PROJECTIVE MAD FAMILIES
SY-DAVID FRIEDMAN, LYUBOMYR ZDOMSKYY

ABSTRACT. Using almost disjoint coding we prove the consistency of
the existence of a II} definable w-mad family of infinite subsets of w
(resp. functions from w to w) together with b = 2% = w,.

1. INTRODUCTION

A classical result of Mathias [7] states that there exists no %] definable
mad family of infinite subsets of w. One of the two main results of [4] states
that there is no X1 definable w-mad family of functions from w to w. It is
the purpose of this paper to analyse how low in the projective hierarchy one
can consistently find a mad subfamily of [w]* or w®.

Recall that a,b € [w]¥ are called almost disjoint, if a N'b is finite. An
infinite set A is said to be an almost disjoint family of infinite subsets of w
(or an almost disjoint subfamily of [w]¥) if A C [w]* and any two elements
of A are almost disjoint. A is called a mad family of infinite subsets of w
(abbreviated from “maximal almost disjoint”), if it is maximal with respect
to inclusion among almost disjoint families of infinite subsets of w. Given
an almost disjoint family A C [w], we denote by £(A) the set {b € [w]* : b
is not covered by finitely many a € A}. Following [6] we define a mad
subfamily A of [w]“ to be w-mad, if for every B € [L(A)]“ there exists
a € A such that [aNb| =w for all b € B.

Two functions a,b € w* are called almost disjoint, if they are almost
disjoint as subsets of w X w, i.e. a(k) # b(k) for all but finitely many k € w.
A set A is said to be an almost disjoint family of functions (or an almost
disjoint subfamily of w*) if A C w* and any two elements of A are almost
disjoint. A is called a mad family of functions, if it is maximal with respect
to inclusion among almost disjoint families of functions. Given an almost
disjoint family A C w®, we denote by L(A) the set {b € w* : b is not covered
by finitely many a € A}. A mad subfamily A of w* is w-mad?, if for every
B € [L(A)]“ there exists a € A such that [aNb| = w for all b € B.

The following theorems are the main results of this paper.

Theorem 1. [t is consistent that 2* = b = wy and there exists a 113 defin-
able w-mad family of infinite subsets of w.
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ISuch families of functions are called strongly mazimal in [4, 9]. We call them w-mad
just to keep the analogy with the case of subsets of [w]“.
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Theorem 2. [t is consistent that 2¥ = b = wy and there exists a 11} defin-
able w-mad family of functions.

By [8, Theorem 8.23], in L there exists a mad subfamily of [w]* which
is [T} definable. Moreover, V = L implies the existence of a ITj definable
w-mad subfamily A of w¥, see [4, § 3]. It is easy to check that AU{{n} xw :
n € w} is actually an w-mad family of subsets of w x w for every w-mad
subfamily A of w*”, and hence IT} definable w-mad subfamilies of [w]* exist
under V = L as well.

Regarding the models of =CH, it is known that w-mad subfamilies of [w]
remain so after adding any number of Cohen subsets, see [5] and references
therein. Combining Corollary 53 and Theorem 65 from [9], we conclude
that the ground model w-mad families of functions remain so in forcing ex-
tensions by countable support iterations of a wide family of posets including
Sacks and Miller forcings. If A € V is a II} definable almost disjoint fam-
ily whose II} definition is provided by formula ¢(z), then ¢(z) defines an
almost disjoint family in any extension V' of V' (this is a straightforward
consequence of the Shoenfield’s Absoluteness Theorem). Thus if a ground
model TI} definable mad family remains mad in a forcing extension, it re-
mains IT} definable by means of the same formula. From the above it follows
that the II} definable w-mad family in L of functions constructed in [4, § 3]
remains I1] definable and w-mad in L[G], where G is a generic over L for the
countable support iteration of Miller forcing of length ws. Thus the essence
of Theorems 1 and 2 is the existence of projective w-mad families combined
with the inequality b > wy, which rules out all mad families of size wy.

It is not known whether in ZFC one can prove the existence of ¥} mad
families of functions or of w-mad families of functions; see [9].

2. PRELIMINARIES

In this section we introduce some notions and notation needed for the
proofs of Theorems 1 and 2, and collect some basic facts about T-proper
posets, see [2] for more details.

