ON THE CONSISTENCY STRENGTH OF THE INNER MODEL HYPOTHESIS

SY-DAVID FRIEDMAN, PHILIP WELCH, AND W. HUGH WOODIN

The Inner Model Hypothesis (IMH) and the Strong Inner Model Hypothesis (SIMH) were introduced in [4]. In this article we establish some upper and lower bounds for their consistency strength.
We repeat the statement of the IMH, as presented in [4]. A sentence in the language of set theory is internally consistent iff it holds in some (not necessarily proper) inner model. The meaning of internal consistency depends on what inner models exist: If we enlarge the universe, it is possible that more statements become internally consistent. The Inner Model Hypothesis asserts that the universe has been maximised with respect to internal consistency:

The Inner Model Hypothesis (IMH): If a statement φ without parameters holds in an inner model of some outer model of V (i.e., in some model compatible with V), then it already holds in some inner model of V.

Equivalently: If φ is internally consistent in some outer model of V then it is already internally consistent in V. This is formalised as follows. Regard V as a countable model of Gödel-Bernays class theory, endowed with countably many sets and classes. Suppose that V^{*} is another such model, with the same ordinals as V. Then V^{*} is an outer model of V (V is an inner model of V^{*}) iff the sets of V^{*} include the sets of V and the classes of V^{*} include the classes of $V . V^{*}$ is compatible with V iff V and V^{*} have a common outer model.

Remark. The Inner Model Hypothesis, like Lévy-Shoenfield absoluteness, is a form of absoluteness between V and arbitrary outer models of V, which need not be generic extensions of V. Formally speaking, the notion of "arbitrary outer model" does depend on the background universe in which V is situated as a countable model. However, a typical model of the IMH is minimal in the sense that for some real R, it is the smallest transitive model of Gödel-Bernays containing R (see Theorem 8 below). For minimal models, the choice of background universe is irrelevant, and if there is a model of the IMH then there is a minimal one. Thus we may in fact regard the IMH as an intrinsic hypothesis about V, independent of any background universe. An alternative way to "internalise" the IMH is to restrict the notion of outer model to class-generic extensions which preserve the axioms

Received September 15, 2006.
The first author was supported by FWF (Austrian Research Fund) Grants P16334-NO5 and P16790NO4.

The third author was supported by NSF (National Science Foundation) Grant DMS-0355334.
of Gödel-Bernays. This weakened form of the IMH is expressible in the language of class theory, and the results of this paper would not be affected by this change. However, this is not in the spirit of [4], where the IMH is introduced as a form of absoluteness which is in no way limited by the notion of forcing.

Theorem 1. [4] The Inner Model Hypothesis implies that for some real $R, Z F C$ fails in $L_{\alpha}[R]$ for all ordinals α. In particular, there are no inaccessible cardinals, the reals are not closed under \# and the singular cardinal hypothesis holds.

Theorem 2. The IMH implies that there is an inner model with measurable cardinals of arbitrarily large Mitchell order.

Proof. Assume not and let K denote Mitchell's core model for sequences of measures (see [6]). Let δ be the maximum of ω_{1} and the strict supremum of the Mitchell orders of measurable cardinals in K. By Mitchell's Covering Theorem for K we have:

$$
\begin{equation*}
\operatorname{cof}(\alpha) \geq \delta, \alpha \text { regular in } K \rightarrow \operatorname{cof}(\alpha)=\operatorname{card}(\alpha) \tag{*}
\end{equation*}
$$

Now iterate K by applying each measure of order 0 exactly once, i.e., if K_{i} is the i-th iterate of K, K_{i+1} is formed by applying the measure of order 0 in K_{i} at κ_{i}, where κ_{i} is the least measurable of K_{i} not of the form $\pi_{i_{0} i}\left(\kappa_{i_{0}}\right)$ for any $i_{0}<i$. It is easy to see that $i<j$ implies $\kappa_{i}<\kappa_{j}$ and hence this iteration is normal. Let $\sigma_{i j}: K_{i} \rightarrow K_{j}$ be the resulting iteration map from K_{i} to K_{j} for $i \leq j \leq \infty$, let K^{\prime} denote K_{∞} and let $\sigma: K \rightarrow K^{\prime}$ denote $\sigma_{0 \infty}$.

