Measurable cardinals and the Cofinality of the Symmetric Group

Sy-David Friedman, Lyubomyr Zdomskyy

November 10, 2008

Abstract

Assuming the existence of a hypermeasurable cardinal, we construct a model of Set Theory with a measurable cardinal κ such that $2^{\kappa} = \kappa^{++}$ and the group $Sym(\kappa)$ of all permutations of κ cannot be written as a union of a chain of proper subgroups of length $< \kappa^{++}$. The proof involves the iteration of a suitably defined uncountable version of the Miller forcing poset as well as the "tuning fork" argument introduced by the first author and K. Thompson in [9].

1 Introduction

A deep theorem of Macpherson and Neumann [13] states that if the symmetric group $Sym(\kappa)$ consisting of all permutations of a cardinal κ can be written as a union of an increasing chain $\langle G_i : i < \lambda \rangle$ of proper subgroups G_i , then $\lambda > \kappa$. Throughout this paper the minimal λ with this property will be denoted by $\mathrm{cf}(Sym(\kappa))$. It was proven in [18] that for $\kappa = \kappa^{<\kappa}$ the pair $(\mathrm{cf}(Sym(\kappa)), 2^{\kappa})$ can be anything not obviously wrong. More precisely, for every regular $\lambda > \kappa$ and θ such that $\mathrm{cf}(\theta) \geq \lambda$, there exist a cardinal preserving forcing extension V^P such that $\mathrm{cf}(Sym(\kappa)) = \lambda$ and $2^{\kappa} = \theta$ in V^P . Moreover, for inaccessible κ we can assume [14, § 1] that P is κ -directed closed. Therefore if κ is supercompact, then it remains so in V^P . The main result of this paper states that consistency of $\mathrm{cf}(Sym(\kappa)) > \kappa^+$ at a measurable κ can be obtained assuming much less than supercompactness.

Theorem 1. Suppose GCH holds and there exists an elementary embedding $j: V \to M$ such that $\operatorname{crit}(j) = \kappa$ and $(H(\kappa^{++}))^V = (H(\kappa^{++}))^M$. Then there exists a forcing extension V' of V such that κ is still measurable in V' and $V' \models \operatorname{cf}(\operatorname{Sym}(\kappa)) = \kappa^{++}$.

To the best knowledge of the authors, $\operatorname{cf}(Sym(\kappa)) = \kappa^+$ for measurable κ in all other known models of Set Theory constructed under assumptions weaker than (a certain degree of) supercompactness; see Remark 1 for a more detailed discussion.

The idea of the proof of Theorem 1 resembles that of the consistency of $\mathfrak{u} < \mathrm{cf}(Sym(\omega))$ established in [20]. In particular, in section 2 we introduce a variant of Miller forcing and a (slightly more general than in [11]) variant of Sacks forcing at an inaccessible cardinal κ .

 $^{^{0}}$ Keywords and phrases. cofinality of the symmetric group, hypermeasurable cardinal, elementary embedding, lifting, Miller forcing, Sacks forcing.

²⁰⁰⁰ MSC. Primary: 03E35. Secondary: 03E55, 03E99.

The authors would like to thank FWF grant P19898-N18 for support for this research.

According to Theorem 10, iterated forcing constructions where at each stage we take any of these forcing notions do not collapse κ^+ . In section 3 we introduce a new cardinal characteristic $\mathfrak{g}_{cl}(\kappa)$, which is a version for κ of the classical groupwise density number \mathfrak{g} . Section 4 is devoted to the proof of the fact that suitably arranged iterated forcing constructions considered in section 2 of length κ^{++} make $\mathrm{cf}(Sym(\kappa))$ equal to κ^{++} . More precisely, the Miller forcing is responsible for $\mathrm{cf}^*(Sym(\kappa)) = \kappa^{++}$, while the Sacks forcing makes $\mathrm{cf}(Sym(\kappa))$ and $\mathrm{cf}^*(Sym(\kappa))$ equal. (Here $\mathrm{cf}^*(Sym(\kappa))$ is the minimal length of a special chain of proper subgroups of $Sym(\kappa)$ introduced in Definition 19.) And finally, in section 5 we show how to extend elementary embeddings to forcing extensions considered in section 2, and thus prove Theorem 1. The idea of the proof in section 5 can be traced back to the work [9], where the "tuning fork" argument was introduced.

2 A variant of Miller forcing for uncountable cardinals. Basic properties. Alternation with Sacks.

In this section we suggest one of the possible ways to generalize the Miller forcing introduced in [15] to uncountable cardinals and study some basic properties of iterated forcing constructions, where at each stage we take either the Miller or Sacks forcing poset. The discussion is patterned after Kanamori [11]. It is worth mentioning here that there are other generalizations of Miller forcing, see e.g. [19].

Throughout this section κ denotes a strongly inaccessible cardinal.

Definition 2. Let $p \subset \kappa^{<\kappa}$. For $s \in p$ we denote by C(p,s) (or simply by C(s) if p is clear from the context) the set $\{\alpha \in \kappa : s \hat{\alpha} \in p\}$.

Miller(κ) denotes the following forcing. A condition is a subset p of $\kappa^{<\kappa}$ such that

- (i) $s \in p, t \subset s \longrightarrow t \in p$.
- (ii) Each $s \in p$ is increasing and has a proper extension in p.
- (iii) For every $\alpha < \kappa$ limit, $s \in \kappa^{\alpha}$, if $s \upharpoonright \beta \in p$ for arbitrary large $\beta < \alpha$, then $s \in p$.
- (iv) For every $s \in p$ there is $t \in p$ with $s \subset t$ which splits in p (i.e., C(p,t) has more than one element).
 - (v) If $s \in p$ splits in p, then the set C(p, s) is club.
- (vi) If α is a limit ordinal, $s \in \kappa^{\alpha}$, and $s \upharpoonright \beta$ splits in p for arbitrary large $\beta < \alpha$, then s splits in p and C(s) is the intersection of $C(s \upharpoonright \beta)$ for all β such that $s \upharpoonright \beta$ splits in p.

We order Miller(κ) by declaring p to be stronger than q (and write p < q) iff $p \subset q$.

It is clear that $\operatorname{Miller}(\kappa)$ is κ -closed. For every subtree p of $\kappa^{<\kappa}$ we denote by $\operatorname{Split}(p)$ the family of all $s \in p$ which split in p. Given $s \in \kappa^{<\kappa}$, $\ell(s)$ denotes the length of s, i.e. the (unique) α such that $s \in \kappa^{\alpha}$. If $p \in \operatorname{Miller}(\kappa)$ and $\alpha \in \kappa$, then we denote by $\operatorname{Split}_{\alpha}(p)$ the set

$$\{s \in p \ : o.t.(\{t \varsubsetneqq s : t \in \operatorname{Split}(p)\}) \le \alpha, \ \forall t \varsubsetneq s(o.t.(s(\ell(t)) \cap C(p,t)) \le \alpha)\}.$$

In what follows we shall heavily apply fusion argument to Miller(κ) as well as to the Sacks forcing.

Definition 3. For $q \leq p \in \text{Miller}(\kappa)$ and $\alpha \in \kappa$ the notation $q \leq_{\alpha} p$ means that $\text{Split}_{\alpha}(p) = \text{Split}_{\alpha}(q)$. A sequence $\langle p_{\alpha} : \alpha \in \kappa \rangle$, where $p_{\alpha} \in \text{Miller}(\kappa)$, is called a *fusion sequence*, if

(i) If $\beta \leq \alpha$, then $p_{\alpha} \leq p_{\beta}$.

(ii) $p_{\alpha+1} \leq_{\alpha} p_{\alpha}$.

(iii)
$$p_{\delta} = \bigcap_{\alpha < \delta} p_{\alpha}$$
 for limit $\delta \in \kappa$.

The following lemma is straightforward.

Lemma 4. Let $\langle p_{\alpha} : \alpha \in \kappa \rangle$ be a fusion sequence. Then $q = \bigcap_{\alpha \in \kappa} p_{\alpha} \in \text{Miller}(\kappa)$ and $q \leq_{\alpha} p_{\alpha}$ for all $\alpha \in \kappa$.

Next, we recall the definition of the Sacks forcing for uncountable cardinals.

Definition 5. Let us fix a sequence $\vec{A} = \langle A_{\alpha} : \alpha < \kappa \rangle$ such that $|A_{\alpha}| < \kappa$ for all α . Let \mathcal{T} be the set of all functions t which satisfy the following conditions.

- (i) There exists α such that the domain of t equals α .
- (ii) For all $\beta \in \text{dom}(t)$, $t(\beta) \in A_{\beta}$.

 $\operatorname{Sacks}(\vec{A})$ stands for the forcing whose conditions are subsets T of T such that:

- (1) $s \in T, t \subset s \to t \in T$.
- (2) Each t has a proper extension in T.
- (3) If $t \in \mathcal{T}$ and the set of such β that $t \upharpoonright \beta \in T$ is unbounded in $\ell(t)$, then $t \in T$.
- (4) There exists a club C(T) such that the set $\operatorname{succ}_T(t)$ of immediate successors of an element $t \in T$ with domain α coincides with $\{t \hat{\ } a : a \in A_{\alpha}\}$ provided $\alpha \in C(T)$, and $|\operatorname{succ}_T(t)| = 1$ otherwise.

Extension is defined by $S \leq T$ iff S is a subset of T.

When each A_{α} is $\{0,1\}$ we get the usual Sacks forcing considered in [6, 9, 11]. Some other sequences \vec{A} are employed in [7]. Yet another sequence will be used in Section 4. But the basic properties (e.g. chain condition, fusion) of Sacks (\vec{A}) does not really depend on \vec{A} .

Given any $T \in \operatorname{Sacks}(\vec{A})$ and $i \in \kappa$, we denote by $\operatorname{Split}_i(T)$ the set $\{t \in T : (\exists j \leq i) \ell(t) = \alpha_j\}$, where $\langle \alpha_i : i \in \kappa \rangle$ is the increasing enumeration of C(T). Now the notions of \leq_{α} and of a fusion sequence can be introduced for $\operatorname{Sacks}(\vec{A})$ in the same way as for $\operatorname{Miller}(\kappa)$.

If γ is an ordinal and S^0, S^1 are disjoint subsets of γ such that $S^0 \bigcup S^1 = \gamma$, then we denote by $ST_{S^0,S^1,\vec{A}}$ the forcing poset \mathbb{P}_{γ} from the iterated forcing construction $\langle \mathbb{P}_{\xi}, \mathbb{Q}_{\eta} : \xi \leq \gamma, \eta < \gamma \rangle$ with supports of size $\leq \kappa$ defined as follows:

$$\{\eta < \gamma : \mathbb{P}_{\eta} \Vdash \dot{\mathbb{Q}}_{\eta} = \text{Miller}(\kappa)\} = S^0 \text{ and } \{\eta < \gamma : \mathbb{P}_{\eta} \Vdash \dot{\mathbb{Q}}_{\eta} = \text{Sacks}(\vec{A})\} = S^1.$$

Definition 6. Suppose that $\alpha \leq \kappa$ and $\langle p_{\beta} : \beta \in \alpha \rangle$ is a decreasing sequence of elements of $ST_{S^0,S^1,\vec{A}}$. The "meet" $q = \wedge_{\beta \in \alpha} p_{\beta} \in ST_{S^0,S^1,\vec{A}}$ is defined as follows: $\operatorname{supp}(q) = \bigcup_{\beta \in \alpha} \operatorname{supp}(p_{\beta})$ and for every $\xi \in \operatorname{supp}(q)$, $q \upharpoonright \xi \Vdash q(\xi) = \bigcap_{\beta \in \alpha} p_{\beta}(\xi)$. (Note that in case $\alpha = \kappa$ there could be no such q.)