Proposition 3. (1) There exists an almost disjoint family R = {r¢e) :
C€w-2,& € wk} €L of infinite subsets of w such that RN M =
{ree Cew-2,& e (WM} for every transitive model M of ZF~.
(2) There exists an almost disjoint family F = {fie 1 ¢ € w-2,§ €
wi'} € L of functions such that FAM = {fice : ¢ € w-2,€ € (wf)M}

for every transitive model M of ZF~.

Proof sketch. Let r{ . be the L-least real coding the ordinal (W?- &)+ ¢ and
let r¢ ¢ be the set of numbers coding a finite initial segment of 77 .. Similarly
for functions.

One of the main building blocks of the required w-mad family will be
suitable sequences of stationary in L subsets of w; given by the following
proposition which may be proved in the same way as [1, Lemma 14].

Say that a transitive ZF~ model M is suitable ifft M E“w, exists and

Wy = wk”.
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Proposition 4. There exists a ¥, definable over Ly, tuple (To,T1,T5) of
mutually disjoint L-stationary subsets of wy and ¥y definable over L,,, se-
quences S = (Sy 1 a < wy), §' = (S, 1 a < wy) of pairwise almost disjoint
L-stationary subsets of wy such that

e S, CTyand S, C T for all a € wo;
o Whenever M, N are suitable models of ZF~ such that wM = Wi,
SM agrees with SN on wM Nwl. Similarly for S'.

The following standard fact gives an absolute way to code an ordinal
a < wq by a subset of ws.

Fact 5. There exists a formula ¢(z,y) and for every a < wl a set X, €
([wr]“1)E such that

(1) For every suitable model M containing XoNw!, ¢(z, XoNw!) has a

unique solution in M, and this solution equals o provided w! = wk;

(2) For arbitrary suitable models M, N with wM = wl¥ and X, NwM €

M N N, the solutions of ¢(x, Xo NwM) in M and N coincide®.

Let v be a limit ordinal and r : v — 2. We denote by Even(r) the set
{a <7 :7r(2a) = 1}. For ordinals @ < [ we shall denote by 5—« the ordinal
~ such that a4+~ = (. If B is a set of ordinals above «, then B—a« stands for
{3 — a: 3 € B}. Observe that if ¢ is an indecomposable ordinal (e.g., wM
for some countable suitable model of ZF~), then ((a«+ B)N() —a = BN
for all B and o« < (. This will be often used for B = X,,.

For z,y € w* we say that y dominates x and write x <* y if z(n) < y(n)
for all but finitely many n € w. The minimal size of a subset B of w*
such that there is no y € w* dominating all elements of B is denoted by
b. It is easy to see that w < b < 2¥. We say that a forcing notion P adds
a dominating real if there exists y € w* N VF dominating all elements of
w’NV.

Definition 6. Let T' C w; be a stationary set. A poset P is T-proper, if
for every countable elementary submodel M of Hy, where 0 is a sufficiently
large cardinal, such that M Nw; € T, every condition p € PN M has an
(M, IP)-generic extension g.

The following theorem includes some basic properties of T-proper posets.

Theorem 7. Let T be a stationary subset of w;.

(1) Every T-proper poset P preserves wy. Moreover, P preserves the
stationarity of every stationary set S C T'.

(2) Let <IP’§,QC 1 € < 0,0 < §) be a countable support iteration of T'-
proper posets. Then Pg is T-proper. If, in addition, CH holds in V,
0 < woy, and the @C 's are forced to have size at most wy, then Ps is
wa-c.c. If, moreover, § < wsy, then CH holds in V5.

2In what follows the phrase “X codes an ordinal 3 in a suitable ZF~ model M” means
that there exists a < wl such that X = wM N X, € M and ¢(8, X) holds in M.
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3. PROOF OF THEOREM 1

We start with the ground model V' = L. Recursively, we shall define a
countable support iteration (P,, Qg : @ < wy, f < wy). The desired family A
is constructed along the iteration: for cofinally many a’s the poset Q, takes
care of some countable family B of infinite subsets of w which might appear
in £(A) in the final model, and adds to A some a, € [w]* almost disjoint
from all elements of A, such that |a Nb| = w for all b € B (here A, stands
for the set of all elements of A constructed up to stage «). Our forcing
construction will have some freedom allowing for further applications.

