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Abstract. Suppose GCH holds and κ is a κ+4-supercompact cardinal. Then
there is a generic extension V ∗ of V in which κ remains inaccessible and for all

infinite cardinals α < κ, (α+)HOD < α+. In particular W = V V
∗

κ is a model

of ZFC in which for all infinite cardinals α, (α+)HOD < α+.

1. Introduction

An important development in large cardinal theory is the construction of inner
models M all of whose sets are definable from ordinals and which serve as good
approximations to the entire universe V . The former means that M is contained
in HOD, the universe of hereditarily ordinal definable sets, and the latter can
be interpreted in a number of ways. One such interpretation is that the cardinal
structure of M is “close” to that of V in the sense that α+ of M equals α+ of V
for many cardinals α. This is for example the case if V does not contain 0] and M
equals L [1], or if V does not contain an inner model with a Woodin cardinal and
M is the core model K for a Woodin cardinal [4].

In this paper we show that we can’t hope to approximate the cardinals of V by
those of (inner models of) HOD in general:

Theorem 1.1. Suppose GCH holds and κ is a κ+4-supercompact cardinal. Then
there is a generic extension V ∗ of V in which κ remains inaccessible and for all
infinite cardinals α < κ, (α+)HOD < α+. In particular W = V V

∗

κ is a model of
ZFC in which for all infinite cardinals α, (α+)HOD < α+.

2. Measure sequences

Definition 2.1. Let Pκ(λ) = {x ⊆ λ : ot(x) < κ, x∩κ ∈ κ}, and for x ∈ Pκ(λ) set
κx = x ∩ κ and λx = ot(x).

Given x, y ∈ Pκ(λ) we define the relation x ≺ y (due to Magidor [6]) by

x ≺ y ⇔ x ⊆ y and ot(x) < y ∩ κ.
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Definition 2.2. For infinite cardinals κ < λ, let S(κ, λ) be the set of sequences w
such that lh(w) < κ, w(0) ∈ Pκ(λ) and w(α) ∈ Vκ for 0 < α < lh(w).

Definition 2.3. Given κ < λ and j : V →M witnessing that κ is λ-supercompact,
we generate a sequence by the rules:

• uj(0) = j[λ].
• For α > 0, uj(α) = {X ⊆ S(κ, λ) : uj � α ∈ j(X)}.

uj(α) is defined as long as uj � α ∈M . We denote the least α such that uj � α /∈M
by lh(uj).

Definition 2.4. w is a (κ, λ)-measure sequence if w(0) is a set of ordinals of order
type λ and w(α) is a measure on S(κ, λ) for each 0 < α < lh(w),

Definition 2.5. Given a (κ, λ)-measure sequence w, say that j is a constructing
embedding for w if j witnesses κ is λ-supercompact and for all α with 0 < α < lh(w)
we have that uj(α) is defined with uj(α) = w(α). Note that possibly w(0) 6= uj(0).

Definition 2.6. We define a class U∞ of measure sequences as follows:

• U0 is the class of w such that for some κ and λ, w is a (κ, λ)-measure
sequence which has a constructing embedding.
• Un+1 = {w ∈ Un : for all nonzero α < lh(w), w(α) concentrates on Un}.
• U∞ =

⋂
n<ω Un.

Note that if u ∈ U∞, then it follows from the countable completeness of the
measures in u that every measure in u concentrates on U∞.

Notation 2.7. Given a measure sequence u ∈ U∞, we denote the cardinals κu(0) =
u(0) ∩ κ and λu(0) = ot(u(0)) by κu and λu respectively.

Given a u ∈ U∞, α is called a weak repeat point for u if for all X ∈ u(α) there
exists β < α such that X ∈ u(β).

Remark 2.8. A (κ, λ)-measure sequence of length (2λ
<κ

)+ contains a weak repeat
point.

Lemma 2.9. Let GCH hold and let j : V →M witness that κ is κ+4-supercompact.
Then j constructs a (κ, κ+)-measure sequence u such that u ∈ U∞ and u has a weak
repeat point.

Proof. Evidently M contains every (κ, κ+)-measure sequence of length less than
κ+3, so that the construction of uj runs for at least κ+3 steps. Since there are
only κ++ subsets of S(κ, κ+), a weak repeat point α appears before stage κ+3, so
it suffices to check that u ∈ U∞, where u = uj � α+ 1.

The main point is to verify that u ∈ U1, which amounts to showing that each
measure u(β) for 0 < β ≤ α concentrates on U0. By the recursive definition of uj ,
we need to show that u � β ∈ UM0 for all 0 < β ≤ α, which we will do in a uniform
way by exhibiting a constructing embedding for u � α in M .

Let W be the supercompactness measure on Pκ(κ+3) induced by the embedding
j and let j0 : V → M0 = Ult(V,W ) be the usual ultrapower map. The following
claims are all standard and easy to verify:

(1) W ∈M .
(2) If we define a map k from M0 to M by setting k : [F ]W 7→ j(F )(j[κ+3])

then k is elementary, k ◦ j0 = j, crit(k) > κ+3 and k(j0[κ+]) = j[κ+].
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(3) Since κ+3 ⊆ ran(k), it follows easily from GCH that Hκ+3 ⊆ ran(k), and
so that k � Hκ+3 = id.

