intermediate between L and

L[A], there must be some P̃ ∈ L of size ω2 such that R is in a P̃-generic

extension L[G] of L. But now since A ∈ L[G] and |P̃| ≤ ω2, A has a
size ω3 subset in L. This contradicts A being Cohen generic over L.

7. Questions

7.1. What can replace H?
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Question 7.1. Let M be a c.t.m. of ZFC. What are the forcings
P ∈M such that every real a ∈ ωω−M is (P,M)-helpful? Does Cohen
forcing work? What about a forcing which is ωω-bounding?

7.2. Generically coding subsets of ω1 with help. Given a transi-
tive model M , it is natural to ask whether subsets of ω1 can be coded
by generics over M with help. By Theorem 4.1, this is possible as long
as we pass to a sufficiently larger outer model Ṽ . We suspect that pass-
ing to Ṽ is not necessary provided that M is large enough. In terms of
being large enough, note that given a forcing P ∈ L(R), if

• there is a surjection of ωω onto P in L(R),
• P is countably closed,
• there is a proper class of Woodin cardinals, and
• CH holds,

then there is a P-generic over L(R) in V . Here is a proof of this fact
(pointed out by Paul Larson): every set of reals in L(R) is the continu-
ous preimage of R#, so there are at most 2ω sets of reals in L(R). But,
because CH holds, there are ω1 sets of reals in L(R). So there are ω1

dense subsets of P in L(R). Let 〈Dα : α < ω1〉 be an enumeration of
all these dense sets. By the fact that P is countably closed, we can hit
all ω1 dense sets by forming a length ω1 decreasing sequence through
P (here we also use that <ω1P ⊆ L(R)).

So, we ask the following (where we have weakened arbitrary help
ā ∈ P(ω1)− L(R) to some fixed help ā ∈ P(R)):

Question 7.2. Assume CH and a proper class of Woodin cardinals. Is
there some ā ⊆ R and some forcing P ∈ L(R) that is countably closed
such that given any X ⊆ ω1, there is a G that is P-generic over L(R)
such that X ∈ L(ā, G,R)?

Along similar lines, Woodin has conjectured (Section 10.6 of [10])
that assuming CH and a measurable Woodin cardinal, then for any
X ⊆ ω1, there is some B ⊆ R such that L(B,R) |= AD+ and X ∈
L(B,R)[G] for some G that is Col(ω1,R)-generic over L(R, B).

Assume Woodin’s conjecture is true and assume V satisfies CH and
has a measurable Woodin cardinal. Let C be the collection of all inner
models of AD+ containing all the reals. Then every subset of ω1 (and
therefore every subset of R because we are assuming CH) is generic
over some model in C. Our question above asks whether the smallest
model in C, namely L(R), is still large enough so that (∃ā ⊆ R)(∃P ∈
L(R))(∀X ⊆ ω1)(∃G that is P-generic over L(R))X ∈ L(ā, G,R).
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