Lemma 3. (a) For any α and any i, there is at most one $j \geq i$ such that $\sigma_{j, j+1}$ is discontinuous at $\sigma_{i j}(\alpha)$. If there is no such $j \geq i$, then $\sigma_{i \infty}$ is continuous at α.
(b) For any α and any i, the K_{i}-cardinality of $\sigma_{i \infty}(\alpha)$ is at most α^{+}of K_{i}. If $\sigma_{i \infty}$ is continuous at α and α is a K_{i}-cardinal, then the K_{i}-cardinality of $\sigma_{i \infty}(\alpha)$ equals α.
(c) If α is a limit cardinal of K_{i} then α is a closure point of $\sigma_{i \infty}$, i.e., $\sigma_{i \infty}[\alpha] \subseteq \alpha$. If in addition the K_{i}-cofinality of α is not measurable in K_{i}, then α is a fixed point of $\sigma_{i \infty}$.
Proof. (a) The map $\sigma_{j, j+1}$ is discontinuous at β iff β has K_{j}-cofinality κ_{j}. Thus if the K_{j}-cofinality of $\sigma_{i j}(\alpha)$ is not κ_{j} for any $j \geq i$, it follows that $\sigma_{j, j+1}$ is continuous at $\sigma_{i j}(\alpha)$ for all $j \geq i$. Otherwise let j be least so that $\sigma_{i j}(\alpha)$ has K_{j}-cofinality κ_{j}; then for k greater than $j, \sigma_{i k}(\alpha)$ has K_{k}-cofinality $\sigma_{j k}\left(\kappa_{j}\right)$, which by definition of the κ_{k} 's does not equal κ_{k}. It follows that $\sigma_{k, k+1}$ is continuous at $\sigma_{i k}(\alpha)$ for k greater than j, as desired. The last statement is immediate.
(b) Define the ordering \prec as follows: $(j, \alpha) \prec(k, \beta)$ iff $j \geq k$ and $\alpha<\sigma_{k j}(\beta)$. The relation \prec is a well-founded partial ordering. We prove the desired property of (i, α) by induction on \prec.
We may assume that α is a cardinal of K_{i}. If $\sigma_{i j}(\alpha)$ does not have K_{j}-cofinality κ_{j} for any $j \geq i$, then $\sigma_{i \infty}$ is continuous at α and by induction applied to pairs $(i, \bar{\alpha}), \bar{\alpha}<\alpha$, we have that the K_{i}-cardinality of $\sigma_{i \infty}(\alpha)=\sup \sigma_{i \infty}[\alpha]$ is equal to α. Otherwise, choose the unique $j \geq i$ so that $\sigma_{i j}(\alpha)$ has K_{j}-cofinality κ_{j}; then $\sigma_{i j}$ is continuous at α and therefore by induction applied to pairs $(i, \bar{\alpha}), \bar{\alpha}<\alpha$, $\sigma_{i j}(\alpha)$ has K_{i}-cardinality α. Let α^{*} denote $\sigma_{i j}(\alpha)$. Now $\sigma_{i, j+1}(\alpha)=\sigma_{j, j+1}\left(\alpha^{*}\right)$ has K_{j}-cardinality $\left(\alpha^{*}\right)^{+}$of K_{j}. And by induction applied to pairs $(j+1, \beta), \beta<$ $\sigma_{j, j+1}\left(\alpha^{*}\right)$, we have that $\sigma_{j+1, \infty}(\beta)$ has K_{j+1}-cardinality at most β^{+}of K_{j+1} for each
$\beta<\sigma_{j, j+1}\left(\alpha^{*}\right)$. So as $\sigma_{j+1, \infty}$ is continuous at $\sigma_{j, j+1}\left(\alpha^{*}\right)$ and $\sigma_{j, j+1}\left(\alpha^{*}\right)$ is a cardinal of K_{j+1}, it follows that the K_{j+1}-cardinality of $\sigma_{j+1, \infty}\left(\sigma_{j, j+1}\left(\alpha^{*}\right)\right)=\sigma_{j \infty}\left(\alpha^{*}\right)$ is $\sigma_{j, j+1}\left(\alpha^{*}\right)$, and therefore the K_{j}-cardinality of $\sigma_{j \infty}\left(\alpha^{*}\right)$ is $\left(\alpha^{*}\right)^{+}$of K_{j}. As α^{*} has K_{i}-cardinality α, it follows that the K_{i}-cardinality of $\sigma_{i \infty}(\alpha)=\sigma_{j \infty}\left(\alpha^{*}\right)$ is at most α^{+}of K_{i}, as desired.
(c) The first statement follows immediately from (b). For the second statement, suppose that α is a closure point of $\sigma_{i \infty}$ and the K_{i}-cofinality of α is not measurable in K_{i}. We show by induction on $j \geq i$ that $\sigma_{i j}$ is continuous at α, and therefore that α is a fixed point of $\sigma_{i j}$: This is vacuous if $j=i$. If α is a fixed point of $\sigma_{i j}$ then the K_{j}-cofinality of α is not measurable in K_{j} by elementarity, and therefore $\sigma_{j, j+1}$ is continuous at α; it follows that $\sigma_{i, j+1}$ is also continuous at α. For limit j, the continuity of $\sigma_{i j}$ at α follows from the continuity of the $\sigma_{i k}$ at α for $k<j$.

Lemma 4. (*) holds with K replaced by K^{\prime}.

Proof. It suffices to show by induction on i that $(*)_{i}$ holds, where $(*)_{i}$ is $(*)$ with K replaced by K_{i}.

Base case: $(*)_{0}$ is just $(*)$.
Successor case: Suppose that $(*)_{i}$ holds and that α is K_{i+1}-regular with cofinality at least δ. We may assume that α is greater than κ_{i}, else α is K_{i}-regular and we are done by induction. If α is at most $\sigma_{i, i+1}\left(\kappa_{i}\right)$ then α has K_{i}-cardinality κ_{i}^{+}of K_{i}, and, as K_{i+1} and K_{i} contain the same κ_{i}-sequences of ordinals, α has K_{i}-cofinality κ_{i}^{+} of K_{i}. So α and κ_{i}^{+}of K_{i} have the same cardinality and cofinality, so we are done by induction.