In order to prove that κ^+ is preserved by $ST_{S^0,S^1,\vec{A}}$ and κ^{++} is preserved for $\gamma=\kappa^{++}$ we need to employ a suitable variant of fusion.

Definition 7. Suppose that $\alpha \in \kappa$, $F \in [\gamma]^{<\kappa}$, and $q, p \in ST_{S^0, S^1, \vec{A}}$. $q \leq_{F, \alpha} p$ means that $q \leq p$ and $q \upharpoonright \xi \Vdash q(\xi) \leq_{\alpha} p(\xi)$ for all $\xi \in F$.¹

A sequence $\langle (p_{\alpha}, F_{\alpha}) : \alpha \in \kappa \rangle$ is a generalized fusion sequence (for $ST_{S^0, S^1, \vec{A}}$), iff

(i) $|F_{\alpha}| < \kappa$ for all $\alpha \in \kappa$.

¹The preorder \leq_{α} here depends on whether $\xi \in S^0$ or $\xi \in S^1$.

- (ii) $F_{\alpha} \supset F_{\beta}$ for all $\beta \leq \alpha < \kappa$.
- (iii) $p_{\alpha+1} \leq_{F_{\alpha},\alpha} p_{\alpha}$ for all α .
- (iv) If δ is limit, then $F_{\delta} = \bigcup_{\beta < \alpha} F_{\beta}$ and $p_{\delta} = \bigwedge_{\alpha < \delta} p_{\alpha}$.
- $(v) \bigcup \{F_{\alpha} : \alpha \in \kappa\} = \bigcup \{\operatorname{supp}(p_{\alpha}) : \alpha < \kappa\}.$

The easy but technical proof of the following lemma is left to the reader.

Lemma 8. Let $\langle (p_{\alpha}, F_{\alpha}) : \alpha \in \kappa \rangle$ be a generalized fusion sequence for $ST_{S^0, S^1, \vec{A}}$. Then $q = \bigwedge_{\alpha < \kappa} p_{\alpha} \in ST_{S^0, S^1, \vec{A}}$ and $q \leq_{F_{\alpha}, \alpha} p_{\alpha}$ for all $\alpha \in \kappa$.

There is no loss of generality to assume that each A_{α} is an element of κ .

Definition 9. Suppose that $p \in ST_{S^0,S^1,\vec{A}}$, $F \subset \operatorname{supp}(p)$ with $|F| < \kappa$, and $\sigma : F \to \kappa^{<\kappa}$. Then $p|\sigma$ is a function with the same domain as p such that $(p|\sigma)(\xi)$ equals $p(\xi)$ if $\xi \notin F$ and $p(\xi)_{\sigma(\xi)}$ otherwise, where for $q \in \operatorname{Miller}(\kappa) \bigcup \operatorname{Sacks}(\vec{A})$ and $t \in \kappa^{<\kappa}$ q_t denotes the set of all elements of q compatible with t.

It is clear that $p|\sigma \in ST_{S^0,S^1,\vec{A}}$ if and only if for every $\xi \in F$ we have $(p|\sigma) \upharpoonright \xi \Vdash_{\xi} \sigma(\xi) \in p(\xi)$. If $p|\sigma \in ST_{S^0,S^1,\vec{A}}$, then we say that σ lies on p.

Theorem 10. For every ordinal γ and decomposition $\gamma = S^0 \sqcup S^1$ the forcing $ST_{S^0,S^1,\vec{A}}$ preserves cardinals $\leq \kappa^+$.

Suppose that $2^{\kappa} = \kappa^+$ in V. If $\gamma < \kappa^{++}$, then there exists a dense subset $W_{\gamma} \subset ST_{S^0,S^1,\vec{A}}$ of size $|W_{\gamma}| \leq \kappa^+$. If $\gamma = \kappa^{++}$, then $ST_{S^0,S^1,\vec{A}}$ has the κ^{++} -chain condition.

Similar results were discussed in [11] and [6] for the Sacks forcing. Nevertheless, we give complete proofs here. Our exposition follows [11]. The first part of Theorem 10 follows from the lemma below. The second part could be proved independently from the first one, i.e., without using fusion.

- **Lemma 11.** (1) Assume that $p \in ST_{S^0,S^1,\vec{A}}$ and $p \Vdash \dot{z} \in V$. Then for every $F \in [\gamma]^{<\kappa}$ and $\alpha_0 \in \kappa$ there exists $q \leq_{F,\alpha_0} p$ and $x \in V$ with $|x| \leq \kappa$ such that $q \Vdash \dot{z} \in x$.
 - (2) Assume that $p \in ST_{S^0,S^1,\vec{A}}$ and $p \Vdash \text{"$\dot{z} \in V$ and $|\dot{z}| \le \kappa$"}$. Then for every $F \in [\gamma]^{<\kappa}$ and $\alpha_0 \in \kappa$ there exists $q \le_{F,\alpha_0} p$ and $x \in V$ with $|x| \le \kappa$ such that $q \Vdash \dot{z} \subset x$.

Proof. It is well-known how to obtain the second item from the first one, see [11, Theorem 2.3]. In order to prove the first item we shall inductively construct a generalized fusion sequence $\langle (p_{\alpha}, F_{\alpha}) : \alpha \in \kappa \rangle$ with $(p_{\beta}, F_{\beta}) = (p, F)$ for all $\beta \leq \alpha_0$, and $x \in V$ of size $|x| \leq \kappa$ such that $q = \wedge_{\alpha \in \kappa} p_{\alpha}$ and x are as required. The trivial description of how to construct F_{α} 's is omitted. The limit step of the construction is obvious, so we concentrate on the successor case.

Let us enumerate as $\{\sigma_{\alpha,i}: i \in \eta\}$ all ground model functions $\sigma: F_{\alpha} \to \kappa^{\alpha+1}$ which lie on some $r \leq p_{\alpha}$ so that $r \upharpoonright \xi \Vdash \sigma(\xi) \upharpoonright \alpha \in \max \operatorname{Split}_{\alpha}(p_{\alpha}(\xi))$ for all $\xi \in F_{\alpha}$, and $\sigma(\xi)(\alpha) = \alpha$ for all $\xi \in F \cap S^0$. (Here $\eta < \kappa$ is a cardinal.) We shall construct a sequence $\langle p_{\alpha,i}: i \in \eta \rangle$ as follows. Set $p_{\alpha,-1} = p_{\alpha}$ and suppose that we have already constructed a decreasing sequence $\langle p_{\alpha,j}: j < i \rangle$ such that $p_{\alpha,j} \leq_{F_{\alpha},\alpha} p_{\alpha,k}$ for all $k \leq j < i$. If i is limit, we set $p_{\alpha,i} = \wedge_{j < i} p_{\alpha,j}$. Suppose that i = j + 1. If there is no $r \leq p_{\alpha,j}$ such that $r = r | \sigma_{\alpha,j}$ and $r \upharpoonright \xi \Vdash \sigma(\xi) \upharpoonright \alpha \in \max \operatorname{Split}_{\alpha}(p_{\alpha}(\xi))$ for all $\xi \in F_{\alpha}$, we set $p_{\alpha,i} = p_{\alpha,j}$. And if there is such r, let $r_{\alpha,j} \leq r$ and $r_{\alpha,j} \in V$ be such that $r_{\alpha,j} \Vdash \dot{z} = x_{\alpha,j}$. Now, using the Maximal Principle we define $p_{\alpha,j+1}$ to be the amalgamation of $p_{\alpha,j}$ and $r_{\alpha,j}$ as in the proof of [11, Theorem 2.2]. More precisely,

- (a) $\operatorname{supp}(p_{\alpha,j+1}) = \operatorname{supp}(r_{\alpha,j}).$
- (b) If $\xi \in F_{\alpha}$, then $p_{\alpha,j+1}(\xi)$ is such that

$$r_{\alpha,j} \upharpoonright \xi \Vdash p_{\alpha,j+1}(\xi) = (p_{\alpha,j}(\xi) \setminus p_{\alpha,j}(\xi)_{\sigma_{\alpha,j}(\xi)}) \bigcup r_{\alpha,j}(\xi),$$

and for any condition $c \leq p_{\alpha,j+1} \upharpoonright \xi$ incompatible with $r_{\alpha,j} \upharpoonright \xi$,

$$c \Vdash_{\xi} p_{\alpha,j+1}(\xi) = p_{\alpha,j}(\xi).$$

(c) if $\xi \notin F_{\alpha}$, then $p_{\alpha,j+1}(\xi)$ is such that

$$r_{\alpha,j} \upharpoonright \xi \Vdash p_{\alpha,j+1}(\xi) = r_{\alpha,j}(\xi),$$

and for any condition $c \leq p_{\alpha,j+1} \upharpoonright \xi$ incompatible with $r_{\alpha,j} \upharpoonright \xi$,

$$c \Vdash_{\xi} p_{\alpha,j+1}(\xi) = p_{\alpha,j}(\xi).$$

Now we let $p_{\alpha+1} = \wedge_{i \in \eta} p_{\alpha,i}$. It follows that $p_{\alpha+1} \leq_{F_{\alpha},\alpha} p_{\alpha}$. This completes our construction of $\langle (p_{\alpha}, F_{\alpha}) : \alpha \in \kappa \rangle$. Set $x = \{x_{\alpha,i}\}$.

Claim 12. Suppose that $r \leq q$. Then there exists a sequence $\langle r_{\alpha} : \alpha \in \kappa \rangle$ of elements of $ST_{S^0,S^1,\vec{A}}$ with $r_0 = r$, a sequence $\langle \sigma_{\alpha} : F_{\alpha} \to \kappa^{<\kappa} | \alpha < \kappa \rangle$, and sequences $\langle \mu_{\alpha,\xi}, \nu_{\alpha,\xi} : \alpha \in \kappa, \xi \in F_{\alpha} \rangle$ of ordinals less than κ such that

- (i) If $\beta < \alpha$, then $r_{\alpha} \leq r_{\beta}$.
- (ii) If $\xi \in F_{\alpha}$, then $\ell(\sigma_{\alpha}(\xi)) = \mu_{\alpha,\xi} + 1$.
- (iii) If $\beta < \alpha$, then $\sigma_{\beta}(\xi) \subset \sigma_{\alpha}(\xi)$ for all $\xi \in F_{\beta}$.
- (iv) For every $\xi \in F_{\alpha+1}$ we have $r_{\alpha+1} \upharpoonright \xi \Vdash \text{``} r_{\alpha+1}(\xi) = r_{\alpha+1}(\xi)_{\sigma_{\alpha+1}(\xi)}, \ \sigma_{\alpha+1}(\xi) \upharpoonright \mu_{\alpha+1,\xi} \text{ splits}$ in $r_{\alpha}(\xi)$, and $\sigma_{\alpha+1}(\xi) \upharpoonright \mu_{\alpha+1,\xi} \in \max \text{Split}_{\nu_{\alpha+1,\xi}}(q(\xi))$ ".
- (v) If δ is limit, then
 - $\sigma_{\delta}(\xi) \upharpoonright \mu_{\delta,\xi} = \bigcup_{\alpha < \delta} \sigma_{\alpha}(\xi);$
 - $\sigma_{\delta}(\xi)(\mu_{\delta,\xi}) = \sup\{\sigma_{\alpha}(\xi)(\mu_{\alpha,\xi}) : \alpha < \delta\} \text{ for all } \xi \in F_{\delta} \cap S^{0}$ (We assume that $\sigma_{\alpha}(\xi) = \emptyset$ for all $\xi \notin F_{\alpha}$);
 - $-\nu_{\delta,\xi} = \sup_{\alpha<\delta} \nu_{\alpha,\xi} \text{ for all } \xi \in F_{\delta};$
 - $-r_{\delta} \upharpoonright \xi \Vdash \text{``}\sigma_{\delta}(\xi) \in r_{\delta}(\xi), \ \sigma_{\delta}(\xi) \upharpoonright \mu_{\delta,\xi} \ splits \ in \ r_{\delta}(\xi),$ and $\sigma_{\delta}(\xi) \upharpoonright \mu_{\delta,\xi} \in \max \operatorname{Split}_{\nu_{\delta,\xi}}(q(\xi))$ " for all $\xi \in F_{\delta}$.

