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We study the structure of Σ1
1 equivalence relations on hyperarithmetical subsets of ω under reducibilities given

by hyperarithmetical or computable functions, called h-reducibility and FF-reducibility, respectively. We show
that the structure is rich even when one fixes the number of properly Σ1

1 (i.e. Σ1
1 but not ∆1

1) equivalence
classes. We also show the existence of incomparable Σ1

1 equivalence relations that are complete as subsets
of ω × ω with respect to the corresponding reducibility on sets. We study complete Σ1

1 equivalence relations
(under both reducibilities) and show that existence of infinitely many properly Σ1

1 equivalence classes that are
complete as Σ1

1 sets (under the corresponding reducibility on sets) is necessary but not sufficient for a relation
to be complete in the context of Σ1

1 equivalence relations.
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1 Introduction

In [8, 10] the notion of hyperarithmetical and computable reducibility of Σ1
1 equivalence relations on hyper-

arithmetical subsets of ω was used to study the question of completeness of natural equivalence relations on
hyperarithmetical classes of computable structures as a special class of Σ1

1 equivalence relations on ω. In this
paper we use this approach to study the structure of Σ1

1 equivalence relations on ω as a whole.
In descriptive set theory, the study of definable equivalence relations under Borel reducibility has developed

into a rich area. The notion of Borel reducibility allows one to compare the complexity of equivalence relations
on Polish spaces, for details see e.g. [12, 15, 16]. As proved by Louveau and Velickovic in [20], the partial order
of inclusion modulo finite sets on P(ω) can be embedded into the partial order of Borel equivalence relations
modulo Borel reducibility. Thus, the structure of Borel equivalence relations under ≤B is shown to be very rich.

In computable model theory equivalence relations have also been a subject of study, e.g. [2, 5, 17], etc. In
these papers equivalence relations of rather low complexity were studied (computable, Σ0

1,Π
0
1, having degree in

the Ershov hierarchy). In [8] Σ1
1 equivalence relations on computable structures were investigated. The authors

used the notions of hyperarithmetical and computable reducibility of Σ1
1 equivalence relations on ω to estimate

the complexity of natural equivalence relations on hyperarithmetical classes of computable structures.
In this paper we take up the general theory of Σ1

1 equivalence relations on hyperarithmetical subsets of ω. We
show that the general structure of Σ1

1 equivalence relations on hyperarithmetical subsets of ω under reducibil-
ities given by hyperarithmetical or computable functions is very rich. Namely, the structure of Σ1

1 sets under
hyperarithmetical many-one-reducibility (hm-reducibility) is embeddable into the structure of Σ1

1 equivalence
relations under reducibility given by a hypearithmetical function. Moreover, this embedding can be taken to have
range within the class of Σ1

1 equivalence relations with a unique properly Σ1
1 equivalence class. Furthermore,

we show that there are properly Σ1
1 equivalence relations with only finite equivalence classes, and there are Σ1

1

relations with exactly n properly Σ1
1 equivalence classes, for n ≤ ω. We also show that a Σ1

1 equivalence rela-
tion with infinitely many properly (moreover, hm-complete) Σ1

1 classes need not be complete with respect to the
hyperarithmetical reducibility.

∗ Corresponding author: e-mail: efokina@logic.univie.ac.at, Phone: +43 1 4277 50522, Fax: +43 1 4277 50599. The authors would
like to thank the FWF (Austrian Research Fund) for supporting this research through Grants number P 19898 - N18 and M 1188 - N13.
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2 Background

Here we list some definitions and facts that we will use throughout the paper. We assume the familiarity with the
main notions from recursion theory. The standard references are [23, 25].

2.1 Linear orderings

Definition 2.1 Let K be a class of structures closed under isomorphism and Kc be the set of its computable
members.

1. An enumeration of Kc/∼= is a sequence (An)n∈ω of elements of Kc representing each isomorphism type in
Kc at least once.

2. An enumeration (An)n∈ω of Kc/∼= is computable (hyperarithmetical) if there is a computable (hyperarith-
metical) function f which, for every n, gives a computable index f(n) for the computable structure An.

As proved in [14]:
Proposition 2.2 There exists a computable enumeration of all isomorphism types for computable linear or-

derings.

Thus, we can consider ω as a set of effective codes for computable linear orderings. We will denote by Ln the
n-th computable linear order in this enumeration. We will abbreviate the set of codes for linear orderings as LO
and the set of codes for well-orderings as WO.

Theorem 2.3 (e.g. [23], Chapter 16, Corollary XXa) The set WO is a Π1
1-complete set, moreover there exists

a computable function f(z, x) such that for every z, the Π1
1 set with the Π1

1 index z is 1-reducible to WO by the
function λx[f(z, x)].

In view of Theorem 2.3 one can think about Π1
1 sets in the following way. Let A be a Π1

1 set and let m be its
Π1

1 index. Then for every x ∈ A, the ordinal isomorphic to Lf(m,x) may be considered as “the level” at which
the membership of x is determined.

