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1. Introduction

Let M be a transitive set. We say M is a model of a fragment of Kripke–Platek
(KP) set theory, if it satisfies the usual axiom of KP except for Foundation. We
denote KP without Foundation by KP−. The metamathematics of α-recursion
theory leads us to the study of fragments of KP. More precisely, we study the
following questions:

Is a theorem of α-recursion theory still valid without full foundation? How much
foundation is required?

One of the motivations for the metamathematics of α-recursion theory is the
metamathematics of classical recursion theory In the metamathematics of clas-
sical recursion theory, we have models of arithmetic with limited Induction, the
analogue of Foundation. Paris and Kirby [?] gave a model-theoretic analysis of
Induction. They showed that Σn Induction (IΣn) is strictly stronger than Σn

Bounding (BΣn)
1, and that Σn+1 Bounding is strictly stronger than Σn Induc-

tion. In fact, BΣn is equivalent with I∆n, by Slaman [?]. The metamathematics
of classical recursion was started by Simpson, who made the observation that IΣ1

is sufficient for the Friedberg–Muchnik theorem. Then Mytilinaios [?] proved that
IΣ1 is enough for a finite injury (0′-priority) argument. Mytilinaios and Slaman [?]
showed that IΣ2 carries out an infinite injury (0′′-priority) argument. Surprisingly,
BΣ2 is sufficient for the Sacks Density theorem by Groszek and Slaman [?], though
superficially, the construction in the Density theorem seems to be more complicated
than infinite injury.
α-recursion theory studies the computational properties of Lα’s such that Lα |=

KP, i.e. such that α is admissible. Sacks and Simpson [?] showed that the
Friedberg–Muchnik theorem is valid in Lα for every admissible ordinal α. The
Splitting and Density theorems were established by Shore in [?] and [?]; they hold
in every Lα such that α is admissible. The existence of a minimal pair is a typical
example of an infinite injury argument in classical recursion theory. Yet, whether it
is true in every admissible Lα is still open. Lerman, Sacks, Maass and Shore solved
some cases. See [?, ?, ?].
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1
BΣn implies that bounded quantifiers in front of a Σn formula do not change the complexity

of that formula.
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α-recursion theory has influenced the metamathemaics of classical recursion the-
ory. A subset of Lα is said to be regular if its intersection with any α-finite set is
still α-finite (where the α-finite sets are the elements of Lα). The idea of regular
and non-regular sets originated from Sacks and Simpson’s argument [?] and Shore’s
proof [?]. A cut is a particular non-regular set in the mematamathematics of classi-
cal recursion theory. The degree of a cut could be a minimal degree and also could
form a minimal pair with some ∅(n). See [?]. Shore’s blocking method [?, ?] was
introduced to solve the Splitting and Density problem in Lα. A similar method
[?] in the mematamathematics of classical recursion theory is applied to solve the
Splitting problem in IΣ1.

There are many overlaps between the techniques and results of α-recursion and
the metamathematics of classical recursion. Yet the reasons for this phenomenon
are yet to be found. In this paper, our research is done in nonstandard models of
set theory. These models are “between” those in nonstandard arithmetic and those
in α-recursion theory. It is one attempt to search for the reason for the mysterious
connections between these two areas.

The structure of the paper is as follows: Section 2 lists some basic definitions,
axioms and propositions that are useful later. Section 3 applies these propositions
to the Schröder-Bernstein theorem and shows that this theorem is provable in Π1-
Foundation. In Section 4 we discuss the L-hierarchy in models of fragments of
KP and apply this hierarchy to separate Πn-Foundation and Σn-Foundation. And
Section 5 and Section 6 are devoted to the Friedberg-Muchnik theorem and the
Splitting theorem respectively and prove they hold in any model of KP− + Π1-
Foundation +V = L.

2. Preliminaries

2.1. Fragments of KP. Kripke–Platek set theory (KP) consists of the Exten-
sionality, Foundation, Pairing and Union axioms together with Σ0-Separation and
Σ0-Collection:

(i) Extensionality: ∀x, y[∀z(z ∈ x↔ z ∈ y) → x = y].
(ii) Foundation: If y is not a free variable in ϕ(x), then [∃xϕ(x) → ∃x(ϕ(x)∧∀y ∈

x¬ϕ(y))].
(iii) Pairing: ∀x, y∃z(x ∈ z ∧ y ∈ z).
(iv) Union: ∀x∃y∀z ∈ x∀u ∈ z(u ∈ y).
(v) Σ0-Separation: ∀x∃y∀z(z ∈ y ↔ (z ∈ x ∧ ϕ(z))) for each Σ0 formula ϕ.
(vi) Σ0-Collection: ∀x[(∀y ∈ x∃zϕ(y, z)) → ∃u∀y ∈ x∃z ∈ uϕ(y, z)] for each Σ0

formula ϕ.

Here, Σ0 formulas have only bounded quantifiers.
KP does not contain the Infinity axiom. If it is necessary for our theorems, then

we will state the Infinity axiom explicitly.

(vii) Infinity: ∃x[∅ ∈ x ∧ ∀y ∈ x(y ∪ {y} ∈ x)].

Foundation is the dual of Induction.

(viii) Induction: If y is not a free variable in ϕ(x), then [∀x(∀y ∈ xϕ(y)) →
ϕ(x)] → (∀xϕ(x)).

Clearly, for every class Γ of formulas, Γ-Induction holds if and only if ¬Γ-Foundation
holds, where ¬Γ = {¬ϕ : ϕ ∈ Γ}.
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We use KP− to denote KP without Foundation (i.e. Clauses (i), (iii)–(vi)). By
fragments of KP, we mean systems obtained from KP by restricting the foundation
scheme.

Proposition 2.1. KP− proves the following:

(1) Strong Pairing: ∀x, y∃z (z = {x, y}).
(2) Strong Union: ∀x∃y (y =

⋃

x).
(3) ∆1-Separation and Σ1-Collection.
(4) Strong Σ1-Collection: Suppose f is a Σ1 function. If dom(f) is a set, then

ran(f) and graph(f) are sets.
(5) Ordered Pair: ∀x, y∃z (z = (x, y)).
(6) Cartesian Product: ∀x, y∃z (z = x× y).

Proof. The usual proofs [?, Sections I.3 and I.4] work in KP−. �

2.2. The Lévy Hierarchy. In Proposition 2.1, ∆1 and Σ1 are as defined in the
Lévy Hierarchy. In the Lévy Hierarchy, we usually consider normalized formulas,
that is, formulas in the form of Q0v0 . . .Qn−1vn−1ϕ, where (a) Q0, . . . , Qn−1 are
alternating quantifiers, (b) v0 . . . vn−1 are variables, and (c) ϕ is ∆0, or equivalently,
ϕ has only bounded quantifiers.

The Collection principle says that normalized formulas are closed under bounded
quantification. Without full collection, say in KP or KP−, such closure properties
may be lost. This problem is more related to Collection than to Foundation.

Definition 2.2. We define the ∗-hierarchy of formulas here. Suppose m 6 n are
natural numbers.

Σ∗
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0 = Σ0 ¬Σ∗
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n ¬Π∗
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n
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n+1 ∧Σ∗
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n+1

(∃x ∈ yΣ∗
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n (∀x ∈ yΣ∗

n) ⊆ Σ∗

n (∀x ∈ yΠ∗

n) ⊆ Π∗

n

(∃xΣ∗

n) ⊆ Σ∗

n (∃xΠ∗

n) ⊆ Σ∗

n+1 (∀xΣ∗

n) ⊆ Π∗

n+1 (∀xΠ∗

n) ⊆ Π∗

n

A Σ∗

n (Π∗

n, resp.) formula is normalizable if it is equivalent to a Σn (Πn, resp.)
formula. KP− proves that Σ∗

1 formulas are normalizable. However, even assuming
KP, there may still be a Σ∗

2 formula that is not normalizable.