Proof. The construction proceeds by induction. For limit δ we simply set $\sigma_{\delta}(\xi)$ and $\nu_{\delta,\xi}$ to be so as it is required in (v) and $r_{\delta} = \wedge_{\alpha < \delta} r_{\alpha}$. Thus $\mu_{\delta,\xi} = \sup_{\alpha < \delta} \mu_{\alpha,\xi}$. Let us fix any $\alpha < \delta$ and $\xi \in F_{\alpha} \cap S^{0}$. From the above it follows that $r_{\delta} \upharpoonright \xi \Vdash "\sigma_{\beta}(\xi) \upharpoonright \mu_{\beta,\xi}$ splits in $r_{\alpha}(\xi)$ for all $\alpha < \beta < \delta$ ", and hence $r_{\delta} \upharpoonright \xi \Vdash "\sigma_{\delta}(\xi) \upharpoonright \mu_{\delta,\xi}$ splits in $r_{\alpha}(\xi)$ ", and consequently $r_{\delta} \upharpoonright \xi \Vdash "\sigma_{\delta}(\xi) \upharpoonright \mu_{\delta,\xi}$ splits in $r_{\delta}(\xi) = \bigcap_{\beta < \delta} r_{\beta}(\xi)$ ". By the definition of Miller (κ) , $r_{\delta} \upharpoonright \xi \Vdash C(r_{\alpha}(\xi), \sigma_{\delta}(\xi) \upharpoonright \mu_{\delta,\xi}) = \bigcap_{\alpha < \beta < \delta} C(r_{\alpha}(\xi), \sigma_{\beta}(\xi) \upharpoonright \mu_{\beta,\xi})$, and hence $r_{\delta} \upharpoonright \xi \Vdash \sigma_{\delta}(\xi)(\mu_{\delta,\xi}) = \sup_{\alpha < \beta < \xi} \sigma_{\beta}(\xi)(\mu_{\beta,\xi}) \in C(r_{\alpha}(\xi), \sigma_{\delta}(\xi) \upharpoonright \mu_{\delta,\xi})$, which implies that $r_{\delta} \upharpoonright \xi \Vdash \sigma_{\delta}(\xi)(\mu_{\delta,\xi}) \in C(r_{\delta}(\xi), \sigma_{\delta}(\xi) \upharpoonright \mu_{\delta,\xi}) = \bigcap_{\alpha < \xi} C(r_{\alpha}(\xi), \sigma_{\delta}(\xi) \upharpoonright \mu_{\delta,\xi})$, which gives us that $r_{\delta} \upharpoonright \xi \Vdash \sigma_{\delta}(\xi) \in r_{\delta}(\xi)$. Finally, equalities $\sigma_{\delta}(\xi) \upharpoonright \mu_{\delta,\xi} = \bigcup_{\alpha < \delta} \sigma_{\alpha}(\xi) \upharpoonright \mu_{\alpha,\xi}$ and $\nu_{\delta,\xi} = \sup_{\alpha < \xi} \nu_{\alpha,\xi}$ combined with $r_{\delta} \upharpoonright \xi \Vdash \sigma_{\alpha}(\xi) \upharpoonright \mu_{\alpha,\xi} \in C(r_{\delta}(\xi), \sigma_{\delta}(\xi) \upharpoonright \mu_{\alpha,\xi}) \upharpoonright \mu_{\alpha,\xi} \in C(r_{\delta}(\xi), \sigma_{\delta}(\xi), \sigma_{\delta}(\xi) \upharpoonright \mu_{\alpha,\xi}) \upharpoonright \mu_{\alpha,\xi} \in C(r_{\delta}(\xi), \sigma_{\delta}(\xi), \sigma_{\delta}(\xi), \sigma_{\delta}(\xi), \sigma_{\delta}(\xi) \upharpoonright \mu_{\alpha,\xi})$

 $\max \operatorname{Split}_{\nu_{\alpha,\xi}}(q(\xi)) \text{ imply } r_{\delta} \upharpoonright \xi \Vdash \sigma_{\delta}(\xi) \upharpoonright \mu_{\delta,\xi} \in \max \operatorname{Split}_{\nu_{\delta,\xi}}(q(\xi)), \text{ which completes the limit step.}$

At successor step $\alpha + 1$ consider the increasing enumeration $\langle \xi_i : i < \eta \rangle$ of $F_{\alpha+1}$ and find a decreasing sequence $\langle u_i : i < \eta \rangle$ of elements of $ST_{S^0,S^1,\vec{A}}$ as follows: Set $u_i = \wedge_{j < i} u_j$ for limit i. Now given u_i , find $v \le u_i \upharpoonright \xi_i$, $\pi \in \kappa^{\mu+1}$ for some $\mu \in \kappa$, and $v \in \kappa$ such that $\pi \supset \sigma_{\alpha}(\xi_i)$ if $\xi_i \in F_{\alpha}$ and

$$v \Vdash_{\xi_i} \pi \in r_{\alpha}(\xi_i), \ \pi \upharpoonright \mu \in \max \operatorname{Split}_{\nu}(q(\xi_i)) \bigcap \operatorname{Split}(r_{\alpha}(\xi_i)).$$

Then we set

$$u_{i+1} = v \hat{r}_{\alpha}(\xi_i)_{\pi} \hat{r}_{\alpha} \upharpoonright (\gamma \setminus (\xi_i + 1)),$$

 $\sigma_{\alpha+1}(\xi_i) = \pi$. $(\mu_{\alpha+1,\xi_i} \text{ and } \nu_{\alpha+1,\xi_i} \text{ automatically become equal to } \mu \text{ and } \nu \text{ respectively.})$ With u_i 's thus defined, we set $r_{\alpha+1} = \wedge_{i<\eta} u_i$. This completes the inductive construction, hence the proof of the claim.

The following claim is obvious.

Claim 13. There exists a club $C \subset \kappa$ such that $\mu_{\alpha,\xi} = \nu_{\alpha,\xi} = \alpha$ and $\sigma_{\alpha}(\xi)(\mu_{\alpha,\xi}) = \alpha$ for every $\alpha \in C$ and $\xi \in F_{\alpha}$. Consequently, $r_{\alpha} \upharpoonright \xi \Vdash \sigma_{\alpha}(\xi) \upharpoonright \alpha \in \max \operatorname{Split}_{\alpha}(q(\xi))$ for every such $\alpha \in C$ and $\xi \in F_{\alpha}$.

We are in a position now to finish the proof of Lemma 11. Let C be such as in Claim 13 and $\alpha \in C$. Then $\sigma_{\alpha} = \sigma_{\alpha,i}$ for some $i < \eta$ (see the construction of $p_{\alpha+1}$ at the beginning of the proof of Lemma 11). Since $r_{\alpha+1} \leq q \leq p_{\alpha,i}$, Claim 12(iv) implies that for every $\xi \in F_{\alpha}$ we have $r_{\alpha+1} \upharpoonright \xi \Vdash r_{\alpha+1}(\xi) = r_{\alpha+1}(\xi)\sigma_{\alpha(\xi)}$. Therefore the construction of $p_{\alpha,i+1}$ is nontrivial. Since $r_{\alpha+1} \leq q \leq p_{\alpha,i+1}, r_{\alpha+1} = r_{\alpha+1}|\sigma_{\alpha} \leq p_{\alpha,i+1}|\sigma_{\alpha,i} = r_{\alpha,i}$, and hence $r_{\alpha+1} \Vdash \dot{z} = x_{\alpha,i}$. Therefore for every $r \leq q$ there exists $r' \leq r$ such that $r' \Vdash \dot{z} \in x$, which finishes our proof.

Proof of Theorem 10. The proof is analogous to that of [11, Lemma 3.1]. Let W_{γ} be the set of those $q \in ST_{S^0,S^1,\vec{A}}$ such that:

- (i) There is an increasing sequence $\langle F_{\alpha} : \alpha \in \kappa \rangle$ of subsets of γ such that $|F_{\alpha}| < \kappa$ for all α , $F_{\delta} = \bigcup_{\alpha \in \delta} F_{\alpha}$ for limit δ , and $\bigcup_{\alpha \in \kappa} F_{\alpha} = \operatorname{supp}(q)$.
- (ii) For every α there exists a (possibly empty) collection Σ_{α} of ground model functions $\sigma: F_{\alpha} \to \kappa^{\alpha+1}$ of size $|\Sigma_{\alpha}| < \kappa$ such that $q|\sigma \in ST_{S^0,S^1,\vec{A}}$ for all $\sigma \in \bigcup_{\alpha \in \kappa} \Sigma_{\alpha}$, and whenever $\beta \in \kappa$ and $r \leq q$, there exists $\alpha > \beta$ and $\sigma \in \Sigma_{\alpha}$ so that r and $q|\sigma$ are compatible.

The proof of Lemma 11 gives that W_{γ} is dense in $ST_{S^0,S^1,\vec{A}}$. In addition, almost literal repetition of the proof of [11, Lemma 3.1] gives that if a pair of sequences

$$\langle\langle F_{\alpha}: \alpha \in \kappa \rangle, \langle \Sigma_{\alpha}: \alpha \in \kappa \rangle\rangle$$

is a witness for $q_i \in W_{\gamma}$, $i \in 2$, then $q_0 \le q_1 \le q_0$ in $ST_{S^0,S^1,\vec{A}}$. It suffices to note that there are at most κ^+ -many such pairs.

Finally, the fact that $ST_{S^0,S^1,\vec{A}}$ has κ^{++} -chain condition provided $\gamma = \kappa^{++}$ is a direct consequence of [1, Theorem 2.2].

3 Miller(κ) and a variant of the groupwise density number

Throughout this section κ is strongly inaccessible, $2^{\kappa} = \kappa^{+}$ in V, $\kappa^{++} = S^{0} \sqcup S^{1}$, $\vec{A} = \langle A_{\alpha} : \alpha \in \kappa \rangle$ is a sequence of ordinals below κ , and S^{0} is κ^{+} -stationary. Here we define a (new?) cardinal characteristic of κ and show that iteration of Miller(κ) pushes it to κ^{++} .

Definition 14. We say that $\mathcal{G} \subset [\kappa]^{\kappa}$ is a *cgd-family* (abbreviated from club groupwise dense), if for every continuous increasing function $\phi : \kappa \to \kappa$ there exists a club $C \subset \kappa$ such that $\bigcup_{\alpha \in C} \phi(\alpha + 1) \setminus \phi(\alpha) \in \mathcal{G}$, and for every $A \in \mathcal{G}$ and $B \in [\kappa]^{\kappa}$ such that $|B \setminus A| < \kappa$ we have $B \in \mathcal{G}$. In what follows the minimal size of a collection \mathfrak{G} of cgd-families with empty intersection is denoted by $\mathfrak{g}_{cl}(\kappa)$.

Theorem 15. Suppose that G is a $ST_{S^0,S^1,\vec{A}}$ -generic filter. Then $V[G] \models \mathfrak{g}_{cl}(\kappa) = \kappa^{++}$.

The proof of Theorem 15 is divided into a sequence of lemmas.

