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Abstract

An important technique in large cardinal set theory is that of ex-
tending an elementary embedding j : M → N between inner models
to an elementary embedding j∗ : M [G] → N [G∗] between generic ex-
tensions of them. This technique is crucial both in the study of large
cardinal preservation and of internal consistency. In easy cases, such
as when forcing to make the GCH hold while preserving a measurable
cardinal (via a reverse Easton iteration of α-Cohen forcing for succes-
sor cardinals α), the generic G∗ is simply generated by the image of
G. But in difficult cases, such as in Woodin’s proof that a hypermea-
surable is sufficient to obtain a failure of the GCH at a measurable, a
preliminary version of G∗ must be constructed (possibly in a further
generic extension of M [G]) and then modified to provide the required
G∗. In this article we use perfect trees to reduce some difficult cases to
easy ones, using fusion as a substitute for distributivity. We apply our
technique to provide a new proof of Woodin’s theorem as well as the
new result that global domination at inaccessibles (the statement that
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d(κ) is less than 2κ for inaccessible κ, where d(κ) is the dominating
number at κ) is internally consistent, given the existence of 0#.

Let j : M → N be an elementary embedding of transitive models of ZFC.
Often it is useful to extend j to an elementary embedding j∗ : M [G] → N [G∗]
between generic extensions of M and N . If G is P -generic over M , then G∗

is chosen to be P ∗ = P N -generic over N and such that j[G] ⊆ G∗. The latter
property is sometimes achieved by first constructing an arbitrary P ∗-generic
G∗

0, and then modifying G∗
0 to a P ∗-generic G∗ with the additional property

j[G] ⊆ G∗. We refer to the first step as generic construction and the second
step as generic modification. Two contexts in which these methods have been
used are internal consistency and large cardinal preservation. We now give
some background and examples for these two contexts.

Internal consistency

A statement is internally consistent iff it holds in an inner model, assum-
ing the existence of large cardinals. Often to prove the internal consistency
of a statement from large cardinals one forces the statement to hold over a
suitable inner model and additionally verifies that a generic for the forcing
used can be constructed. Examples of this can be found in [2, 3, 5, 4, 6]. To
illustrate this, we discuss the following result of [5]:

Theorem 1 Suppose that 0# exists. Then there is an inner model in which
GCH fails at all regular cardinals.

Sketch of proof. To prove his result, Easton forced over L with the Easton
product of Add (α, α++), α regular, to obtain a (class-) generic extension
of L where GCH fails at all regulars. (Add (α, β) for an infinite regular α

is the forcing that adds β-many α-Cohen sets with a product using < α-
support.) This Easton product cannot be used, as if 0# exists, there is no
generic over L for Add (ωV

1 , 1). Instead we use a reverse Easton iteration;
however, as Add (α, α++) ∗Add (α+, α+++) collapses α++, we in fact need a
reverse Easton iteration of products

∏

n

Add (ωn, ωn+2) ∗
∏

n

Add (ωω+n+1, ωω+n+3) ∗ · · · .
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To build a generic G for this forcing P , we build a generic G(≤ i) for P (≤ i),
the first i + 1 stages of this iteration, by induction on the indiscernible i. To
handle limit indiscernibles of uncountable cofinality we need to ensure the
coherence property: πij[G(≤ i)] ⊆ G(≤ j) for indiscernibles i < j, where
πij : L → L has critical point i and sends i to j. The key inductive step is to
ensure that πii∗[G(≤ i)] ⊆ G(≤ i∗), where i∗ is the least indiscernible greater
than the indiscernible i. This is equivalent to requiring G(< i) ⊆ G(< i∗)
and π∗

ii∗ [G(i)] ⊆ G(i∗), where π∗
ii∗ : L[G(< i)] → L[G(< i∗)] is the canonical

extension of πii∗ : L → L.

It is not difficult to construct a P (≤ i∗)-generic G∗
0(≤ i∗) such that G∗

0(<
i∗) includes G(< i). The key step is to modify G∗

0(i
∗) to a G∗(i∗) which

contains π∗
ii∗ [G(i)]. The latter modification is performed by changing values

of G∗
0(i

∗) on the range of π∗
ii∗ to make it agree with π∗

ii∗ [G(i)]. Verifying the
genericity of the modified G∗(i∗) heavily uses the homogeneity of the forcing
Add (i∗, (i∗)++). 2

Large cardinal preservation

In this case we consider embeddings j : V → M of the entire universe
V into an inner model M . The critical point of j is a measurable cardinal,
whose measurability we wish to preserve after forcing. Thus if G is P -generic
over V we wish to construct a P ∗ = P M -generic G∗ such that j[G] ⊆ G∗.
It is important that G∗ be constructed in V [G], in order that the resulting
embedding j∗ : V [G] → M [G∗] witness the measurability of its critical point
in V [G]. Once again, the required G∗ is sometimes obtained through generic
modification. We illustrate this by discussing the following result of Hugh
Woodin.

Theorem 2 (Woodin) Suppose GCH holds and κ is P2κ hypermeasurable
(i.e., κ is the critical point of some j : V → M where H(κ++)V belongs to
M). Then in a generic extension, κ is measurable and the GCH fails at κ.
In a further forcing extension, the singular cardinal hypothesis fails.

Sketch of Woodin’s proof. Assume GCH and that j : V → M witnesses the
P2κ hypermeasurability of κ via an ultrapower. Thus κ is the critical point
of j, H(κ++)V belongs to M and each element of M is of the form j(f)(a)
for some a ∈ H(κ++)V .
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Let P be the reverse Easton iteration of Add (α, α++) for α inaccessible,
α ≤ κ, let G be P (< κ)-generic over V and let g be Add (κ, κ++)-generic
over V [G]. We wish to find a generic G∗ for P ∗ = P M over M such that
j[G ∗ g] ⊆ G∗. Note that the forcings P , P ∗ defined in V , M , respectively,
are the same for the first κ + 1 stages, so we may take G∗ to be of the form
G ∗ g ∗ H ∗ h, where H is generic over M [G ∗ g] for the iteration between κ

and j(κ) and h is generic over M [G ∗ g ∗ H] for Add (j(κ), j(κ++)).