We proceed with the definition of P,,. For successor a let Q, be a
P,-name for some proper forcing of size w; adding a dominating real. For
a subset s of w and | € |s| (= card(s) < w) we denote by s(I) the [’th
element of s. In what follows we shall denote by E(s) and O(s) the sets
{s(2d) : 20 € |s|} and {s(2i +1) : 20 + 1 € |s|}, respectively. Let us consider
some limit o and a P,-generic filter GG,. Suppose also that

(%) VB € [A,]~“Vr € R(|E(r)\UB| = |O(r) \UB| = w)

Observe that equation (x) yields |E(r) \UB| = |O(r) \UB| = w for every
B € [RUA,]¥ and r € R\ B. Let us fix some function F : LimNwy — L,
such that F~!(z) is unbounded in wy for every x € L,,. Unless the following
holds, Q, is a P,-name for the trivial poset. Suppose that F'(«) is a sequence
(b; - i € w) of Py-names such that b; = b € [w] and none of the b;’s is
covered by a finite subfamily of A,. In this case Q, := an is the two-step
iteration KO s K. defined as follows.

In V|[G,], K is some Ty U Ty-proper poset of size w;. Our proof will
not really depend on K%. K? is reserved for some future applications, see
section 5.

Let us fix some KY-generic filter h, over V[G,] and find a limit ordinal
Mo € wy such that there are no finite subsets J, E of (w-2) X (w1 \ ), Aa,
respectively, and i € w, such that b; C U<C,£>€J ricey UUE. (The almost
disjointness of the 7 ¢’s imply that if b; C |J R'U|J A’ for some R’ € [R]<*
and A" € [A,]<¥, then b; \ |J A’ has finite intersection with all elements of
R\ R'. Together with equation (x) this easily yields the existence of such an
Na-) Let z, be an infinite subset of w coding a surjection from w onto 7,. For
a subset s of w we denote by § the set {2k+1 : k € s}U{2k : k € (sups\s)}.
In V[Gq * hal, KL consists of sequences ((s, s*), (ck, yx : k € w))? satisfying
the following conditions:

(i) ¢y is a closed, bounded subset of wy \ 7, such that Sy, Nep = 0 for
all k € w;
(#) vk = [yl — 2, |kl > Nas Y [ 12 = 0, and Even(yx) = ({1} U (1 +
Xa)) N |yk|7
(i) s € (W=, 5" € [{Time) : M € 5,€ € e} U{rwime 1 M € 5,ym(§) =
1}UAQ} ““_ In addition, for every 2n € |sN7 0, n € 2, if and only
if there exists m € w such that (s N r))(2n) = r(0,0)(2m); and

3The tuples (s,s*) and (ck,yi : k € w) will be referred to as the finite part and the
infinite part of the condition ((s, s*), {ck, yx : k € w)), respectively.
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() For all k € sU (w \ (max §)), limit ordinals £ € wy such that 7, <
¢ < |yk|, and suitable ZF~ models M containing y; [ £ and ¢ N ¢
with w} = & ¢ is a limit point of ¢z, and the following holds in
M: (Even(yx) — min Even(y)) N & codes a limit ordinal & such that
SM . is non-stationary.
For conditions j'= ((s,s*), (ck,yx : k € w)) and ¢ = ({t,t*), (dp, zx : k €
w)) in K}, we let ¢ < p’ (by this we mean that ¢ is stronger than p) if and
only if
(v) (t,t*) extends (s,s*) in the almost disjoint coding, i.e. ¢ is an end-
extension of s and t \ s has empty intersection with all elements of
s*;

(vi) If m € tU (w )\ (max t)), then d,, is an end-extension of ¢,, and
Ym C Zm.

This finishes our definition of P,,,. Before proving that the statement of
our theorem holds in V¥« we shall establish some basic properties of KZ.
In Claims 8, 9, 10, 11, and Corollary 12 below we work in L[G, * hs].

Claim 8. (Fischer, Friedman [1, Lemma 1].) For every condition p =
(5,8, {cr,yp = k € w)) € KL and every v € w; there exists a sequence
(dg, zp = k € w) such that ((s,s*), (d, 2 : k € w)) € KL, ((s,s*), (dp, 2 :
k€ w)) <p, and |zx|, maxd, > v for all k € w.