Proposition 2.3 (KP−). Suppose ϕ and ψ are normalized formulas. Then

(1) ¬ϕ, ϕ ∧ ψ and ϕ ∨ ψ are normalizable.
(2) If ϕ is Σn (Πn, resp.), then ∃xϕ and ∃x ∈ y ϕ (∀xϕ and ∀x ∈ y ϕ, resp.) are

normalizable.

Proposition 2.4. KP− + Σn-Collection ⊢ for any Σm (Πm, resp.) formula ϕ,
m 6 n, ∀x ∈ yϕ (∃x ∈ yϕ, resp.) is normalizable.

Proof. Form = 0, it is straightforward. Now suppose n > m > 0, and the statement
is true form−1. Also, suppose u is a new variable and ϕ is in the form of ∃vψ (∀vψ,
resp.), where ψ is normalized Πm−1 (Σm−1, resp.). Then ∀x ∈ yϕ ≡ ∀x ∈ y∃vψ ≡
∃u∀x ∈ y∃v ∈ uψ (∃x ∈ yϕ ≡ ∃x ∈ y∀vψ ≡ ∀u∃x ∈ y∀v ∈ uψ, resp.), by Σn-
Collection. Since ∃v ∈ uψ (∀v ∈ uψ, resp.) is Πm−1 (Σm−1, resp.) normalizable,
∀x ∈ yϕ (∃x ∈ yϕ, resp.) is normalizable. �
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Corollary 2.5. KP− +Σn-Collection ⊢ all Σ∗

n and Π∗

n formulas are normalizable.
In particular, assuming KP−, every Σ∗

1 or Π∗

1 formula is respectively equivalent to
a Σ1 or Π1 formula.

3. Transfinite Induction and the Schröder–Bernstein Theorem

In this section, we move to the semantic aspects of fragments of KP. From now
on, we always assume M |= KP−. And if x ∈M , then we say x is M -finite.

Definition 3.1. α ∈ M is an ordinal if α is transitive and linearly ordered by ∈.
An ordinal of the form α ∪ {α}, where α is an ordinal, is a successor. An ordinal
λ is limit if it is nonempty and not a successor. If α is zero or a successor and no
β ∈ α is limit, then α is finite.

Note that an ordinal in M must be M -finite but it may not be finite. We use
OrdM to denote the class of ordinals in M and use < to denote ∈ on the ordinals.
With Σ0-Foundation, it is possible to develop the basic properties of ordinals.

Proposition 3.2 (KP− +Σ0-Foundation). (1) 0 = ∅ is an ordinal.
(2) If α is an ordinal, then β ∈ α is an ordinal and α+ 1 = α ∪ {α} is an ordinal.
(3) < is a linear order on the ordinals.
(4) For every ordinal α, α = {β : β < α}.
(5) If C is a nonempty set of ordinals, then

⋂

C and
⋃

C are ordinals,
⋂

C =
inf C = µα(α ∈ C) and

⋃

C = supC = µα(∀β ∈ C(β 6 α)).

Proof. See Jech [?, Chapter 2] for the usual proofs. They go through in KP−, as
the reader can verify. �

Lemma 3.3. If M |= Infinity, then M has a limit ordinal. If M |= Σ0-Foundation
in addition, then M has a least limit ordinal ωM .

Proof. Suppose x ∈ M is a set witnessing the Infinity axiom. Let C = {α ∈ x : α
is an ordinal}. Then λ = supC is an ordinal by Proposition 3.2, so that for any
β < λ, there is an α ∈ x such that β 6 α. Since α+ 2 = α ∪ {α} ∪ {α ∪ {α}} ∈ C,
β + 1 < α+ 2 6 λ. Hence, λ is limit. �

Theorem 3.4 (Transfinite Induction along the ordinals). SupposeM |= Π1-Foundation

and I : M → M is a Σ1 partial function. Then the partial function f : OrdM →
M, δ 7→ I(f ↾ δ) is well defined and Σ1. Moreover, if for all ordinals δ and all
M -finite functions η : δ →M , we have η ∈ dom(I), then f is total.

Proof. f is Σ1 definable:

f(δ) = x ↔ ∃w (w is a function with domain δ ∪ {δ}

such that ∀δ′ 6 δ [w(δ′) = I(w ↾ δ′) ∧ w(δ) = x]).

Firstly, note that Σ1 definable set dom(f) is downward closed and so by Π1-

Foundation, it is either OrdM or an ordinal inM . Suppose δ ∈ OrdM and x, x′ ∈M
such that f(δ) = x 6= x′ = f(δ). Then we pick witnesses w for f(δ) = x and w′ for
f(δ) = w′. By comparing w and w′, we find the least δ′ 6 δ such that w(δ′) 6= w′(δ).
However, this contradicts the fact that w ↾ δ′ = w′ ↾ δ′. Hence, f is a function.

Now we suppose that dom(f) is not OrdM but for all ordinals δ and all M -finite
functions η : δ → M , we have η ∈ dom(I). Pick the least ordinal δ 6∈ dom(f). Then
∀δ′ < δ∃x′(f(δ′) = x′). By Proposition 2.1, graph(f) exists. Thus, f(δ) is also
defined. This is a contradiction. �
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In most popular proofs of the Schröder–Bernstein theorem, for example, that in
Jech [?, Theorem 3.2], we obtain the required bijection by an induction on ω. Such
proofs normally go through in KP−+Π1-Foundation+Infinity. Without the Axiom
of Infinity, the proof breaks down because ω, although still ∆0-definable, can no
longer be used to bound quantifiers. Therefore, although the Schröder–Bernstein
theorem is provable in KP−+Π1-Foundation alone, apparently a separate argument
is needed when Infinity fails.

We reduce the ¬Infinity case to arithmetic, in which the situation is well-known.
The key to this reduction is a Σ1-definable bijection between the universe and the
ordinals, defined by ∈-induction. As observed in Kaye–Wong [?], this requires the
existence of transitive closures. Recall the transitive closure of a set x, denoted by
TC(x), is the smallest transitive set that includes x.

Lemma 3.5. KP− +Π1-Foundation ⊢ ∀x ∃y TC(x) = y.

Proof. Follow Lemma 5.3 and Proposition 5.4 in Kaye–Wong [?]. �

Theorem 3.6 (Transfinite ∈-induction). Let M |= KP− + Π1-Foundation, and
I : M → M that is Σ1-definable. Then there exists a Σ1-definable f : M → M
satisfying f(x) = I(f ↾ x) for every x ∈M .

Proof. Similar to that of Theorem 3.4. Transitive closures are used to show that
such an f is total. �

(The inverse of) the following bijection between the universe and the ordinals
originates from Ackermann [?].

Theorem 3.7. Let M |= KP− +Π1-Foundation + ¬Infinity. Then

f(x) =
∑

y∈x

2f(y)

defines a bijection f : M → OrdM with a Σ1 graph.

Proof. A standard application of ∈-induction shows the functionality and totality
of f . The failure of the Infinity Axiom contributes to the injectivity of f . If
α ∈ OrdM , then f(Ack(α)) = α, where

Ack(α) = {Ack(β) : ∃γ<α ∃δ<2β α = (2γ + 1)2β + δ},

defined by induction on the ordinals. �

In a sense, this theorem shows that ¬Infinity is a strong assumption over KP−+
Π1-Foundation, because it implies the Power Set Axiom, Π1-Separation, the Axiom
of Choice, and V=L. The Schröder–Bernstein theorem also follows as promised.

Theorem 3.8 (KP− + Π1-Foundation). Let A,B be sets. If there are injections
A→ B and B → A, then there is a bijection A→ B.