Lemma 16. Suppose that G is a $ST_{S^0,S^1,\vec{A}}$ -generic filter. Then for every subset x of κ such that $x \in V[G]$ there exists $\gamma < \kappa^{++}$ such that $x \in V[G_{\gamma}]$, and the smallest such γ has cofinality $\leq \kappa$.

Proof. Let \dot{x} be a $ST_{S^0,S^1,\vec{A}}$ -name of x. Note that the set $D\subset W_{\kappa^{++}}$ of all $q\in ST_{S^0,S^1,\vec{A}}$ such as in the proof of Theorem 10 with additional property that for every $\sigma\in\Sigma_{\alpha}$ the condition $q|\sigma$ decides $\dot{x}(\beta)$ for all $\beta<\alpha$, is dense in $ST_{S^0,S^1,\vec{A}}$. (Any q obtained along the lines of the proof of Lemma 11 with an extra requirement that $r_{\alpha,j}$ decides $\dot{x}(\beta)$ for all $\beta<\alpha$ belongs to D.) Item (ii) from the proof of Theorem 10 implies that $\{q|\sigma:\sigma\in\bigcup_{\alpha\in\kappa}\Sigma_{\alpha}\}$ is predense below q. Therefore for every $q\in D$ and $\beta\in\kappa$ there exists a subset $E_{q,\beta}$ predense below q of size $\leq\kappa$ and such that each element of $E_{q,\beta}$ decides $\dot{x}(\beta)$. From the above it follows that for every $q\in D$ we have $q\Vdash\dot{x}=\pi$, where $\pi=\{\langle\langle\beta,\dot{i}_{\beta,r}\rangle,r\rangle:\beta\in\kappa,r\in E_{q,\beta}\}$ and $r\Vdash\dot{x}(\beta)=i_{\beta,r}$. The rest of the proof is straightforward.

The following lemma resembles [3, Lemma 5.10].

Lemma 17. Let G be a $ST_{S^0,S^1,\vec{A}}$ -generic filter and $\mathcal{F} \in V[G]$ be a cgd-family. There is a κ^+ -closed unbounded set of ordinals $\eta < \kappa^{++}$ for which $\mathcal{F} \cap V[G_{\eta}] \in V[G_{\eta}]$ and $\mathcal{F} \cap V[G_{\eta}]$ is cgd-family in $V[G_{\eta}]$.

Proof. Let $\dot{\mathcal{F}}$ be a $ST_{S^0,S^1,\vec{A}}$ -name for \mathcal{F} and $p \in G$ be a condition which forces that $\dot{\mathcal{F}}$ is a cgd-family, and $\gamma < \kappa^{++}$ be such that $p \in \mathbb{P}_{\gamma}$. The proof of Lemma 16 yields a set Π_{γ} of \mathbb{P}_{γ} -names of size $|\Pi_{\gamma}| = \kappa^{+}$ such that for every \mathbb{P}_{γ} -generic filter H and $x \in \mathcal{P}(\kappa) \cap V[H]$ there exists $\pi \in \Pi_{\gamma}$ with the property $x = \pi^{H}$. For every $\pi \in \Pi_{\gamma}$ we denote by $B(\pi)$ a maximal antichain of conditions in $\mathbb{P}_{\kappa^{++}}$ that decide whether $\pi \in \dot{\mathcal{F}}$. Let η_{1} be the supremum of the union of supports of all conditions appearing in some $B(\pi)$, $\pi \in \Pi_{\gamma}$. (Recall that $ST_{S^0,S^1,\vec{A}}$ has κ^{++} -c.c...) Then $\mathcal{F} \cap V[G_{\gamma}] \in V[G_{\eta_{1}}]$.

For every $\pi \in \Pi_{\gamma}$ we can find a maximal antichain $A(\pi)$ below p whose elements decide whether π is (the range of) a continuous increaing function, and if $q \in A(\pi)$ decides that π is such, then for some $\xi(\pi,q) > \gamma$ and $\theta_{\pi,q} \in \Pi_{\xi(\pi,q)}$, q forces $\theta_{\pi,q}$ to be a club and $\bigcup_{\alpha \in \theta_{\pi,q}} [\pi(\alpha), \pi(\alpha+1) \in \dot{\mathcal{F}}$. Let η_2 be the upper bound of the set

$$\{\theta_{\pi,q} : \pi \in \Pi_{\gamma}, q \in \bigcup_{\pi \in \Pi_{\gamma}} A(\pi)\} \bigcup \{\operatorname{supp}(q) : q \in \bigcup_{\pi \in \Pi_{\gamma}} A(\pi)\}.$$

Then $\eta(\gamma) := \max\{\eta_1, \eta_2\}$ has the properties $\dot{\mathcal{F}}^H \cap V[H_\gamma] \in V[H_{\eta(\gamma)}]$, and if $\psi \in V[H_\gamma]$ is any continuous increasing sequence, then there is a club $C \in V[H_{\eta(\gamma)}]$ so that $\bigcup_{\alpha \in C} [\psi(\alpha), \psi(\alpha+1)) \in \dot{\mathcal{F}}^H$, where H is any $ST_{S^0, S^1, \vec{A}}$ -generic filter containing p.

Let $E \subset \kappa^{++}$ be the κ^{+} -closed unbounded set of those η that $\eta(\gamma) \leq \eta$ for all $\gamma < \eta$. A similar argument as in [3, Lemma 5.10] gives us that E is as required.

Lemma 18. For every $p \in \text{Miller}(\kappa)$ there exists a continuous increasing sequence $\langle \nu_{\alpha} : \alpha \in \kappa \rangle$ such that for every club C there exists $q \leq p$ such that the range of every branch through q is almost $(=\text{modulo } a \text{ subset of size} < \kappa)$ contained in $\bigcup_{\alpha \in C} [\nu_{\alpha}, \nu_{\alpha+1})$.

Proof. We inductively define a desired sequence $\langle \nu_{\alpha} \rangle_{\alpha \in \kappa}$. Choose ν_0 arbitrary. For limit $\delta \in \kappa$ we set $\nu_{\delta} = \sup_{\alpha \in \delta} \nu_{\alpha}$. After ν_{α} is defined, let $\beta > \nu_{\alpha}$ be such that for every $s \in p$ whose range is a subset of ν_{α} and $\xi \in [\nu_{\alpha}, \beta)$, if $s \in p$, then the range of the smallest extension $t \in \text{Split}(p)$ of $s \in p$ is contained in β . We set $\nu_{\alpha+1} = \beta$.

We claim that the sequence $\langle \nu_{\alpha} : \alpha \in \kappa \rangle$ is as required. Indeed, it is continuous by the construction. Let C and $D \subset \bigcup_{\alpha \in C} [\nu_{\alpha}, \nu_{\alpha+1})$ be clubs. (The role of D here is to ensure that the splitting nodes of the condition q constructed below split into clubs rather than into sets containing clubs. We could take, e.g., $D = \{\alpha \in C : \nu_{\alpha} = \alpha\}$.) Let q be the tree generated by the set of those $s = s_1 \hat{\ } \xi \in p$ such that $s_1 \in \operatorname{Split}(p)$ and for every $t \leq s$, if $t \in \operatorname{Split}(p)$, then $s(\ell(t)) \in \bigcup_{\alpha \in C \setminus \mu(t)} [\nu_{\alpha}, \nu_{\alpha+1}) \cap D$, where $\mu(t)$ is the minimal ordinal μ such that ν_{μ} contains the range of t. Then $q \in \operatorname{Miller}(\kappa)$. It suffices to note that the range of each branch through q is a subset of $\bigcup_{\alpha \in C} [\nu_{\alpha}, \nu_{\alpha+1}) \bigcup \beta$, where β is the range of the stem (=smallest splitting element) of p.

Proof of Theorem 15. The simple density argument based on Lemma 18 gives us that if G is a Miller(κ)-generic filter and \mathcal{F} is a cgd-family in V, then the range of $\bigcap G \in \kappa^{\kappa}$ is almost included into some $F \in \mathcal{F}$. Using Lemma 17, the proof can be completed in the same way as that of [2, Theorem 2].

4 A new lower bound for the cofinality of symmetric group

In this section κ denotes a strongly inaccessible cardinal. The main result of this section says that for a certain sequence \vec{A} , if both S^0 and S^1 are κ^+ -stationary and G is $ST_{S^0,S^1,\vec{A}}$ -generic, then $V[G] \models \mathrm{cf}(Sym(\kappa)) = \kappa^{++}$. The motivation for this is given in section 5. We follow the strategy of the proof of [20, Theorem 2.2]. In its turn that proof relies upon the methods developed in [17, § 2].

Following [20] we give the following definition.

Definition 19. For a subset A of κ we shall identify the group Sym(A) with the subgroup of $Sym(\kappa)$ consisting of permutations σ such that $\sigma \upharpoonright (\kappa \setminus A) = \mathrm{id}_{\kappa \setminus A}$.

For every increasing $\psi \in \kappa^{\kappa}$ we denote by P_{ψ} the group $\prod_{\alpha \in \kappa} Sym(\psi(\alpha + 1) \setminus \psi(\alpha))$, which will be identified with a subgroup of $Sym(\kappa)$. cf* $(Sym(\kappa))$ is the least cardinal λ such that it is possible to express $Sym(\kappa) = \bigcup_{i < \lambda} \Gamma_i$ as the union of a chain of proper subgroups such that for every increasing *continuous* $\phi \in \kappa^{\kappa}$ there exists $i \in \lambda$ such that P_{ϕ} is a subgroup of Γ_i .

For an increasing function $\theta : \kappa \to \kappa$ we set $\tilde{\theta}(\alpha) = \sup_{\xi \in \alpha} \theta(\xi)$ and $Q_{\theta} = P_{\tilde{\theta}}$. (Note that $\tilde{\theta}$ is continuous and $P_{\theta} \subset Q_{\theta}$.)

The following lemma resembles [20, Theorem 2.6]. But the proofs of Lemma 20 and Theorem 2.6 from [20] are completely different.

Lemma 20. $cf^*(Sym(\kappa)) \geq \mathfrak{g}_{cl}(\kappa)$.

Proof. The proof is divided into two steps.

Claim 21. For every $\pi \in Sym(\kappa)$ there exists continuous increasing $\psi \in \kappa^{\kappa}$ such that $\pi \in P_{\psi}$.

Proof. For any $\alpha \in \kappa$ we set $\beta(\alpha) = \min\{\pi(\xi) : \xi \geq \alpha\}$ and $\gamma(\alpha) = \sup\{\pi(\xi) : \xi \in \alpha\}$. Since π is a bijection, the Fodor's lemma implies that $\beta(\alpha) \geq \alpha$ for club many α 's. Therefore there exists a club $C \subset \kappa$ such that $\gamma \upharpoonright C = \mathrm{id}_C$ and $\beta(\alpha) \geq \alpha$ for all $\alpha \in C$. Now, the increasing bijective enumeration $\psi : \kappa \to C \cup \{0\}$ is as required.

Given any $B \in [\kappa]^{\kappa}$, we denote by $e_B : \kappa \to B$ the increasing bijective enumeration of B. Note that continuous strictly increasing functions from κ to κ are exactly those of the form e_C for a club C.

Claim 22. Let Γ be a subgroup of $Sym(\kappa)$ containing $Sym_0(\kappa) = \{\pi : \pi(\alpha) = \alpha \text{ for all but } < \kappa \text{ many } \alpha \text{ 's} \}$ and such that $\langle \Gamma, g \rangle \neq Sym(\kappa)$ for all $g \in Sym(\kappa)$, and $\mathcal{G}_{\Gamma} = \{A \in [\kappa]^{\kappa} : \forall B (|B \setminus A| < \kappa \to Q_{e_B} \not\subset \Gamma)\}$. Then \mathcal{G}_{Γ} is a cgd-family.