(4) Let j∗0 : M →M∗ = Ult(M,W ). For every a ∈M , Pκ(κ+3)TC(a) ⊆M and
so j0(M) = j∗0 (M), that is j∗0 = j0 �M .

Now let u∗ = uMj∗0 , the measure sequence constructed by the embedding j∗0 in the

model M . We claim that the construction of u∗ proceeds for at least α + 1 steps
and that u(β) = u∗(β) for 0 < β ≤ α. At the start, u∗(0) = j∗0 [κ+] = j0[κ+], and
we now proceed by induction on β with 0 < β ≤ α. Note that all the models V ,
M , M0 and M∗ agree on the computation of P (S(κ, κ+)).

Suppose that u∗(η) = u(η) when 0 < η < β. Since M0 is closed under κ+3-
sequences, u∗ � β ∈M0 and the properties of k listed above imply that k(u∗ � β) =
u � β. Now for every X ⊆ S(κ, κ+) we have that

X ∈ u∗(β) ⇐⇒ u∗ � β ∈ j∗0 (X)

⇐⇒ u∗ � β ∈ j0(X)

⇐⇒ u � β ∈ j(X)

⇐⇒ X ∈ u(β),

where the equivalences follow respectively from the definition of u∗, the agreement
between j0 and j, the properties of k, and the definition of u.

The rest of the argument is straightforward. We start by observing that since
κ+3 = (κ+3)M , every measure in u concentrates on the set of measure sequences x
such that x(0) ∈ Pκ(κ+) and lh(x) < κ+3

x . By the agreement between V and M ,
a routine induction shows that for all n and for all such measure sequences x we
have x ∈ Un ⇐⇒ x ∈ UMn .

We now establish by induction on n ≥ 1 that u ∈ Un. We just did the base case
n = 1, so suppose that we established u ∈ Un. By definition, u ∈ Un+1 if and only
if u(β) concentrates on Un for 0 < β ≤ α, that is if u � β ∈ UMn for all such β.
By definition u � β ∈ UMn if and only if u(γ) concentrates on UMn−1 for 0 < γ < β,
and by the remarks in the previous paragraph this amounts to verifying that u(γ)
concentrates on Un−1 which is true since u ∈ Un. �

3. Supercompact Radin forcing

In this section we define the supercompact Radin forcing and present some of its
properties. Our presentation is essentially based on [3] where supercompact Radin
forcing was first introduced.

Definition 3.1. A good pair is a pair (u,A) where u ∈ U∞, A ⊆ U∞, A ⊆
S(κu, λu) and A is u-large, that is A ∈ u(α) for 0 < α < lh(u).

We define, for each u ∈ U∞, the corresponding supercompact Radin forcing Ru.

Definition 3.2. A condition in Ru is a finite sequence

p = 〈(u0, A0), . . . , (ui, Ai), . . . , (un, An)〉
where:

(1) un = u.
(2) Each (ui, Ai) is a good pair.
(3) ui(0) ∈ Pκun (λun), for i < n.
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(4) ui(0) ≺ ui+1(0), for i < n− 1.

Definition 3.3. Given p ∈ Ru, p = 〈(u0, A0), . . . , (ui, Ai), . . . , (un = u,An)〉 and
w ∈ U∞, we say w appears in p, if w = ui for some i < n.

Given w ∈ U∞, let πw : w(0) → λw be the collapse map. Given v ∈ U∞ with
v(0) ≺ w(0), let πv,w : λv → λw be defined by πv,w = πw ◦ π−1

v and let πw(v) be
obtained from v by replacing v(0) by πw[v(0)].

We now define the notion of extension.

Definition 3.4. Let

p = 〈(u0, A0), . . . , (ui, Ai), . . . , (un = u,An)〉
and

q = 〈(v0, B0), . . . , (vi, Bi), . . . , (vm = u,Bm)〉
be in Ru. Then q ≤ p (q is an extension of p) iff:

(1) There exist natural numbers i0 < . . . < in = m such that vik = uk and
Bik ⊆ Ak.

(2) If j is such that 0 ≤ j ≤ m and j /∈ {i0, . . . , in}, and i is least such that
κvj < κui , then:
• If i = n, then vj ∈ An and for all x ∈ Bj, π−1

vj (x) ∈ An, where

π−1
vj (x) = 〈π−1

vj [x(0)]〉_〈x(α) : 0 < α < lh(x)〉.
• If i < n, then vj(0) ≺ ui(0), πui(v

j) ∈ Ai and for all x ∈ Bj,
πvj ,ui(x) ∈ Ai, where πvj ,ui(x) = 〈πvj ,ui [x(0)]〉_〈x(α) : 0 < α <
lh(x)〉.

We also define q ≤∗ p (q is a direct or a Prikry extension of p) iff q ≤ p and
m = n.

Let u ∈ U∞ be a (κu, κ
+
u )-measure sequence. Let us mention the main properties

of the corresponding forcing Ru (see [3] and [5] for proofs).

Theorem 3.5. Let G be Ru-generic over V . The following hold in V [G]:

(1) Let C = {w(0) : w appears in some p ∈ G}. Then C is a ≺-increasing
and continuous sequence in Pκu(κ+

u ) of order type ≤ κu. Furthermore if
lh(u) ≥ κu, then ot(C) = κu.