To obtain H, Woodin uses the following trick. Let j0 : V → N be the
measure ultrapower derived from j and k : N → M so that j = k ◦ j0.
Then as j0(κ) has cardinality κ+ in V it is not difficult to build H0 so that
G ∗ g0 ∗ H0 is generic over N for the first j0(κ) stages of N ’s version of the
iteration (g0 is g restricted to Add (κ, (κ++)N )). Then k : N → M extends
to k∗ : N [G∗g0] → M [G∗g] and k∗[H0] generates the desired generic H over
M [G ∗ g] for the iteration between κ and j(κ), producing a further extension
k∗∗ : N [G ∗ g0 ∗ H0] → M [G ∗ g ∗ H] of k.

We therefore now have an extension j∗ : V [G] → M [G ∗ g ∗ H] of
j. The key part of Woodin’s proof is the construction of an h which is
Add (j(κ), j(κ++))-generic over M [G ∗ g ∗ H] and which contains j∗[g]. In
fact, Woodin does not obtain h in V [G ∗ g], but must go to a larger uni-
verse V [G ∗ g ∗ h0] to obtain it, and then lift the resulting j∗∗ : V [G ∗ g] →
M [G∗g ∗H ∗h] once more to an embedding of V [G∗g ∗h0] which is definable
in V [G ∗ g ∗ h0].

The set h0 is generic over V [G ∗ g] for the Add (j0(κ), j0(κ
++)) of N [G ∗

g0 ∗H0]. (Note that h0 cannot be constructed inside V [G ∗ g], as the forcing
Add (j0(κ), j0(κ

++)) of N [G ∗ g0 ∗ H0] has size κ++ but is only κ+-closed in
V [G ∗ g0].) Woodin shows that the latter forcing preserves cardinals over
V [G ∗ g]. As in the construction of H, a generic h′ for Add (j(κ), j(κ++))
of M [G ∗ g ∗ H] is generated by k∗∗[h0]. But h′ does not contain j∗[g], as
for α ∈ [(κ++)N , κ++), the α-th κ-Cohen set chosen by g, does not belong
to the model N [G ∗ g0 ∗ H0] and therefore is not an initial segment of the
j∗(α)-th j(κ)-Cohen set chosen by h′, whose restriction to κ does belong to
N [G∗g0∗H0]. Therefore h′ must be modified to obtain the desired h, just as in
the proof of Theorem 1. Once again, the homogeneity of Add (j(κ), j(κ++))
is important for this modification. This yields j∗∗ : V [G ∗ g] → M [G ∗ g ∗
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H ∗ h] definable in V [G ∗ g ∗ h0], which is extended once more to the desired
embedding from V [G ∗ g ∗ h0] into M [G ∗ g ∗ H ∗ h ∗ i] where i is generated
by j∗∗[h0].

The final statement of the theorem is established using Prikry forcing. 2

In both of the previous results, construction of generics and generic modi-
fication were used. However, as in Woodin’s proof, the construction of gener-
ics can be difficult, and moreover there are situations in which generic modifi-
cation is not possible, due to the lack of homogeneity of the forcings involved.
We present a new and simpler proof of Woodin’s theorem as well as a new
internal consistency result regarding global domination, without any need
to construct generics or modify them (and without going to a larger uni-
verse). The key idea is to replace α-Cohen forcing by α-Sacks forcing, whose
conditions are perfect α-trees.

An easier proof of Woodin’s theorem

As before, assume GCH and that j : V → M witnesses the P2κ hy-
permeasurability of κ via an ultrapower. Thus κ is the critical point of j,
H(κ++)V belongs to M and each element of M is of the form j(f)(a) for
some a ∈ H(κ++)V . For the reader’s convenience, we assume nothing of the
above proof sketch and present a self-contained argument.

For inaccessible α, we shall force not with α-Cohen forcing, but with α-
trees, a generalisation of Sacks forcing, whose conditions are perfect trees on
ω. Such α-trees were used in higher recursion theory by J. MacIntyre ([10])
and Shore ([11]) and later in set theory by Kanamori ([9]).

For inaccessible α let Sacks(α) denote the following forcing. A condition
is a subset T of 2<α (= the set of functions from an ordinal less than α into
2) such that:

1. s ∈ T , t ⊆ s → t ∈ T .
2. Each s ∈ T has a proper extension in T .
3. If s0 ⊆ s1 ⊆ · · · is a sequence in T of length less than α then the union of
the si’s belongs to T .
4. Let Split(T ) denote the set of s in T such that both s ∗ 0 and s ∗ 1 belong
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to T . Then for some (unique) closed, unbounded C(T ) ⊆ α, Split(T ) = {s ∈
T | length(s) ∈ C(T )}.

Extension is defined by S ≤ T iff S is a subset of T . For i < α, the i-
th splitting level of T , Spliti(T ), is the set of s in T of length αi, where
α0 < α1 < · · · is the increasing enumeration of C(T ). Sacks(α) is an α-
closed forcing of size α+. This forcing also preserves α+, as it obeys the
following α-fusion property. For β < α we write S ≤β T iff S ≤ T and
Spliti(S) = Spliti(T ) for i < β.

α-fusion: Suppose that T0 ≥ T1 ≥ · · · is a descending sequence in Sacks(α)
of length α and suppose in addition that Ti+1 ≤i Ti for each i less than α.
Then the intersection of the Ti, i < α, is a condition in Sacks(α).

