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Abstract

We give a model theoretic proof that if there is a counterexample to Vaught’s conjecture there is a
counterexample such that every model of cardinality ℵ1 is maximal (strengthening a result of Hjorth’s).
We also give a new proof of Harrington’s theorem that any counterexample to Vaught’s conjecture has
models in ℵ1 of arbitrarily high Scott rank below ℵ2.

The three red herrings1 are false leads towards solving Vaught’s conjecture. Here is one strategy for
establishing Vaught’s conjecture that there is no sentence of Lω1,ω that has exactly ℵ1 countable models.
Hjorth [9, 8], using descriptive set theoretic results of Mackey and others, has established that if there is
a counterexample then there is one that has no model in ℵ2. On the other hand, unpublished results of
Harrington show that every counterexample has models with arbitrarily large Scott ranks below ℵ2. This
supports the notion that one might construct a model of an arbitrary counterexample that has cardinality ℵ2.
The resulting contradiction would yield the conjecture. In the introduction we give some background on the
conjecture and describe the three red herrings.

Recall that Vaught’s conjecture [19] concerns the number of countable models of a countable first-order
theory, or more generally, of a sentence in the infinitary logic Lω1ω , where countable conjunctions and dis-
junctions but only finite strings of quantifiers are allowed for some countable vocabulary τ . The conjecture
states:

Vaught Conjecture. If ϕ is a sentence of Lω1ω then ϕ either has countably many or continuum-many count-
able models up to isomorphism.

The more “absolute” version replaces “continuum-many” by “a perfect set of ” in the conclusion, where
a perfect set of countable models is a perfect set of reals, each of which codes a countable model, such that
distinct reals in the perfect set code non-isomorphic models. We say a sentence ϕ of Lω1ω is scattered if
it does not have a perfect set of countable models. Morley [20] defined scattered as: for every countable
∗Research partially supported by Simons travel grant G5402
†Research supported by FWF (Austrian Science Fund) Grant P24654-N25.
‡Research supported by the Austrian Science Fund (FWF) Lise Meitner Grant M1410-N25
§Partially supported by NSF grant DMS-1308546
1See http://en.wikipedia.org/wiki/Red_herring for a fairly comprehensive account of the meaning of the red

herring idiom.
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fragment F of Lω1ω only countably many F -types are realized in a model of ϕ. He proved that such a theory
has at most ℵ1-countable models and so is scattered as defined here. We note the converse in Lemma 3.4.
Even more, he showed that any sentence with fewer than 2ℵ0 countable models is scattered. Thus the
absolute version of Vaught’s conjecture states:

Absolute Vaught Conjecture. If ϕ is scattered then ϕ has only countably many countable models.
In this terminology a counterexample to Vaught’s conjecture is a sentence that is scattered and has models

of arbitrarily high countable Scott rank.
A τ -sentence φ of Lω1,ω is complete if for every τ -sentence ψ of Lω1,ω , φ ` ψ or φ ` ¬ψ. A variant

on Scott’s theorem shows every complete sentence is ℵ0-categorical. Clearly counterexamples to Vaught’s
conjecture are not complete.

We explore here in more detail complete sentences θ of Lω1,ω that characterize ℵ1 (have models in ℵ1
but no larger). We discuss three such examples due to Julia Knight [11], Laskowski-Shelah [16] and Hjorth
[9]. For the last two examples we show by variants on the Fraı̈ssé construction that there is a definable set
X of ‘absolute indiscernibles’: every permutation of X extends to an automorphism of the countable model
of θ. Such a set of ‘absolute indiscernibles’ imply θ can be ‘merged’ with any sentence ψ of Lω1,ω to create
a sentence which has no model in ℵ2 but whose countable models are essentially the same as those of ψ.
Hjorth showed that ifM is the countable model of his example, S∞ divides aut(M); he then applied a result
of descriptive set theory to obtain the absolute indiscernibles and thus that if there is a counterexample to
Vaught’s conjecture there is one with no model in ℵ2. Our model theoretic framework 2 for the construction
of absolute indiscernibles shows this detour through descriptive set theory is not needed.

It is well-known (see e.g. [2]) that the study of complete sentences φ in Lω1,ω can be reduced to the
study of atomic models of a first order theory Tφ with elementary embedding as the natural notion of em-
bedding. We will rely on this reduction and use whichever representation is more convenient. While a
related reduction holds for incomplete sentences it will not play a role here.