(2) κ+
u =

⋃
C, in particular κ+

u is collapsed.
(3) κC = {κw(0) : w(0) ∈ C} is a club in κu.

(4) (Ru,≤) satisfies the κ++
u − c.c..

(5) (Ru,≤,≤∗) satisfies the Prikry property: Given any b ∈ RO(Ru) and any
condition p ∈ Ru there exists q ≤∗ p which decides b.

We now give a factorization property of Ru.

Theorem 3.6. Suppose that

p = 〈(u0, A0), . . . , (ui, Ai), . . . , (un = u,An)〉 ∈ Ru
and m < n. Let

p>m = 〈(um+1, Am+1), . . . , (un = u,An)〉
and

p≤m = 〈(w0, B0), . . . , (wm−1, Bm−1), (um, πum [Am])〉
where for i < m,wi = πum(ui) and Bi = πui,um [Ai].
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Then p≤m ∈ Rum , p>m ∈ Ru and there exists

i : Ru/p→ Rum/p≤m × Ru/p>m

which is an isomorphism with respect to both ≤ and ≤∗.

Theorem 3.7. Let G be Ru-generic. Let ~w = 〈wi : i < ot(C)〉 enumerate {w : w
appears in some p ∈ G} such that for i < j < ot(C), κwi < κwj . Then:

(1) V [G] = V [~w].
(2) For every limit ordinal j < ot(C), 〈w∗i : i < j〉 is Rwj -generic over V , where

w∗i = πwj (wi), and ~w � [j, ot(C)) is Ru-generic over V [〈w∗i : i < j〉].
(3) For every γ < κ and A ⊆ γ with A ∈ V [~w], A ∈ V [〈w∗i : i < j〉]. where

i < ot(C) is the least ordinal such that γ < κwi .

Theorem 3.8. Let G be Ru-generic, and let λ be a cardinal of V with λ < κu.
Then λ is collapsed in V [G] if and only if λ = (κ+

w(0))
V for some w which is a

≺-limit element of C.

Proof. Let δ = κw(0), where w is a ≺-limit element of C. Then w(0) =
⋃
{v(0) :

v ∈ C, v(0) ≺ w(0)}, w(0) has order type δ+ and {v(0) : v ∈ C, v(0) ≺ w(0)} has
order type at most δ, so δ+ is collapsed. The converse is immediate from Theorem
3.7.

�

The next theorem is implicit in [3] and we have just given a proof here to make
our paper more self-contained. We follow Radin’s idea [7].

Theorem 3.9. Let j : V → M witness κ is κ+4-supercompact and let v ∈ U∞
be a (κ, κ+)-measure sequence constructed from j which has a weak repeat point
α. Let u = v � α and let G be Ru-generic over V . Then in V [G], κ remains
λ-supercompact, where λ = (κ+4)V = (κ+3)V [G].

Proof. We prove the theorem in a sequence of claims.

Claim 3.10. If A ∈ u(β) for all 0 < β < α, then u ∈ j(A).

Proof. It suffices to show that A is v(α)-large. Suppose not. Then Ac = S(κ, κ+) \
A ∈ v(α), so for some 0 < β < α, Ac ∈ v(β) = u(β) which is in contradiction with
A ∈ u(β). �

Note that any condition p ∈ Ru is of the form pd
_〈(u,A)〉, for some unique pd

and A. By the above Claim u ∈ j(A), so we can form the condition

p∗ = qd
_〈(u,A)〉_〈(j(u), j(A))〉 ∈ RMj(u),

where qd is obtained from pd by type changing to make the above condition well-
defined. The following can be proved easily.

Claim 3.11. p∗ and j(p) are compatible in RMj(u).

Given any condition p = pd
_〈(u,A)〉 ∈ Ru and any j(u)-large set E, set

p∗ � E = qd
_〈(u,A)〉_〈(j(u), E)〉.

We now define U on Pκ(λ) as follows: X ∈ U if and only if there exist p ∈ G and

E which is j(u)-large such that p∗ � E 
 j[λ] ∈ j(Ẋ), where Ẋ is a name for X.
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Claim 3.12. The above definition of U does not depend on the choice of the name
Ẋ.

Proof. Suppose not. Then we can find p ∈ G, Ru-names Ẋ1, Ẋ2 and a j(u)-

large set E such that p 
 Ẋ1 = Ẋ2, but p∗ � E 
 j(Ẋ1) 6= j(Ẋ2). But then

j(p) 
 j(Ẋ1) = j(Ẋ2) and the conditions p∗ � E and j(p) are compatible, which is
a contradiction. �

We show that U is a normal measure on Pκ(λ). U is easily seen to be a filter.

Claim 3.13. U is an ultrafilter.

Proof. Let X ⊆ Pκ(λ) and let p ∈ Ru. By the Prikry property we can find q ≤∗ p
and a j(u)-large set E such that q∗ � E decides j[λ] ∈ j(Ẋ), and hence q forces

Ẋ ∈ U̇ or Pκ(λ) \ Ẋ ∈ U̇ . �

Claim 3.14. U is fine.