Now suppose that α is greater than $\sigma_{i, i+1}\left(\kappa_{i}\right)$. Represent α in K_{i+1}, the ultrapower of K_{i}, by [f] where $f: \kappa_{i} \rightarrow$ Ord. We may assume that f is either constant or increasing, and also that $f(\gamma)$ is K_{i}-regular and greater than κ_{i} for all $\gamma<\kappa_{i}$. If f is constant then $\alpha=\sigma_{i, i+1}(\bar{\alpha})$ for some $\bar{\alpha}$ which is regular in K_{i} and greater than κ_{i}; then α and $\bar{\alpha}$ have the same cofinality and cardinality, so we are done by induction. Thus we may assume that f is increasing.

Now the K_{i}-cofinality of α is at least the supremum μ of the $f(\gamma)$'s, as using the regularity of the $f(\gamma)$'s, we can everywhere-dominate any set in K_{i} of $f(\gamma)$-many functions from κ_{i} into $\prod_{\gamma^{\prime}>\gamma} f\left(\gamma^{\prime}\right)$ by a single such function in K_{i}. As μ is $K_{i}-$ singular, the K_{i}-cofinality of α is in fact greater than μ. And the K_{i}-cardinality of α is $\mu^{\kappa_{i}}=\mu^{+}$of K_{i}. It follows that α and μ^{+}of K_{i} have the same cofinality and cardinality, so we are done by induction.

Limit case: Suppose that i is a limit and α is K_{i}-regular with cofinality at least δ. By Lemma 3 (a), we can choose $i_{0}<i$ such that α equals as $\sigma_{i_{0} i}(\bar{\alpha})$, where $\bar{\alpha}$ is regular in $K_{i_{0}}$ and $\sigma_{i_{0} i}$ is continuous at $\bar{\alpha}$. It follows by Lemma 3 (a) that α and $\bar{\alpha}$ have the same cardinality and cofinality, and therefore we are done by induction. \dashv
Lemma 5. If λ is a limit cardinal then $\operatorname{cof}^{K^{\prime}}(\lambda)$ is not measurable in K^{\prime}.
Proof. Let κ denote the K-cofinality of λ. If κ is not measurable in K then by Lemma 3 (c), λ is a fixed point of the iteration $\sigma: K \rightarrow K^{\prime}$ and therefore the result follows by elementarity. Otherwise we claim that κ must equal κ_{i} for some i : If not, then as κ is a closure point of σ, κ would also be a fixed point of σ and therefore κ is measurable in each K_{i}. By the definition of the κ_{i} 's, it must be that for each i, κ is either of the form $\sigma_{i_{0} i}\left(\kappa_{i_{0}}\right)$ for some $i_{0}<i$, or κ_{i} is less than κ. But for sufficiently
large i, κ_{i} cannot be less than κ and so κ is of the form $\sigma_{i_{0} i}\left(\kappa_{i_{0}}\right)$ for some $i_{0}<i$, which implies that κ equals $\kappa_{i_{0}}$, as κ is a fixed point of $\sigma_{i_{0} i}$.

So choose i so that $\kappa=\kappa_{i}$. Then κ and λ are fixed points of $\sigma_{0 i}$ and therefore λ has K_{i}-cofinality κ_{i}. As K_{i+1} has the same κ-sequences as K_{i}, it follows that λ has cofinality κ in K_{i+1} and therefore also in K^{\prime}. But since we applied the order 0 measure on κ to form K_{i+1}, κ is not measurable in K_{i+1} and therefore not measurable in K^{\prime}, as desired.

Now we apply the technique of "dropping along a square sequence" from [2]. Define a function d : Ord $\rightarrow \omega$ as follows. Fix a lightface K^{\prime}-definable global \square-sequence $\left\langle C_{\alpha}\right| \alpha$ singular in $\left.K^{\prime}\right\rangle: C_{\alpha}$ is closed unbounded in α with ordertype less than α for each K^{\prime}-singular α and $C_{\bar{\alpha}}=C_{\alpha} \cap \bar{\alpha}$ whenever $\bar{\alpha}$ is a limit point of C_{α}. If α is not K^{\prime}-singular then $d(\alpha)=0$. Otherwise define:

$$
\begin{aligned}
\alpha_{0} & =\alpha \\
\alpha_{1} & =\operatorname{ot}\left(C_{\alpha_{0}}\right) \\
\alpha_{2} & =\operatorname{ot}\left(C_{\alpha_{1}}\right) \\
& \vdots \\
\alpha_{n+1} & =\operatorname{ot}\left(C_{\alpha_{n}}\right),
\end{aligned}
$$

as long as α_{n} is K^{\prime}-singular, and let $d(\alpha)$ be the least n such that α_{n} is not K^{\prime} singular. $\alpha_{d(\alpha)}$ is the K^{\prime}-cofinality of α.

Lemma 6 (Main Lemma, after [2]). For each n there is a ZFC-preserving class forcing P_{n} that adds a CUB class C_{n} of singular cardinals such that for all α in C_{n} of cofinality at least $\delta, d(\alpha)$ is at least n.

Proof. We use the following.
Lemma 7. Suppose $k<m, \alpha \geq \delta, \alpha$ is regular and C is a closed set of ordertype $\alpha^{+m}+1$, consisting of ordinals $\geq \alpha^{+m}$ (where $\left.\alpha^{+0}=\alpha, \alpha^{+(p+1)}=\left(\alpha^{+p}\right)^{+}\right)$. Then $(C \cap\{\beta \mid d(\beta) \geq k+1\}) \cup \operatorname{Cof}(<\delta)$ has a closed subset of ordertype $\alpha^{+(m-k-1)}+1$.