Claim 9. For every p € K and open dense D C K. there exists ¢ < p
with the same finite part as p’ such that whenever py is an extension of ¢
meeting D with finite part (ry,r}), then already some condition py with the
same infinite part as ¢ and finite part (ry,r3) for some rj meets D.

Proof. Let p = ({to,t5),(d?, 2} : k € w)) and let M be a countable el-
ementary submodel of Hy containing K!, p, X,, and D, and such that
Ji=MnNw ¢ Uket@u(w\(maxtz))) Satk-

Let {(F,,s,) : n € w} be a sequence in which every pair (7, s) € (K. N
M) x [w]<¥ with p’ >  appears infinitely often. Let (j, : n € w) be
increasing and cofinal in j. Using Claim 8, by induction on n construct
sequences (d}, zj' : k € w) € M as follows:

If there exists 7, € DN M below both 7, and ((to, t5), (d}, 2} : k € w))
and with finite part of the form (s,, s%) for some s*, then let (d}™! 2+ :
k € w) be the infinite part of 7, extended further in such a way that
((to, t5); (APt 20 0 k€ w)) € KL and |27 maxd*! > j, for all
n € wand k € fyU (w\ (maxty)). If there is no such 7 ,, then let dj*
be an arbitrary end-extension of d? and 2}"' be an extension of 2} such
that |z, maxd}™ > j, for all m € w and k € £y U (w \ (maxty)), and
({to, £5): (A, =1 <k € w)) € KL,

Set di, = U, At U {j} and 2 =, 2 forall k e w\ F, diy = 2, = 0)
for k € F, and ¢ = ({to, t}), (dk, 2 : k € w)). We claim that ¢'is as required.

Let us show first that ¢ € K. Only item (iv) of the definition of K,
for k € to U (w\ (maxty)) and & = j must be verified. Fix such a k
and suitable ZF~ model M containing z, and dj with w = j. Let M
be the Mostowski collapse of M and © : M — M be the corresponding
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isomorphism. Let us note that j = wM = wM. Since X, € M, and M

is elementary submodel of Hy, « is the unique solution of ¢(x, X,) in M,
and hence @ := m(«) is the unique solution of ¢(z, X, Nj = 7(X,)) in
M. In addition, S¥, = 7(Sask) = Sasx Nj for all k € w. Applying
Fact 5(2) and Proposition 4, we conclude that ¢(a, X, N 7)™ holds and
Séﬁk = Séﬁk = Sqsx N J. Since dy € M, d, N Spasr = 0, and dy, \ {j} is
unbounded in j = w} by the construction of dj, we conclude that Séﬁk is
not stationary in M. This proves that ¢ € K.

Now suppose that gy = ((r1,77),(d}, 2, : k € w)) < dand p; € D. Since
r1, 75 are finite, there exists m € w such that 7 := ((ry, 75 N M), (d}*, 2}
ke w)) € KLNM. Let n > m be such that 7, = 7 and s, = r;. Since p
is obviously a lower bound of 7, and ({ty, ), (d}, zi : k € w)) with finite
part (s,,r]), there exists pi, € M N D below both 7, and ((to, ), (d}, 2} :
k € w)) with finite part (s,,r5) for some suitable r; € M. Thus the
first (nontrivial) alternative of the construction of d{*', 27™"’s took place.
Without loss of generality, 77, = py. A direct verification shows that p; =

((Sn =11,75), (di, 2, + k € w)) is as required. d

Claim 10. Let M be a countable elementary submodel of Hy for sufficiently
large 0 containing all relevant objects with i = M Nw; and p € MNKL.
If i & U, csu(0\ (maxs)) Satns then there exists an (M, KL)-generic condition
q < p with the same finite part as p.

Proof. Let p' = ((s,s*), (ck,yr : k € w)) and (D,, : n € w) be the collection
of all open dense subsets of K! which are elements of M, and (i,, : n € w)
be an increasing sequence of ordinals converging to ¢. Using Claims 8 and
9, inductively construct a sequence (g, : n € w) C M NK], where ¢, =
((s,s™),(d}l, z¢ - k € w)) and ¢, = p, such that

(i) dit! is an end-extension of d and z'*! is an extension of 2} for all

newandk € 5U(w)\ (maxs));

(i7) |zp], maxd} > i, for alln > 1 and k € sUw \ (max5); and

(13i) For every n > 1 and 7 = ((r,r*),(d}, 2, : k € w)) < @, T € D,,
there exists r5 such that 7 := ((r1,73), (d}, zp : k € w)) € D,, and
7?2 S (jn

Set d = U, dp U {i} and 2z, = U, 21 for all k € 5U (w \ (max5)),
dy = z, = () for all other k € w, and ¢ = ((to,t5), (dk, zx : k € w)). We claim
that ¢ is as required, i.e., ¢ € K! and D,, N M is pre-dense below ¢ for every
n € w. The fact that ¢ € K} can be shown in the same way as in the proof
of Claim 9.