Proof. Suppose that α < λ, X = {x ∈ Pκ(λ) : α ∈ x} and that p ∈ Ru. It is clear

that p∗ 
 j[λ] ∈ j(Ẋ), so p forces Ẋ ∈ U̇ . �

Claim 3.15. U is normal.

Proof. Let F : Pκ(λ) → λ be regressive, that is F (x) ∈ x for all non-empty x ∈
Pκ(λ). Let p ∈ Ru and p 
 Ḟ is regressive, where Ḟ is a name for F . Suppose also
for contradiction that

p 
 ∀δ < λ Ḟ−1[{δ}] /∈ U̇ .
So for δ < λ we can find a j(u)-large set Eδ such that

p∗ � Eδ 
 j(Ḟ )(j[λ]) 6= j(δ).

Let E =
⋂
δ<λEδ. Then E is j(u)-large and

p∗ � E 
 ∀δ < λ j(Ḟ )(j[λ]) 6= j(δ).

On the other hand j(p) forces that j(Ḟ ) is regressive, so in particular j(p) forces

that j(Ḟ )(j[λ]) ∈ j[λ]. But this is a contradiction, since p∗ � E and j(p) are
compatible. Hence F is constant on a set in U , and the claim follows. �

Claim 3.16. U is κ-complete.

Proof. This follows by a similar argument to the one we gave for normality. �

It follows that U is a normal measure on Pκ(λ), and the theorem follows. �

4. Projected forcing

In this section we define the projected forcing. We note that our projected forcing
is different from that of [3]. The reason is that we need our projected forcing to be
as close to the supercompact Radin forcing as far as possible, so that the quotient
forcing is sufficiently homogeneous.

Given any u ∈ U∞ we first define π(u), and then we will define the projected
forcing Rππ(u).

Definition 4.1. Suppose (u,A) is a good pair. Let π(u,A) = (π(u), π(A)) where

• π(u) = κu
_u � [1, lh(u)).

• π(A) = {π(v) : v ∈ A}.
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Also let Uπ∞ = {π(u) : u ∈ U∞}. For u ∈ U∞ set π(u(α)) = the Rudin-Keisler
projection of u(α), for α > 0. Note that π(u(α)) 6= π(u)(α).

Definition 4.2. A good pair for projected forcing is a pair (u,A) where u ∈ Uπ∞,
A ⊆ Uπ∞, A ⊆ Vκu and A is of measure one for all π(u(α)), 0 < α < lh(u).

Remark 4.3. If (u,A) is a good pair, then (π(u), π(A)) is a good pair for projected
forcing.

Given u ∈ Uπ∞, we define the projected forcing Rπu.

Definition 4.4. A condition in Rπu is a finite sequence

p = 〈(u0, A0), . . . , (ui, Ai), . . . , (un, An)〉
where:

(1) un = u.
(2) Each (ui, Ai) is a good pair for projected forcing.
(3) κui < κui+1 , for all i < n.

We now define the extension relation.

Definition 4.5. Let

p = 〈(u0, A0), . . . , (ui, Ai), . . . , (un = u,An)〉
and

q = 〈(v0, B0), . . . , (vi, Bi), . . . , (vm = u,Bm)〉
be in Rπu. Then q ≤ p (q is an extension of p) iff:

(1) There exists an increasing sequence of natural numbers i0 < . . . < in = m
such that vik = uk and Bik ⊆ Ak.

(2) If j is such that 0 ≤ j ≤ m and j /∈ {i0, . . . , in}, and if i is least such that
κvj < κui , then vj ∈ Ai and Bj ⊆ Ai.

We also define q ≤∗ p (q is a direct or a Prikry extension of p) iff q ≤ p and
m = n.

It is easy to see that (Rπu,≤) satisfies the κ+
u − c.c.. The next theorem can be

proved easily.

Theorem 4.6. Let G be Rπu-generic over V , and let

C = {κw : w appears in some p ∈ G}.
Then C is a club of κu. Furthermore if lh(u) ≥ κu, then ot(C) = κu,

As before we have a factorization property for Rπu.

Theorem 4.7. Suppose that

p = 〈(u0, A0), . . . , (ui, Ai), . . . , (un = u,An)〉 ∈ Rπu
and m < n. Let

p>m = 〈(um+1, Am+1), . . . , (un = u,An)〉
and

p≤m = 〈(u0, A0), . . . , (um, Am)〉.
Then p≤m ∈ Rπum , p>m ∈ Rπu and there exists

i : Rπu/p→ Rπum/p≤m × Rπu/p>m

which is an isomorphism with respect to both ≤ and ≤∗.
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5. Weak projection

Suppose that u ∈ U∞ and consider the forcing notions Ru and Rππ(u). We define

a map π : Ru → Rππ(u) in the natural way by

π(〈(u0, A0), . . . , (ui, Ai), . . . , (un, An)〉) = 〈π(u0, A0), . . . , π(ui, Ai), . . . , π(un, An)〉
In general π is not a projection map, but we show that it has a weaker property,

introduced by Foreman-Woodin [3].

Definition 5.1. π : Q→ P is called a weak projection if

(1) π(1Q) = 1P.
(2) π is order preserving.
(3) For all p ∈ Q there is p∗ ≤ p such that for all q ≤ π(p∗) there exists r ≤ p

such that π(r) ≤ q.