α-fusion implies that α+ is preserved, as given a condition T0 and a name
ḟ : α → α+, one can build a sequence as in the hypothesis of α-fusion so
that Ti forces ḟ(i) to belong to a subset of α+ of size at most 2i = i+; then
the intersection of the Ti’s forces a bound on ḟ .

We shall need a product of α-Sacks forcings. For inaccessible α let
Sacks(α, α++) denote the product of α++ copies of Sacks(α) with size α

support. Thus a condition is a sequence ~T = 〈T (i) | i < α++〉 whose support

Supp(~T ) = {i | T (i) 6= 2<α} has size at most α, ordered component-wise.
This forcing is again α-closed, and preserves α+ via a suitable version of α-
fusion, which we now describe. For β < α and X ⊆ α++ of size less than α,
we write ~T0 ≤β,X

~T1 iff ~T0 ≤ ~T1 (i.e., T0(i) ≤ T1(i) for each i < α++) and in
addition, for i in X, T0(i) ≤β T1(i).

Generalised α-fusion: Suppose that ~T0 ≥ ~T1 ≥ · · · is a descending sequence
in Sacks(α, α++) of length α and suppose in addition that ~Ti+1 ≤i,Xi

~Ti for
each i less than α, where the Xi’s form an increasing sequence of subsets
of α++ of size less than α whose union is the union of the supports of the
~Ti’s. Then the ~Ti’s have a lower bound in Sacks(α, α++) (obtained by taking
intersections at each component, using α-fusion).

Again this implies that α+ is preserved, as given a condition ~T0 and a name
ḟ : α → α+ one can build a sequence as in the hypothesis of generalised
α-fusion so that ~Ti forces ḟ(i) to belong to a subset of α+ of size at most
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(2i)γ < α for some γ < α; then a lower bound of the ~Ti’s forces a bound on
ḟ .

Sacks(α, α++) also preserves α++, as a ∆ system argument shows that it is
α++-cc.

Now force over our ground model V with the reverse Easton iteration of
Sacks(α, α++) for α inaccessible, α ≤ κ. Let G denote the generic for the
first κ stages of this iteration and g the generic for the κ-th stage. Thus g is
generic over V [G] for Sacks(κ, κ++) as defined in V [G].

We would like to find a suitable generic over M for M ’s version of the
above iteration. As M contains H(κ++)V , the first κ + 1 stages of the M

and V iterations are the same, so we may use G ∗ g as our generic over M

for the first κ + 1 stages of the M -iteration. Next we want a generic H

over M [G][g] for the M -iteration between κ and j(κ); given this we obtain
a lifting of j : V → M to an embedding j∗ : V [G] → M [G][g][H]. The
last step will be to find a generic h over M [G][g][H] for the j(κ)-th stage of
the M -iteration, where we force with the Sacks(j(κ), j(κ++)) of M [G][g][H].
If we also have j∗[g] ⊆ h then we can lift j∗ once more to an embedding
j∗∗ : V [G][g] → M [G][g][H][h]. If H and h can be found inside V [G][g] then
j∗∗ is definable in V [G][g] and therefore witnesses the measurability of κ in
the model V [G][g], where GCH fails at κ.

To obtain H we argue as follows. (This argument avoids Woodin’s use
of the measure ultrapower N and embedding k : N → M .) Note that
each dense subset in M [G][g] for the iteration R between κ and j(κ) is of
the form j(f)(a)G∗g where a belongs to H(κ++) and f : H(κ) → H(κ+)
belongs to V . Moreover R is κ+++-closed in M [G][g], as no forcing takes
place between κ and the next inaccessible of M . Therefore, for each f there
is a single condition in R which meets all dense sets of the form j(f)(a)G∗g,
a ∈ H(κ++). As GCH holds in V , there are only κ+-many such f ’s and
therefore we can build a descending κ+-sequence of conditions in R, at stage
i + 1 meeting all dense sets of the form j(fi)(a), a ∈ H(κ++), where fi is
the i-th function. The existence of lower bounds at limit stages less than κ+

follows from the κ+-closure of R in M [G][g] together with the next Lemma.

Lemma 3 Any κ-sequence in V [G][g] of elements of M [G][g] belongs to
M [G][g].
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Proof. It follows from generalised fusion that any set x of ordinals in V [G][g]
of cardinality κ in V [G][g] is covered by such a set in V . As any κ-sequence
of ordinals in V belongs to M , it follows that x belongs to M [y] where y is
a subset of κ in V [G][g]. As all subsets of κ in V [G][g] belong to M [G][g],
it follows that x belongs to M [G][g]. The same argument applies to sets x

of elements of M [G][g] using a wellordering in M [G][g] of a sufficiently large
H(λ)M [G][g]. 2 (Lemma 3)

Thus we have extended j to an embedding j∗ : V [G] → M [G][g][H].

Now we come to the construction of h. Woodin obtained h by forcing a
corresponding h0 (associated to the model N) over V [G][g], lifting h0 via (an
extension of) k∗ to an h′, modifying h′ to a generic h containing j∗[g], and
finally lifting the resulting embedding from V [G][g] into M [G][g][H][h] once
more. In our proof we obtain h directly inside V [G][g], without modification.

As g is a set of conditions in Sacks(κ, κ++) of V [G], j∗[g] consists of
a set of conditions in Sacks(j(κ), j(κ++)) of M [G][g][H]. We analyse the
“intersection” of the conditions in j∗[g].

Lemma 4 For α < j(κ++) let t be the intersection of the trees j∗(p)(α), p

in g. If α belongs to the range of j, then t is a (κ, j(κ))-tuning fork, i.e., a
subtree of 2<j(κ) which is the union of two cofinal branches which split at κ.
If α does not belong to the range of j, then t consists of exactly one cofinal
branch through 2<j(κ).