Proof. We already mentioned that most standard proofs go through in KP− +
Π1-Foundation+ Infinity. So suppose M |= KP−+Π1-Foundation+¬Infinity, and
f : M → OrdM is the bijection given by Theorem 3.7. Take A,B ∈ M . Suppose
M contains injections A→ B and B → A.

With Π1-Foundation in M , we know OrdM |= IΠ1 as a model of arithmetic.

Via f , we may view A and B as (arithmetically) coded subsets of OrdM . Apply

I∆0+exp in OrdM to find α, β ∈ OrdM that are respectively bijective with A and B
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in M . The hypotheses imply that there are injections α → β and β → α coded
in OrdM . So by the coded version of the Pigeonhole Principle, which is available in
all models of I∆0, we conclude α = β. It follows that A is bijective with B. �

4. The Constructible Universe

4.1. Basic Properties. In this section, M always satisfies KP−+Π1-Foundation.
By a transfinite induction, we may define LM along OrdM :

LM
0 = ∅,

LM
α+1 = LM

α ∪DefM (LM
α ),

LM
λ =

⋃

α<λL
M
α where λ is limit.

Here, DefM (x) denotes the collection of all definable subsets of x in the sense of
M . Let LM =

⋃

α∈OrdM
LM
α .

If Infinity holds, then we may define the function DefM as usual. If Infinity
fails, then we get DefM using the power set axiom and Π1-Separation given by
Theorem 3.7.

Lemma 4.1 (KP− + Π1-Foundation). The predicate “x |= ϕ[~v/~a]”, where x is a
set, ϕ is a formula (in the sense of the model) and ~a is a sequence of sets, is ∆1.
We denote this relation by Sat(pϕq, x,~a).

Proof. (Sketch) “x |= ϕ[~v/~a]” (“x 6|= ϕ[~v/~a]”, resp.) if and only if we have an
M -finite function which assigns triples (pϕ′q, x′,~a′) a truth value according to the
usual definition of truth such that (pϕq, x,~a) is assigned to be true (false, respec-
tively). From this point of view, we cannot get a conflicting truth assignment for
a triple (pϕq, x,~a). This is proved by Σ0-Foundation on the witnesses in the above
definition. Also, we may show that for every triple, we may give a truth value.
This is because if not, then by Π1-Foundation, we may pick the formula with the
least length so that this claim fails (finite sequences of a set form a set), deriving a
contradiction. �

Note that ωM may not be the standard ω. Nevertheless, the notion of Σn

formulas, where n is a standard positive natural number, is absolute, in the sense
that the formulas recognized in M as Σn are all equivalent in M to some standard
Σn formulas. That is because we have a universal Σ1 formula that is standard, so
that in a nonstandard Σn formula, we may code its ∆0 matrix into a standard Σ1

formula, if n is odd; and we may code it into a Π1 formula, if n is even.

Definition 4.2 (KP− +Π1-Foundation). V = L stands for ∀x∃α(x ∈ Lα).

Lemma 4.3 (KP− +Π1-Foundation + V=L). There are

(a) a universal Σ1 formula;
(b) a universal Σ1 function, i.e., a recursive enumeration of all Σ1 partial functions,

and
(c) a universal Turing functional, i.e., a recursive enumeration of all the codes for

oracle computations.

Proof. Note that there is an effective enumeration of Σ1 formulas (in the sense of the
model). As in Corollary 4.1, we may define the universal Σ1 formula, cf. Section 3.1
in Barwise [?]. For a universal Σ1 function, given an index, we enumerate ordered
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pairs (x, y) such that no (x, y′) has appeared earlier. One can define a universal
Turing functional similarly. �

However, this is not the full picture of formulas within M . We can have a Σn

formula for a nonstandard natural number n ∈M . Also, we have limited collection.
Thus, it is possible that we have a Σ∗

n formula, where n ∈ ω is standard, that is
not equivalent to a Σn formula.

Theorem 4.4 (KP− + Π1-Foundation). For every ordinal α, LM
α ∈ M . The

function α 7→ LM
α is ∆1.

Proposition 4.5 (KP− + Π1-Foundation). For every ordinal α, LM
α is transitive

and LM
α ∩ OrdM = α.

Theorem 4.6. If M |= KP−+Π1-Foundation, then L
M |= KP−+Π1-Foundation.

Proof. We only need to check Π1-Foundation and Σ0-Collection. Pick any Π1

formula ∀wϕ(x,w), where ϕ ∈ ∆0. Suppose there is an x ∈ LM such that ∀w ∈
LMϕ(x,w). The set {y ∈ LM

α : ∀w ∈ LMϕ(y, w)} is Π1 for every ordinal α. By Π1-
Foundation in M , it is either empty or has a ∈-least witness. Hence, LM satisfies
Π1-Foundation.

To check ∆0-Collection, we fix any ∆0-formula ψ(y, w) with parameters from
LM and x ∈ LM . Suppose ∀y ∈ x∃w ∈ LM ψ(y, w). Then we may check the
L-rank of the witnesses (i.e. the least α such that w ∈ LM

α ). Then ∀y ∈ x∃α∃w ∈
LM
α ψ(y, w). By Σ1-Collection of M , there is a searching bound α∗ ∈M such that

∀y ∈ x∃α < α∗∃w ∈ LM
α ψ(y, w). Therefore, LM

α∗ is the searching bound for the
witness w for all y ∈ x. �

If M |= KP− +Π1-Foundation, then L
M |= V = L.

Lemma 4.7. Suppose M |= KP− + Π1-Foundation + V=L. Then there exists a

∆1 bijection M → OrdM that preserves the relation ∈.

Corollary 4.8. Let M |= KP− + Π1-Foundation + V=L. Then there exists a
∆1-definable linear order <L on M such that M satisfies

• ∀s
(

∃x (x ∈ s) → ∃x
(

x ∈ s ∧ ∀x′<Lx (x′ 6∈ s)
))

;
• ∀x, y (x ∈ y → x <L y); and
• ∀α∈Ord ∀x∈Lα ∀v<Lx (v ∈ Lα).

4.2. Recursive Ordinals in Models of KP−.

Lemma 4.9. If M |= KP− + Π1-Foundation + Infinity, and ωM = ω, then every
recursive ordinal is in M .

Proof. For the sake of a contradiction, consider the least recursive ordinal not in
M and suppose Φk, k < ω codes a well ordering of ω isomorphic to this recursive
ordinal. Then Φk together with its ordering is M -finite. Let <Φk

denote this

ordering. Define a Σ1 function f : ω → OrdM as follows:

f(n) = γ ↔

there is an order isomorphism between γ and {m < ω : m <Φk
n}.

If f is total, then the order type of Φk is inM , leading to a contradiction. Otherwise,
suppose n is <Φk

-least such that n 6∈ dom(f). Since dom(f) = {m < ω : m <Φk
n}

is M -finite, graph(f) is M -finite. It follows that f is an isomorphism between
dom(f) and ran(f), contradicting with n 6∈ dom(f). �
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We may generalize recursive ordinals as in the following.

Definition 4.10 (KP− + Π1-Foundation + Infinity). An ordinal α is recursive if
there is a Σ1 (in the language of arithmetic with parameters in ωM ) linear ordering
of ωM with respect to which ωM is order isomorphic to α.

Suppose there is an ordinal that is nonrecursive, then there must be a least one by

Π1-Foundation. We denote this ordinal by ωCK,M
1 . In this case, it is straightforward

to check that LM

ω
CK,M
1

satisfies full foundation. However, it is not clear whether it

satisfies ∆0-Collection.

Question 4.11. IfM |= KP−+Π1-Foundation and ωCK,M
1 exists, then is LM

ω
CK,M
1

|=

∆0-Collection?