The next lemma shows that π : Q → P being a weak projection is sufficient to
imply that Q-generics yield P-generics.

Lemma 5.2. Suppose π : Q→ P is a weak projection and H is Q-generic over V .
Let G be the filter generated by π[H]. Then G is P-generic over V .

Proof. Let D be a dense open subset of P. Let E = π−1[D].

Claim 5.3. E is dense in Q.

Proof. Let p ∈ Q and let p∗ ≤ p be as in 5.1(3). Let q ≤ π(p∗) be such that q ∈ D
and let r ≤ p be such that π(r) ≤ q. Then π(r) ∈ D, hence r ∈ E. �

Let p ∈ H ∩ E. Then π(p) ∈ G ∩D, and hence G ∩D 6= ∅. �

Let us now consider π : Ru → Rππ(u).

Theorem 5.4. π : Ru → Rππ(u) is a weak projection, in fact for all p ∈ Ru there is

p∗ ≤∗ p such that for all q ≤ π(p∗) we can find r ≤ p such that π(r) ≤∗ q.

Proof. It is easily seen that π(1Ru) = 1Rπ
π(u)

and that π is order preserving.

For a measure sequence u, recall that a set X is u-large iff X ∈ u(α) for all
0 < α < lh(u).

Definition 5.5. Suppose (u,A) is a good pair and v ∈ U∞. v is addable to (u,A)
iff:

(1) v ∈ A.
(2) πv[{x ∈ A : x(0) ≺ v(0)}] is v-large.

Claim 5.6. The set {v ∈ A : v is addable to (u,A)} is u-large.

Proof. Suppose that j : V → M constructs u and let 0 < α < lh(u). We need to
show that {v ∈ A : v is addable to (u,A)} ∈ u(α), or equivalently u � α ∈ j({v ∈
A : v is addable to (u,A)}). Thus it suffices to show that (in M) u � α is addable
to (j(u), j(A)).

(1) u � α ∈ j(A) : This is trivial, since A ∈ u(α).
(2) The set X = πu�α[{x ∈ j(A) : x(0) ≺ (u � α)(0)}] is u � α-large: We

have X = πu[{x ∈ j(A) : x(0) ≺ u(0)}], and since {x ∈ j(A) : x(0) ≺
u(0)} = j[A], we have X = πu[j[A]]. so it suffices to show that πu[j[A]] is
u � α-large. This follows easily from the fact that π−1

u = j � λu.
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The claim follows. �

Iterating this process ω times, we can find B ⊆ A such that B is u-large and any
v ∈ B is addable to (u,B).

Claim 5.7. Suppose that (u,A) is a good pair. Let A′ be the set of w ∈ A such
that for all x ∈ A with κx < κw, there is x̄ ∈ A such that π(x̄) = π(x), x̄(0) ≺ w(0)
and w is addable to (u,A). Then A′ is u-large.

Proof. Suppose that j : V → M constructs u and let 0 < α < lh(u). We need to
show that A′ ∈ u(α) or equivalently u � α ∈ j(A′). Clearly u � α ∈ j(A) and by
Claim 5.6 u � α is addable to (j(u), j(A)). Thus we need to prove the following:

(∗) If x ∈ j(A) and κx < κu, then there is x̄ ∈ j(A) such that π(x̄) = π(x),
x̄(0) ≺ u(0).

Choose x̄ ∈ ran(j) such that x̄ ∈ j(A), κx̄ = κx and the measures on x̄ are the
same as the measures on x, so that π(x̄) = π(x). Since x̄ ∈ ran(j) we have x̄ = j(z)
for some z ∈ A. Then z(0) ∈ Pκu(λu) and hence we have x̄(0) = j[z(0)]. It is now
clear that x̄(0) = j[z(0)] ≺ j[λu] = u(0). �

We are now ready to complete the proof of Theorem 5.4 by showing that π sat-
isfies conditions 1–3 of Definition 5.1. Conditions 1 and 2 are trivial. For condition
3 it suffices, using the factorization property from Theorem 3.6, to prove it for the
special case of p = 〈(u,A)〉. Let A(ω) =

⋂
n<ω A

(n) where the sets A(n), n < ω, are
defined by:

• A(0) = A.
• A(n+1) = (A(n))′.

Now apply Claim 5.6 to shrink Aω to a u-large set B such that any v ∈ B is
addable to (u,B). We show that p∗ = 〈(u,B)〉 is as required. Thus let

q = 〈(v0, B0), . . . , (vi, Bi), . . . , (vn, Bn)〉 ∈ Rππ(u),

with q ≤ π(p∗). We find a sequence (ui, Ai), i ≤ n, such that:

(1) un = u.
(2) u0(0) ≺ u1(0) ≺ . . . ≺ un−1(0).
(3) ui(0) ∈ Pκun (λun), i < n.
(4) π(ui) = vi, i ≤ n.
(5) π(Ai) ⊆ Bi, i ≤ n.