Proof. First note that κ is the only ordinal which belongs to j(C) for every
C ∈ V which is closed unbounded in κ: Clearly any ordinal in the intersection
of all such j(C) must be a limit cardinal of M and must be at least κ. Now
suppose that β is a limit cardinal of M between κ and j(κ). Then β is of the
form j(f)(b) for some b ∈ H(κ++)V , f : H(κ)V → κ and the set C of limit
cardinals λ < κ such that f [H(λ)V ] ⊆ λ is closed unbounded in κ. Thus
j(C) is the set of limit cardinals λ of M such that j(f)[H(λ)M ] ⊆ λ, and
β = j(f)(b) does not belong to j(C).

Write α as j(f)(a) where a belongs to H(κ++)V and f has domain H(κ)V .
We can assume that f(ā) is an ordinal less than κ++ for each ā ∈ H(κ)V .
Let S be the range of f , a subset of κ++ of size at most κ in V .
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Let C be a closed unbounded subset of κ. Then any condition p in
Sacks(κ, κ++) of V [G] has an extension q such that for i ∈ S, C(q(i)) (= the
set of splitting levels of the tree q(i)) is a subset of C. Choose such a q in g.
Then j∗(q) = q∗ has the property that for all b ∈ H(j(κ))M , C(q∗(j(f)(b)))
is a subset of j(C). In particular, C(q∗(α)) = C(q∗(j(f)(a))) is a subset
of j(C). Now C was an arbitrary closed unbounded subset of κ and the
intersection of the j(C), C closed unbounded in κ, is {κ}. As M [G][g][H]
contains all s : κ → 2 in V [G][g], it follows that the intersection t of the
j∗(p)(α), p ∈ g, is a subtree of 2<j(κ) which is the union of at most two
cofinal branches, which can only differ at κ. If α = j(ᾱ) belongs to the range
of j, then κ belongs to j∗(C(p(ᾱ))) = C(j∗(p)(j(ᾱ))) = C(j∗(p)(α)) for each
p ∈ g, and therefore if s is the unique sequence of length κ in t, both s ∗ 0
and s ∗ 1 belong to t. It follows in this case that t is in fact the union of two
cofinal branches which do split at κ, a (κ, j(κ))-tuning fork.

If α does not belong to the range of j then we argue as follows. It must be
that S = Range (f) has size exactly κ, as otherwise the range of j(f) is the
pointwise image of the range of f , implying that α is in the range of j. Now
let 〈ᾱi | i < κ〉 be a 1-1 enumeration of S, and let D be the set of conditions
p in Sacks(κ, κ++) of V [G] such that for each i < κ, p(ᾱi) is a tree whose
first splitting level is greater than i. Then D is dense, so we may choose such
a p in g. Then j∗(〈ᾱi | i < κ〉) = 〈αi | i < j(κ)〉 enumerates j∗(S) and j∗(p)
has the property that for each i < j(κ), the first splitting level of j∗(p)(αi) is
greater than i. Now α is an element of j∗(S) and therefore is equal to αi for
some unique i < j(κ). As α is not in the range of j, i is at least κ. It follows
that the first splitting level of j∗(p)(α) is greater than κ, and therefore t, the
intersection of the j∗(p)(α), does not split at κ. So t consists of exactly one
cofinal branch through 2<j(κ). 2 (Lemma 4)

Now for α < j(κ++) in the range of j, let (x(α)0, x(α)1) be the branches
that make up the (κ, j(κ))-tuning fork at α, where x(α)0(κ) = 0, x(α)1(κ) =
1. For α < j(κ++) not in the range of j, let x(α)0 denote the unique branch
through all of the j∗(p)(α), p ∈ g.

Lemma 5 For any α < j(κ) and any subset S of j(κ++) of size j(κ) in
M [G][g][H], the sequence 〈x(i)0 � α | i ∈ S〉 belongs to M [G][g][H].

Proof. Write α as j(f0)(a) where f0 : H(κ)V → κ and a belongs to H(κ++)V .
Let C consist of all limit cardinals λ less than κ such that f0[H(λ)V ] ⊆ λ.
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Then the least element of j(C) greater than κ is also greater than α. Also
note that every element of M [G][g][H] is of the form j∗(f)(b) for some f

in V [G] with domain H(κ)V and b in H(κ++)V ; this is because the class
of such j∗(f)(b)’s forms an elementary submodel of M [G][g][H] containing
M ∪ {G ∗ g ∗ H} as a subclass and therefore equals all of M [G][g][H]. Thus
we can write S as j∗(f)(b) where f : H(κ)V → ([κ++]κ)V [G] belongs to V [G]
and b belongs to H(κ++)V . In fact, we may assume that S is the image j∗(S̄)
of some subset S̄ of κ++ of size κ in V [G], as S is contained in j∗(S̄) where
S̄ is the union of the f(x), x ∈ H(κ)V . Let 〈ᾱi | i < κ〉 be a 1-1 enumeration
of S̄.

Each condition p in Sacks(κ, κ++) of V [G] has an extension q whose sup-
port contains S̄ such that for all i < κ, C(q(ᾱi)) is a subset of C \ (i + 1).
Choose such a q in g. Then S = j∗(S̄) is included in the support of j∗(q) and
S has the 1-1 enumeration j∗(〈ᾱi | i < κ〉) = 〈αi | i < j(κ)〉. For i < j(κ),
C(j∗(q)(αi)) is a subset of j(C) \ (i + 1). In particular, j∗(q)(αi) has no
splits between κ and α for all i < j(κ) and no splits between 0 and α for
κ ≤ i < j(κ). Note that αi belongs to the range of j iff i is less than κ. It
follows that for i ∈ [κ, j(κ)), x(αi)0 � α is the unique element of j∗(q)(αi) of
length α, and for i < κ, x(αi)0 � α is the unique element of j∗(q)(αi) of length
α which takes the value 0 at κ and extends x(αi)0 � κ. Thus the sequence
〈x(i)0 � α | i ∈ S〉 can be computed from j∗(q) ∈ M [G][g][H] together with
the sequence 〈x(αi)0 � κ | i < κ〉. The latter is coded by a subset of κ

in V [G][g] and therefore belongs to M [G][g][H], as M [G][g][H] and V [G][g]
have the same subsets of κ. This proves the Lemma. 2 (Lemma 5)

Lemma 6 Let h consist of all conditions p in Sacks(j(κ), j(κ++)) of M [G][g][H]
such that for each α < j(κ++), x(α)0 is contained in p(α). Then h is generic
for Sacks(j(κ), j(κ++)) of M [G][g][H] over M [G][g][H] and contains j∗[g].