If every ordinal in OrdM is recursive, then we say ωCK,M
1 = OrdM . If we repeat

the argument in Theorem 4.14 with a nonstandard model M such that its standard
part of M is LωCK

1
, then the cut I could be chosen to consist of recursive ordinals

in the sense of M . Using this cut I with the proof of Theorem 4.14, we obtain a
model of KP− + Π1-Foundation but not full foundation such that every ordinal is
recursive. Thus, KP− +Π1-Foundation + every ordinal is recursive does not imply
full foundation.

4.3. Collection, Separation and Foundation. Collection, Separation and Foun-
dation are closely related to each other. An immediate observation is that KP−+Γ-
Separation +Σ0-Foundation, together with the existence of transitive closures, im-
plies Γ-Foundation. A less obvious result is the following:

Lemma 4.12 (KP−). For every standard natural number n, Σn-Collection ⊢
∆n-Separation.

Proof. We prove this by induction on n. Suppose we have proved the conclusion
for n and Σn+1-Collection holds. Assume ∃yϕ(x, y) and ∃yψ(x, y) are formulas
such that (1) ϕ and ψ are Πn, (2) ∀x ∈ z ∃y (ϕ(x, y) ∨ ψ(x, y)), and (3) ¬∃x ∈
z ∃y (ϕ(x, y) ∧ ψ(x, y)). Then Σn+1-Collection implies that there is a b such that
∀x ∈ z ∃y ∈ b (ϕ(x, y) ∨ ψ(x, y)). By ∆n-Separation, z

′ = {x ∈ z : ∃y ∈ b (ϕ(x, y))}
and z′′ = z \ z′ are sets. (Here, we need Π∗

n = Πn, which is implied by Σn+1-
Collection.) This shows ∆n+1-Separation. �

Over KP−, the following implications hold.

Σ1-Foundation Σ2-Foundation . . . . . .

∆1-Foundation ∆2-Foundation ∆3-Foundation . . .

Π1-Foundation Π2-Foundation . . . . . .

We will use the L hierarchy to show the implications indicated by double arrows
above do not reverse.

Lemma 4.13 (Ramón Pino [?, Theorem 1.28]). Let n ∈ N. Then KP−+Infinity+
Σn+1-Collection + Πn+1-Foundation + V=L proves the following statement.
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For every δ ∈ Ord, there exists a sequence (αi)i6δ in which α0 = 0
and αi+1 = min{α > αi : Lα �n L} for each i < δ.

Proof. If n = 0, then the sequence we want is just (α)α6δ. So suppose n > 0.
With Σ1-Induction on ω, we have a Πn formula Πn-Sat for the satisfaction of Πn-
formulas. We can reflect this formula arbitrarily high up in the L-hierarchy thanks
to Σn+1-Collection and Σn+1-Induction on ω. This implies there are arbitrarily
large Lα �n L. With Σn+1-Collection and Πn+1-Foundation, we can iterate this
along any ordinal. �

Theorem 4.14 (Ressayre [?, Theorem 4.6]). KP− + Infinity + Σn+1-Collection +
Σn+1-Foundation + V=L 0 Πn+1-Foundation for all n ∈ N.

Proof. Start with a countable M |= KP− + Infinity + Σn+1-Collection + Πn+1-

Foundation+V=L in which ωM = ω but OrdM is not well-ordered. Take a non-
standard δ ∈ OrdM . Let (αi)i6δ+δ be a sequence of ordinals given by Lemma 4.13.

As δ is nonstandard, there are continuum-many initial segments of OrdM between
δ and δ + δ. So there must be one that is not definable in M . Take any initial
segment I ⊆ OrdM with this property. We will prove that K =

⋃

i∈I L
M
αi

is the
model we want.

Claim 4.14.1. K �n M .

Proof of claim. We show by induction on m 6 n that K �m M . Clearly K �0 M
because K is a transitive substructure of M . Let m < n such that K �m M . Pick
any ϕ(x̄, z̄) ∈ Σm and c̄ ∈ K. Assume K |= ∀x̄ ϕ(x̄, c̄). Find some i ∈ I such
that c̄ ∈ LM

αi
. Let x̄ ∈ LM

αi
be arbitrary. Then K |= ϕ(x̄, c̄). Since K �m M by

the induction hypothesis, and LM
αi

�n M , we know LM
αi

|= ϕ(x̄, c̄). Hence LM
αi

|=
∀x̄ ϕ(x̄, c̄). This transfers up toM by n-elementarity, completing the induction. ⊣

Claim 4.14.2. K |= Σn+1-Collection.

Proof of claim. Take a, c̄ ∈ K and ϕ(x, y, z̄) ∈ Πn such that

K |= ∀x∈a ∃y ϕ(x, y, c̄).

Pick any j ∈ δ + δ above I. Let x ∈ a. Then K |= ϕ(x, y, c̄) for some y ∈ K.
Since K �n M and LM

αj
�n M , the same is true when the satisfaction of ϕ is

evaluated in LM
αj

instead. Therefore, by setting b = LM
α for some α < αj above I,

we see that LM
αj

|= ∃b ∀x∈a ∃y∈b ϕ(x, y, c̄).
Since the choice of j ∈ δ + δ above I was arbitrary, this underspills. Let i ∈ I

and b ∈ LM
αi

such that a, c̄ ∈ LM
αi

and LM
αi

|= ∀x∈a ∃y∈b ϕ(x, y, c̄). Notice since

LM
αi

�n M and K �n M , we have LM
αi

�n K. Therefore K |= ∀x∈a ∃y∈b ϕ(x, y, c̄)

too because LM
αi

is a transitive substructure of K. ⊣

This claim implies K |= ∆n+1-Separation + ∆n+1-Foundation.
Notice if n = 0, then we do not have Π1-Foundation in K. Thus Corollary 4.8

does not always apply toK. Nevertheless, the modelM does satisfy Π1-Foundation,
and so K can still get the conclusions of Corollary 4.8 from M .

Claim 4.14.3. K |= Σn+1-Foundation.
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Proof of claim. Let θ(v, x) be a Πn-formula that may contain undisplayed param-
eters from K. Suppose

K |= ∃x ∃v θ(v, x) ∧ ∀x
(

∃v θ(v, x) → ∃x′∈x ∃v θ(v, x′)
)

.

Fix any x0 ∈ K such that K |= ∃v θ(v, x0). Let η(k, x) be the formula

(x)0 = x0

∧ ∀i∈k













(x)i+1 ∈ (x)i ∧ ∃α∈Ord






(x)i ∈ Lα

∧ ∃v∈Lα

(

θ(v, (x)i+1)

∧ ∀x′<L(x)i+1 ∀v′∈Lα

(

x′ ∈ (x)i → ¬θ(v′, x′)
)

)



















,

which is Σn+1 over M by Corollary 4.8 and Claim 4.14.2.
We show K |= ∀k∈ω ∃x η(k, x) by an external induction on k. Suppose we

already have x0, x1, . . . , xk ∈ K satisfying the inductive conditions. Take any large
enough α ∈ OrdK such that K |= x ∈ xk ∧ θ(v, x) for some v, x ∈ LK

α . Then we can
set

xk+1 = min<L

{

x ∈ LK
α : K |= x ∈ xk ∧ ∃v∈LK

α θ(v, x)
}

.

This minimum exists by Πn-Separation.
Apply Σn+1-Collection to get s ∈ K such that K |= ∀k∈ω ∃x∈s η(k, x). Define

f(k) = y to be
∃x∈s

(

η(k, x) ∧ (x)k = y
)

,

which is Σn+1 over M by Σn+1-Collection. It is not hard to verify that K |=
∀k∈ω ∃!y f(k) = y. So the set

{y ∈ TC(x0) : K |= ∃k∈ω f(k) = y}

is ∆n+1-definable but has no ∈-minimum element. This contradicts ∆n+1-Foundation
in K. ⊣

Notice that K |= V=L because the L-hierarchies in M and K, being ∆1-
definable, coincide.