Theorem 2.4 (Bounding) For each computable ordinal α, let WOα denote the set of codes for computable
well-orderings isomorphic to an ordinal less than α. Then if F is a hyperarithmetical function from a hyperarith-
metical subset of ω into WO, there exists a computable α such that the range of F is contained in WOα.

Theorem 2.5 (Uniformization) Every Π1
1 binary relation on X × Y , where X,Y ⊆ ω are hyperarithmetical

contains a Π1
1 (hyperarithmetical) function with the same domain.

2.2 Reducibilities on Σ1
1 equivalence relations

The following definitions were introduced in [8]1:
Definition 2.6 Let E,E′ be Σ1

1 equivalences relations on hyperarithmetical subsets X,Y ⊆ ω, respectively.

1. The relation E is h-reducible to E′, denoted by E ≤h E
′, iff there exists a hyperarithmetical function f

such that for all x, y ∈ X ,

xEy ⇐⇒ f(x)E′f(y).

2. The relation E is FF-reducible to E′, denoted by E ≤FF E
′, iff there exists a partial computable function

f with X ⊆ dom(f), f [X] ⊆ Y such that for all x, y ∈ X ,

xEy ⇐⇒ f(x)E′f(y).

Remark 2.7 A definition analogous to that of FF-reducibility was introduced in [1] for the case of c.e. equiv-
alence relations.

1 In [8], we used the term “tc-reducible” for “FF-reducible”, by analogy with the reducibility defined in [3] for classes of countable
structures. Later J. Knight suggested the term “FF-reducibility” which was used in [10]. In the current work we follow J. Knight’s suggestion.
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Definition 2.8 We say that equivalence relations E,F are h-equivalent (FF-equivalent), denoted by E ≡h F
(E ≡FF F , respectively), if E ≤h F and F ≤h E (E ≤FF F and F ≤FF E, respectively).

Obviously, every Σ1
1 equivalence relation on a hyperarithmetical subset of ω is h-equivalent to a Σ1

1 equiva-
lence relation on ω. For FF-reducibility the situation is different:

Fact 2.9 There exists a Σ1
1 equivalence relation E on a hyperarithmetical subset X of ω such that for no Σ1

1

equivalence relation E′ on ω, E ≡FF E
′.

P r o o f. Consider an arbitrary Σ1
1 equivalence relation on a hyperarithmetical set X and suppose there exists

a relation E′ on ω such that E ≡FF E
′. Let f be a computable function which witnesses E′ ≤FF E. Then f(ω)

is a c.e. subset of X . Therefore if a Σ1
1 equivalence relation is defined on a hyperarithmetical set without a c.e.

subset, it cannot be FF-equivalent to an equivalence relation on ω.

From [13], every computable equivalence relation on ω is FF-equivalent to one of the following:

1. For some finite n, the equivalence relation x ≡ y mod n, which defines a computable equivalence relation
with exactly n infinite equivalence classes and no finite classes.

2. The equality relation, which defines a computable equivalence relation with infinitely many classes of size
one, and no other classes.

Thus, the partial ordering of the computable equivalence structures, modulo the FF-reducibility, is isomorphic
to ω + 1.

In the current paper we are mostly interested in properly Σ1
1 equivalence relations, i.e. equivalence relations

that are Σ1
1 but not ∆1

1. The reason is the following:
Fact 2.10 Let idω denote the equality on ω.

1. idω ≤h E for any Σ1
1 equivalence relation E with infinitely many equivalence classes.

2. Any ∆1
1 equivalence relation on a hyperarithmetical subset of ω is h-reducible to idω .

P r o o f. Define a function f : ω → X , where X = dom(E) is hyperarithmetical, in the following way:

f(x) = µy[y ∈ X&
∧
z≤x

¬f(z)Ey].

By its definition, f is a Π1
1 function with dom(f) = ω, thus f is a hyperarithmetical function. Obviously,

x = y ⇐⇒ f(x)Ef(y).
To prove the second statement, let E be a ∆1

1 equivalence relation on a hyperarithmetical set X . Without loss
of generality we assume 0 /∈ X . Consider a function f(x) defined on X in the following way:

f(x) = µz[xEz].

For x /∈ X define f(x) = 0. Then the function f is hyperarithmetical and xEy ⇐⇒ f(x) = f(y) 6= 0.

Therefore all the ∆1
1 equivalence relations on ω with infinitely many equivalence classes are h-equivalent.

The question we study in the present paper is the following:
Question 2.11 How complicated is the structure of all Σ1

1 equivalence relations on ω under h-reducibility (or
FF-reducibility)?

2.3 Hyperarithmetical many-one reducibility on Σ1
1 sets

In what follows we use the standard notions of m-reducibility and 1-reducibility [25]:
Definition 2.12

1. A set A ⊆ ω is many-one reducible (m-reducible) to a set B ⊆ ω, denoted by A ≤m B, if there exists a
computable function f such that for every n ∈ ω,

n ∈ A ⇐⇒ f(n) ∈ B.
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2. A set A ⊆ ω is 1-reducible to a set B ⊆ ω, denoted by A ≤1 B, if A is m-reducible to B via a 1 − 1
computable function.