Proof. The proof is by induction on k, using Lemma 4.
Suppose $k=0$. Let β be the $\alpha^{+(m-1)}$-st element of C. Then β is K^{\prime}-singular since its cofinality $\left(=\alpha^{+(m-1)}\right)$ is at least δ and less than its cardinality $\left(\geq \alpha^{+m}\right)$. Similarly, each element of $\operatorname{Lim}(C \cap \beta)$ of cofinality $\geq \delta$ is K^{\prime}-singular and therefore $\operatorname{Lim}(C \cap \beta)$ is a closed subset of $(C \cap\{\beta \mid d(\beta) \geq 1\}) \cup \operatorname{Cof}(<\delta)$ of ordertype $\alpha^{+(m-1)}+1$, as desired.
Suppose that the Lemma holds for k and let $m+1>k+1, C$ a closed set of ordertype $\alpha^{+(m+1)}+1$ consisting of ordinals $\geq \alpha^{+(m+1)}$. Then $\mu=\max C$ is K^{\prime}-singular, as its cofinality is at least δ and less than its cardinality. Let β be the ($\alpha^{+m}+\alpha^{+m}$)-th element of $C \cap C_{\mu}$. β is K^{\prime}-singular as its cofinality is at least δ and less than its cardinality. Let $\bar{\beta}$ be the α^{+m}-th element of C. Then $\bar{C}=\left\{\operatorname{ot} C_{\gamma} \mid \gamma \in\right.$ $\left.C \cap \operatorname{Lim} C_{\beta} \cap[\bar{\beta}, \beta]\right\}$ is a closed set of ordertype $\alpha^{+m}+1$ consisting of ordinals $\geq \alpha^{+m}$. By induction there is a closed \bar{D} contained in $(\bar{C} \cap\{\gamma \mid d(\gamma) \geq k+1\}) \cup \operatorname{Cof}(<\delta)$ of ordertype $\alpha^{+(m-k-1)}+1$. But then $D=\left\{\gamma \in C \cap \operatorname{Lim} C_{\beta} \mid\right.$ ot $\left.C_{\gamma} \in \bar{D}\right\}$ is a closed subset of $(C \cap\{\gamma \mid d(\gamma) \geq k+2\}) \cup \operatorname{Cof}(<\delta)$ of ordertype $\alpha^{+(m-k-1)}+1$. As $m-k-1=(m+1)-(k+1)-1$, we are done. $\quad \dashv_{\text {Lemma } 7}$

Lemma 6 now follows: Let P_{n} consist of closed sets c of singular cardinals such that

$$
\alpha \in c, \operatorname{cof}(\alpha) \geq \delta \rightarrow d(\alpha) \geq n
$$

ordered by end-extension. Lemma 7 implies that this forcing is κ-distributive for every cardinal κ.
Now for each n there is an outer model of V containing a real R_{n} such that in $L\left[R_{n}\right]$:
R_{n} codes a CUB class $C_{R_{n}}$ of singular cardinals and an iterable, universal extender model $K_{R_{n}}^{\prime}$ such that
$(*)_{R_{n}} \quad$ a. $d_{R_{n}}(\alpha) \geq n$ for α in $C_{R_{n}}$ of sufficiently large cofinality, where $d_{R_{n}}(\alpha)$ is defined in $K_{R_{n}}^{\prime}$ just like $d(\alpha)$ is defined in K^{\prime}.
b. $\alpha \in C_{R_{n}} \rightarrow \operatorname{cof}(\alpha)$ in $K_{R_{n}}^{\prime}$ is not measurable in $K_{R_{n}}^{\prime}$.

This is because we can use Lemma 6 to force a CUB class C_{n} of singular cardinals such that $d(\alpha) \geq n$ for all α in C_{n} of sufficiently large cofinality, and then L code the model $\left\langle V, C_{n}, K^{\prime}\right\rangle$ by a real R_{n}. The extender model K^{\prime} is universal in the extension as successors of strong limit cardinals are not collapsed and therefore weak covering holds relative to K^{\prime} in the extension at all such cardinals of sufficiently large cofinality.

Applying the IMH, there are such reals R_{n} in V. As each R_{n} codes a CUB class of singular cardinals, the K of $L\left[R_{n}\right]$ is universal and therefore so is the $K_{R_{n}}$ arising from $(*)_{R_{n}}$. Now co-iterate the $K_{R_{n}}$'s to a single K^{*}, resulting in embeddings $\pi_{n}: K_{R_{n}} \rightarrow K^{*}$. As singular cardinals in $C_{R_{n}}$ of sufficiently large cofinality are fixed by π_{n} (as their $K_{R_{n}}$-cofinality is not measurable in $K_{R_{n}}$), it follows that there is a single γ belonging to all of the $C_{R_{n}}$'s which is fixed by all of the π_{n} 's. But then $d^{*}(\gamma) \geq n$ for each n, where $d^{*}(\gamma)$ is defined relative to K^{*} just like $d(\gamma)$ was defined relative to K^{\prime}. This is a contradiction.