Proof. Clearly h contains j∗[g], as by definition x(α)0 is one of two branches
through the intersection of the j∗(p)(α), p in g.

Suppose that D is dense on Sacks(j(κ), j(κ++)) of M [G][g][H] and belongs
to M [G][g][H]. Write D as j∗(f)(a) where f has domain H(κ)V and belongs
to V [G], and a belongs to H(κ++)V . We can assume that f(ā) is dense on
Sacks(κ, κ++) of V [G] for each ā in H(κ)V .
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Suppose that p̄ is a condition in Sacks(κ, κ++) of V [G], S is a subset of
κ++ of size less than κ in V [G] and α is less than κ. Then an (S, α)-thinning
of p̄ is an extension of p̄ obtained by thinning each p̄(i), i ∈ S, to the subtree
consisting of all nodes compatible with some particular node on the α-th
splitting level of p̄(i). (There are (2|α|)|S| such thinnings, one for each way
of choosing a node on the α-th splitting level of p̄(i) for each i ∈ S.) We
say that a condition p̄ in Sacks(κ, κ++) of V [G] reduces D̄, where D̄ is dense
on Sacks(κ, κ++) of V [G], iff for some subset S of κ++ of size less than κ in
V [G] and some α < κ, any (S, α)-thinning of p̄ meets D̄.

If D is a collection of κ-many dense sets D̄ in V [G], then any condition p̄

can be extended to a q̄ which reduces each D̄ in D: List the elements of D as
D̄0, D̄1, . . . in a κ-sequence. Extend p̄ = p̄0 to p̄1 meeting D̄0. Then choose
some i1 in the support of p̄1 and extend p̄1 to p̄2, without changing the 1-st
splitting level of p̄1(i1), so that by simply thinning p̄2(i1) to either choice on
the 1-st splitting level, D̄1 is met. Then choose some i2 in the support of
p̄2 and extend extend p̄2 to p̄3, without changing the 2-nd splitting levels of
p̄2(i1), p̄2(i2), so that by simply thinning each of p̄3(i1), p̄3(i2) to any of the
four choices of nodes on their 2-nd splitting levels, D̄2 is met. Continue in
this way, so that at stage α + 1, for any choice of nodes on the α-th splitting
level of the trees p̄α(i), i one of the “first α indices”, thinning to those nodes
will result in a condition that meets D̄α (this is possible as there are only
(2|α|)|α| < κ such thinnings). The indices i1, i2, . . . should be chosen so that
after κ steps, every element of the support of the final condition q̄ = p̄κ is
one of the indices chosen. Then q̄ is an extension of p̄ that reduces each D̄

in D.

Thus we may choose a condition p̄ in g which reduces each f(ā), ā ∈
H(κ)V . Then p = j∗(p̄) reduces each j∗(f)(b), b ∈ H(κ++)V and therefore
reduces D = j∗(f)(a). In M [G][g][H], choose a subset S of j(κ) of size less
than j(κ) and α < j(κ) such that any (S, α)-thinning of p meets D. Now for
each i ∈ S thin p by choosing an initial segment of x(i)0 on the α-th splitting
level of p(i). This sequence of choices from the α-th splitting levels of the
p(i), i ∈ S belongs to M [G][g][H] by Lemma 5. It follows that this thinned
out condition belongs to h and meets D.

Lastly we verify that any two conditions in h are compatible. Let h′

consist of all conditions q such that for some S and α, q is an (S, α)-thinning
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of a condition in j∗[g] using initial segments of x(i)0 for i in S. By the above,
h′ meets all dense sets for Sacks(j(κ), j(κ++)) which belong to M [G][g][H].
Also, any two conditions in h′ are compatible. Now for any condition p in
h, consider the set D of conditions q in Sacks(j(κ), j(κ++)) of M [G][g][H]
with the property that for each i < j(κ++), the tree q(i) is either a subtree
of p(i) or shares no cofinal branch with p(i). Then D is dense and belongs
to M [G][g][H]. So there is a condition in h′ which meets D and therefore
extends p, as for each i, x(i)0 is a branch through p(i) as well as through all
q(i) for q in h′. Therefore every condition in h is extended by a condition in
h′, and as any two conditions in h′ are compatible, it follows that the same
holds for h.

Thus h is generic for Sacks(j(κ), j(κ++)) of M [G][g][H] over M [G][g][H],
as desired. 2 (Lemma 6)

Thus we can lift the embedding j∗ : V [G] → M [G][g][H] to an embedding
j∗∗ : V [G][g] → M [G][g][H][h], and this lifting is definable in V [G][g]. So
V [G][g] is a model where κ is measurable and the GCH fails at κ. By adding
a Prikry sequence s through κ over V [G][g], we obtain a failure of the singular
cardinal hypothesis, as in V [G][g][s], κ is a singular strong limit cardinal of
cofinality ω and 2κ = κ++. 2

The above argument easily adapts to prove the following slightly stronger
statement, also due to Woodin.

Theorem 7 Assume GCH and suppose that j : V → M has critical point κ,
M is closed under κ-sequences and for some f : κ → κ in V , j(f)(κ) = κ++.
Then in some generic extension of V , κ is measurable and the GCH fails at
κ. In a further Prikry extension, the singular cardinal hypothesis fails.