These reducibilities will be useful for the study of the structure of Σ1
1 equivalence relations with respect to

FF-reducibility.
Consider a hyperarithmetical version of the m-reducibility on subsets of ω. It will play an important role in

the investigation of complexity of the structure of Σ1
1 equivalence relations relative to h-reducibility.

Definition 2.13 Let A,B be subsets of ω. We say that A is hyperarithmetically m-reducible to B, denoted by
A ≤hm B, iff there exists a hyperarithmetical function f with A ⊆ dom(f), such that for every n ∈ ω,

n ∈ A ⇐⇒ f(n) ∈ B.

Every equivalence relation can also be considered as a set of pairs, thus, compared to other sets via m- or
hm-reducibilities. The following is straightforward:

Fact 2.14 Let E,F be Σ1
1 equivalence relations on hyperarithmetical subsets of ω.

1. If E ≤FF F then E ≤m F ;

2. if E ≤h F then E ≤hm F .

We state that the structure of hm-degrees of Σ1
1 subsets of ω is rather complicated.

Theorem 2.15 The countable atomless Boolean algebra may be embedded into the hm-degrees of Π1
1 subsets

of ω.

P r o o f. We start as in the proof of Theorem 2.1, Chapter IX in [25]. Let (αi)i∈ω be a uniformly computable
sequence of computable subsets of ω which form a dense Boolean algebra under ∪,∩. For each i ∈ ω, we are
going to build a Π1

1 set Ai such that the mapping

α 7→ Aα = {〈i, x〉|i ∈ α, x ∈ Ai}

gives the desired embedding, i.e.,

1. α ⊆ β iff Aα ≤hm Aβ ;

2. deg(Aα∩β) ≤ deg(Aα), deg(Aβ);

3. deg(Aα∪β) ≥ deg(Aα), deg(Aβ).

Notice that the implication from left to right of the first property, as well as the second and the third properties
follow from the definition ofAαi

. To ensure the implication from right to left of the first property, we will use the
ideas of metarecursion [24]. We will build the Π1

1 setsAi’s in ωCK
1 steps in such a way that noAi is hm-reducible

to the set A 6=i = {〈k, x〉|k ∈ ω, k 6= i, x ∈ Ak}.
The whole construction will take now ωCK

1 steps, but as only the Π1
1 subsets of ω are considered, there will be

only ω-many requirements. Thus, each of them may be injured only finitely many times. This approach is used,
for example, in [24], Chapter VI, Theorems 2.1, 2.4.

Let (fj)j∈ω be a universal Π1
1 enumeration of all Π1

1 functions on ω. Such an enumeration exists, e.g., by [23],
Chapter 16.5. Recall that the hyperarithmetical functions are the total Π1

1 functions. Then our requirements are:

Ri,j : Ai 6= f−1j [A 6=i] and Ai is co-infinite.

We build our sets in stages σ < ωCK
1 . We assign requirements to stages in such a way that each requirement

is assigned to cofinally many stages. At stage 0 we do nothing.
At stage 0 < σ < ωCK

1 , let Ri,j be the current requirement. The strategy to satisfy Ri,j is the following. Look
for an n > 2j such that fσj (n) ↓/∈ Aσ6=i. Put n into Ai and restrain fσj (n) from entering A 6=i. This may injure
requirements with lower priority.

Lemma 2.16 For all i, j, the requirement Ri,j acts only finitely many times.
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P r o o f. This is because the requirements are ordered in order type omega, and between any two stages at
which the (n+ 1)-st requirement acts, one of the first n requirements must have acted. It follows by induction on
n that the n-th requirement only acts finitely many times.

Lemma 2.17 For all i, j ∈ ω, Ai 6= f−1j [A 6=i].

P r o o f. Assume the opposite, i.e. for some i ∈ ω, Ai ≤hm A 6=i via fj . Choose a stage σ where requirement
Ri,j is considered and requirements of higher priority have ceased to act; also choose an n > 2j such that fσj (n) ↓
and fσj (n) /∈ Aσ6=i. Such a n exists, as at most 2k numbers less than 2k+1 are added toAi for each k and therefore
Ai is co-infinite. But then at stage σ a number was added to Ai to violate the reduction fj , contradiction.

The lemmas above prove the theorem.

Corollary 2.18 The countable atomless Boolean algebra may be embedded into the hm-degrees of Σ1
1 subsets

of ω.

Note that there are, or course, much deeper statements about the structure of c.e. m-degrees (e.g., [6, 19, 22])
that one could try to lift to hm-degrees of Π1

1 sets. However, Corollary 2.18 provides enough evidence that the
structure of hm-degrees of Σ1

1 sets is rich.

3 A complete Σ1
1 equivalence relation

We start the section by establishing some general properties of Σ1
1 equivalence relations.

Definition 3.1 An equivalence relation E is complete in a class R of equivalence relations (with a specified
reducibility), if E ∈ R and every equivalence relation from R is reducible to E (with respect to the chosen
reducibility).