For each real x let M_{x}, if it exists, be the minimum transitive set model of $Z F C$ containing x. Thus M_{x} has the form $L_{\mu}[x]$ for some countable ordinal $\mu=\mu(x)$. If d is a Turing degree we write $M_{d}, \mu(d)$ for $M_{x}, \mu(x)(x$ in $d)$.

ThEOREM 8. Assume the existence of a Woodin cardinal with an inaccessible above. Then the IMH is consistent. Moreover for all d in a cone of Turing degrees, M_{d} exists and satisfies the IMH.

Proof. First we prove the consistency of the IMH by showing that M_{d} satisfies the IMH for some Turing degree d in a forcing extension of V.

Let κ be Woodin with an inaccessible above in V. Let G be generic over V for the Lévy collapse of κ to ω. Work now in $V[G]$. Σ_{2}^{1} determinacy holds and, as there is still an inaccessible, M_{d} exists for each Turing degree d. It follows that the theory of $\left(M_{d}, \in\right)$ is constant on a cone of Turing degrees d. Let d be a Turing degree such that the theory of $\left(M_{e}, \in\right)$ is constant for Turing degrees e at least that of d.

We claim that M_{d}, endowed with its definable classes, witnesses the IMH. Indeed, suppose that φ is a sentence true in some model M of height $\mu(d)$ compatible with M_{d}. By Jensen coding there is a real y such that d is recursive in $y, \mu(y)=\mu(d)$ and M is a definable inner model of M_{y}. Let e be the Turing degree of y. Then for some formula ψ, M_{e} satisfies the sentence

The inner model defined by ψ (with some choice of parameters) satisfies φ.

It follows that there is an inner model of M_{d} which satisfies φ, as desired. This proves the consistency of the IMH.
To say that a countable M, together with its countable collection of definable classes, satisfies IMH is simply a Π_{1}^{1}-statement with a real coding M as parameter, since one only needs to quantify over outer models of M of height $M \cap$ Ord. Thus the assertion that there exists a Turing degree d such that M_{d} (with its definable classes) satisfies IMH is a Σ_{2}^{1}-statement and hence absolute. So the existence of a Woodin cardinal with an inaccessible above implies that such an M_{d} exists in V (and indeed in L).
To prove the stronger statement that in V, M_{d} satisfies the IMH for a cone of d 's, one argues as follows. Say that a set of reals X is absolutely Δ_{2}^{1} iff there is a pair of Σ_{2}^{1} formulas $\varphi(x), \psi(x)$ such that X consists of all solutions to $\varphi(x)$ in V and φ is equivalent to the negation of ψ both in V and all of its forcing extensions.
Claim. Assume that there is a Woodin cardinal. Then determinacy holds for absolutely Δ_{2}^{1} sets.

Proof of Claim. As before let G be generic for the Lévy collapse of the Woodin cardinal to ω. Then Σ_{2}^{1} determinacy holds in $V[G]$. By the Moschovakis Third Periodicity theorem, ([7] Theorem 6E.1), if X is Σ_{2}^{1} in $V[G]$ there is a definable winning strategy in $V[G]$ for one of the players in the game G_{X}. By the homogeneity of the Lévy collapse, it follows that absolutely Δ_{2}^{1} sets are determined in V. This proves the Claim.

As there is an inaccessible in V, M_{d} exists for each Turing degree d in V. Now it follows from the Claim that in V, for any sentence φ, either for a cone of Turing degrees d,

$$
M_{d} \models \varphi
$$

or for a cone of Turing degrees d,

$$
M_{d} \models \neg \varphi,
$$

since the relevant games are absolutely Δ_{2}^{1}. Therefore in V the theory of $\left(M_{d}, \in\right)$ is constant for a cone of Turing degrees d. We can then apply the argument used earlier in $V[G]$ to conclude that also in V, M_{d} satisfies IMH for d in a cone of Turing degrees.
§1. Parameters and the Strong Inner Model Hypothesis. How can we introduce parameters into the Inner Model Hypothesis? The following result shows that inconsistencies arise without strong restrictions on the type of parameters allowed.
Proposition 9. [4] The Inner Model Hypothesis with arbitrary ordinal parameters or with arbitrary real parameters is inconsistent.
So instead we consider absolute parameters, as in [5]. For any set x, the hereditary cardinality of x, denoted hcard (x), is the cardinality of the transitive closure of x. If V^{*} is an outer model of V, then a parameter p is absolute between V and V^{*} iff V and V^{*} have the same cardinals \leq hcard (p) and some parameter-free formula has p as its unique solution in both V and V^{*}.

Inner Model Hypothesis with locally absolute parameters Suppose that p is absolute between V and V^{*} and φ is a first-order sentence with parameter p which holds in an inner model of V^{*}. Then φ holds in an inner model of V.

For a singular cardinal κ, a \square_{κ} sequence is a sequence of the form $\left\langle C_{\alpha}\right| \alpha<\kappa^{+}, \alpha$ limit〉 such that each C_{α} has ordertype less than κ and for $\bar{\alpha}$ in $\operatorname{Lim} C_{\alpha}, C_{\bar{\alpha}}=C_{\alpha} \cap \bar{\alpha}$. Definable \square_{κ} is the assertion that there exists a \square_{κ} sequence which is definable over $H\left(\kappa^{+}\right)$with parameter κ. We will be interested in the special case $\kappa=\beth_{\omega}$, in which case the parameter κ is superfluous.

Theorem 10. The Inner Model Hypothesis with locally absolute parameters is inconsistent.