By induction on i ≤ n we choose (un−i, An−i). For i = 0 let un = u and
let An ⊆ B be such that π(An) ⊆ Bn. Suppose now that we have chosen
(un−i, An−i). Let w ∈ An−i be such that π(w) = vn−i−1. Since un−i ∈ A(n−i+1)

and A(n−i+1) = (A(n−i))′ we can find un−i−1 ∈ An−i such that π(un−i−1) =
π(w) = vn−i−1, un−i−1(0) ≺ un−i(0) and un−i−1 is addable to (un−i, An−i). Let
An−i−1 = πun−i−1 [{x ∈ An−i : x(0) ≺ un−i−1}]. Then An−i−1 is un−i−1-large and
by shrinking An−i−1, if necessary, we may suppose that π(An−i−1) ⊆ Bn−i−1. This
completes the inductive choice of (ui, Ai), i ≤ n.

Let r = 〈(u0, A0), . . . , (ui, Ai), . . . , (un, An)〉. Then r ∈ Ru, r ≤ p and π(r) ≤∗
q. �

By weak projection we can find 1∗ ≤∗ 1Ru such that for all q∗ ≤ π(1∗) there
exists r ∈ Ru such that π(r) ≤ q∗.

Lemma 5.8. We may choose 1∗ to be 1Ru .
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Proof. Let A = S(κu, λu) ∩ U∞ and consider 1Ru = 〈(u,A)〉. It suffices to show
that A′ = A. So suppose that w ∈ A. Then πw[{x ∈ A : x(0) ≺ w(0)}] is clearly
w-large, so w is addable to (u,A). Suppose that x ∈ A and κx < κw. Let

x̄ = 〈(x ∩ κu) ∪ the first λx-many elements of w(0) \ κu〉_〈x(α) : 0 < α < lh(x)〉.

Then x̄ ∈ A, π(x̄) = π(x) and x̄(0) ≺ w(0). Hence w ∈ A′ and the lemma
follows. �

It follows that π[Ru] is dense in Rππ(u). Also by weak projection and the Prikry

property for Ru we have the following:

Theorem 5.9. π[Ru] satisfies the Prikry property.

Proof. Let b ∈ RO(π[Ru)] and q ∈ π[Ru]. Let p ∈ Ru be such that q = π(p). By

part 5 of Theorem 3.5 there is p∗ ≤∗ p such that p∗ decides ‖b ∈ π[Ġ]‖RO(π[Ru)]

where Ġ is the canonical name for a generic filter over Ru. Let q∗ = π(p∗). Then
q∗ ≤∗ q and it decides b. �

By Theorem 5.4, π[Ru] is in fact ≤∗-dense in Rππ(u), so by the above theorem:

Corollary 5.10. Rππ(u) satisfies the Prikry property.

Theorem 5.11. Let G be Rπu-generic over V , and let C be as in Theorem 4.6.
Also let ~w = 〈wi : i < ot(C)〉 enumerate {w : w appears in some p ∈ G} such that
for i < j < ot(C), κwi < κwj . Then:

(1) V [G] = V [~w].
(2) For every limit ordinal j < ot(C), ~w � j is Rwj -generic over V , and ~w �

[j, ot(C)) is Ru-generic over V [~w � j].

Theorem 5.12. Suppose γ < κ, A ⊆ γ, A ∈ V [~w]. Let i < ot(C) be the least
ordinal such that γ < κwi . Then A ∈ V [~w � j].

From Theorem 4.6 and the above results we have the following:

Theorem 5.13. Suppose that u ∈ Uπ∞ and let G be Rπu-generic over V . Then V
and V [G] have the same cardinals.

The same argument as in Theorem 3.9 yields the following:

Theorem 5.14. Let j : V → M witness κ is κ+4-supercompact and let v ∈ U∞
be a (κ, κ+)-measure sequence constructed from j which has a weak repeat point α.
Let u = v � α and let Gπ be Rππ(u)-generic over V . Then in V [Gπ], κ remains

λ-supercompact, where λ = (κ+4)V = (κ+4)V [Gπ ].

6. Homogeneity property

Suppose that u ∈ U∞ is a (κ, κ+)-measure sequence.

Theorem 6.1. For all p, q ∈ Ru, if π(p) = π(q), then there exists q∗ compatible
with q such that Ru/p ' Ru/q∗.

Proof. We give the proof in a sequence of claims. First note that if σ is a per-
mutation of λ, then σ naturally extends to a permutation of S(κ, λ) defined by
σ(x) = 〈σ[x(0)]〉_〈x(α) : 0 < α < lh(x)〉. We also denote this extension by σ.
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Claim 6.2. Suppose that u is a measure on S(κ, λ) which has a generating embed-
ding j, σ is a permutation of λ, 0 < α < lh(u) and A ∈ u(α). Then σ[A] ∈ u(α).

Proof. We have

j(σ)(u � α) = j(σ)[j[λ]]
_〈u(β) : 0 < β < α〉 = j[λ]

_〈u(β) : 0 < β < α〉 = u � α.

On the other hand by our assumption u � α ∈ j(A), which implies u � α ∈
j(σ)[j(A)]. Since

σ[A] ∈ u(α)⇔ u � α ∈ j(σ)[j(A)],

we get σ[A] ∈ u(α). �

Corollary 6.3. If (u,A) is a good pair, then (u, σ[A]) is also a good pair.

Claim 6.4. Let κ be inaccessible. Let A and A′ be sets of ordinals with ot(A) =
ot(A′) = κ+ and let B ⊆ A, B′ ⊆ A′ be such that ot(B) = ot(B′) < κ. Let ρ be the
order preserving map from A to A′. Then there is a bijection σ : A→ A′ such that
σ � B is the order preserving map from B to B′ and {i : σ(i) 6= ρ(i)} has size less
than κ.