Claim 4.14.4. K 6|= Πn+1-Foundation.

Proof of claim. If n = 0, then K contains δ but not δ + δ, so that Π1-Foundation
fails in K. Suppose n > 0. Then δ + δ ∈ K by Π1-Foundation, but there can
be no sequence (βi)i6δ+δ in which β0 = 0 and βi+1 = min{β > βi : Lβ �n L}
for each i < δ + δ, because K �n M . So Lemma 4.13 tells us K cannot satisfy
Πn+1-Foundation. ⊣

�

In particular, this theorem says that if n ∈ N, then KP− + Σn+1-Foundation 0

Πn+1-Foundation. We do not see how to show this without invoking the much
stronger Σn+1-Collection. The use of the Infinity Axiom is necessary, because
KP− +Σn+1-Foundation+¬Infinity ⊢ Πn+1-Foundation, as is classically known in
the context of arithmetic [?]. The use of V=L, however, is only superficial: we
may as well work with LM if M |= V 6=L in the proof above. Also, we may repeat
the proof of Theorem 4.14 with V = L replaced by V = L[R] for some real R.

Theorem 4.15. KP−+Σn+1-Collection+Πn+1-Foundation+V=L ⊢ Σn+1-Foundation
for all n ∈ N.
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Proof. If Infinity holds, then the proof is the same as that of Claim 4.14.2, except
that now, we can use Πn+1-Foundation to show ∀k∈ω ∃x η(k, x). If Infinity fails,
then apply the equivalence between IΠn+1 and IΣn+1 in arithmetic [?] via the
bijection given by Theorem 3.7. �

Question 4.16. Let n ∈ N. Does KP−, Infinity, Σn+1-Collection, plus Πn+1-
Foundation prove Σn+1-Foundation?

4.4. Level 1-KPL.

Definition 4.17. Level 1-KPL denotes KP− +Π1-Foundation + V=L.

Notice Theorem 4.15 above implies Level 1-KPL ⊢ Σ1-Foundation.

Definition 4.18 (Level 1-KPL). Let I be a bounded initial segment of ordinals.
We say that I is a cut, if there is no least ordinal β 6∈ I.

Note in the above definition, though I is transitive and linearly ordered by ∈, I
is not an ordinal, as otherwise, I would become the least ordinal not in I.

Lemma 4.19 (Level 1-KPL). For all n > 1, Σn-Foundation holds if and only
if there is no Πn cut. The same is true for Πn-Foundation and Σn cuts if Σn-
Collection is additionally assumed.

Proof. If there is a Πn cut, then Σn-Foundation fails, clearly. Conversely, suppose
Πn-Induction fails. That is, there is a Πn formula ϕ(x) such that ∀x[(∀y ∈ xϕ(y)) →
ϕ(x)] but for some x0, ¬ϕ(x0) holds. Let f : Ord

M →M be the recursive bijection

in Lemma 4.7. Then we check that ∀α ∈ OrdM [(∀β < αϕ(f(β))) → ϕ(f(α))], as

f preserves ∈ of M . Now we define I = {α ∈ OrdM : ∀β < αϕ(f(β))}. Then I is
bounded Πn and there is no least ordinal not in I. Thus, I is a Πn cut. �

Lemma 4.20 (Level 1-KPL). Every M -finite set x has a cardinality |x|.

Lemma 4.21 (Level 1-KPL). If δ is an infinite cardinal, then there is an order
preserving bijection from δ into δ2, where (a, b) ≺ (c, d) if and only if max(a, b) <
max(c, d)∨(max(a, b) = max(c, d)∧a < c)∨(max(a, b) = max(c, d)∧a = c∧b < d).

Proof. For the sake of a contradiction, we assume that δ is the least cardinal that
fails to have this property. We define the function by Σ1 induction along the
ordinals. Note that the maximum of the two coordinates of the image of α is no
more than α for any α < δ. Thus, the domain of the function has to be greater
than δ. Let the image of δ be (a, b), where max(a, b) < δ. Considering the order
preserving bijection from |max(a, b)|2 and |max(a, b)|, we can get a surjection from
|max(a, b)| onto δ. That is a contradiction. �

Corollary 4.22 (Level 1-KPL). Suppose δ is an infinite cardinal. Then |δ2| = δ.
Thus, for x and y satisfying |x|, |y| 6 δ, the Cartesian product x×y and the set x<ω

of finite sequences of x are both of cardinality at most δ. Thus, for every infinite
ordinal α, |Lα| 6 |α|.

Proof. Let |x| 6 δ. Consider the sequence {xn}n<ω. Now, by Σ1-Induction, |xn| 6
δ for all n < ω. Thus, |x<ω | 6 |δ × ω| 6 δ.

For the sake of a contradiction, assume that α is the least infinite ordinal such
that there is no injection from Lα into α. If α is a successor ordinal with predecessor
α′, then |Lα| 6 |Lα′

<ω × ω| 6 |α′ × ω| 6 |α′|, which contradicts our assumption.
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Thus, α is a limit ordinal. Since for any infinite β < α, |Lβ| 6 |β| 6 |α|, there is a
Σ1 injection from Lα to α×α. Thus, |Lα| 6 |α|, which again is a contradiction. �

5. The Friedberg–Muchnik Theorem

In this section we will show the Friedberg–Muchnik Theorem in Level 1-KPL.
Again M is a model of Level 1-KPL. The Sack–Simpson construction [?] in α-
recursion theory uses the Σ2-cofinality (of the ordinals), i.e., the least ordinal that
can be mapped to a cofinal set of ordinals by a Σ2 function, the existence of which
apparently needs much more foundation than Level 1-KPL can afford.

Question 5.1. Is there a model of Level 1-KPL with no Σn cofinality for some
n > 2?

Lemma 5.2 (Level 1-KPL). If there is a Σ1 injection from the universe into an
ordinal, then there is the least such an ordinal. It is called the Σ1 projectum,
denoted by σ1p(M), or σ1p for short.

Proof. Suppose α ∈ M is an ordinal such that there is a Σ1 injection from the
universe into α. We claim |α| = σ1p. Clearly, there is a Σ1 injection from the
universe into |α|. Conversely, if we have a Σ1 injection p fromM into β 6 |α|, then
p ↾ |α| is M -finite and is an injection into β. As |α| is a cardinal in M , β = α. �

Similarly, we may define the Σ2 projectum ofM , σ2p(M), to be the least ordinal
such that there is a Σ2 injection from the universe into it. However, it is not known
whether such a projectum exists.

Question 5.3. Is there a model of Level 1-KPL with no Σ2 projectum?

Corollary 5.4 (Level 1-KPL). If σ1p(M) exists, then σ1p(M) is the largest car-
dinal in M .

Corollary 5.5 (Level 1-KPL). If σ1p(M) exists, then every Σ1 subset of an ordinal
less than σ1p(M) is M -finite. If σ1p(M) does not exist, then every Σ1 bounded

subset of OrdM is M -finite.

Definition 5.6 (Level 1-KPL). Suppose δ is an ordinal. We say δ is (Σ1) stable if
Lδ is a Σ1 elementary substructure of the whole model.

Lemma 5.7 (Level 1-KPL). For every γ such that ω 6 γ < σ1p, there is a stable
ordinal δ > γ with the same cardinality as γ.

Proof. Let γ be an ordinal such that ω < γ < σ1p and x be the set of all finite
sequences of Lγ . Suppose f : M → OrdM is the bijection from Lemma 4.7 and {ϕe}
is a universal enumeration of all Σ1 formulas as in Lemma 4.3.

Consider the set y = {(e,~a) : e ∈ ω,~a ∈ x, the number of free variables in ϕe is
equal to the dimension of ~a plus one}. Note that |y| 6 |ω × |x|| 6 γ < σ1p. Thus,
any Σ1 subset of y is M -finite.