Proof. Let $\phi: \kappa \to \kappa$ be a continuous increasing function. Since $Sym_0(\kappa) \subset \Gamma$, it is enough to show that there exists a club C such that, letting $C_\phi = \bigcup_{\alpha \in C} [\phi(\alpha), \phi(\alpha+1))$, we have $C_\phi \in \mathcal{G}_\Gamma$, which means $Q_{e_{C_\phi}} \not\subset \Gamma$. Assume to the contrary that $Q_{e_{C_\phi}} \subset \Gamma$ for every club $C \subset \kappa$. Set $O = \bigcup_{\alpha \text{ odd}} [\phi(\alpha), \phi(\alpha+1))$. We claim that $Sym(O) \subset \Gamma$. Once this is established, we get a contradiction with [13, Lemma 2.4]. Let us fix $\sigma \in Sym(O)$. Claim 21 yields a continuous increasing $\psi: \kappa \to \kappa$ such that $\sigma \in \prod_{\xi \in \kappa} Sym([e_O \circ \psi(\xi), e_O \circ \psi(\xi+1)) \cap O)$. Set $C = \{\alpha: \alpha \text{ is limit and } \phi(\alpha) = \sup_{\xi \in \alpha} e_O \circ \psi(\xi)\}$. It is clear that C is club. Since elements of C are limit ordinals, the choice of C ensures that $C_\phi \cap C = \emptyset$. We claim that

$$[\phi(\alpha), \phi(\alpha+1)) \bigcap [e_O \circ \psi(\xi), e_O \circ \psi(\xi+1)) = \emptyset$$
 (1)

for every $\alpha \in C$ and $\xi \in \kappa$. Indeed, if $\xi < \alpha$, then $e_O \circ \psi(\xi + 1) < \sup_{\eta < \alpha} e_O \circ \psi(\eta) = \phi(\alpha)$. Now suppose $\xi \geq \alpha$. Then $O \ni e_O \circ \psi(\xi) \geq \phi(\alpha)$, and therefore $[\phi(\alpha), \phi(\alpha + 1)) \cap O = \emptyset$ implies $e_O \circ \psi(\xi) \geq \phi(\alpha + 1)$, which proves (1). For any $\xi \in \kappa$ consider $\alpha(\xi), \beta(\xi) \in \kappa$ such that $\alpha(\xi) = \min\{\alpha \in C : \phi(\alpha) \geq e_O \circ \psi(\xi + 1)\}$ and $\phi(\alpha(\xi))$ is the $\beta(\xi)$'s element of C_ϕ . Equation (1) gives

$$[e_O \circ \psi(\xi), e_O \circ \psi(\xi+1)) \subset [\sup_{\beta < \beta(\xi)} e_{C_{\phi}}(\beta), e_{C_{\phi}}(\beta(\xi))) = [\tilde{e}_{C_{\phi}}(\beta(\xi)), \tilde{e}_{C_{\phi}}(\beta(\xi)+1)),$$

and therefore

$$\prod_{\xi \in \kappa} Sym([e_O \circ \psi(\xi), e_O \circ \psi(\xi+1)) \bigcap O) \subset Q_{e_{C_{\phi}}} \subset \Gamma,$$

which implies $\sigma \in \Gamma$ and thus completes our proof.

Let us express $Sym(\kappa) = \bigcup_{i < \lambda} \Gamma_i$ as a union of an increasing chain of proper subgroups such that each P_{ψ} is contained in some Γ_i . Since $|Sym_0(\kappa)| = \kappa$ and $\lambda > \kappa$, we can assume that $Sym_0(\kappa) \subset \Gamma_0$. For every $A \in [\kappa]^{\kappa}$ there exists $i \in \lambda$ such that $Q_{e_A} = P_{\tilde{e_A}} \subset \Gamma_i$, consequently $\bigcap_{i \in \lambda} \mathcal{G}_{G_i} = \emptyset$, and therefore $\mathfrak{g}_{cl}(\kappa) \leq \lambda$, which finishes our proof.

Definition 23. Let us fix a continuous increasing function $\phi_0: \kappa \to \kappa$ such that $\phi_0(\alpha+1) \ge \phi_0(\alpha) + \alpha$ for all $\alpha \in \kappa$. We set $N_\alpha = Sym(\phi_0(\alpha+1) \setminus \phi_0(\alpha)), \ \vec{N} = \langle N_\alpha : \alpha < \kappa \rangle$, and $ST_{S^0,S^1} \stackrel{\text{def}}{=} ST_{S^0,S^1,\vec{N}}$.

Each branch $\vec{t} = \langle t(\alpha) \rangle_{\alpha \in \kappa}$ of $T \in \operatorname{Sacks}(\vec{N})$ can be naturally identified with an element of $\sigma_{\vec{t}} \in P_{\phi_0}$ such that $\sigma_{\vec{t}} \upharpoonright (\phi(\alpha + 1) \setminus \phi(\alpha)) = t(\alpha)$. We also need the following

Definition 24. $[\kappa]^{\kappa,\kappa}$ denotes the set $\{A \subset \kappa : |A| = |\kappa \setminus A| = \kappa\}$. If $A \in [\kappa]^{\kappa,\kappa}$ and $\sigma \in Sym(\kappa)$, then σ^A is defined by $\sigma^A(e_A(\alpha)) = e_A(\sigma(\alpha))$. If Γ is a subgroup of $Sym(\kappa)$, then $\Gamma^A = \{\sigma^A : \sigma \in \Gamma\}$ and $\Gamma(A) = \{\sigma \upharpoonright A : \sigma \in \Gamma, \sigma[A] = A\}$.

The next lemma is of crucial importance for the proof of the equality $\operatorname{cf}^*(Sym(\kappa)) = \operatorname{cf}(Sym(\kappa))$ in $V^{ST_{S^0,S^1}}$ for κ^+ -stationary subsets S^0, S^1 of κ^{++} .

Lemma 25. Let $\psi : \kappa \to \kappa$ be a continuous increasing function. Then for every $T \in \operatorname{Sacks}(\vec{N})$ there exists $A \in [\kappa]^{\kappa,\kappa}$ such that for every $\pi \in P_{\psi}$ there exists $S \subseteq T$ such that $\sigma_{\vec{s}} \upharpoonright A = \pi^A$ for all branches \vec{s} of S.

Proof. Consider $D \in [C(T)]^{\kappa}$ such that $C(T) \setminus D$ contains a club C' and $e_D(\alpha) \geq \psi(\alpha + 1)$ for all α , and set $A = \bigcup_{\xi \in D} (\phi_0(\xi + 1) \setminus \phi_0(\xi))$. By our choice of ϕ_0 we have $\phi_0(e_D(\alpha) + 1) \geq \phi_0(e_D(\alpha)) + \psi(\alpha + 1)$ for all α . A direct verification shows that $S \in \text{Sacks}(\vec{N})$ such that C(S) = C' and for every $\alpha \in \kappa$ and $s \in S$ we have

$$s(e_D(\alpha)) \upharpoonright [\phi_0 \circ e_D(\alpha), \phi_0 \circ e_D(\alpha) + \zeta(\alpha)) = h \circ \pi \upharpoonright (\psi(\alpha + 1) \setminus \psi(\alpha)) \circ h^{-1},$$

where $\zeta(\alpha)$ is such that $\psi(\alpha+1) = \psi(\alpha) + \zeta(\alpha)$ and $h : \psi(\alpha+1) \setminus \psi(\alpha) \to [e_D(\alpha), e_D(\alpha) + \zeta(\alpha)]$ is a monotone bijection, is as required.

The following statement can be proven in the same way as [4, Lemma 2.7].

Lemma 26. Suppose that $\lambda = \operatorname{cf}(\operatorname{Sym}(\kappa)) < \operatorname{cf}^*(\operatorname{Sym}(\kappa))$ and $\langle \Gamma_i : i \in \lambda \rangle$ is an increasing chain of proper subgroups of $\operatorname{Sym}(\kappa)$ such that $\operatorname{Sym}(\kappa) = \bigcup_{i < \lambda} \Gamma_i$. Then there exists a continuous increasing $\psi : \kappa \to \kappa$ such that $P_{\psi}^A \not\subset \Gamma_i(A)$ for all $i < \lambda$ and $A \in [\kappa]^{\kappa,\kappa}$.

The next lemma can be proven by the same methods as Lemma 16.

Lemma 27. Suppose that $2^{\kappa} = \kappa^+$ in V, $\kappa^{++} = S^0 \sqcup S^1$ is a decomposition into two κ^+ -stationary subsets, and G is ST_{S^0,S^1} -generic filter. For every $\Pi \subset Sym(\kappa)$ of size $|\Pi| \leq \kappa^+$ and every sequence $\langle \Gamma_i : i < \kappa^+ \rangle \in V[G]$ of subgroups of $Sym(\kappa)$ there is a κ^+ -closed unbounded set of ordinals $\eta < \kappa^{++}$ for which $\Pi \in V[G_{\eta}]$, $\langle \Gamma_i \cap V[G_{\eta}] : i < \kappa^+ \rangle \in V[G_{\eta}]$, and for every $A \in [\kappa]^{\kappa,\kappa} \cap V[G_{\eta}]$ and $i < \kappa^+$ we have $\Gamma_i(A) \cap V[G_{\eta}] = (\Gamma_i \cap V[G_{\eta}])(A)$.

Finally, we are in a position to prove the following theorem, which is the main result of this section.

Theorem 28. Let S^0 , S^1 , and G be as in Lemma 27. Then $V[G] \models \operatorname{cf}(Sym(\kappa)) = \kappa^{++}$.

Proof. Suppose to the contrary that $V[G] \models Sym(\kappa) = \kappa^+$. Let $\langle \Gamma_i : i < \kappa^+ \rangle \in V[G]$ be an increasing chain of subgroups of $Sym(\kappa)$ such that $Sym(\kappa) = \bigcup_{i < \kappa^+} \Gamma_i$. By Theorem 15 and Lemma 20 we have $V[G] \models \text{cf}^*(Sym(\kappa)) = \kappa^{++}$. Lemma 26 yields a continuous increasing $\psi : \kappa \to \kappa$ such that for every $A \in [\kappa]^{\kappa,\kappa}$ and $i < \kappa^+$ we have $P_\psi^A \not\subset \Gamma_i(A)$. Fix $A_* \in [\kappa]^{\kappa,\kappa}$ and for every $i < \kappa^+$ find $\pi_i \in P_\psi$ such that $\pi_i^{A_*} \in P_\psi^{A_*} \setminus \Gamma_i(A_*)$. Observe that $\Pi^A \not\subset \Gamma_i(A)$ for any $A \in [\kappa]^{\kappa,\kappa}$ and $i < \kappa^+$, where $\Pi = \{\pi_i : i < \kappa^+\}$. (The condition $\pi_i^A \not\in \Gamma_i(A)$ holds at least starting from i such that Γ_i contains an extension of the order-preserving bijection between A_* and A.)