Proof. We first show that definable \square_{κ} fails, where κ is \beth_{ω}. Let $\left\langle C_{\alpha}\right| \alpha<\kappa^{+}, \alpha$ limit〉 be a \square_{κ} sequence definable over $H\left(\kappa^{+}\right)$without parameters. For each n let S_{n} be the stationary set of all limit $\alpha<\kappa^{+}$such that the ordertype of C_{α} is greater than \beth_{n}.

Claim. Let P_{n} be the forcing that adds a CUB subset of S_{n} using closed bounded subsets of S_{n} as conditions, ordered by end extension. Then P_{n} is κ^{+}-distributive, i.e., does not add κ-sequences.

Proof of Claim. It is enough to show that P_{n} is \beth_{m}^{+}distributive for each $m<\omega$. Assume that m is at least n. Suppose that p is a condition and $\left\langle D_{i} \mid i<\beth_{m}\right\rangle$ are dense. Let $\left\langle M_{i} \mid i<\kappa^{+}\right\rangle$be a continuous chain of size κ elementary submodels of some large $H(\theta)$ such that M_{0} contains $\kappa \cup\left\{\left\langle C_{\alpha}\right| \alpha<\kappa^{+}, \alpha\right.$ limit $\left.\rangle, p\right\}$ and for each $i<\kappa^{+},\left\langle M_{j} \mid j \leq i\right\rangle$ is an element of M_{i+1}. Let κ_{i} be $M_{i} \cap \kappa^{+}$and C the set of such κ_{i} 's. Then a final segment D of $C \cap \operatorname{Lim} C_{\gamma}$ is contained in S_{n}, where $\gamma=\kappa_{\beth_{m}^{+}}$. Write D as $\left\langle\kappa_{\alpha_{i}}\right| i<$ ordertype $\left.D\right\rangle$. We can then choose a descending sequence $\left\langle p_{i} \mid i<\beth_{m}\right\rangle$ of conditions below p such that p_{i+1} meets D_{i} and belongs to $M_{\kappa_{\alpha_{i}}+1}$ for each i. Then the greatest lower bound of this sequence meets each D_{i}. This proves the Claim.

It follows that for each n the forcing P_{n} does not alter $H\left(\kappa^{+}\right)$. By the Inner Model Hypothesis with locally absolute parameters S_{n} has a CUB subset C_{n} in V for each n. But this is a contradiction, as the intersection of the C_{n} 's is empty.

Now we refine the above argument. As not every real has a \#, there exist reals R such that κ^{+}equals κ^{+}of $L[R]$, where κ is \beth_{ω}. Let X be the set of such reals and for each R in X let $\left\langle C_{\alpha}^{R}\right| \alpha<\kappa^{+}, \alpha$ limit \rangle be the $L[R]$-least \square_{κ} sequence. Now for limit $\alpha<\kappa^{+}$, define C_{α}^{*} to be the intersection of the $C_{\alpha}^{R}, R \in X$. Then $\left\langle C_{\alpha}^{*}\right| \alpha<\kappa^{+}, \alpha$ limit \rangle is definable in $H\left(\kappa^{+}\right)$without parameters and has the properties of a \square_{κ} sequence with the sole exception that C_{α}^{*} is only guaranteed to be unbounded in α if α has cofinality greater than $2^{\aleph_{0}}$. Now repeat the above argument using $\left\langle C_{\alpha}^{*}\right| \alpha<\kappa^{+}, \alpha$ limit \rangle in place of $\left\langle C_{\alpha}\right| \alpha<\kappa^{+}, \alpha$ limit \rangle, to obtain a contradiction.

To obtain the Strong Inner Model Hypothesis, we require more absoluteness. We say that the parameter p is (globally) absolute iff there is a parameter-free formula which has p as its unique solution in all outer models of V which have the same cardinals \leq hcard (p) as V.

Strong Inner Model Hypothesis (SIMH). Suppose that p is absolute, V^{*} is an outer model of V with the same cardinals $\leq \operatorname{hcard}(p)$ as V and φ is a first-order sentence with parameter p which holds in an inner model of V^{*}. Then φ holds in an inner model of V.

Remark. If above we assume that the sentence φ holds not just in an inner model of V^{*} but in V^{*} itself, then in the conclusion we may demand that in an inner model of V witnessing φ, p is definable via the same formula ψ witnessing the absoluteness of p. (This inner model may, however, fail to have the same cardinals \leq hcard (p) as V.) This is because we can replace the sentence φ by: " φ holds and p is defined by ψ ".

Theorem 11. [4] Assume the SIMH. Then CH is false. In fact, $2^{\aleph_{0}}$ cannot be absolute and therefore cannot be \aleph_{α} for any ordinal α which is countable in L.

Theorem 12. The SIMH implies the existence of an inner model with a strong cardinal.

Proof. Assume not, and let K be the core model below a strong cardinal (see [8]). As in the proof of Theorem 2, we let K^{\prime} denote the iterate of K obtained by applying each order 0 measure exactly once. Then by the argument of Lemma 5 , if λ is a cardinal then the K^{\prime}-cofinality of λ is not measurable in K^{\prime}. And by weak covering relative to K, if λ is a singular cardinal, then λ^{+}is computed correctly in K (i.e., $\left.\left(\lambda^{+}\right)^{K}=\lambda^{+}\right)$.