Now we define a (partial) map g : y → M such that (e,~a) 7→ the least v (in the
order of f) such that ϕe(v,~a) holds. As dom(g) is M -finite, so is ran(g).

Let G = ran(g). Then |G| 6 |y| 6 |γ|. Note that Lγ ⊂ G. (Then x, y ⊂ G).
Thus, |G| = |γ|. Suppose ϕ is a Σ1 formula (in the sense of M), and ~a is a finite
sequence in G such that the number of free variables in ϕ is equal to the dimension
of ~a plus one and M |= ∃vϕ(v,~a). We claim that G |= ∃vϕ(v,~a). To see this,
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let ~ϕ be an M -finite sequence of Σ1 formulas with parameters from Lγ . Then
M , and thus G, is a model of ∃v∃~a[ϕ(v,~a) and each coordinate of ~a satisfies the
corresponding coordinate in ~ϕ]. This yields that G ≺1 M .

Now we define the Mostowski collapse c of G as follows:

c(v) = z ↔ ∃η(η is a function such that

∀v ∈ dom(η)(η(v) = {η(v′) : v′ ∈ v ∩G}) and η(v) = z)

Note that c is Σ1 definable and dom(c) = G by Π1-Foundation. Let G′ = ran(c),
which is M -finite.

For every v, v′ ∈ G, v ∈ v′ ↔ c(v) ∈ c(v′) by Π1-Foundation. Also, if M |= v 6=
v′, thenM |= v△v′ 6= ∅ and soG′ |= c(v) 6= c(v′). Hence c is an isomorphism. Thus,
for every ordinal in G, its image in G′ is still an ordinal. Thus, G′ ⊂

⋃

α∈OrdG
′ Lα.

Conversely, G′ ⊃
⋃

α∈G′ Lα, since G
′ is transitive and G |= ∀ ordinal α, Lα exists.

Let δ be the least ordinal not in G′. Then G′ = Lδ.
Consider the function g. Note that for every (e,~a) ∈ dom(g), c((e,~a)) = (e,~a),

and g(e,~a) is the least witness for ϕe(v,~a). Thus, the same is still true in G′. For
this reason, G′ = G. �

5.1. Construction. We will construct r.e. subsets A and B of the ordinals as in
the classical case.

Lemma 5.8. Given an r.e. set A, we have a recursive enumeration of A without
repetition. I.e. there is a recursive 1-1 function f such that dom(f) is OrdM or an
ordinal in M , and ran(f) = A.

Let p : OrdM → σ1p be a Σ1 injection and {Φǫ : ǫ ∈ OrdM} is a uniform sequence
of Σ1 Turing functionals. Requirements are either ΦA

ǫ 6= B or ΦB
ǫ 6= A for some

ordinal ǫ. Let {Rǫ : ǫ ∈ OrdM} be a Σ1 enumeration of all requirements. We say
Rǫ has higher priority than Rǫ′ , if p(ǫ) < p(ǫ′). At any stage γ,

• Rǫ requires attention if ǫ < γ, Rǫ was not satisfied prior to stage γ, and for
the corresponding witness, Turing machine, and the oracle known so far,
the outcome of the computation on this witness is 0 and this witness is not
in the scope of any restrictions of higher-priority requirements;

• Rǫ receives attention if
(1) it requires attention;
(2) we enumerate the witness into the corresponding set; and
(3) we put restrictions on the usage of the computation;

• Rǫ is initialized if we erase the memories of all activities of Rǫ by stage γ
and assign a new witness for it;

• Rǫ is satisfied if it received attention at some previous stage, and after that
until the present stage, it has not been initialized.

Suppose we are at stage γ ∈ OrdM . Consider {Rǫ : ǫ < γ}. If there is a
requirement requiring attention, then we satisfy the one with the highest priority,
say Rǫ and initialize all requirements in {Rǫ : ǫ < γ} of lower priorities. If no
requirement requires attention, then we initialize all Rǫ (together with the lower-
priority requirements) with ǫ < γ such that some injection is enumerated into
[0, p(ǫ)) exactly at this stage. Then one by one, for each requirement in {Rǫ : ǫ < γ}
that has not been satisfied nor assigned a witness not in the scope of restrictions
by higher priority requirements, we assign a new witness for it.
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5.2. Verification.

Lemma 5.9 (Level 1-KPL). Successor infinite cardinals are regular.

Proof. Suppose δ is a successor cardinal, its predecessor cardinal is δ− and {αi :
i < β} is an M -finite sequence of ordinals such that αi, β < δ. Then there is
a Σ1, thus M -finite, bijection from {(x, i) : x ∈ αi, i < β} into (δ−)2. Thus,
|
⋃

{αi, i < β}| 6 δ−. �

Lemma 5.10 (Level 1-KPL+ Infinity). Suppose α < δ and δ is a regular cardinal
in M . If {Xi : i < α} is a uniform r.e. sequence of M -finite sets of ordinals with
cardinality less than δ. Then

⋃

{Xi : i < α} is an M -finite set of cardinality less
than δ.

Proof. Without loss of generality, we assume that the Xi’s are mutually disjoint.
Define a function γ 7→ the first (and the least, if necessary) ordinal enumerated by
{Xi : i < α} but not included in the image of the function restricted to γ. This is
a Σ1 function. If there is a δ′ < δ not in its domain, then we are done. Otherwise,
consider the sequences in {order type of (Xi ↾ enumerated before δ) : i < α}. They
contradict the regularity of δ. �

Lemma 5.11 (Level 1-KPL). If there is no maximum cardinal, then the cardinals

are cofinal in OrdM .

Proof. By Lemma 5.4, σ1p does not exist. Thus, Lemma 5.5 yields that every
bounded r.e. set of ordinals is M -finite. For the sake of a contradiction, suppose
all cardinals are bounded by γ. Then the set {α < γ : α is not a cardinal} is a
bounded r.e. set and so is M -finite. Thus, C = {α < γ : α is a cardinal} is M -finite
as well. Let δ be the least ordinal not in C. Then δ 6∈ C, but it is a cardinal. �

Theorem 5.12 (Level 1-KPL). If there is no maximum cardinal or σ1p is in the
model, then all requirements in the construction are satisfied.

Proof. If at some stage Rǫ is satisfied and never initialized afterwards, then we are
done. Otherwise, let γ be a stage at which all elements in ran(p) ↾ p(ǫ) have been
enumerated.

Let {Sj} be the enumeration of the requirements with higher priorities than Rǫ

and Rǫ itself with priority ordering. Then this sequence is M -finite and of length
less than a regular cardinal δ in the model. Now let Ij = {α 6 order type of
stages at which Sj is initialized or assigned a new witness}. Then the sequence
{Ij} is uniformly enumerable. We claim that each Ij is M -finite and less than
δ. Otherwise, let j be the least such that Ij ⊇ δ. By Lemma 5.10,

⋃

j′<j Ij′ is

M -finite and less than δ. Let ξ be the least stage such that
⋃

j′<j Ij′ has been
enumerated completely. Then by stage ξ, Ij cannot be more than the order type of
1 + 2×

⋃

j′<j Ij′ . After stage ξ, Ij is initialized at most once. Thus, Ij is no more

than the order type of 1 + 2×
⋃

j′<j Ij′ + 3, not containing δ as a subset.

Thus, after some stage γ′, Rǫ is never initialized nor assigned a new witnesses.
If Rǫ requires attention, then it would be the one with highest priority and is
satisfied and never injured afterwards. Otherwise, the witness would show that Rǫ

is satisfied automatically. �
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5.3. Modified Construction and its Verification. Now we consider the case
that σ1p is not in the model and there is the maximal cardinal. We denote the
maximum cardinal by ℵ.