Let us fix n € w and 7} = ((t1,t]),(d}, 2, : k € w)) < ¢. Without
loss of generality, 7, € D,. Since ™ < ¢, (iii) yields the existence of
t5 such that 7 = ((t1,8),(d}, z¢ + k € w)) < ¢, and 75 € D,. It is
clear that 7 € M. We claim that 7, and 7} are compatible. Indeed, set
Fg = <<t17t§ U tT>, < ;ﬁ,Z’/ﬁ ke w)) and note that Fg < F177?2. O

Let H, be a Kl-generic filter over L[Go * ha]. Set Y = Uscn. Uk,
Cr = Upen, ¢ o = Upenr,, 8 Aat1 = AaU{aa}, and S* = ey, 8, where



PROJECTIVE MAD FAMILIES 7

P = ((s,5%),(ck,yx : k € w)). The following statement is a consequence of
the definition of K! and the genericity of H,.

Claim 11. (1) S* = {rpme :m € @q,§ € CoU{riuime : m €

T, Y2(€) = 1} U Ay

(2) aq € [w]*;

(3) If m € Gy, then dom(Y,%) = wy and C% is a club in wy disjoint from
Sa—&—m;

(4) aq is almost disjoint from all elements of Aq;

(5) If m € Gq, then |aq N7une| < w if and only if £ € CY;

(6) If m € aq, then |ao N T(wime| < w if and only if Yo (&) = 1;

(7) laa Nb;| = w for all i € w;

(8) For everyn € w, n € z, if and only if there exists m € w such that
(aa N700))(2n) = r(0,0)(2m); and

(9) Equation (%) holds for a + 1, i.e. for every r € R and a finite
subfamily B of An11, B covers neither a cofinite part of E(r) nor of
O(r).

Proof. Ttems (1), (2), (4), and (9) are straightforward. Items (2), (5), (6),
and (8) follow from the inductive assumption (x). Item (3) is a consequence
of Claim 8.

We are left with the task to prove (7). Let us fix [,7 € w and denote
by Dy, the set of conditions ((s, s*), (ck,yx : k € w)) € K}, such that (s \
[)Nb; # 0. It suffices to show that D;; is dense in K!. Fix a condition
7= ((s,8"), (ck,yr : k € w)) € K. and set z = b; \ Us*. Note that = € [w]*
by our choice of 1, and items (i), (i) of the definition of K.. Two cases are
possible.

L |2\ 70,0)| = w. Then

¢ = ((s U{min(z \ (r0 Ul Umaxs))},s"), (cr, yr 1 k € w))

is an element of D;; and is stronger than p.

2. x C* 1. Without loss of generality, = \ rq C . Suppose that
|s N 70,0y = 2j — 1 for some j € w (the case of even |s N7 )| is analogous
and simpler). Let y = 70 \ Us* and note that x C* y. By (), [y N
E(rpo)] = lyNO(rpe)| = w. Denote by m, and m, the minima of the
sets (y N E(rpo) \ ({U (maxs+ 1)) and (y N O(rpe) \ (U (maxs + 1)),
respectively. Set

7= ({s U{m.} U{min(z \ (m.+1))},s"), (ck, yx : k € w))
if 7 € z, and

7= (s U{m,} U {min(z \ (m, + 1))}, s%), (ck, yx : k € w))
otherwise. A direct verification shows that 7€ D;; and 7 < p. Il
Corollary 12. Q, is Ty-proper. Consequently, P, is Ty-proper and hence
preserves cardinals.

More precisely, for every condition p= ((s,s*), (cr,yr : k € w)) € K the

poset {r € K. : 7 < p} is wy \ Unegu(w\(maxg)) Sain-proper. Consequently,
Satn remains stationary in V2 for alln € w \ @g-
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Let G be a P,,-generic filter over L. The following lemma shows that
A is a II} definable subset of [w]* in L[G] and thus finishes the proof of
Theorem 1.