Lemma 13. For any singular cardinal λ, λ^{+}is computed correctly in K^{\prime}.
Proof of Lemma 13. This is clear if the K-cofinality of λ is not measurable in K, for then λ is a fixed point of the iteration from K to K^{\prime} and $\left(\lambda^{+}\right)^{K^{\prime}}=\left(\lambda^{+}\right)^{K}=\lambda^{+}$. Otherwise let $\left\langle K_{i} \mid i \in \mathrm{Ord}\right\rangle$ result from the iteration of K to K^{\prime} and choose i so that the ultrapower map $\sigma_{i}: K_{i} \rightarrow K_{i+1}$ applies the order 0 measure at $\kappa=\operatorname{cof}^{K_{i}}(\lambda)$. If $\left\langle\lambda_{j} \mid j<\kappa\right\rangle$ is a continuous and increasing sequence in K_{i} with supremum λ, then λ^{+}of K_{i+1} is represented in the ultrapower of K_{i} by $\left\langle\lambda_{j}^{+} \mid j<\kappa\right\rangle$. In K_{i}, the product of the λ_{j}^{+}'s contains a subset of size $\left(\lambda^{+}\right)^{K_{i}}$, consisting of functions well-ordered by dominance on a final segment of κ. It follows that $\left(\lambda^{+}\right)^{K_{i+1}}$ has cardinality λ^{+}and therefore K_{i+1} computes λ^{+}correctly. As λ^{+}is a fixed point of the remaining iteration from K_{i+1} to K^{\prime}, it follows that K^{\prime} computes λ^{+}correctly. This proves Lemma 13
We say that λ is a cut point of K^{\prime} iff no extender on the K^{\prime} sequence with critical point less than λ has length at least λ (i.e., λ is not overlapped in K^{\prime}). The class of cut points of K^{\prime} is clearly closed. If the class of cut points of K^{\prime} is bounded, then for sufficiently large λ we can choose $f(\lambda)$ less than λ which is the critical point of an extender on the K^{\prime} sequence whose length is at least λ; but then by Fodor's theorem, there would be a fixed κ and extenders on the K^{\prime} sequence with critical point κ of arbitrarily large length, which implies that κ is a strong cardinal in K^{\prime}. Thus as we have assumed that there is no strong cardinal in K^{\prime}, the class of cut points of K^{\prime} is closed and unbounded.

Let $\left\langle\lambda_{n} \mid n \in \omega\right\rangle$ be the first ω-many limit cardinals of V which are cut points of K^{\prime}, and let λ_{ω} be their supremum. Then each λ_{n}, and of course λ_{ω}, has cofinality ω.

Lemma 14. Each λ_{n}, and λ_{ω} as well, is an absolute parameter.
Proof of Lemma 14. We first show that λ_{0} is absolute. Let V^{*} be an outer model of V with the same cardinals as V up to λ_{0}. Note that for some real R in V, no $L_{\alpha}[R]$ satisfies ZFC and therefore $R^{\#}$ does not exist in V^{*}. It follows that for any singular cardinal λ of V^{*}, λ is singular in V and λ^{+}is computed correctly in V.

In particular, V^{*} and V have the same cardinals up to λ_{0}^{+}and the same singular cardinals up to λ_{0}.
It follows by Lemma 13 that for any singular cardinal λ of V^{*}, λ^{+}is computed correctly in both K^{\prime} and $\left(K^{*}\right)^{\prime}$, where $\left(K^{*}\right)^{\prime}$ denotes the K^{\prime} of V^{*}, obtained from K^{*}, the K of V^{*}, by applying each order 0 measure exactly once. As both K^{\prime} and $\left(K^{*}\right)^{\prime}$ are universal in V^{*}, it follows that they coiterate simply to a common model W.

Claim. The co-iteration of K^{\prime} with $\left(K^{*}\right)^{\prime}$ fixes singular cardinals of V^{*} which are cut points either of K^{\prime} or of $\left(K^{*}\right)^{\prime}$.

Proof of Claim. Let λ be a singular cardinal of V^{*} (and therefore also a singular cardinal of V). First assume that λ is a cut point of K^{\prime}. Then as λ has nonmeasurable cofinality in K^{\prime}, λ is fixed by the iteration on the K^{\prime}-side. And as λ has non-measurable cofinality in $\left(K^{*}\right)^{\prime}, \lambda$ can only move on the $\left(K^{*}\right)^{\prime}$-side if an extender overlapping λ were applied. The assumption that λ is not overlapped in K^{\prime} implies that λ is not overlapped in W and therefore the least extender overlapping λ was applied on the $\left(K^{*}\right)^{\prime}$-side. But then λ^{+}is not computed correctly in the resulting ultrapower and therefore is computed correctly neither in W nor in K^{\prime}. This contradicts Lemma 13. As the same argument applies with K^{\prime} and $\left(K^{*}\right)^{\prime}$ switched, this proves the Claim.

It follows from the Claim that λ_{0} is the least limit cardinal of V^{*} which is a cut point of $\left(K^{*}\right)^{\prime}$. As V^{*} is an arbitrary outer model of V with the same cardinals as V up to λ_{0}, we have shown that λ_{0} is an absolute parameter. The same argument shows that each λ_{n} is absolute, and therefore so is λ_{ω}, the supremum of the first ω limit cardinals which are cut points of K^{\prime}. This proves Lemma 14.