Let $\eta < \kappa^{++}$ be such an element of κ^{+} -closed unbounded subset provided by Lemma 27 for $\langle \Gamma_i : i < \kappa^+ \rangle$ and Π for which $\dot{\mathbb{Q}}_{\eta} = \operatorname{Sacks}(\vec{N})$, i.e. $\eta \in S^1$. We can additionally require $A_* \in V[G_{\eta}]$. Suppose that H is the $\operatorname{Sacks}(\vec{N})$ -generic filter over $V[G_{\eta}]$ such that $G_{\eta+1} = G_{\eta} * H$ and \vec{h} is the common branch of all trees in H. Applying Lemma 25 we conclude that the set

$$\{S \in \operatorname{Sacks}(\vec{N}) : \exists A \in [\kappa]^{\kappa,\kappa} \cap V[G_{\eta}] \ \exists \pi \in \Pi \ (\pi^{A} \not\in (\Gamma_{i} \cap V[G_{\eta}])(A) \ \land \ S \Vdash \sigma_{\vec{h}} \upharpoonright A = \pi^{A})\}$$

is dense for all $i < \kappa^+$. Therefore for every i there exists $A_i \in [\kappa]^{\kappa,\kappa} \cap V[G_{\eta}]$ and $j(i) < \kappa^+$ such that $\sigma = \sigma_{\vec{h}} \upharpoonright A_i = \pi_{j(i)}^{A_i} \not\in (\Gamma_i \cap V[G_{\eta}])(A_i)$. Let $i < \kappa^+$ be such that $\sigma \in \Gamma_i$. Then

$$(\Gamma_i \cap V[G_\eta])(A_i) \not\ni \pi_{j(i)}^{A_i} = \sigma \upharpoonright A_i \in \Gamma_i(A_i) \cap V[G_\eta],$$

which contradicts our choice of η .

Now it is naturally to ask whether we needed to employ $\operatorname{Sacks}(\vec{N})$ at all.

Question 29. Is $cf(Sym(\kappa)) \geq \mathfrak{g}_{cl}(\kappa)$?

The cardinal characteristic $\mathfrak{g}_{cl}(\kappa)$ seems to be a natural generalization of the classical groupwise density number \mathfrak{g} introduced in [2] and it was proved in [4] that $\mathrm{cf}(Sym(\omega)) \geq \mathfrak{g}$. But the methods of [4] do not seem to be applicable to Question 29.

5 Proof of Theorem 1

Without loss of generality, j is given by a hyperextender ultrapower so that $M = \{j(f)(a) : f \in V, f : H(\kappa) \to V, \text{ and } a \in H(\kappa^{++})\}.$

Claim 30. There exists a cardinal preserving forcing extension V' of V such that GCH holds in V' and j can be extended to an elementary embedding $j': V' \to M'$ satisfying the following conditions:

- (i) $H(\kappa^{++})^{V'} = H(\kappa^{++})^{M'};$
- (ii) j' is given by a hyperextender ultrapower so that $M' = \{j(f)(a) : f \in V', f : H(\kappa)^{V'} \to V', \text{ and } a \in H(\kappa^{++})^{V'}\}$,²
- (iii) There exist disjoint κ^+ -stationary in V (and hence in M) subsets $S^0, S^1 \in M$ of κ^{++} such that $S^0 \cup S^1 = \kappa^{++}$, and a sequence $\langle (S_k^0, S_k^1) : k \in \kappa \rangle$, where S_k^0 and S_k^1 are disjoint ρ_k^+ -stationary subsets of ρ_k^{++} for which $\rho_k^{++} = S_k^0 \cup S_k^1$, such that $j\langle (S_k^0, S_k^1) : k \in \kappa \rangle (\kappa) = (S^0, S^1)$. (Here ρ_k denotes the k-th inaccessible cardinal below $\kappa, k < \kappa$.)

Proof. We define a forcing poset \mathbb{R} as follows. Let $\mathbb{R}_0 = \{\mathbf{1}_0\}$. For $k \leq \kappa$ we denote by $\dot{\mathbb{S}}_k$ a \mathbb{R}_k -name for the poset $Fn(\rho_k^{++}, 2, \rho_k^{++})$ adding one Cohen subset to ρ_k^{++} , see [12]. Proceeding this way along all inaccessible cardinals $\leq \kappa$ and using reverse Easton supports we define \mathbb{R} . Let G be a \mathbb{R}_{κ} -generic over V, g be a $\mathbb{S}_{\kappa} = \dot{\mathbb{S}}_{\kappa}^G$ -generic over V[G], $G_k = G \cap \mathbb{R}_k$ and g_k be such that $G_{k+1} = G_k * g_k$ for all $k < \kappa$. Note that g_k is the characteristic function of some subset of S_k^0 of ρ^{++} . It is clear that S_k^0 as well as its complement meet all subsets of ρ_k^{++} of size ρ_k^{++} which appear in $V[G_k]$. Since \mathbb{R}_{k+1} has ρ_k^{++} -c.c., each ρ_k^{+} -closed unbounded in ρ_k^{++} subset $C \in V$ (the proof of [10, Lemma 22.25] works in this case as well), and hence S_k^0 as well as $\rho_k^{++} \setminus S_k^0$ are ρ_k^{+} -stationary

We could assume here that the domain of f is still $H(\kappa)^V$ and $a \in H(\kappa^{++})^V$, but this is irrelevant.

subsets of ρ_k^{++} in $V[G_{k+1}]$. The rest of our forcing is ρ_k^{+++} -closed, and hence S_k^0 and $\rho_k^{++} \setminus S_k^0$ remain ρ_k^{+} -stationary in V[G*g]. Let S^0 be such that g is the characteristic function of S^0 and $S^1 = \kappa^{++} \setminus S^0$. Again, S^0 and S^1 are κ^{+} -stationary subsets of κ^{++} in V[G*g].

 $j(\mathbb{R})$ is the iteration with reverse Easton supports of length $j(\kappa)+1$. A standard argument gives us that $j(\mathbb{R})_{\kappa}=\mathbb{R}_{\kappa}$, and hence G is $j(\mathbb{R})_{\kappa}$ -generic over M and $(H(\kappa)^{++})^{V[G]}=(H(\kappa)^{++})^{M[G]}$, see [6, Lemma 4.4]. From the above it follows that $Fn(\kappa^{++},2,\kappa^{++})^{V[G]}=Fn(\kappa^{++},2,\kappa^{++})^{M[G]}$, and therefore $\mathbb{R}=j(\mathbb{R})_{\kappa+1}$ and g is $Fn(\kappa^{++},2,\kappa^{++})$ -generic over M as well.

Suppose that there exists a $j(\mathbb{R})$ -generic filter $G' = G * g * H * h \in V[G * g]$ over M such that H is a $j(\mathbb{R})_{\kappa,j(\kappa)}$ -generic over M[G * g], h is $\mathbb{S}_{j(\kappa)} = j(\dot{\mathbb{S}}_{\kappa})^{G*g*H}$ -generic over M[G * g * H], and $j[G * g] \subset G'$. Then j can be extended to an elementary embedding $j' : V[G * g] \to M[G']$ such that j'(G * g) = G', see [5, Proposition 9.1]. Therefore $j'(S_k^0 : k \in \kappa)(\kappa) = S^0$. In addition, conditions (i) and (ii) hold by [5, Proposition 9.3]. Thus j', V' = V[G * g], and M' = M[H] are as required.

It suffices to note that such H and h exist: the construction of H is standard, see, e.g., fourth, fifth and sixth paragraphs of the proof of [6, Theorem 4.2]; the existence of h follows from the κ^+ -distributivity of \mathbb{Q}_{κ} by virtue of [5, Proposition 15.1], which implies that the subfilter h of $\mathbb{S}_{j(\kappa)}$ generated by j[g] is as required.

There is no loss of generality in assuming j=j', V=V', and M=M'. We define a forcing poset $\mathbb P$ as follows. Let $\mathbb P_0=\{\mathbf 1_0\}$. For $k\leq \kappa$ we denote by $\dot{\mathbb Q}_k$ a $\mathbb P_k$ -name for $ST_{S_k^0,S_k^1}{}^3$. Proceeding this way along all inaccessible cardinals $\leq \kappa$ and using reverse Easton supports we define $\mathbb P$. Observe that $\mathbb P_k$ has ρ_k^+ -c.c., and hence S_k^0, S_k^1 are still ρ_k^+ -stationary in $V^{\mathbb P_k}$. From the above and Theorem 28 we have that $V^{\mathbb P} \models \mathrm{cf}(Sym(\kappa)) = \kappa^{++}$. Thus it suffices to prove that κ is measurable in $V^{\mathbb P}$. In order to do this we shall extend j to an elementary embedding from $V^{\mathbb P}$ into $M^{j(\mathbb P)}$.

 $j(\mathbb{P})$ is an iteration of length $j(\kappa)+1$ in M with reverse Easton support. It is clear that $j(\mathbb{P})_{\kappa}=\mathbb{P}_{\kappa}$. Let G be a \mathbb{P}_{κ} -generic filter over V. Since M and V have the same $H(\kappa^{++})$ and $j\langle (S_{k}^{0},S_{k}^{1}):k\in\kappa\rangle(\kappa)=(S^{0},S^{1})$, we have $(\kappa^{++})^{M[G]}=(\kappa^{++})^{V[G]}$ (see [6, Lemma 4.4]) and $j(\mathbb{P})_{\kappa+1}=\mathbb{P}$. Note that $j(\mathbb{P})=j(\mathbb{P}_{\kappa})*j(\dot{\mathbb{Q}}_{\kappa})$. Let g be generic for $\dot{\mathbb{Q}}_{\kappa}^{G}$ over V[G]. We need to find a suitable $j(\mathbb{P})$ -generic filter over M in order to lift j to V[G*g]. The following claim is analogous to [1, Lemma 6.4].

Claim 31. If $x \in M[G]$ (resp. $x \in M[G*g]$), $x \in V[G]$ (resp. $x \in V[G*g]$), and $V[G] \models |x| \leq \kappa$ (resp. $V[G*g] \models |x| \leq \kappa$), then $x \in M[G]$ (resp. $x \in M[G*g]$).

Proof. We present the proof of the G * g part only. The other part is even simpler. Without loss of generality, x is a set of ordinals. Let \dot{x} be a \mathbb{P} -name such that $\dot{x}^{G*g} = x$. The κ -c.c. of \mathbb{P}_{κ} and Lemma 11(2) yield a set of ordinals $y \in V$ of size $|y| \leq \kappa$ in V and such that $\mathbb{P} \Vdash \dot{x} \subset y$. For every $\alpha \in y$ there exists a maximal antichain A_{α} of conditions $p \in \mathbb{P}$ such that $p \Vdash \alpha \in \dot{x}$ for every $p \in A_{\alpha}$. Applying Theorem 10, we conclude that $|A_{\alpha}| \leq \kappa^+$ for every $\alpha \in y$. It is clear that $\langle A_{\alpha} : \alpha \in y \rangle \in H(\kappa^{++})$, and hence $\langle A_{\alpha} : \alpha \in y \rangle \in (H(\kappa^{++}))^M$. It suffices to note that $x = \{\alpha \in D : G * g \cap A_{\alpha} \neq \emptyset\}$.

In the same way as in the proof of [6, Theorem 4.2] (using Claim 31 instead of [9, Lemma 3]) we can find a $j(\mathbb{P}) \upharpoonright (\kappa, j(\kappa))$ -generic filter $H \in V[G*g]$ over M[G*g]. Thus $j[G] = G \subset G*g*H$,

³Here $S^0_{\kappa} = S^0$ and $S^1_{\kappa} = S^1$. Note that $ST_{S^0_k, S^1_k}$ is an iteration again, which will be denoted $\langle \mathbb{P}^k_{\eta}, \dot{\mathbb{Q}}^k_{\xi} : \eta \leq \rho_k^{++}, \xi < \rho_k^{++} \rangle$.

and hence j lifts to an embedding $j^*: V[G] \to M[G * g * H]$ definable in V[G * g], see [5, Proposition 9.1]. Let M^* denote M[G * g * H].

We give Definition 32 and Claim 33 in full generality for any iteration of Miller and Sacks forcings.