Lemma 13. In L[G] the following conditions are equivalent:
(1) a € A;
(2) For every countable suitable model M of ZF~ containing a as an
element there exists & < wj’ such that S2, is nonstationary in M

for all k € @.

Proof. (1) — (2). Fix a € A and find o < wy such that a = a,. Fix also
a countable suitable model M of ZF~ containing a, as an element. By
Claim 11(5,6,8), 2, € M and C¢ Nw} V2 | wM € M for all k € a,.
Therefore 1, < wi’. Since ((0,0),(Ce N (WM + 1),V | w1 k € w)) is
a condition in K}, item (iv) of the definition of K! ensures that for every
k € @y, Even(Y® | wM)—min Even(Y | wi) codes a limit ordinal ay € w)!

such that S3', is nonstatlonary in M. By item (i) of the definition of K},

Even(Y,® [ wM) — min Even(Y,® [ wM) = X, Nw’

for every k € I, and hence a;’s do not depend on k.

(2) — (1). Let us fix a fulfilling (2) and observe that by Lowenheim-
Skolem, (2) holds for arbitrary (not necessarily countable) suitable model
of ZF~ containing a. In particular, it holds in M = L,[G]. Observe that
wM = w2L = wi, SM — S and the notions of stationarity of subsets of
wy coincide in M and L[G]. Thus there exists o < wq such that S,y is
nonstationary for all k£ € @. Since the stationarity of some S,.;’s has been

destroyed, Corollary 12 together with the T5-properness of Kg’s implies that

Q, is not trivial. Now, the last assertion of Corollary 12 easily imples that
a = . ]

4. PROOF OF THEOREM 2

The proof is completely analogous to that of Theorem 1. Therefore we
just define the corresponding poset P,,, the use of the poset M defined
below instead of K! at the a’s stage of iteration being the only significant
change. We leave it to the reader to verify that the proof of Theorem 1 can
be carried over. '

For successor a let QQ, be a P,-name for some proper forcing of size w,
adding a dominating real. Let us consider some limit a and a P,-generic
filter G,. Suppose also that we have already constructed an almost disjoint
family A, C w* such that

(xx)  VE€[AJ™Vf e F(If I (2w)\UE|=|f T (2w +1) \UE| = w)
Equation () yields
VE € [FUAJYVYfe F\E(|f | Qu)\UE|=|f (2w+1)\UE|=w).

Let F' : Lim Nwy — L, be the same as in the proof of Theorem 1.
Unless the following holds, Q, is a P,-name for the trivial poset. Suppose
that F(a) is a sequence (b; : i € w) of P,-names such that b; = b € w*
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and none of the b;’s is covered by a finite subfamily of A,. In this case
Qo := QG is the two-step iteration KO x M defined as follows.

In VP K9 is some Ty U Th-proper poset of size w.

Let us fix a recursive bijection ¢ : w X w — w and s € w<¥. Set
sq(s) = dom(s) x (dom(s) + ran(s)) and

s={2k+1:key(s)fU{2k:kec(sq(s)\ s)}}.

In VP*¥a find an ordinal 7, € w; such that there are no finite subsets
J,E of (w-2) X (w1 \ ), Aa, respectively, and ¢ € w, such that b; C
Uiceres fieoy WUE. M consists of sequences ((s,s*), (ck,yr : k € w))
satisfying the following conditions:

(1); Conditions (i)-(ii) from the definition of K}, in the proof of Theo-
rem 1 hold;

(m)f s € w<w’ s* € [{f{m,ﬁ) 1m e §7£ € Cm} U {f(w—i—mé) tmoe §7 ym(g) =
1} U Aa] =“. In addition, for every 2n € |s N floo], n € 2z if and
only if there exists m € w such that s(j) = fio,0)(2m), where j is the
2n’th element of the domain of s M fig0y; and

(iti)f For all m € sU{2k,2k+ 1 : k € 9¥((w \ dom(s)) X w)}, limit
ordinals ¢ € w; such that 7, < & < |yn|, and suitable ZF~ models
M containing y,, | € and ¢, N ¢ with wM = ¢, € is a limit point of
¢m, and the following holds in M: (Even(y,,) — min Even(y,,)) N &

codes a limit ordinal & such that S, is non-stationary.