The set {δ > ℵ : δ is not stable} is an r.e. set and so is regular. At each stage
s, we say that δ is stable at stage s if ℵ < δ < ℵ + 1 + s and according to the
information up to ℵ+ 1 + s, we think that δ is stable. Then δ > ℵ is stable if and
only if there is a stage s such that for all stages t > s, δ is stable at stage t. In fact,
by Lemma 5.5 and Σ1-Collection, for any α > ℵ, there is a stage s such that after
stage s, our justification of the stability of any ordinal in (ℵ, α] will never change.

At stage s, let δs1 < δs2 < · · · < δsi < · · · be an enumeration of all stable-at-stage-s
ordinals greater than ℵ. Let δs0 = 0. [δsi , δ

s
i+1) is called block i at stage s. Then for

every ordinal α, there is a stage s such that after stage s, all blocks below α will
not be changed. For every block i at stage s, let hsi be the least (in the order of L)
M -finite injection from block i at stage s into ℵ. If δs1 < · · · < δsi+1 are not changed
from stage s onwards, then so are block i and hsi .

We do the construction of A and B as in Section 5.1 with the following priority
order:
Rǫ has higher priority than Rǫ′ if there are a stage s and blocks i 6 j which are

not changed from stage s onwards, such that

(1) ǫ is in block i and ǫ′ is in block j, and
(2) either i < j, or i = j and hsi (ǫ) < hsi (ǫ

′).

This priority order is not recursive. Yet, for every ordinal α, the priority order on
the set {Rǫ : ǫ < α} can be recursively approximated and from some stage onwards,
the approximation gives a correct order on {Rǫ : ǫ < α}. At each stage, we do the
construction via the approximation of the priority order.

Other parts of the construction are parallel to that in Section 5.1. The rest of
this section will give a detailed description. Readers familiar with this can skip to
the verification.

At stage s, we say that

• Rǫ requires attention if
(1) the least stable ordinal δ at stage s such that ǫ < δ < s exists;
(2) there is a stage t < s such that {α 6 δ : α is stable at stage t} = {α 6

δ : α is stable at stage s}; and
(3) Rǫ was not satisfied prior to stage s and for the corresponding wit-

ness, Turing machine, and the oracle known so far, the outcome of the
computation on this witness is 0 and that witness is not in the scope
of any restrictions of higher-priority (according to our knowledge at
stage s) requirements;

• Rǫ receives attention if
(1) it requires attention;
(2) we enumerate the witness into the corresponding set; and
(3) we put restrictions on the usage of the computation;

• Rǫ is initialized if we erase the memories of all activities of Rǫ by stage s
and assign a new witness for it;

• Rǫ is satisfied if it received attention at some previous stage, and after that
until the present stage, it has not been initialized.

Suppose we are at stage s ∈ OrdM . Consider {Rǫ : ǫ < s}. If there is a
requirement requiring attention, then we satisfy the one with the highest priority,
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say Rǫ and initialize all requirements in {Rǫ : ǫ < s} of lower priorities. If no
requirement requires attention, then we initialize all Rǫ (together with the lower-
priority requirements) with ǫ < s, such that its block has been changed at this
stage or its map into ℵ is changed at this stage, i.e. no t, δ < s satisfy

(i) ǫ < δ < t,
(ii) δ is stable at stage s (and so stable at stage t), and
(iii) {α 6 δ : α is stable at stage t} = {α 6 δ : α is stable at stage s}.

(iv) If ǫ is in block i at stage t, then for every t′ ∈ [t, s], ht
′

i = hti.

Lastly, one by one, for each requirement in {Rǫ : ǫ < s} that has not been satisfied
nor assigned a witness not in the scope of restrictions by higher priority require-
ments, we assign a new witness for it.

The following lemma implies that every requirement is satisfied eventually.

Lemma 5.13 (Level 1-KPL). Suppose for all t > s0 and j 6 i + 2, δs0j = δtj. We

denote lims δ
s
j by δj, j 6 i + 2. Let Iǫ = {s : Rǫ receives attention, is assigned a

new witness, or is initialized at stage s}. If ǫ ∈ [δi, δi+1), then Iǫ ∈ Lδi+2
.

Proof. Fix an i. By the stability of δi+1, for all s > δi+1, {δ 6 δsi+1 : δ is stable
at stage s} = {δj : j 6 i + 1}. By Σ1-Foundation, we may let j 6 i be the least
such that there is a requirement Rǫj in block j, such that Iǫ 6∈ Lδj+2

. Without loss
of generality, we may assume that ǫ = ǫj . Let s0 > δi+1 be the least such that
hs0i = hi is found. Then s0 < δi+2.

By inductive hypothesis, from stage s0 onwards, all requirements in block < i
will not receive attention nor be initialized. For every ǫ in block i, we consider
the set I ′ǫ = {α : the order type of Iǫ \ s0 is no less than α}. Let δ 6 ℵ be any
infinite regular cardinal. If for every ǫ in block i with priority order, restricted
to block i, less than δ, I ′ǫ < δ, then we are done. Otherwise, let ǫ be the one
with the highest priority in block i such that I ′ > δ. Then U =

⋃

{Iǫ′ \ s0 :
ǫ′ is in block i and has higher priority than ǫ} is a union of fewer than δ many M -
finite sets, each of cardinality less than δ. By Lemma 5.10, U isM -finite with cardi-
nality less than δ. Thus, η = sup{I ′ǫ′ : ǫ

′ in block i and has higher priority than ǫ} <
δ, and so I ′ǫ 6 3× η + 2 < δ. That is a contradiction. �

6. The Splitting Theorem and the Blocking Method

In this section, we show the Sacks Splitting theorem in the setting of Level 1-
KPL. We fix a regular nonrecursive r.e. set X and we will split X into two r.e. sets
A and B such that

(1) A ∪B = X ,
(2) A ∩B = ∅,
(3) X 66T A, and
(4) X 66T B.

To satisfy (1) and (2), we enumerate the elements in X one by one and put them
into either A or B but not both. For (3) and (4), we deal with the requirements

Pe : ΦA
e 6= X

Qe : ΦB
e 6= X

for all e ∈ OrdM .
For a single requirement, we apply the classical method of preserving computa-

tion. To settle all requirements, we adopt the blocking method as in α-recursion



FRAGMENTS OF KRIPKE–PLATEK SET THEORY AND THE METAMATHEMATICS OF α-RECURSION THEORY17

theory. The problem is that, within Level 1-KPL, we may not have the Σ2 cofinality
of the OrdM . Thus, here we use a modified version that came from arithmetic [?].
It is a modified version of that in α-recursion theory. Here, a block is determined
by its previous actions: we only stop enlarging a block when the actions of all its
previous blocks terminate. The next lemma says that each block either grows to
infinity or reaches to a limit at some M -finite stage.

Lemma 6.1. For any nondecreasing recursive sequence {ξs}s, either it is cofinal

in OrdM (we denote this by lims ξs = ∞) or there is a stage s such that for all
t > s, ξt = ξs.

Proof. Suppose {ξs}s is bounded in OrdM . Let δ be the least ordinal such that for
all s, ξs 6 δ. We note that ∀δ′ < δ∃s(ξs > δ′). Then Σ1-Collection tells us there is
a stage s0 such that ∀δ′ < δ∃s < s0(ξs > δ′). Thus, ξs0 = δ and we are done. �

6.1. Construction. Now we construct A and B stage by stage. We may pick an
enumeration of X such that at each stage s, there is at most one element less than
s enumerated into X . The set of elements enumerated into X before stage s is
denoted by X<s. Similarly, we use A<s, B<s, etc.