Definition 32. Let ρ be a strongly inaccessible cardinal and γ be an ordinal, S^0, S^1 be disjoint sets such that $S^0 \cup S^1 = \gamma$, and $A = \langle A_\alpha : \alpha < \rho \rangle$ be a sequence of elements of ρ . Suppose that $\langle (p_{\alpha}, F_{\alpha}) : \alpha \in \rho \rangle$ is a generalized fusion sequence for $ST_{S^0, S^1, \vec{A}}$, $q = \wedge_{\alpha < \rho} p_{\alpha}$, and $i \in \rho$. We say that a function $\sigma: F \to \rho^{i+1}$ is i-properly situated on q (with respect to the fusion sequence $\langle (p_{\alpha}, F_{\alpha}) : \alpha \in \rho \rangle$, if $F_i \subset F$, σ lies on some $r \leq q$ such that $r \upharpoonright \xi \Vdash \sigma(\xi) \upharpoonright i \in \max \operatorname{Split}_i(q(\xi))$ for all $\xi \in F$, and $\sigma(\xi)(i) = i$ for all $\xi \in F \cap S^0$.

Claim 33. Let ρ , S^0 , S^1 , \vec{A} , $\langle (p_{\alpha}, F_{\alpha}) : \alpha \in \rho \rangle$, q, i be such as in Definition 32, $u \leq q$, $F,T \in [\gamma]^{<\rho}$ with $F \subset T$, and $C \subset \rho$ be a club. Then there exists $v \leq_{F,i} u$ satisfying the following conditions:

For every $\sigma: F \to \rho^{i+1}$ which lies on v and has the property $\sigma(i) = i$ for all $i \in F \cap S^0$, there exist $j \in C$ and $\pi : T \cup F_j \to \rho^{(j+1)}$ such that $\pi(\xi) \upharpoonright (i+1) = \sigma(\xi)$ for all $\xi \in F$, π lies on v, $v|\sigma = v|\pi$, and $v|\pi$ is a witness for π being j-properly situated on q with respect to $\langle (p_{\alpha}, F_{\alpha}) : \alpha \in \rho \rangle$.

Proof. Let us enumerate as $\{\sigma^{\zeta}: \zeta \in \eta\}$ all $\sigma: F \to \rho^{i+1}$ with the property $\sigma(\xi)(i) = i$ for all $\xi \in F \cap S^0$ and which lie on some $r \leq u$. Set $u_0 = u$ and suppose that for some $\zeta < \eta$ and all $\zeta' < \zeta$ we have already defined $u_{\zeta'} \in ST_{S^0,S^1,\vec{A}}$ such that $u_{\zeta'} \leq_{F,i} u_{\zeta''}$ for all $\zeta'' \leq \zeta' < \zeta$. If ζ is limit, we set $u_{\zeta} = \wedge_{\zeta' \in \zeta} u_{\zeta'}$.

Let us consider the case $\zeta = \zeta' + 1$. If there is no $r \leq u_{\zeta'}$ such that $\sigma^{\zeta'}$ lies on $r = r | \sigma^{\zeta'}$, then we set $u_{\zeta} = u_{\zeta'}$. Otherwise set $r_0^{\zeta'} = r$, $\sigma_0^{\zeta'} = \sigma^{\zeta'}$, and $F_{\alpha}^{\zeta'} = F_{\alpha} \bigcup T$. Repeating the same argument as in Claim 12, we can construct a sequence $\langle r_{\alpha}^{\xi'} : \alpha \in \rho \rangle$ of elements of $ST_{S^0,S^1,\vec{A}}$, a sequence $\langle \sigma_{\alpha}^{\zeta'} : F_{\alpha}^{\zeta'} \to \rho^{<\rho} | \alpha < \rho \rangle$, and sequences $\langle \mu_{\alpha,\xi}^{\zeta'}, \nu_{\alpha,\xi}^{\zeta'} : \alpha \in \rho, \xi \in F_{\alpha}^{\zeta'} \rangle$ of ordinals less than ρ fulfilling the items (i) - (v) of Claim 12. Claim 13 yields a club $C^{\zeta'} \subset \rho$ such that $\mu_{\alpha,\xi}^{\zeta'} = \nu_{\alpha,\xi}^{\zeta'} = \alpha$ and $\sigma_{\alpha}^{\zeta'}(\xi)(\mu_{\alpha,\xi}^{\zeta'}) = \alpha$ for every $\alpha \in C^{\zeta'}$ and $\xi \in F_{\alpha}^{\zeta'} \cap S^0$. Let us fix $j^{\zeta'} \in C^{\zeta'} \cap C$ and set $\pi^{\zeta'} = \sigma_{j\zeta'}^{\zeta'}$ and $r^{\zeta'} = r_{j\zeta'+1}^{\zeta'}$. By Claim 12(iii), (iv) we have $r^{\zeta'} | \pi^{\zeta'} = r^{\zeta'}$ and $r^{\zeta'}$ is a witness for $\pi^{\zeta'}$ being $j^{\zeta'}$ -properly situated on q. Now let u_{ζ} be the amalgamation of $u_{\zeta'}$ and $r^{\zeta'}$ defined as follows:

- (a) $\operatorname{supp}(u_{\zeta}) = \operatorname{supp}(r^{\zeta'}).$
- (b) If $\xi \in F$, then $u_{\zeta}(\xi)$ is such that

$$r^{\zeta'} \upharpoonright \xi \Vdash u_{\zeta}(\xi) = (u_{\zeta'}(\xi) \setminus u_{\zeta'}(\xi)_{\sigma^{\zeta'}(\xi)}) \bigcup r^{\zeta'}(\xi),$$

and for any condition $c \leq u_{\zeta} \upharpoonright \xi$ incompatible with $r^{\zeta'} \upharpoonright \xi$, $c \Vdash_{\xi} u_{\zeta}(\xi) = u_{\zeta'}(\xi)$. (c) if $\xi \not\in F$, then $u_{\zeta}(\xi)$ is such that $r^{\zeta'} \upharpoonright \xi \Vdash u_{\zeta}(\xi) = r^{\zeta'}(\xi)$, and for any condition $c \leq u_{\zeta} \upharpoonright \xi$ incompatible with $r^{\zeta'} \upharpoonright \xi$, $c \Vdash_{\xi} u_{\zeta}(\xi) = u_{\zeta'}(\xi)$.

By the definition of u_{ζ} we have

$$u_{\zeta}|\sigma^{\zeta'}=r^{\zeta'}=r^{\zeta'}|\pi^{\zeta'}=(u_{\zeta}|\sigma^{\zeta'})|\pi^{\zeta'}=u_{\zeta}|\pi^{\zeta'}$$

and $u_{\zeta} \leq_{F,i} u_{\zeta'}$.

We claim that $v = \wedge_{\zeta < \eta} u_{\zeta}$ is as required. Indeed, let $\sigma : F \to \rho^{i+1}$ be such as in the formulation. Since $v \leq u$, $\sigma = \sigma^{\zeta}$ for some $\zeta \in \eta$ and the construction of $u_{\zeta+1}$ is nontrivial.

From the above it follows that $v|\sigma \leq u_{\zeta}|\sigma^{\zeta} = u_{\zeta}|\pi^{\zeta}$, consequently π^{ζ} lies on v and $v|\sigma = v|\pi^{\zeta} \leq u_{\zeta}|\pi^{\zeta} = r^{\zeta}$. Now it is easy to see that $j = j^{\zeta}$ and $\pi = \pi^{\zeta}$ are a sa required.

Claim 34. Let ρ , S^0 , S^1 , and \vec{A} be such as in Definition 32, and $p \in ST_{S^0,S^1,\vec{A}}$. Then for every sequence $\langle D_{\alpha} : \alpha \in \rho \rangle$ of open dense subsets of $ST_{S^0,S^1,\vec{A}}$ there exists a generalized fusion sequence $\langle (p_{\alpha}, F_{\alpha}) : \alpha \in \rho \rangle$ with $p_0 = p$ and such that, letting $q = \wedge_{\alpha \in \rho} p_{\alpha}$, for every limit $i \in \rho$ and $\sigma : F_i \to \rho^{i+1}$ which is i-properly situated on q, σ lies on q and $q \mid \sigma \in D_i$.

Proof. Take $r_{\alpha,j} \in D_{\alpha}$ in the construction of a fusion sequence from the proof of Lemma 11 (the part before Claim 12) instead of demanding that $r_{\alpha,j}$ decides \dot{z} as a ground model object. The resulting fusion sequence is easily seen to be as required.

Let us come back to our main task, namely to extend j^* to an elementary embedding $j^{**}: V[G*g] \to M^*[h]$ for some $\mathbb{Q}_{j(\kappa)} := j^*(\dot{\mathbb{Q}}_{\kappa}^G) = ST_{j^*(S^0),j^*(S^1),j^*(\vec{N})}^{M^*}$ -generic filter h over M^* so that j^{**} is definable in V[G*g]. By [5, Proposition 9.1] it is enough to find such a $\mathbb{Q}_{j(\kappa)}$ -generic $h \in V[G*g]$ over M^* for which $j^*[g] \subset h$.

For every $\xi < \kappa^{++}$ we denote by $x(\xi) \in \kappa^{\kappa} \cap V[G * g]$ the (unique!) branch through all trees in $g(\xi)$ and let $a_{\xi} = \kappa$ (resp. $a_{\xi} = 0$) for all $\xi \in S^0$ (resp. $\xi \in S^1$). We claim that

$$h = \{j^*(p) | \sigma_I : p \in g, I \in M^*, I \subset j[\kappa^{++}], |I| = \kappa\},\$$

where $\sigma_I(j(\xi)) = x(\xi)^{\hat{}}a_{\xi}$ for all $j(\xi) \in I$, is $\mathbb{Q}_{j(\kappa)}$ -generic over M^* . Let $\bar{D} \in M^*$ be an open dense subset of $\mathbb{Q}_{j(\kappa)}$. Write \bar{D} as $j^*(f)(\bar{a})$, where f has domain $H(\kappa)^V$, $f \in V[G]$, and $a \in H(\kappa^{++})^V$. There is no loss of generality to assume that f(a) is dense in $\mathbb{Q}_{\kappa} := \mathbb{Q}_{\kappa}^G$ for all $a \in H(\kappa)^V$. Let us enumerate $H(\kappa)^V$ as $\langle a_k : k \in \kappa \rangle$ and set $D_k = \bigcap_{k' \leq k} f(a_{k'})$.

Let $p \in \mathbb{Q}_{\kappa}$ be arbitrary. Claim 34 yields a generalized fusion sequence $\langle (p_k, F_k) : k \in \kappa \rangle$ such that $p_0 = p$ and, letting $q = \wedge_{k \in \kappa} p_k$, for every limit $k \in \kappa$ and σ which is k-properly situated on q, σ lies on q and $q | \sigma \in D_k$.

Let $\langle F_{\bar{k}} : k \in j(\kappa) \rangle$ and $\langle \bar{p}_{\bar{k}} : k \in j(\kappa) \rangle$ be the results of applying j^* to $\langle F_k : k \in \kappa \rangle$ and $\langle p_k : k \in \kappa \rangle$ respectively. By elementarity of j^* , $\langle (\bar{p}_{\bar{k}}, \bar{F}_{\bar{k}}) : \bar{k} \in j(\kappa) \rangle$ is a generalized fusion sequence for $\mathbb{Q}_{j(\kappa)}$, $\bar{q} := j^*(q) = \wedge_{\bar{k} < j(\kappa)} \bar{p}_{\bar{k}}$, and there exists $\bar{\beta} \in j(\kappa)$ so that for each limit $\bar{\alpha} \geq \bar{\beta}$ and $\bar{\sigma}$ which is $\bar{\alpha}$ -properly situated on \bar{q} , $\bar{\sigma}$ lies on \bar{q} and $\bar{q}|\bar{\sigma} \in \bar{D}$. We can additionally assume that $\bar{\beta} > \kappa$.