Theorem 3.2 1. There exists a universal Σ1
1 enumeration of all Σ1

1 equivalence relations on ω.

2. There exists a complete Σ1
1 equivalence relation U (with respect to h- or FF-reducibility).

P r o o f. Let {Ae}e∈ω be the standard Σ1
1 enumeration of all Σ1

1 subsets of ω × ω (for instance, as in [23]).
Define the equivalence relation Re as the reflexive transitive closure of Ae, i.e.

xRey ⇐⇒ x = y ∨ (∃z0, . . . , zk)[z0 = x& . . .&zk = y&(∀i < k)(〈zi, zi+1〉) ∈ Ae]
∨(∃z0, . . . , zk)[z0 = y& . . .&zk = x&(∀i < k)(〈zi, zi+1〉) ∈ Ae].

Then every Σ1
1 equivalence relation appears in this enumeration, moreover from the properties of the enumeration

{Ae}e∈ω , the enumeration {Re}e∈ω is universal.
Now define an equivalence relation R as follows:

〈x, e〉R〈y, e〉 ⇐⇒ xRey.

Then R is an h- and FF-complete Σ1
1 equivalence relation.

A useful and rather straightforward property of complete Σ1
1 equivalence relations is the following:

Proposition 3.3 An h-complete (or FF-complete) Σ1
1 equivalence relation has infinitely many properly Σ1

1

equivalence classes.

P r o o f. Under h- or FF-reducibility properly Σ1
1 equivalence classes are mapped to properly Σ1

1 equivalence
classes. In Theorem 7.1 below we show that there exist Σ1

1 equivalence relations with infinitely many properly
Σ1

1 equivalence classes. Thus, a complete Σ1
1 equivalence relation must also have this property.

Recall the notion of hm-reducibility on subsets of ω introduced in Section 2.3. There exist Σ1
1 equivalence

relations with infinitely many hm-complete classes (e.g., as in Theorem 7.1 below). Therefore,
Corollary 3.4 An h-complete (FF-complete) Σ1

1 equivalence relation must have infinitely many properly Σ1
1

equivalence classes that are hm-complete (m-complete, respectively).

Copyright line will be provided by the publisher



6 E. Fokina and S. Friedman: On Σ1
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In a following section we will show that this condition is necessary but not sufficient for a relation to be h- or
FF-complete among Σ1

1 equivalence relations.

Remark 3.5 In [8] the authors showed that, in fact, the natural equivalence relation of bi-embeddability on the
class of computable trees (here we mean the standard model-theoretic notion of embedding of structures) is FF-
complete (thus, also h-complete) for the class of all Σ1

1 equivalence relations on ω, where trees are considered
in the signature with one unary function symbol interpreted as the predecessor function. Furthermore, [10]
showes that the isomorphism relation on many natural classes of computable structures is FF-complete among
Σ1

1 equivalence relations.

By the above results, there exist the h-degrees formed by ∆1
1 equivalence relations with exactly n equivalence

classes, for n ≤ ω, and a greatest h-degree of Σ1
1 equivalence relations, namely, that of a complete Σ1

1 equivalence
relation. The next step is to show that the structure of h-degrees of properly Σ1

1 equivalence relations is not trivial:

Proposition 3.6 There exists a Σ1
1 equivalence relation on ω which is neither ∆1

1 nor h-complete.

P r o o f. Let (Lm)m∈ω be the numbering of all computable linear orderings on ω. Consider the following
equivalence relation EωCK

1
:

mEωCK
1
n⇐⇒ either Lm, Ln are not well-orders, (i.e. m,n /∈WO)

or Lm ∼= Ln.

The relationEωCK
1

is Σ1
1 but not ∆1

1 as otherwise the equivalence class consisting of non-well-orderings would
be a ∆1

1 set, a contradiction. Moreover, for every computable ordinal α, the equivalence class ofEωCK
1

containing
α is hyperarithmetical. The only properly Σ1

1 equivalence class is the class consisting of the computable non well-
orderings. As the complete relation R constructed above has infinitely many properly Σ1

1 equivalence classes, it
cannot be reduced to EωCK

1
. Thus EωCK

1
is not complete.

We would like to mention another natural example of an incomplete properly Σ1
1 equivalence relation: namely,

the relation of bi-embeddability on the class of linear orders studied in [21]. Recall the notion of Scott rank: it
is a measure of model theoretic complexity of countable structures. For a computable structure, the Scott rank
is at most ωCK

1 + 1 (see, for instance, [4] for a definition and an overview of results about the Scott rank of
computable structures). In the class of computable linear orderings with the relation of bi-embeddability, the only
equivalence class that contains structures of high (i.e. non-computable) Scott rank is the class of the dense linear
order η. All other equivalence classes contain only structures of computable Scott rank (see [21] for details).
If bi-embeddability on linear orderings were complete, it would necessarily have infinitely many equivalence
classes with structures of high Scott rank. Therefore, bi-embeddability on linear orders cannot be complete.