Proof. For any inacessible α and any β, Sacks(α, β) denotes the product of
β copies of Sacks(α) with support of size at most α. For any β, this forcing
has the α++-cc and obeys generalised α-fusion.

Now consider the reverse Easton iteration of length κ + 1, where at an
inaccessible stage α < κ one forces with Sacks(α, f(α)) and at stage κ one
forces with Sacks(κ, κ++). Then the proof of the previous theorem shows
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that in the generic extension, κ is measurable and the GCH fails at κ. The
effect of adding a Prikry sequence is the same as before. 2

The relevance of this stronger version is that it yields via a theorem
of Gitik ([8]) a consistent failure of the singular cardinal hypothesis just
from a cardinal κ such that o(κ) = κ++, a hypothesis weaker than P2κ

hypermeasurability.

Global Domination

For an infinite regular cardinal κ, the dominating number d(κ) is the least
cardinality of a set of functions from κ to κ which are sufficient to eventually
dominate any such function. The cardinal d(κ) is greater than κ and at most
2κ. Global Domination is the statement: d(κ) < 2κ for all infinite regular κ.

Cummings and Shelah ([1]) make a thorough study of the consistent
global behaviours of the function d(κ) as well as the related boundedness
function b(κ). A simple special case of their work is the following result,
which makes use of Hechler forcing.

Theorem 8 (Cummings-Shelah [1]) Con(ZFC) implies Con(ZFC + Global
Domination).

The use of Hechler forcing in the proof of this theorem seems to preclude
the use of a similar technique to obtain the internal consistency of Global
Domination, even restricted to inaccessibles, without assuming very large
cardinals (beyond superstrong). However, using perfect tree forcing, the
needed large cardinal assumption can be reduced to just 0#.

Theorem 9 Suppose that 0# exists. Then there is an inner model M in
which Global Domination holds at inaccessibles, i.e., for each inaccessible
cardinal κ, d(κ) < 2κ.

Remark. In fact it is possible to obtain the internal consistency of Global
Domination at all regular cardinals, assuming only the existence of 0#. The
idea is to use Sacks(α, α++) at inaccessible α as above, and the Cummings-
Shelah method at successor α (i.e., Add (α, α++) followed by an α+-iteration
of α-Hechler forcing). However, this idea does not appear to achieve Global
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Domination at successors of inaccessibles; a solution to this problem appears
in the forthcoming [7].

Proof. Over the ground model L, perform the reverse Easton iteration (with
Easton support) of length Ord, which is trivial except at inaccessible stages
α, where one forces with Sacks(α, α++). P preserves cardinals, as for each
regular cardinal κ, P can be factored as P (< κ) ∗ P (κ) ∗ P (> κ), where
P (< κ) is κ+-cc, P (κ) is trivial or satisfies generalised fusion for sequences
of length κ and P (> κ) is κ+-closed.

P also forces Global Domination at inaccessibles: If α is inaccessible,
then by generalised α-fusion for Sacks(α, α++), every function from α to α

added by Sacks(α, α++) is dominated by such a function in V [G(< α)], where
G(< α) is generic for the first α-stages of the iteration. As the GCH holds
at α in V [G(< α)], it follows that d(α) = α+ and 2α = α++ in V [G] for
P -generic G, as required by Global Domination at α.

Now we build a P -generic definably in L[0#]. For any α we let P (≤ α)
denote the first α + 1 stages of the iteration and factor P (≤ α) as P (<
α) ∗ P (α), with corresponding generics G(≤ α) = G(< α) ∗ G(α). We build
a generic G(< i) for P (< i) by induction on the Silver indiscernible i. To
facilitate the construction we ensure the following property inductively:

(∗) i < j → πij[G(≤ i)] ⊆ G(≤ j),

where πij is the unique elementary embedding from L to L whose range
contains the indiscernible k iff k does not belong to the interval [i, j). (Thus
πij has critical point i and sends i to j.) When i is the least indiscernible, we
take G(< i) to be any P (< i)-generic, which exists due to the countability
of i. For limit indiscernibles i, we take G(< i) to be the union of the G(< ī),
ī a indiscernible less than i. It is easy to verify that the resulting G(< i) is
P (< i)-generic.

Now suppose that G(< i) has been defined and we wish to define G(< j),
where j is the least indiscernible greater than i. Our first task is to define
G(i). Once this is accomplished, it is easy to construct the rest of G(< j), as
P (i, j), the iteration strictly between i and j, is i+-closed in L[G(≤ i)] and
using the fact that L is the definable closure in itself of the indiscernibles,
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the collection of dense subsets of P (i, j) in L[G(≤ i)] can be written as
the ω-union of subcollections, each of which belongs to L[G(≤ i)] and has
cardinality i in that model. (For further details, see [5] or [6].)

Now we consider the construction of G(i). If i is the least indiscernible
then we can easily build G(i) using the countability of i. If i is a limit
indiscernible, then the inductively guaranteed property (∗) ensures that we
can take G(≤ i) to be the union of the πīi[G(≤ ī)], and this provides the
desired generic G(i).

It remains to handle the case where i is a successor indiscernible. Suppose
that ī is the largest indiscernible less than i and let π denote the embedding
πīi. As G(< ī) is included in G(< i), the embedding π lifts canonically to an
embedding π∗ : L[G(< ī)] → L[G(< i)].

Now we follow the “tuning fork analysis” of the proof of Theorem 2 to
produce the desired G(i). Much of the argumentation is the same, replacing
the embedding j∗ : V [G] → M [G][g][H] by π∗ : L[G(< ī)] → L[G(< i)]; how-
ever for the reader’s convenience, we give a self-contained argument. Below,
whenever we write α+, α++, etc., we mean the successors as computed in L.