For any class of models of a sentence of Lω1,ω or more generally in any abstract elementary class there
is a fundamental relation between the extendibility of models in a cardinal κ and the existence of a model
in cardinality κ+. We fix some notation using the observation of the last paragraph to work for convenience
with atomic models of a first order theory.

Definition 0.1. M is an extendible atomic model in κ of Tφ if |M | = κ and there is a proper elementary
extension of M which is an atomic model Tφ. Equivalently, we say M is not maximal.

M is extendible with no cardinal parameter means extendible in |M |.

Note if φ is κ-categorical (i.e. complete if κ = ℵ0) then if there is an extendible model in κ there is a
model in κ+. We will give examples of sentences with no models in κ+ but both maximal and extendible
models in κ.

We note that in each of the central examples considered here, each model in ℵ1 is maximal. Thus to
establish Vaught’s conjecture it suffices to establish that any putative counterexample has a pair of atomic
models in ℵ1 one of which is a proper elementary extension3 of the other. Recall ([3]) that any counterexam-
ple to Vaught’s conjecture has a model in ℵ1; indeed, as we discuss below, conjecturally all have 2ℵ1 models
in ℵ1.

We provide another proof of the existence of models of arbitrary Scott rank below ℵ2 for any coun-
terexample to Vaught’s conjecture. Like Harrington’s argument, this proof yields information about the

2Ackerman [1] independently made the observation for the specific example.
3As we show in Section 2, ‘elementary’ embedding can be greatly reduced.
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definability complexity of the models but nothing about the embeddability relation. Thus we have identified
three red herrings: a) that descriptive set theory plays a central role in finding models with absolute indis-
cernibles, b) that the existence of a model in ℵ2 rather than the embeddability relation in ℵ1 is key and c)
that complexity of individual models without embeddability conditions is a sufficient tool.

The first and fourth authors would like to thank the European Science Foundation (ESF) for its support
through Infty short visit grants that allowed them to visit the other authors at the Kurt Gödel Research Center
(KGRC) in Vienna. During that visit, much of the presented work has been accomplished. In addition, all
authors acknowledge extremely helpful conversations with Tapani Hytinnen at the inception of the project
and with Dave Marker as he wrote up and presented the material for his Fall 2013 logic course [17].

1 Red Herring I: Set theory or model theory?
In the first subsection we avoid the use of descriptive set theory in [9] and give a model theoretic treatment for
finding models with absolute indiscernibles. In the second subsection we provide a procedure for combining
certain complete sentences of Lω1,ω with other (possibly incomplete) sentences. We then generalize Hjorth’s
argument to show that if there is a counterexample to Vaught’s conjecture, there is one with only maximal
models in ℵ1.

1.1 Some variants on the Fraı̈ssé construction
This section is a meditation on [9]. Hjorth used, in the context of a particular example, two important ex-
tensions of the method of Fraı̈ssé constructions. We will focus on the role of one of these two techniques:
exploiting the construction of Fraı̈ssé models in a given vocabulary. The second, considering Fraı̈ssé con-
structions over a given model, is expounded and extended in [25]. We set up a general framework which
gives a common description of salient features of [16, 8].

Notation 1.1. We will deal with a possibly infinite relational vocabulary τ .

We have formulated the material below with a submodel relation ≺K that might be other than substruc-
ture to emphasize that the arguments in this section apply in more generality. But in this paper≺K is always
substructure.

Definition 1.2. Let K be a countable collection K of finite structures that is closed under isomorphism.
For A,B ∈K we define A ≺K B if A ⊂ B.

In the constructions at hand, we want to construct models with functions but demand that the model
is locally finite. Following [8] we do this by formulating n-ary functions via n + 1-ary relation symbols
restricting our class K to those finite structures (neat for Hjorth) where these relations symbols define
functions. Thus, we generalize Fraı̈ssé by not requiring that the class K be closed under substructure.

Definition 1.3. K satisfies

1. Amalgamation: if for any A ∈ K and for B1, B2 ∈ K with A ≺K B1 and A ≺K B2 there is a
C ∈K with B1 ≺K C and B2 ≺K C.

2. Disjoint amalgamation: if for A ≺K B1, B2 ∈ K with B1 ∩ B2 = A, there are embeddings of B1

and B2 into a B3 ∈ K with a common restriction to A and the images of the maps intersect on the
image of A.
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The usual intuitions that ‘everything that can happen does’ cannot be expressed in the usual first order π2-
form here. This is because each structure in K fixes the algebraic closure of its elements. See Remark 2.16.