4 Embedding Σ1
1 sets into Σ1

1 relations

For the reasons stated in Fact 2.10 we are interested in the structure of properly Σ1
1 equivalence relations, i.e.

relations that are Σ1
1 but not ∆1

1. In this section we will prove the following theorem:

Theorem 4.1 The structure of properly Σ1
1 sets with the relation of m-reducibility is order-preservingly (and

effectively) embedded into the structure of properly Σ1
1 equivalence relations with the relation of FF-reducibility,

i.e. one can assign to every properly Σ1
1 set A a properly Σ1

1 equivalence relation EA such that for any properly
Σ1

1 sets A,B,

A ≤m B ⇐⇒ EA ≤FF EB .

Before we give the proof of this theorem we will show the following:

Theorem 4.2 The structure of properly Σ1
1 sets with the relation of 1-reducibility is order-preservingly (and

effectively) embedded into the structure of properly Σ1
1 equivalence relations with the relation of FF-reducibility

where the reducing function is 1− 1.
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P r o o f. Let A be a properly Σ1
1 set.

Define the relation EA in the following way:

xEAy ⇐⇒ x, y ∈ A
or x = y.

The relation EA is properly Σ1
1.

Lemma 4.3 For all properly Σ1
1 sets A,B,

A ≤1 B ⇐⇒ EA ≤FF EB ,

where the FF-reducibility is witnessed by a computable 1− 1 function.

P r o o f. The direction from right to left is obvious. To prove the direction from left to right suppose A ≤1 B
via a computable 1− 1 function f . Consider x, y such that xEAy. By definition of EA, EB and by properties of
f ,

xEAy ⇐⇒ x, y ∈ A or x = y ⇐⇒ f(x), f(y) ∈ B or f(x) = f(y) ⇐⇒ f(x)EBf(y).

We use the fact that f is injective to prove the equivalence of the 3rd and the 2nd statement.

The lemma proves the theorem.

Remark 4.4 Relations of this kind for Σ0
1 sets were considered in [13].

Proposition 4.5 There exists an effective procedure which transforms a properly Σ1
1 set A into a properly Σ1

1

set A∗ in such a way that

A ≤m B ⇒ A∗ ≤1 B
∗;

A∗ ≤m B∗ ⇒ A ≤m B.

P r o o f. For every set A, define A∗ = A × ω = {〈x, i〉|x ∈ A, i ∈ ω}. For every i, denote by Ai the set
{〈x, i〉|x ∈ A}. Then A∗ = ∪iAi. Note that by definition of A∗,

x ∈ A ⇐⇒ ∀i〈x, i〉 ∈ A∗ ⇐⇒ ∃i〈x, i〉 ∈ A∗.

Suppose A ≤m B via a computable function f . We define a computable function h in the following way: for
x′ = 〈x, i〉 let h(x′) = 〈f(x), 〈x, i〉〉, i.e. we send every x′ ∈ Ai to an element of Bx′ . It guarantees that the
function h is 1− 1. Thus we only need to show that h witnesses the 1-reduction of A∗ to B∗:

x′ ∈ A∗ ⇐⇒ x ∈ A ⇐⇒ f(x) ∈ B ⇐⇒ 〈f(x), 〈x, i〉〉 ∈ B∗.

Now suppose A∗ ≤m B∗ via a computable function h. Define f(x) = y ⇐⇒ l(h(〈x, 0〉)) = y, i.e.
h(〈x, 0〉) = 〈y, j〉, for some j ∈ ω. Then the function f m-reduces A to B:

x ∈ A ⇐⇒ 〈x, 0〉 ∈ A∗ ⇐⇒ h(〈x, 0〉) = 〈y, j〉 ∈ B∗ ⇐⇒ y ∈ B.

Proof of Theorem 4.1. The proof now follows directly from Proposition 4.5 and Theorem 4.2.

Corollary 4.6 For any 1 ≤ n ≤ ω, there exists an effective embedding of the structure of properly Σ1
1 sets

under m-reducibility into the structure of properly Σ1
1 relations with exactly n properly Σ1

1 equivalence classes
under the FF-reducibility.

In Section 2.3 we introduced the notion of hm-reducibility on sets which is a hyperarithmetical analogue
of m-reducibility. We showed that the structure of hm-degrees of Σ1

1 sets is complicated. Consider now a
hyperarithmetical version of the 1-reducibility of subsets of ω:
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Definition 4.7 Let A,B be subsets of ω. We say that A is hyperarithmetically 1-reducible to B, denoted by
A ≤h1 B, iff there exists a hyperarithmetical 1− 1 function f , such that for every n ∈ ω,

n ∈ A ⇐⇒ f(n) ∈ B.

Using this definition and ideas from above one can show the following:
Theorem 4.8 The structure of properly Σ1

1 sets with the relation of hm-reducibility is order-preservingly (and
effectively) embedded into the structure of properly Σ1

1 equivalence relations with the relation of h-reducibility,
i.e. one can assign to every properly Σ1

1 set A a properly Σ1
1 equivalence relation EA such that for any properly

Σ1
1 sets A,B,

A ≤hm B ⇐⇒ EA ≤h EB .