Lemma 10 For α < i++ let t be the intersection of the trees π∗(p)(α), p

in G(̄i). If α belongs to the range of π, then t is an (̄i, i)-tuning fork, i.e.,
a subtree of 2<i which is the union of two cofinal branches which split at ī.
If α does not belong to the range of π, then t consists of exactly one cofinal
branch through 2<i.

Proof. First note that ī is the only ordinal which belongs to π(C) for every
C ∈ L which is closed unbounded in ī: Clearly the intersection of these
π(C)’s contains no ordinal less than ī and, by the elementarity of π, does
contain the ordinal ī. If β is any ordinal less than i, then β can be written
as σ(̄i0, ī,∞), where σ is an L-definable function, ī0 is a finite increasing
sequence of indiscernibles less than ī and ∞ is any finite increasing sequence
of indiscernibles greater than ī (of the appropriate length). Let C be the set
of γ < ī such that the largest indiscernible of ī0 is less than γ and σ(̄i0, γ̄,∞)
is less than γ for each ordinal γ̄ < γ. Then C is a constructible club in ī and
π(C) is the set of γ < i such that the largest indiscernible of ī0 is less than
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γ and σ(̄i0, γ̄,∞) is less than γ for each ordinal γ̄ < γ. Clearly β does not
belong to π(C) if ī is less than β.

Write α as σ(̄i0, ī, i,∞) where ī0 is a finite increasing sequence of indis-
cernibles less than ī and ∞ is any finite increasing sequence of indiscernibles
greater than i (of the appropriate length). Let S be the set of ordinals of the
form σ(̄i0, γ, ī,∞), where the largest indiscernible in ī0 is less than γ and γ

is an ordinal less than ī. Then S is a set of ordinals of L-cardinality ī and
π(S) contains the ordinal α. We may assume that every element of S is less
than ī++.

Let C be any constructible, closed unbounded subset of ī. Then any
condition p in Sacks(̄i, ī++) of L[G(< ī)] has an extension q such that for
δ ∈ S, C(q(δ)) (= the set of splitting levels of the tree q(δ)) is a subset of
C. Choose such a q in G(̄i). Then π∗(q) = q∗ has the property that for all
δ ∈ π(S), C(q∗(δ)) is a subset of π(C). In particular, C(q∗(α)) is a subset
of π(C). Now C was an arbitrary constructible, closed unbounded subset of
ī and the intersection of the π(C)’s is just {ī}. As L[G(< i)] contains all
s : ī → 2 in L[G(≤ ī)], it follows that the intersection t of the π∗(p)(α),
p ∈ G(̄i), is a subtree of 2<i which is the union of at most two cofinal
branches, which can only differ at ī. If α = π(ᾱ) belongs to the range of
π, then ī belongs to π∗(C(p(ᾱ))) = C(π∗(p)(π(ᾱ))) = C(π∗(p)(α)) for each
p ∈ G(̄i), and therefore if s is the unique sequence of length ī in t, both s ∗ 0
and s ∗ 1 belong to t. It follows in this case that t is in fact the union of two
cofinal branches which do split at ī, an (̄i, i)-tuning fork.

If α does not belong to the range of π then we argue as follows. It must be
that S has L-cardinality exactly ī, as otherwise π(S) is the pointwise image
of S under π, implying that α is in the range of π. Now let 〈ᾱδ | δ < ī〉 be a
1-1 enumeration of S, and let D be the set of conditions p in Sacks(̄i, ī++) of
L[G(< ī)] such that for each δ < ī, p(ᾱδ) is a tree whose first splitting level
is greater than δ. Then D is dense, so we may choose such a p in G(̄i). Then
π∗(〈ᾱδ | δ < ī〉) = 〈αδ | δ < i〉 enumerates π(S) and π∗(p) has the property
that for each δ < i, the first splitting level of π∗(p)(αδ) is greater than δ.
Now α is an element of π(S) and therefore is equal to αδ for some unique
δ < i. As α is not in the range of π, δ is at least ī. It follows that the first
splitting level of π∗(p)(α) is greater than ī, and therefore t, the intersection
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of the π∗(p)(α), does not split at ī. So t consists of exactly one cofinal branch
through 2<i. 2 (Lemma 10)

Now for α < i++ in the range of π, let (x(α)0, x(α)1) be the branches that
make up the (̄i, i)-tuning fork at α, where x(α)0(̄i) = 0, x(α)1(̄i) = 1. For
α < i++ not in the range of π, let x(α)0 denote the unique branch through
all of the π∗(p)(α), p ∈ G(̄i).

Lemma 11 For any α < i and any subset S of i++ of size i in L[G(< i)],
the sequence 〈x(δ)0 � α | δ ∈ S〉 belongs to L[G(< i)].

Proof. Write α as σ(̄i0, ī,∞), where σ is an L-definable function, ī0 is a
finite increasing sequence of indiscernibles less than ī and ∞ is any finite
increasing sequence of indiscernibles (of the appropriate length). Let C be
a constructible, closed unbounded subset of ī such that the least element of
π(C) greater than ī is also greater than α. We may assume that S is the
image π∗(S̄) of some subset S̄ of ī++ of size ī in L[G(< ī)], as if S equals
τ(i0, ī, i,∞)G(<i), where τ is an L-definable function, i0 is a finite increasing
sequence of indiscernibles less than ī, ∞ is any finite increasing sequence of
indiscernibles greater than i of the appropriate length and τ(i0, ī, i,∞) is a
P (< i)-name, then S is contained in π∗(S̄) where S̄ is the union of the set of
τ(i0, δ, ī,∞)G(<ī), max(i0) < δ < ī. Let 〈ᾱδ | δ < ī〉 be a 1-1 enumeration of
S̄.