Definition 1.4. 1. The model M is finitely K-homogeneous or rich if for all A,B ∈ K, A ≺K
M,A ≺K B ∈K implies there exists B′ ≺K M such that B ∼=A B

′.

2. The model M is generic if M is rich and M is an increasing union of finite closed substructures.

Hjorth calls generic structures ‘full’. Of course, the following slight variant of the Fraı̈ssé theorem is
well-known.

Theorem 1.5. Any K as in Definition 1.2 which satisfies amalgamation and joint embedding and has ℵ0
members generates a unique countably infinite generic τ -structure. Thus, a countable generic structure
M is homogeneous in the sense that isomorphisms between finite substructures that are in K extend to
automorphisms of M .

We denote the Scott sentence of the generic by φK .

Definition 1.6. An infinite set I is a set of absolute indiscernibles in M if every permutation of I extends to
an automorphism of M .

Now we seek more control over τ -structures to find absolute indiscernibles, by doing a further Fraı̈ssé-
style construction in an expanded language. While in general we follow the modern convention of using the
same symbol for a model with all of its relations and the domain of that model, in cases where confusion
may ensue, we will write M for a structure with its relations and |M| for the domain; in context |M| may
mean the cardinality of the domain. If N is a unary predicate, N(M) denotes the interpretation of N inM.

Notation 1.7. For any vocabulary τ , τ̂ is obtained by adding a new unary predicate Q to τ .

Lemma 1.8. Let K be a τ -class that satisfies the hypotheses of Theorem 1.5 but with disjoint amalgamation.
Then the generic model is extendible.

Proof. Add a new unary predicate Q to τ to get τ̂ . Set K̂ as the set of finite τ̂ -structures A where
A�τ ∈ K and Q is an arbitrary subset of A. Note that K̂ has disjoint amalgamation since K does. (The
disjoint hypothesis is crucial here to obtain any sort of amalgamation in the expanded language and in fact
yields disjoint amalgamation in the expanded language.) If A ∈ K̂ satisfies Q(A) = A, then the τ reduct
is a member of K. Clearly any extension of a member of K can be expanded to K̂ by putting every new
element in Q. Thus ifM is a generic τ̂ -model there is a generic τ -modelN contained in Q(M) and the two
are isomorphic. 1.8

The result of Theorem 1.8 can also be achieved by filtering the generic M by finite members Ai of K
choosing another extension B1 of A0 and then inductively constructing Bi+1 as a disjoint amalgamation of
Ai and Bi over Ai−1.

The argument for Lemma 1.8 implies only that Q contains a model, not that it picks one out. As in
Lemma 1.8 we use disjoint amalgamation in 1) of the next proof to ensure the amalgamation of two diagrams
which have points in the ‘ears’ that are τ -isomorphic over the base but are in different fibers.

Notation 1.9. Fix a vocabulary τ . τ1 is obtained by adding new unary predicates U, V and a binary relation
symbol P . The sentence θ0 says U and V partition the universe and P is a projection of V onto U . IfM is
a τ1-structure satisfying θ0, we say it is a (κ, λ)-model if |V (M)| = κ and |U(M)| = λ.
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Theorem 1.10. Let K be a τ -class that satisfies the hypotheses of Theorem 1.5 but with disjoint amalga-
mation.

1. There is a countable generic τ1-structure M |= θ0 such that P defines a projection function p from
V (M) onto U(M), U(M) is a set of absolute indiscernibles inM and V (M)�τ is isomorphic to the
generic structure for K.

2. There is a proper elementary extensionM1 ofM with U(M) = U(M1).

3. There is a proper elementary extension M̂1 ofM with U(M)  U(M̂1).

Proof.

1. We require that the predicates U and V partition the universe and restrict the relations of τ to hold
only within the predicate V . We set K1 as the set of finite τ1-structures (V0, U0, P0) where V0�τ ∈K
and P0 is the graph of a partial function from V0 into U0.

To amalgamate, use disjoint amalgamation in the V -sort; extend the projection by the union of the
projections. If the disjoint amalgamation contains new points, project them arbitrarily to U . LetM be
the generic model for K1.

To see that U(M) is a set of absolute indiscernibles, consider a permutation σ of U(M). Let F be the
set of finite partial isomorphisms f between substructures (A,A′) ofM that are also in K1 and such
that f�U(A) = σ�U(A) . We now show F is a back and forth system. Given an f ∈ F with domain
and range a pair (A,A′), let A ≺K B ≺K M for some finite B ∈ K1. Let B0 = U(B) − U(A)
and define B′0 as σ(B0). Observe AB0 ∈K1.