Moreover, for every n ≤ ω, there is such an embedding into the structure of properly Σ1
1 equivalence relations

with exactly n properly Σ1
1 equivalence classes.

Thus, the structure of h-degrees of Σ1
1 equivalence relations even with just one properly Σ1

1 equivalence class
is at least as rich as the structure of Σ1

1 sets under hm-reducibility.

5 Properly Σ1
1 Equivalence Relations with only hyperarithmetical equiva-

lence classes

In this section we show that a properly Σ1
1 equivalence relation need not contain properly Σ1

1 equivalence classes.
Moreover, the example we present contains only equivalence classes of size 1 or 2.

Let A be a Σ1
1 subset of ω which is not ∆1

1. Define the corresponding equivalence relation FA on ω× 2 in the
following way:

(m0, n0)FA(m1, n1) ⇐⇒ m0 = m1 ∈ A
or (m0, n0) = (m1, n1).

The relation FA is Σ1
1. The equivalence classes of FA are of the form {(m,n)|1 ≤ n ≤ 2}, if m ∈ A, and

{(m,n)}, if m /∈ A. In particular, every equivalence class has size 1 or 2. Again, similar relations constructed
from Σ0

1 sets were considered in [13].
Claim 5.1 The equivalence relation FA is properly Σ1

1.

P r o o f. If FA were ∆1
1, so would be the set A, as A = {m|(m, 0)FA(m, 1)}, a contradiction.

One can easily modify the example to get an equivalence relation with classes of size at most (and including)
k, for 2 ≤ k < ω.

Definition 5.2 Following [13], we call an equivalence relation k-bounded if all its equivalence classes have
size at most k.

Theorem 5.3 There exists a properly Σ1
1 equivalence relation Sk+1 with all its equivalence classes containing

at most k+ 1 element such that for no Σ1
1 equivalence relation R with its equivalence classes containing at most

k elements do we have Rk+1 ≤h S (hence, for no such R do we have Rk+1 ≤FF S).

P r o o f. As shown in [13], the analogous result is true for the case of c.e. relation. Simple transformation of
this argument proves the theorem for Σ1

1 equivalence relations.

6 Equivalence Relations with finitely many properly Σ1
1 classes

One can modify the example from the proof of Proposition 3.6 to get, for every finite k ≥ 2, a Σ1
1 equivalence

relation which has exactly k properly Σ1
1 equivalence classes:

Proposition 6.1 For every finite k ≥ 1 there exists a Σ1
1 equivalence relation on ω with infinitely many

equivalence classes, such that exactly k of them are properly Σ1
1.
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P r o o f. Let A1, . . . , Ak be disjoint properly Σ1
1 sets. Consider the relation EA1,...,Ak

:

xEA1...,Ak
y ⇐⇒ x = y ∨ x, y ∈ A1 ∨ . . . ∨ x, y ∈ Ak.

Then EA1...,Ak
has the desired properties.

We give another example of equivalence relations with exactly k properly Σ1
1 classes, for k ≥ 1. The reason

is that in the next section we will use a generalization of this example.
Again consider ω as a set of codes for linear orders. We will define relations Fk, for k ≥ 1, on pairs of linear

orders. First of all, we define additional hyperarithmetical equivalence relations Ek (here we identify natural
numbers k, k′ with ordinals):

n1Ekn2 ⇐⇒ either Ln1
∼= Ln2

∼= k′ < k − 1
or both n1, n2 are not codes for well-orders of type k′ < k − 1.

By definition, Ek is hyperarithmetical and has exactly k equivalence classes. We now define Fk as follows:
for (mi, ni) ∈ ω2, i = 1, 2,

(m1, n1)Fk(m2, n2)⇐⇒ either (Lm1
, Lm2

are not well-orders and n1Ekn2)
or (Lm1

∼= Lm2
).

The idea is that we “cut” the properly Σ1
1 class ofEωCK

1
(the relation defined in Proposition 3.6) into k properly

Σ1
1 pieces. The relations Fk, k ≥ 1, have the necessary properties. Moreover,
Proposition 6.2 For all 1 ≤ k1 < k2 < ω, Fk1 <h Fk2 .

P r o o f. Let f be a hyperarithmetical function which witnessesEk1 <h Ek2 . Consider the function g(m,n) =
(m, f(n)). It is hyperarithmetical and reduces Fk1 to Fk2 . The reduction is strict, as Fk1 has fewer properly Σ1

1

equivalence classes than Fk2 .

Remark 6.3 No Fk, for k ≥ 1, is complete as no Σ1
1 equivalence relation with only finitely many properly

Σ1
1 equivalence classes can be complete for the class of Σ1

1 equivalence relations.

7 Equivalence Relations with infinitely many properly Σ1
1 classes

In this section we show that an infinite number of properly Σ1
1 equivalence classes does not guarantee the h- or

FF-completeness of a Σ1
1 equivalence relation.