Proof. Let C ⊆ A be such that B ⊆ C, B′ ⊆ ρ[C] and ot(C) < κ. Let τ : C ↔ ρ[C]
be such that τ � B : B → B′ is order preserving. Then σ = τ ∪ (ρ � (A \ C)) is as
required. �

We now complete the proof of Theorem 6.1. Thus let p, q ∈ Ru be such that
π(p) = π(q). Then p, q have the same length. Let

p = 〈(u0, A0), . . . , (ui, Ai), . . . , (un = u,An)〉
and

q = 〈(v0, B0), . . . , (vi, Bi), . . . , (vn = u,Bn)〉.
By our assumption κui = κvi and we call this κi. Also we have π(Ai) = π(Bi).
Using the above claim, by starting at the top and working down, we can find a
permutation σ of κ+ such that:

(1) σ � κ = id � κ.
(2) The support of σ has size less than κ.
(3) For each i < n, σ[ui(0)] = vi(0).
(4) For each i < n, σ and the order preserving map from ui(0) to vi(0) differ

at fewer than κi many points.

Note that for each i < n, σ induces a permutation σi of κ+
i defined by σi = πvi ◦

σ ◦ π−1
ui . By convention set σn = σ. Let q∗ = 〈(v0, σ0[A0]), (v1, σ1[A1]), . . . , (vn =

u, σn[An])〉. By Corollary 6.3 q∗ ∈ Ru, and clearly q∗ is compatible with q. Define

ϕ : Ru/p→ Ru/q∗

as follows:
Suppose that

〈(x0, C0), (x1, C1), . . . , (xm, Cm)〉 ∈ Ru/p.
For each k ≤ m let ik ≤ n be the least such that xk = uik or xk ≺ uik . We define

ϕ(〈(x0, C0), (x1, C1), . . . , (xm, Cm)〉) = 〈(y0, D0), (y1, D1), . . . , (ym, Dm)〉
where for k ≤ m:

• If xk = uik , then yk = vik and Dk = σik [Cik ].



12 J. CUMMINGS, SY D. FRIEDMAN, AND M. GOLSHANI

• If ik = n and xk ≺ un = u, then yk = σn(xk) and Dk = πσn(xk) ◦ σn ◦
π−1
xk

[Ck].

• If ik < n and xk ≺ uik , then yk = σik(xk) and Dk = π−1
σik (xk),vik

◦ σik ◦
πxk,uik [Ck].

The following can be proved easily.

Claim 6.5. (1) Each (yk, Dk) is a good pair.
(2) Suppose that ik = n and xk ≺ un = u. Then yk ∈ σn[An] and π−1

yk
[Dk] ⊆

σn[An].
(3) Suppose that ik < n and xk ≺ uik . Then yk ∈ σik [Aik ] and πyk,vik [Dk] ⊆

σik [Aik ].

It follows from Claim 6.5 that ϕ is well-defined.

Claim 6.6. ϕ : Ru/p→ Ru/q∗ is an isomorphism.

Proof. Define

ψ : Ru/q∗ → Ru/p
as follows:

Suppose that

〈(y0, D0), (y1, D1), . . . , (ym, Dm)〉 ∈ Ru/q∗.

For each k ≤ m, let ik be least such that yk = vik or yk ≺ vik . Set

ψ(〈(y0, D0), (y1, D1), . . . , (ym, Dm)〉) = 〈(x0, C0), (x1, C1), . . . , (xm, Cm)〉

where for k ≤ m:

• If yk = vik , then xk = uik and Ck = σ−1
ik

[Dik ].

• If ik = n and yk ≺ vn = u, then xk = σ−1
n (yk) and Ck = πσ−1

n (yk) ◦ σ−1
n ◦

π−1
yk

[Dk].

• If ik < n and yk ≺ vik , then xk = σ−1
ik

(yk) and Ck = π−1

σ−1
ik

(yk),uik
◦ σ−1

ik
◦

πyk,vik [Dk].

As above we can show that ψ is well-defined and it is easily seen that ϕ ◦ ψ =
idRu/q∗ and ψ ◦ϕ = idRu/p, which implies both of ϕ and ψ are bijections. It is also
easy to show that both of them preserve the forcing relations ≤ and ≤∗. �

This completes the proof of Theorem 6.1. �

Corollary 6.7. (Weak homogeneity). Suppose p, q ∈ Ru and π(p) = π(q). If
p 
 φ(α,~γ), where α,~γ are ordinals, then it is not the case that q 
 ¬φ(α,~γ).

It follows that:

Corollary 6.8. Suppose that G is Ru-generic and let Gπ be the filter generated by
π[G] Then:

(1) Gπ is Rππ(u)-generic over V .

(2) HODV [G] ⊆ V [Gπ].