Each condition p in Sacks(̄i, ī++) of L[G(< ī)] has an extension q whose
support contains S̄ such that for all δ < ī, C(q(ᾱδ)) is a subset of C \ (δ +1).
Choose such a q in G(̄i). Then S = π∗(S̄) is included in the support of
π∗(q) and S has the 1-1 enumeration π∗(〈ᾱδ | δ < ī〉) = 〈αδ | δ < i〉. For
δ < i, C(π∗(q)(αδ)) is a subset of π(C) \ (δ + 1). In particular, π∗(q)(αδ)
has no splits between ī and α for all δ < i and no splits between 0 and α for
ī ≤ δ < i. Note that αδ belongs to the range of π iff δ is less than ī. It follows
that for δ ∈ [̄i, i), x(αδ)0 � α is the unique element of π∗(q)(αδ) of length α,
and for δ < ī, x(αδ)0 � α is the unique element of π∗(q)(αδ) of length α

which takes the value 0 at ī and extends x(αδ)0 � ī. Thus the sequence
〈x(i)0 � α | i ∈ S〉 can be computed from π∗(q) ∈ L[G(< i)] together with
the sequence 〈x(αδ)0 � ī | δ < ī〉. The latter is coded by a subset of ī in
L[G(≤ ī)] and therefore belongs to L[G(≤ ī)] ⊆ L[G(< i)]. This proves the
Lemma. 2 (Lemma 11)
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Lemma 12 Let G(i) consist of all conditions p in Sacks(i, i++) of L[G(< i)]
such that for each α < i++, x(α)0 is contained in p(α). Then G(i) is generic
for Sacks(i, i++) of L[G(< i)] over L[G(< i)] and contains π∗[G(̄i)].

Proof. Clearly G(i) contains π∗[G(̄i)], as by definition, x(α)0 is a branch
through the intersection of the π∗(p)(α), p in G(̄i).

Suppose that D is dense on Sacks(i, i++) of L[G(< i)] and belongs to
L[G(< i)]. Write D as π∗(f)(i) where f has domain ī and belongs to L[G(<
ī)]. (This is possible as D is of the form σ(i0, ī, i,∞)G(<i), where σ is an
L-definable function, i0 is a finite increasing sequence of indiscernibles less
than ī, ∞ is any finite increasing sequence of indiscernibles greater than i

and σ(i0, ī, i,∞) is a P (< i)-name; now let f(γ) be σ(i0, γ, ī,∞)G(<ī), for
γ < ī.) We can assume that f(γ) is dense on Sacks(̄i, ī++) of L[G(< ī)] for
each γ less than ī.

Suppose that p̄ is a condition in Sacks(̄i, ī++) of L[G(< ī)], S is a subset
of ī++ of size less than ī in L[G(< ī)] and α is less than ī. Then an (S, α)-
thinning of p̄ is an extension of p̄ obtained by thinning each p̄(δ), δ ∈ S,
to the subtree consisting of all nodes compatible with some particular node
on the α-th splitting level of p̄(δ). (There are (2|α|)|S| of L[G(< ī)] such
thinnings, one for each way of choosing a node on the α-th splitting level of
p̄(δ) for each δ ∈ S.) We say that a condition p̄ in Sacks(̄i, ī++) of L[G(< ī)]
reduces D̄, where D̄ is dense on Sacks(̄i, ī++) of L[G(< ī)], iff for some subset
S of ī++ of size less than ī in L[G(< ī)] and some α < ī, any (S, α)-thinning
of p̄ meets D̄.

If D is a collection of ī-many dense sets D̄ in L[G(< ī)], then any condition
p̄ can be extended to a q̄ which reduces each D̄ in D: List the elements of
D as D̄0, D̄1, . . . in an ī-sequence. Extend p̄ = p̄0 to p̄1 meeting D̄0. Then
choose some δ1 in the support of p̄1 and extend p̄1 to p̄2, without changing the
1-st splitting level of p̄1(δ1), so that by simply thinning p̄2(δ1) to either choice
on the 1-st splitting level, D̄1 is met. Then choose some δ2 in the support of
p̄2 and extend extend p̄2 to p̄3, without changing the 2-nd splitting levels of
p̄2(δ1), p̄2(δ2), so that by simply thinning each of p̄3(δ1), p̄3(δ2) to any of the
four choices of nodes on their 2-nd splitting levels, D̄2 is met. Continue in
this way, so that at stage α + 1, for any choice of nodes on the α-th splitting
level of the trees p̄α(δ), δ one of the “first α indices”, thinning to those nodes
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will result in a condition that meets D̄α (this is possible as there are only
(2|α|)|α| < ī such thinnings). The indices δ1, δ2, . . . should be chosen so that
after ī steps, every element of the support of the final condition q̄ = p̄ī is one
of the indices chosen. Then q̄ is an extension of p̄ that reduces each D̄ in D.

Thus we may choose a condition p̄ in G(̄i) which reduces each f(γ),
γ < ī. Then p = π∗(p̄) reduces each π∗(f)(γ), γ < i and therefore reduces
D = π∗(f)(̄i). In L[G(< i)], choose a subset S of i of size less than i and
α < i such that any (S, α)-thinning of p meets D. Now for each δ ∈ S

thin p by choosing an initial segment of x(δ)0 on the α-th splitting level of
p(δ). This sequence of choices from the α-th splitting levels of the p(δ), δ ∈ S

belongs to L[G(< i)] by Lemma 11. It follows that this thinned out condition
belongs to G(i) and meets D. The proof that any two conditions in G(i) are
compatible is as in the proof of Lemma 6. So G(i) is generic for Sacks(i, i++)
of L[G(< i)] over L[G(< i)], as desired. 2 (Lemma 12)

Thus we can find the desired P (i)-generic G(i) containing πīi[G(̄i)], as
demanded by requirement (∗). This completes the inductive construction
of the G(< i), i an indiscernible. The union of the G(< i)’s is the desired
P -generic. 2
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