Now let $\left\langle C_{\alpha}\right| \alpha<\lambda_{\omega}^{+}, \alpha$ limit \rangle be the least $\square_{\lambda_{\omega}}$ sequence of K^{\prime}; this is also a $\square_{\lambda_{\omega}}$ sequence in V, as $\left(\lambda_{\omega}^{+}\right)^{K^{\prime}}=\lambda_{\omega}^{+}$. As in the proof of Theorem 10, there are generic extensions of V preserving $H\left(\lambda_{\omega}^{+}\right)$which add CUB subsets to each $S_{n}=\left\{\alpha<\lambda_{\omega}^{+} \mid\right.$ordertype $\left.C_{\alpha}>\lambda_{n}\right\}$. It follows from the Strong Inner Model Hypothesis (and the Remark immediately following its statement) that for each n there is an inner model M_{n}, with the correct λ_{ω}^{+}and λ_{n}, in which $S_{n}^{M_{n}}$ contains a CUB subset C_{n}, where $S_{n}^{M_{n}}$ is defined using the least $\square_{\lambda_{\omega}}$ sequence of $\left(K^{\prime}\right)^{M_{n}}$. The latter may of course differ from the least $\square_{\lambda_{\omega}}$ sequence of K^{\prime}. However as λ_{ω}^{+}is computed correctly in each $\left(K^{\prime}\right)^{M_{n}}$ and λ_{ω} is a cut point of non-measurable cofinality in each $\left(K^{\prime}\right)^{M_{n}}$, it follows that the $\left(K^{\prime} \mid \lambda_{\omega}^{+}\right)^{M_{n}}$,s compare to a common $K^{\prime \prime}$ of height λ_{ω}^{+}with all ordinals in some CUB subset C of λ_{ω}^{+}as closure points. But if α is such a closure point in the intersection of the C_{n} 's and α_{n} is the image of α under the comparison embedding of $\left(K^{\prime} \mid \lambda_{\omega}^{+}\right)^{M_{n}}$ into $K^{\prime \prime}$, then $C_{\alpha_{n}}$ as defined in $K^{\prime \prime}$ contains elements cofinal in α and therefore C_{α} as defined in $K^{\prime \prime}$, an initial segment of $C_{\alpha_{n}}$, has ordertype at least that of C_{α} as defined in $\left(K^{\prime} \mid \lambda_{\omega}^{+}\right)^{M_{n}}$. It follows that C_{α} as defined in $K^{\prime \prime}$ has ordertype greater than λ_{n} for each n, which is a contradiction.

Remarks. (a) It is likely that Theorem 12 can be improved to obtain an inner model with a Woodin cardinal. But it is not possible to obtain an iterable inner model with a Woodin cardinal and an inaccessible above it (unless the SIMH is inconsistent): Otherwise every real would be generic for Woodin's extender algebra
defined in an iterate of such an inner model, implying that for every real R there is an inaccessible in $L[R]$; this contradicts Theorem 1.
(b) David Asperó and the first author observed that the consistency of the SIMH for the parameter ω_{1} follows as in the proof of Theorem 8 from that of a Woodin cardinal with an inaccessible above. In particular this yields the consistency of the natural extension of Lévy absoluteness asserting Σ_{1} absoluteness with parameter ω_{1} for arbitrary ω_{1}-preserving extensions.

Question. Is the Strong Inner Model Hypothesis consistent relative to large cardinals?

REFERENCES

[1] A. Beller, R. Jensen, and P. Welch, Coding the universe, London Mathematical Society Lecture Note Series, vol. 47, Cambridge University Press, Cambridge, 1982.
[2] S. Friedman, New Σ_{3}^{1} facts, Proceedings of the American Mathematical Society, vol. 127 (1999), pp. 3707-3709.
[3] - Fine structure and class forcing, de Gruyter Series in Logic and its Applications, vol. 3, Walter de Gruyter \& Co., Berlin, 2000.
[4] - Internal consistency and the inner model hypothesis, The Bulletin of Symbolic Logic, vol. 12 (2006), pp. 591-600.
[5] -, Stable axioms of set theory, Set Theory: Centre de Recerca Matemàtica, Barcelona, 2003-2004, Trends in Mathematics, Birkhäuser Verlag, 2006, pp. 275-283.
[6] W. Mitchell, An introduction to inner models and large cardinals, Handbook of set theory, Springer Verlag, to appear.
[7] Y. Moschovakis, Descriptive set theory, North-Holland Publishing Co., Amsterdam, 1980.
[8] M. Zeman, Inner models and large cardinals, de Gruyter Series in Logic and its Applications, Walter de Gruyter \& Co., Berlin, 2002.

KURT GÖEDEL RESEARCH CENTER
UNIVERSITY OF VIENNA WÄHRINGER STRABE 25 A-1090 VIENNA, AUSTRIA
E-mail: sdf@logic.univie.ac.at
DEPARTMENT OF MATHEMATICS
THE UNIVERSITY OF CALIFORNIA 721 EVANS HALL \# 3840 BERKELEY, CA 94720-3840, USA
E-mail: woodin@math.berkeley.edu
SCHOOL OF MATHEMATICS
UNIVERSITY OF BRISTOL BRISTOL BS8 1TW, UK
E-mail: p.welch@bristol.ac.uk