Indeed, it is easy to construct a non-complete Σ1
1 equivalence relations with infinitely many properly Σ1

1

equivalence classes. Take a computable sequence (An)n∈ω of disjoint Σ1
1 sets, such that none of them is complete

and consider the relation R∞ defined as follows:

xR∞y ⇐⇒ x = y ∨ ∃n(x, y ∈ An).

As the sequence (Ai)i∈ω is computable, the relation R∞ is Σ1
1. Moreover, it is not complete as, for example, the

relation RB for a complete Σ1
1 set B constructed as in Section 4 is not reducible to R∞.

By Corollary 3.4, an h-complete (a FF-complete) Σ1
1 equivalence relation must have infinitely many equiv-

alence classes that are hm-complete (m-complete) as Σ1
1 sets. Below we will show that this condition is not

sufficient:
Theorem 7.1 There exists a non-h-complete (non-FF-complete) Σ1

1 equivalence relation with infinitely many
classes that are hm-complete (m-complete) among Σ1

1 sets.

The proof of the theorem will follow from Proposition 7.3 below.
For every computable infinite ordinal α, we define equivalence relations Eα and Fα in the following way:

n1Eαn2 ⇐⇒ either Ln1
∼= Ln2

∼= α′ < α
or [neither n1 nor n2 code well-orders of type < α].
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In other words, for each α′ < α, there is an equivalence class consisting of linear orders isomorphic to α′.
All the linear orders that are not isomorphic to any α′ < α form a single equivalence class. By definition, if α is
computable, thenEα is hyperarithmetical with infinitely many equivalence classes, provided α is infinite. Indeed,
for a fixed α < ωCK

1 it is hyperarithmetical to check whether or not some n ∈ ω is a code for a well-order of
type α or of type < α. Then both the first and the second line of the definition give hyperarithmetical conditions.
Hence, for infinite α < ωCK

1 , all Eα are hyperarithmetical and h-equivalent to each other. Notice that there is
some non-uniformity in the definition of Eα for finite (defined in the previous section) and infinite α.

Now define:

(m1, n1)Fα(m2, n2)⇐⇒ either Lm1 , Lm2 are not well-orders and n1Eαn2
or Lm1

∼= Lm2
.

Proposition 7.2 For all computable infinite α1, α2, Fα1
≡h Fα2

.

P r o o f. Consider the function h that witnesses the h-equivalence of the corresponding Eα1
, Eα2

. The func-
tion h′ which sends a pair (m,n) into the pair (m,h(n)) gives the equivalence of Fα1

, Fα2
.

Recall the definition of the relation EωCK
1

from Section 3:

mEωCK
1
n⇐⇒ either Lm, Ln are not well-orders, (i.e. m,n /∈WO)

or Lm ∼= Ln.

Finally, we define an equivalence relation FωCK
1

as follows:

(m1, n1)FωCK
1

(m2, n2)⇐⇒ either Lm1
, Lm2

are not well-orders and n1EωCK
1
n2

or Lm1
∼= Lm2

.

Note that all Fα, α < ωCK
1 and FωCK

1
have infinitely many equivalence classes that are m-complete (thus, also

hm-complete) among Σ1
1 sets.

Proposition 7.3 For every computable α,

Fα <h FωCK
1
.

P r o o f. Obviously, Fα ≤h FωCK
1

: let f reduce Eα to EωCK
1

, then g(m,n) = (m, f(n)) reduces Fα to FωCK
1

.
We only need to prove that FωCK

1
is not reducible to Fα, for any computable α. Suppose that for some computable

α there were such a hyperarithmetical reduction h:

(m1, n1)FωCK
1

(m2, n2) ⇐⇒ h((m1, n1))Fαh((m2, n2)).

Consider n1, n2 ∈ ω. For every m /∈WO we have:

n1EωCK
1
n2 ⇐⇒ (m,n1)FωCK

1
(m,n2) ⇐⇒ h((m,n1))Fαh((m,n2)) ⇐⇒

⇐⇒ Lm1
∼= Lm2

∼= γ, where γ is an ordinal, or [m1,m2 /∈WO and l1Eαl2],

where h(m,ni) = (mi, li), i = 1, 2. Fix this notation for the rest of the proof.
If there exists an m /∈ WO such that for all n1, n2 the corresponding m1,m2 /∈ WO, then the proposition is

proved. Indeed, fix such an m. Then for all n1, n2 ∈ ω,

n1EωCK
1
n2 ⇐⇒ (m,n1)FωCK

1
(m,n2) ⇐⇒ (m1, l1)Fα(m2, l2) ⇐⇒ l1Eαl2,

which gives a hyperarithmetical reduction of EωCK
1

to Eα, a contradiction.
Suppose now that for every m /∈WO there exist n1, n2 ∈ ω such that Lm1

∼= Lm2
∼= γ, for some γ < ωCK

1 .
Define a Π1

1 relation R(m,n) as follows:

R(m,n) ⇐⇒ (m ∈WO ∧m = n)
or (n ∈WO ∧ Ln ∼= Lm1

∼= Lm2
associated to some h(m,n1), h(m,n2)).
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By Uniformization, R can be uniformized by a Π1
1 function f . The function f is total, thus hyperarithmetical

from ω to WO. By Bounding, the range of f is bounded by a computable ordinal γ0.
Consider now all m ∈ WO, for which there exist n1, n2 such that Lm1

∼= Lm2
∼= γ0. Then there is a

computable bound α0 on ordinals coded by such elements m.
Now we have

WO = {m|m 6= code(β) for β ≤ α0 and ∃n1, n2Lm1
∼= Lm2

∼= γ ≤ γ0},

which gives a hyperarithmetical definition of WO, a contradiction.