Fix $u \leq q$ and a club $C \subset \kappa$ such that $j(C) \cap (\kappa, \bar{\beta}] = \emptyset$ (its existence is established, e.g., in the proof of [9, Lemma 4]). Using Claim 33, we can construct a fusion sequence $\langle (u_k, T_k) : k \in \kappa \rangle$ with $u_0 = u$ satisfying the following conditions:

- (i) $F_k \subset T_k$;
- (ii) For every $\sigma: T_k \to \kappa^{k+1}$ which lies on u_k and has the property $\sigma(k) = k$ for all $k \in T_k \cap S^0$, there exist a limit ordinal $m \in C \setminus (k+1)$ and $\pi: T_{k+1} \cup F_m \to \kappa^{(m+1)}$ such that $\pi(\xi) \upharpoonright (k+1) = \sigma(\xi)$ for all $\xi \in T_k$, π lies on u_{k+1} , $u_{k+1}|\sigma = u_{k+1}|\pi$, and $u_{k+1}|\pi$ is a witness for π being m-properly situated on q with respect to $\langle (p_k, F_k) : k \in \kappa \rangle$.

Let $\langle \bar{T}_{\bar{k}} : \bar{k} \in j(\kappa) \rangle$ and $\langle \bar{u}_{\bar{k}} : \bar{k} \in j(\kappa) \rangle$ be the results of applying j^* to $\langle T_k : k \in \kappa \rangle$ and $\langle u_k : k \in \kappa \rangle$ respectively, $v = \wedge_{k < \kappa} u_k$, and $\bar{v} = j^*(v) = \wedge_{\bar{k} < j(\kappa)} \bar{u}_{\bar{k}}$. By elementarity of j^* , for every $\bar{\sigma} : \bar{T}_{\kappa} \to j(\kappa)^{\kappa+1}$ which lies on \bar{u}_{κ} and has the property $\bar{\sigma}(\bar{\xi})(\kappa) = \kappa$ for all $\bar{\xi} \in \bar{T}_{\kappa} \cap j(S^0)$, there exist a limit ordinal $\bar{m} \in j(C) \setminus (\kappa+1)$ and $\bar{\pi} : \bar{T}_{\kappa+1} \cup \bar{F}_{\bar{m}} \to j(\kappa)^{(\bar{m}+1)}$ such that $\bar{\pi}(\bar{\xi}) \upharpoonright (\kappa+1) = \bar{\sigma}(\bar{\xi})$ for all $\bar{\xi} \in \bar{T}_{\kappa}$, $\bar{\pi}$ lies on $\bar{u}_{\kappa+1}$, $\bar{u}_{\kappa+1}|\bar{\sigma} = \bar{u}_{\kappa+1}|\bar{\pi}$, and $\bar{u}_{\kappa+1}|\bar{\sigma}$ is a witness for $\bar{\pi}$ being \bar{m} -properly situated on \bar{q} with respect to $\langle (\bar{p}_{\bar{k}}, \bar{F}_{\bar{k}}) : \bar{k} \in j(\kappa) \rangle$.

Since p and $u \leq q$ were chosen arbitrary, we can assume that $v \in g$. Observe that $\bar{T}_{\kappa} = \bigcup_{k \in \kappa} j[T_k] \subset j[\kappa^{++}], \ |\bar{T}_{\kappa}| = \kappa$, and $\bar{T}_{\kappa} \in M^*$. The elementarity of j^* implies that $\bar{\sigma} := \sigma_{\bar{T}_{\kappa}}$ lies on $j^*(w)$ for any $w \in g$. In particular, $\bar{\sigma}$ lies on $\bar{u}_k = j^*(u_k)$ for all $k \in \kappa$, and hence it lies on $\bar{u}_{\kappa} = \wedge_{k \in \kappa} \bar{u}_k$ as well. Therefore we can find $\bar{m} \in j(C) \setminus (\kappa+1)$ and $\bar{\pi} : \bar{T}_{\kappa+1} \cup \bar{F}_{\bar{m}} \to j(\kappa)^{(\bar{m}+1)}$ as above, i.e. $\bar{u}_{\kappa+1}|\bar{\sigma}$ is a witness for $\bar{\pi}$ being \bar{m} -properly situated on \bar{q} with respect to $\langle (\bar{p}_{\bar{k}}, \bar{F}_{\bar{k}}) : \bar{k} \in j(\kappa) \rangle$. By the construction of $\langle (p_k, F_k) : k \in \kappa \rangle$, elementarity of j^* , the equalities $j(C) \cap (\kappa, \bar{\beta}) = \emptyset$ and $\bar{m} \in j(C) \setminus (\kappa+1)$, and our choice of $\bar{\beta}$, we conclude that $\bar{\pi} \upharpoonright \bar{F}_{\bar{m}}$ lies on \bar{q} and $\bar{q}|(\bar{\pi} \upharpoonright \bar{F}_{\bar{m}}) \in \bar{D}$. On the other hand,

$$\bar{q}|(\bar{\pi} \upharpoonright \bar{F}_{\bar{m}}) \ge \bar{u}_{\kappa+1}|\bar{\pi} = \bar{u}_{\kappa+1}|\bar{\sigma} \ge \bar{v}|\bar{\sigma} = j^*(v)|\sigma_{\bar{T}_{\kappa}} \in h,$$

which means that $h \cap \bar{D} \neq \emptyset$ and thus finishes the proof of Theorem 1.

Remark 1.

1. To the best knowledge of the authors there are essentially three other different forcing extensions V^P of V which preserve the measurability of κ and kill the GCH at κ under the assumption that κ is $P_2\kappa$ -hypermeasurable, see [5, § 24], [9], and [6, § 4]. In all three cases we have $\operatorname{cf}(Sym(\kappa)) = \kappa^+$ in V^P . The historically first of them is due to Woodin [5, § 24]. His P can be written as $P_0 * P_1 * P_2$, where P_0 is iteration of Cohen posets below κ with reverse Easton support, and thus $|P_0| = \kappa$ and P_0 has κ -c.c.; P_1 is the poset adding κ^{++} -many Cohen subsets of κ , and P_2 adds no new subsets of κ . It is clear that $V^{P_0*P_1} \models \operatorname{cf}(Sym(\kappa)) = \kappa^+$ (see the last paragraph on [18, p. 894]), and every forcing which does not add new subsets of κ cannot enlarge $\operatorname{cf}(Sym(\kappa))$.

In forcing extensions constructed in [9] and [6] the equality $\mathfrak{d}(\kappa) = \kappa^+$ holds, and it is well-known (the proof of [17, Proposition 1.4] works for every regular κ) that $\mathrm{cf}(Sym(\kappa)) \leq \mathfrak{d}(\kappa)$ for every regular κ .

2. It is known [18] that the equality $\operatorname{cf}(Sym(\kappa)) = \kappa^{++}$ (and much more) is consistent for every inaccessible κ . But the authors were not able to lift elementary embeddings to forcing extensions used in [18]⁴ assuming considerably less than supercompactness. However, such possibility is not formally excluded. On the other hand, applying the methods developed in [8] to forcing extensions from [18] we could obtain the following result:

Suppose 0^{\sharp} exists. Then there is an inner model in which $\operatorname{cf}(\operatorname{Sym}(\kappa)) = \kappa^{++}$ for every regular cardinal κ of the form $\aleph_{2\alpha}$.

It is worth mentioning here that for every cardinal κ the inequality $\operatorname{cf}(Sym(\kappa)) > \kappa^+$ implies $\operatorname{cf}(Sym(\kappa^+)) \leq \operatorname{cf}(Sym(\kappa))$, and it is not known even how to obtain $\operatorname{cf}(Sym(\kappa)) > \kappa^+$ at two consecutive κ simultaneously, see [18].

3. In order to show that $j(\mathbb{P})_{\kappa+1} = \mathbb{P}$ in the proof of Theorem 1 we needed suitable stationary sets S^0, S^1 and $\langle S_k^0, S_k^1 : k \in \kappa \rangle$. Instead of using the auxiliary forcing introducing such sets we could apply the same inner model argument as in the proof of [7, Theorem 11].

References

- [1] Baumgartner, J.E., *Iterated forcing*, in: Surveys in set theory (A.R.D. Mathias ed.), London Math. Soc. Lecture Note Ser., 87, Cambridge Univ. Press, Cambridge, 1983, p. 1–59.
- [2] Blass, A.; Laflamme, C., Consistency results about filters and the number of inequivalent growth types, Journal of Symbolic Logic **54** (1989), 50–56.

⁴The forcing posets used in [18] were developed in [14, § 2,3]

- [3] Blass, A.; Shelah, S., There may be simple P_{\aleph_1} and P_{\aleph_2} points, and the Rudin-Keisler ordering may be downward directed, Annals of Pure and Applied Logic **33** (1987), 213–243.
- [4] Brendle, J.; Losada, M., The cofinality of the infinite symmetric group and groupwise density, Journal of Symbolic Logic 68 (2003), 1354–1361.
- [5] Cummings, J., Iterated forcing and elementary embeddings, in: **Handbook of Set Theory** (M. Foreman, A. Kanamori, and M. Magidor, eds.), Kluwer Academic Publishers, Dordrecht, to appear.
- [6] Dobrinen, N.; Friedman, S.D., The consistency strength of the tree property at the double successor of a measurable, preprint, May 2008.
- [7] Friedman, S.D., Magidor, M., The number of normal measures, Journal of Symbolic Logic, to appear.
- [8] Friedman, S.D.; Thompson, K., *Internal consistency for embedding complexity*, Journal of Symbolic Logic **73** (2008), 831-844.
- [9] Friedman, S.D.; Thompson, K., Perfect trees and elementary embeddings, Journal of Symbolic Logic 73 (2008), 906-918.
- [10] Jech, T., **Set theory.** The third millennium edition, revised and expanded. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. xiv+769 pp.
- [11] Kanamori, A., Perfect-set forcing for uncountable cardinals, Annals of Mathematical Logic 19 (1980), 97–114.
- [12] Kunen, K., **Set theory. An introduction to independence proofs.** Studies in Logic and the Foundations of Mathematics, 102. North-Holland Publishing Co., Amsterdam-New York, 1980. xvi+313 pp.
- [13] Macpherson, H.D.; Neumann, P.M., Subgroups of infinite symmetric groups, Journal of the London Mathematical Society (2) **42** (1990), p. 64–84.
- [14] Mekler, A.H.; Shelah, S., Uniformization principles, Journal of Symbolic Logic 54 (1989), 441–459.
- [15] Miller, A., Rational perfect set forcing, in: **Axiomatic Set Theory** (J. Baumgartner, D. A. Martin, S. Shelah, eds.), Contemporary Mathematics 31, American Mathematical Society, Providence, Rhode Island, 1984, pp.143–159.
- [16] Sharp, J.D.; Thomas, S., Uniformisation problems and the cofinality of the infinite symmetric group, Notre Dame Journal of Formal Logic **35** (1994), 328–345.
- [17] Sharp, J.D.; Thomas, S., Unbounded families and the cofinality of infinite symmetric group, Archive for Mathematical Logic **34** (1995), 33–45.
- [18] Sharp, J.D.; Thomas, S., Some questions concerning the cofinality of $Sym(\kappa)$, Journal of Symbolic Logic **60** (1995), 892–897.
- [19] Brown, E.T.; Groszek, M.J., *Uncountable superperfect forcing and minimality*, Annals of Pure and Applied Logic **144** (2006), 73–82.
- [20] Thomas, S., Groupwise density and the cofinality of the infinite symmetric group, Archive for Mathematical Logic **37** (1998), 483–493.

Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Währinger Strasse 25, A-1090 Vienna, Austria.

E-mail address: sdf@logic.univie.ac.at (Sy-David Friedman) lzdomsky@logic.univie.ac.at (Lyubomyr Zdomskyy)