Proof. Part 1 follows from Lemma 5.2, Theorem 5.4 and the fact that π[Ru] is
dense in Rππ(u).
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For part 2 suppose that a is a set of ordinals in V [G] which is definable in V [G]
with ordinal parameters. We show that a belongs to V [Gπ]. Write a = {α : V [G] |=
φ(α,~γ)}. Then

α ∈ a⇔ p 
 φ(α,~γ) for some p ∈ G.
By corollary 6.7, if p 
 φ(α,~γ) and if π(p) = π(q), then it is not the case that
q 
 ¬φ(α,~γ). It follows that

a = {α : p 
 φ(α,~γ) for some p with π(p) ∈ Gπ },

and hence a ∈ V [Gπ]. �

7. Proof of main theorem

In this section we will present the proof of Theorem 1.1. Suppose κ is a κ+4-
supercompact cardinal and let j : V → M witness this. Let v ∈ U∞ be a (κ, κ+)-
measure sequence constructed from j which has a weak repeat point α and let
u = v � α. Consider the forcing notions Ru and Rππ(u). Let G be Ru-generic over V

and let Gπ be the filter generated by π[G]. In summary we showed:

• κ remains λ-supercompact in V [G], where λ = (κ+4)V = (κ+3)V [G] (by
Theorem 3.9).
• κ remains λ-supercompact in V [Gπ], where λ = (κ+4)V = (κ+4)V [Gπ ] (by

Theorem 5.14).
• There exists a club C ∈ V [Gπ] of κ such that for every limit point α of C

we have (α+)V [Gπ ] = (α+)V < (α+)V [G] (by Theorems 3.8 and 5.13).

By part 2 of Corollary 6.8 we have HODV [G] ⊆ V [Gπ], in particular for every
limit point α of C we have

(α+)HOD
V [G]

≤ (α+)V [Gπ ] = (α+)V < (α+)V [G].

Claim 7.1. Let 〈κi : i < κ〉 be an increasing enumeration of C. Working in V [G],
let Q be the reverse Easton iteration for collapsing each κi+1 to κ+

i for each each
i < κ, and let H be Q-generic over V [G]. Clearly

(1) CARDV [G∗H] ∩ (κ0, κ) = {κ+
i : i < κ} ∪ {κi : i < κ, i is a limit ordinal}.

(2) κ remains inaccessible in V [G ∗H].

It also follows from the results of [2] that Q is cone homogeneous, that is for all
p, q ∈ Q there are p∗ ≤ p, q∗ ≤ q and an isomorphism φ : Q/p∗ → Q/q∗. Hence by
[2] we have

HODV [G∗H] ⊆ HODV [G].

Finally force with P = Col(ℵ0, κ0)V [G∗H] over V [G∗H] and let K be P-generic over
V [G ∗H]. It is now easily seen that κ remains inaccessible in V [G ∗H ∗K] and by
homogeneity of P

HODV [G∗H∗K] ⊆ HODV [G∗H].

Hence

HODV [G∗H∗K] ⊆ HODV [G∗H] ⊆ HODV [G] ⊆ V [Gπ].

Thus for all infinite cardinals α < κ of V [G ∗H ∗K] we have

(α+)HOD
V [G∗H∗K]

≤ (α+)V [Gπ ] = (α+)V < (α+)V [G∗H∗K].

Let V ∗ = V [G ∗H ∗K]. Then V ∗ is the required model and the theorem follows.
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Remark 7.2. (1) In fact we can show that κ remains measurable in Theorem
1.1.

(2) If we start with a supercompact cardinal κ, then our proof shows that we can
preserve the supercompactness of κ and have (α+)HOD < α+ for a closed
unbounded set of α < κ:

Open Question 7.3. What is HODV [G]?

Open Question 7.4. Is it consistent that all uncountable cardinals are inaccessible
cardinals of HOD?

Open Question 7.5. Is it consistent that κ is supercompact and (α+)HOD < α+

for all cardinals α < κ?

As a consequence of his “HOD Conjecture” (see [8]), Woodin has conjectured a
negative answer to the previous question.

References

1. Devlin, Keith; Jensen, Ronald, Marginalia to a theorem of Silver. ISILC Logic Conference

(Proc. Internat. Summer Inst. and Logic Colloq., Kiel, 1974), pp. 115–142. Lecture Notes in
Math., Vol. 499, Springer, Berlin, 1975.

2. Dobrinen, Natasha; Friedman, Sy-David, Homogeneous iteration and measure one covering
relative to HOD. Arch. Math. Logic 47 (2008), no. 7-8, 711–718.

3. Foreman, Matthew; Woodin, W. Hugh, The generalized continuum hypothesis can fail every-

where. Ann. of Math. (2) 133 (1991), no. 1, 1–35.
4. Jensen, Ronald; Steel, John, K without the measurable. J. Symbolic Logic 78 (2013), no. 3,

708–734.

5. Krueger, John, Radin forcing and its iterations. Arch. Math. Logic 46 (2007), no. 3-4, 223–252.
6. Magidor, Menachem, On the singular cardinals problem. I. Israel J. Math. 28 (1977), no. 1–2,

1–31.

7. Radin, Lon Berk, Adding closed cofinal sequences to large cardinals. Ann. Math. Logic 22
(1982), no. 3, 243–261.

8. Woodin, W. Hugh, Suitable extender models I, Journal of Mathematical Logic, Vol. 10, Nos.

1&2 (2010) 101–339.
9. Woodin, Hugh, Private communication.

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA

15213-3890, USA
E-mail address: jcumming@andrew.cmu.edu
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