We say a requirement is a P -requirement (a Q-requirement, resp.) or of P -type
(Q-type, resp.), if it is of the form ΦA

e 6= X (ΦB
e 6= X , resp.). One essential principle

in the blocking method is that there is only one type of requirements in any block.
Block α at stage s is [0, h(α, s)), where h(α, s) =

• 1, if α = 0; (In the rest of the definition of h, we do not consider the case
α = 0.)

• α+ 1, if s = 0;
• some value δ to be specified in the construction such that δ > h(α, t) for
all t < s and δ > h(β, s) for all β < α, if α, s > 0.

We say α is even if α = γ + 2n for some limit ordinal γ and some finite ordinal
n. Otherwise, α is odd. We always assign P -requirements to even blocks and Q-
requirements to odd blocks. More precisely, for instance, suppose α is even and
stable up to stage s, i.e., there is t < s such that for all stages t′ ∈ [t, s) and
all β 6 α, h(β, t′) = h(β, t). Then let the αth requirement at stage s, which we
denote by Rs

α, be
∧

{Pλ : λ is in Block α at stage s}. For ordinals in odd blocks,
Q-requirements are assigned similarly.

Also, we define the maximum common length of Rs
α, denoted by m(α, s), as

follows: If there is a stage t < s such that h(α, t) > s, then let m(α, s) = 0.
Otherwise, suppose α is even and e is in Block α up to stage s. Then

m(e, s) = sup{l < s : ΦA<s
e ↾ l = X<s ↾ l}.

Correspondingly, the reservation of Rs
e, denoted by r(e, s), is the least ordinal r 6 s

such that, Φ
A<s↾r
e ↾ m(e, s) = X<s ↾ m(e, s). Similarly, define m(e, s) and r(e, s)

using B instead of A when e is in an odd block up to stage s. For every block α, let
r(α, s) = sup{r(e, s) : e is in Block α up to stage s}, and m(α, s) = sup{m(e, s) : e
is in Block α up to stage s}.

At stage s > 0, let Rs
α, m(α, s), r(α, s) be defined as above. If no element is

enumerated into X , then let As = A<s, Bs = B<s and h(α, s) = max{supt<s h(α,
t), supβ<α(h(β, s) + 1)} for all α, s.

Now suppose x is enumerated into X at stage s. Let α 6 s be the least such
that x < r(α, s). If no such α exists, then enumerate x into A and h(α, s) =
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max{supt<s h(α, t), supβ<α(h(β, s)+1)} for all α, s. Otherwise, if the requirements
in Block α are of P -type, then enumerate x into B; if the requirements in Block α
are of Q-type, then enumerate x into A. Let

h(β, s) =

{

max{supt<s h(β, t), supγ<β(h(γ, s) + 1)}, if β 6 α;

max{supt<s h(β, t), supγ<β(h(γ, s) + 1)}+ s, if β > α+ 1.

That is, we keep blocks up to Block α, enlarge the next block by s and move the
remaining markers accordingly.

6.2. Verification. By Π1-Foundation, h(α, s) is defined for every s and α. And
by the definition of h, for every fixed α, h(α, s) is nondecreasing with respect to s;
for every fixed s, h(α, s) is strictly increasing with respect to α.

In the construction, we have seen that if

(∗) There is an x enumerated into X at exactly stage s, and there is an α 6 s such
that β > α+ 1 and x < r(α, s),

then h(β, s) > supt<s h(β, t). The following lemma states that the converse is also
true.

Lemma 6.2. If h(β, s) > supt<s h(β, t), then (∗) holds.

Proof. Suppose (∗) fails. For the sake of a contradiction, assume that β is the
least such that h(β, s) > supt<s h(β, t). Then supγ<β(h(γ, s) + 1) > supt<s h(β, t).
Thus, for some γ0 < β, h(γ0, s) > supt<s h(β, t). But h(γ0, s) = supt<s h(γ0, t).
Therefore, supt<s h(γ0, t) > supt<s h(β, t). Since for all t < s, h(γ0, t) < h(γ, t), we
have (1) s is limit; (2) supt<s h(γ0, t) = supt<s h(β, t); and (3) β = γ0 + 1.

Then h(β, s) = max{supt<s h(β, t), h(γ0, s)} = max{supt<s h(β, t), supt<s h(γ0, t)} =
supt<s h(β, t). That is a contradiction. �

Now we define I = {α : ∃t∀s > t(h(α, s) = h(α, t))}. By the above lemma, I is

downward closed. I might be OrdM , an ordinal in M , or a Σ2 cut.

Lemma 6.3. {lims h(α, s) : α ∈ I} is regular.

Proof. Fix δ ∈ OrdM . By Lemma 6.1, {α : ∀s (h(α, s) 6 δ)} ⊆ I. Consider
its complement. By Σ1-Foundation, there is a least ordinal, say α0, such that
∃s (h(α0, s) > δ). Note that for any s > δ and α < α0, h(α, s) = h(α, δ). Thus,
{lims h(α, s) : α ∈ I} ↾ δ = {h(α, δ) : α < α0} is M -finite. �

Now suppose H = {lims h(α, s) : α ∈ I} is bounded, and α0 is the ordinal
defined in the proof of Lemma 6.3. Then α0 = I.

Lemma 6.4. Assume that {lims h(α, s) : α ∈ I} is bounded. Then the ordinal α0

defined above is not limit.

Proof. Assume that α0 is limit. Let t be a stage such that for all α < α0, h(α, t) =
lims h(α, s). Let s be the least stage such that h(α0, s) > h(α0, t). By Lemma 6.2,
there is α with α + 1 < α0 such that some x < r(α, s) is enumerated into X at
exactly stage s. Thus, h(α+ 1, s) > h(α+ 1, t). This is a contradiction. �

By Lemma 6.4, α0 = β0 + 1 for some β0. Without loss of generality, we assume
that β0 is even. Then [0, h(β0, s)) is the limit of Block β0 and we denote it by B.
Let s0 be the least stage such that lims h(β0, s) = h(β0, s0).
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Lemma 6.5. Assume that {lims h(α, s) : α ∈ I} is bounded. Then X is recursive.

Proof. By the construction, for every stage s > s0, A<s ↾ r(β0, s) = A ↾ r(β0, s)
and from stage s0 + 1 on, both r(β0, s) and m(β0, s) are nondecreasing.

Since lims h(β0 + 1, s) = ∞, there are cofinally many stages such that Xs ↾

r(β0, s) 6= X ↾ r(β0, s). SinceX is regular, lims r(β0, s) = ∞. Thus, lims m(β0, s) =

∞. This implies that for every stage s > s0, e ∈ B, Φ
A<s↾r(β0,s)
e [s] ↾ m(e, s) = X ↾

m(e, s).
For every δ, let s > s0 be a stage such that m(β0, s) > δ. Then X ↾ δ =

Φ
A<s↾r(β0,s)
e [s] ↾ δ, where e ∈ B is such that m(e, s) > δ. Therefore, X ↾ δ = X [s] ↾

δ. �

By Lemma 6.5, {lims h(α, s) : α ∈ I} is unbounded in OrdM . For every α ∈ I,
let Bα = [0, lims h(α, s)), the limit of Block α.

Lemma 6.6. X 66T A and X 66T B.

Proof. We only prove that X 66T A. The proof of X 66T B is symmetric. For the
sake of a contradiction suppose X = ΦA

e , α ∈ I is even and s0 is a stage such that
e < lims h(α, s) = h(α, s0) < lims h(α+ 1, s) = h(α+ 1, s0) < s0.

By the construction, from stage s0 on, if ΦA
e [s] computes anything, its compu-

tation is preserved. Thus, ΦA
e [s] = X ↾ dom(ΦA

e [s]). Thus, M -finite subsets of
both X and X can be effectively enumerated via ΦA

e [s], s > s0. That implies X is
recursive, which is a contradiction. �

Question 6.7. Is the Sacks Density Theorem true in all models of Level 1-KPL?