Remark. The process above of constructing of Σ1
1 equivalence relations may be iterated further. In particular,

the relation FωCK
1

is not complete among Σ1
1 equivalence relations.

8 More Results

The following result from [13] shows the difference between the theory of Σ0
1 equivalence relations and that of

Σ1
1 equivalence relations:

Theorem 8.1 Let A1, . . . , An be disjoint c.e. sets the complement of whose union is infinite. Then

idω ≤FF RA1,...,An
⇐⇒ A1 ∪ . . . ∪An is not simple.

Here

xRA1,...,An
y ⇐⇒ x = y ∨ ∃i ≤ n(x, y ∈ Ai).

In the case of h-reducibility and disjoint Σ1
1 sets A1, . . . , An,

idω ≤h RA1,...,An

always holds. Indeed, the complement C of
⋃
i≤nAi is a Π1

1 set, thus it contains a hyperarithmetical subset B.
Then a 1− 1 hyperarithmetical function from ω onto B witnesses the reduction.

The analogy with c.e. equivalence relations might be more complete if we considered Π1
1 equivalence relations.

Using ideas from [13] one can show the following:

Theorem 8.2 There exist properly Σ1
1 equivalence relations that are m-complete (hm-complete) as Σ1

1 sets
but FF-incomparable (respectively, h-incomparable) as Σ1

1 equivalence relations.

P r o o f. Let A be an m-complete, hence, also hm-complete Σ1
1 set. Let EA be a Σ1

1 equivalence relation built
from A as in Section 4. Let FA be a Σ1

1 equivalence relation with all its equivalence classes finite built from A as
in Section 5. Then EA and FA are neither FF-comparable nor h-comparable.

Suppose EA is reducible to FA via a computable (or hyperarithmetical) function f . Fix an arbitrary x0 ∈ A
and let y0 = f(x0). Then A = {x|f(x)FAy0}, therefore A ≤ [y0]FA

, where [y0]FA
is finite. Thus A is

computable (hyperarithmetical), a contradiction.
Suppose now that FA is reducible to EA via g. Consider the set B = {g(x)|x ∈ ω}. Then B ∩ A 6= ∅,

otherwise FA would be reducible to idω , thus hyperarithmetical. Now let C = {x|g(x) ∈ A}, then C is an
equivalence class of FA. Pick an arbitrary y ∈ A and define h(x) in the following way:

h(x) =

{
y, if x ∈ C
g(x), otherwise

All equivalence classes of FA are finite, thus h is a computable (hyperarithmetical) function which reduces FA
to the equality on ω.
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9 Questions

If an equivalence relation E is reducible to an equivalence relation E′ (under any of the two reducibilities con-
sidered here) then E is reducible to E′ as sets (under the corresponding reducibility). On the other hand, if a
Σ1

1 equivalence relation is m-complete (hm-complete) as a Σ1
1 set, it does not guarantee that it is FF-complete

(h-complete) as a Σ1
1 equivalence relation. Indeed, let A be an m-(hm-)complete Σ1

1 set. Let EA be a Σ1
1 equiva-

lence relation built as in Sections 4 or 5. ThenEA is not complete among Σ1
1 relations but it is obviously complete

as a Σ1
1 set. One can also build such equivalence relations with any number of properly Σ1

1 equivalence classes.
As it follows from Theorem 8.2, two Σ1

1 equivalence relations may be incomparable while both being m-
complete among Σ1

1 sets. However in the above example one of the relations had only finite classes while the
other relation had an infinite class and all the other classes of size 1. Thus the following set of questions arises
naturally:

Question 9.1 Let E,E′ be Σ1
1 equivalence relations with only finite (or hyperarithmetical) equivalence

classes. Suppose E,E′ are both complete as sets (under m- or hm-reducibility). As follows from Theorem
5.3, it may be the case that E < E′. Is it possible that E and E′ are incomparable?

Question 9.2 The same for relations with a fixed number of properly Σ1
1 (Σ0

1) equivalence classes.

We studied properly Σ1
1 equivalence relations according to the number of their properly Σ1

1 equivalence
classes. We saw examples of equivalence relations with only hyperarithmetical classes, with exactly n prop-
erly Σ1

1 equivalence classes, for n ∈ ω and with infinitely many properly Σ1
1 equivalence classes.

Question 9.3 Does there exists a properly Σ1
1 equivalence relation on (a hyperarithmetical subset of) ω with

infinitely many equivalence classes such that all its classes are properly Σ1
1?
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