For conditions p'= ((s,s*), (ck,yx : k € w)) and ¢ = ({t,t*), (dy, zx : k €
w)) in M, ¢ < pif and only if
(iv)f s Ct, s* Ct*, and t\ s has empty intersection with all elements of
5%
(v)f If m e sU{2k,2k+1:k € ¢((w\ dom(s)) X w)}, then d,, is an
end-extension of ¢, and y,, C 2,,.

5. FINAL REMARKS

The fact that S/, N Sz = 0 for all «, f < wy together with the freedom
to choose KY to be an arbitrary Ty U Ty-proper forcing of size w; allow for
combining the proofs of Theorems 1, 2 and [1, Theorem 1]. In addition, we
could take K2 to be a name for a two-step iteration with second component
equal to the poset used in the proof of [1, Theorem 1] at stage «, and
first component equal to a name of a c.c.c. poset of size w; (Theorem 7(2)
allows us to arrange a suitable bookkeeping of such names). This gives us
the following statements.

Theorem 14. [t is consistent with Martin’s Aziom that there exists a A}
definable wellorder of the reals and a 11} definable w-mad family of infinite
subsets of w.

Theorem 15. [t is consistent with Martin’s Aziom that there exists a A}
definable wellorder of the reals and a 11} definable w-mad family of functions.
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The following questions remain open. In all questions we are interested
in families of infinite subsets of w as well as in families of functions from w
to w.

Question 16. Is it consistent to have b > w; with a ¥} definable (w-)mad
family?

Question 17. Is it consistent to have w; < b < 2¢ with a II} definable
(w-)mad family?

In the proofs of Theorems 1 and 2 we ruled out all mad families of size
wy by making b big. Alternatively, one could use the methods developed
in [1] and prove the consistency of w; = b < a = wy together with a Al
definable w-mad family. This suggests the following

Question 18. Is it consistent to have b < a and a II} definable (w-)mad
family?

Question 19. Is a projective (w-)mad family consistent with b > w3?

REFERENCES

[1] Fischer, V., Friedman, S.D., Cardinal characteristics and projective
wellorders, Annals of Pure and Applied Logic, to appear.

[2] Goldstern, M., A taste of proper forcing, in: Set Theory, (Curacao, 1995;
Barcelona, 1996), 71-82, Kluwer Acad. Publ., Dordrecht, 1998.

[3] Jensen, R.B., Solovay, R.M., Some applications of almost disjoint sets, in:
Mathematical Logic and Foundations of Set Theory (Y. Bar-Hillel, ed.),
Jerusalem 1968, pp. 84-104.

[4] Kastermans, B., Steprans, J., Zhang, Y., Analytic and coanalytic families of
almost disjoint functions, Journal of Symbolic Logic 73 (2008), 1158-1172.

[5] Kurili¢, M.S., Cohen-stable families of subsets of integers, Journal of Symbolic
Logic 66 (2001), 257-270.

[6] Malykhin, V.I., Topological properties of Cohen generic extensions, Trudy
Moskovskogo Matematicheskogo Obshchestva 52 (1989), 3-33. (In Russian)

[7] Mathias, A.R.D., Happy families, Annals of Mathematical Logic 12 (1977),
59-111.

[8] Miller, A.W., Infinite combinatorics and definability, Annals of Pure and Ap-
plied Logic 41 (1989), 179-203.

[9] Raghavan, D., Mazimal almost disjoint families of functions, Fundamenta
Mathematicae 204 (2009), 241-282.

KURT GODEL RESEARCH CENTER FOR MATHEMATICAL LoOGIC, UNIVERSITY OF
VIENNA, WAHRINGER STRASSE 25, A-1090 WIEN, AUSTRIA.

E-mail address: sdf@logic.univie.ac.at

URL: http://wuw.logic.univie.ac.at/"sdf/

KURT GODEL RESEARCH CENTER FOR MATHEMATICAL LOGIC, UNIVERSITY OF
VIENNA, WAHRINGER STRASSE 25, A-1090 WIEN, AUSTRIA.

E-mail address: 1zdomsky@logic.univie.ac.at

URL: http://wuw.logic.univie.ac.at/"1zdomsky/