Now AB0 ≺K1
B and AB0 ≈ A′B′0 by some g ∈ F so by genericity there is a B∗ ∈ K1 with

A′B′0 ≺K1
B∗ ≺K1

M with B∗ ≈ B by a map g1 extending g. This completes the forth argument;
the back is similar. The union of this back and forth system is an automorphism ofM extending σ.

2. Apply Lemma 1.8, considering the class K̂1 obtained by expanding τ1 to τ̂1 by adding Q.

3. Apply a slight variant on Lemma 1.8, considering the class K̂1 obtained by expanding τ1 to τ̂1 by
adding Q. Require that U(A) ⊂ Q(A) for each τ̂1 structure A ∈ K̂1. 1.5

As we have done the construction for 1), the reduct of V (M) to τ is a generic model for τ ; each fiber will
contain such a generic model but unless K is closed under substructures, some fibers will not be models of
the generic4. Moreover, if every K-generic model in ℵ1 is maximal, as in the Examples 2.5 and 2.7), each of
the elementary submodels of the τ -reduct of the (ℵ1,ℵ0) model is countable. Here is a further variant. Add
the requirement that each finite subset of each fiber is contained in a member of K contained in that fiber
and there are no relations across the fibers; each fiber will be a generic model but V (M) will not be. In the
cases considered in Section 2 the maximality of the models in ℵ1 (the fact that every formula is equivalent
to an existential formula), make it impossible to get both V (M) and the fibers to be models of the Scott
sentence. See page 12 of [8].

4The fibers are not the union of members of K since some members of K overlap several fibers
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1.2 Applications to Vaught’s conjecture
In this section we use the methods developed in Section 1.1 along with the existence of receptive sentences
that characterize ℵ1 to show there are counterexamples to Vaught’s conjecture that characterize ℵ1. In
Section 2, we explore the existence of such sentences. We employ the vocabulary τ1 with predicates, U, V, P
as in Notation 1.9 and look at models of θ0. Further we will consider a sentence ψ in a vocabulary τ ′; τ2
denotes τ1 ∪ τ ′.

Definition 1.11. Let θ be a complete τ1-sentence of Lω1,ω , U(x) a predicate, such that θ implies θ0 (from
Notation 1.9) and let ψ an arbitrary (possibly incomplete) τ ′-sentence of Lω1,ω .

• The merger χθ,U,ψ of the pair (θ, U) is the conjunction of θ and ψU (where the latter is the relativiza-
tion of ψ to the set defined by U ). Thus χθ,U,ψ is a τ2-sentence.

• If U defines an infinite absolutely indiscernible set in the countable model of θ, we call the pair (θ, U)
receptive. We call θ receptive if there is an U such that (θ, U) is receptive and in that case we also
call the countable model of θ a receptive model.

Below, we write I(χ, λ) to denote the number of models of an Lω1,ω-sentence χ in the cardinality λ.

Theorem 1.12. Let (θ, U) be receptive and ψ a sentence of Lω1,ω .

1. The merger χθ,U,ψ is a complete sentence if and only if ψ is complete.

2. There is a 1-1 isomorphism preserving function between isomorphism types of the countable models
of ψ and the isomorphism types of countable models of the merger χθ,U,ψ .

3. For every cardinal λ, I(χθ,U,ψ, λ) = max(I(θ, λ), I(ψ, λ)).

Proof. The first statement is a direct consequence of the assumption of receptiveness. To see 2., take
any countableM |= ψ, letM′ |= χθ,U,ψ be countable such that the set defined by N contains a copy ofM.
By absolute indiscernability of the set defined by U and the completeness of θ, the assignmentM 7→M′ is
well-defined and 1-1 on the isomorphism types. 1.12

It is well-known that any counterexample to Vaught’s conjecture must have an uncountable model [6].
In Section 2, we will (with the help of Theorem 1.5) find receptive pairs with a complete sentence that
characterizes ℵ1 and moreover (Examples 2.5 and 2.7) has only maximal models in ℵ1.

Corollary 1.13. Let θ be a complete sentence such that every model of cardinality ℵ1 is maximal and let
(θ, U) be receptive. If ψ is a counterexample to Vaught’s conjecture then the merger χθ,U,ψ is one as well,
which moreover has only maximal models in ℵ1 and so characterizes ℵ1.

To see that χθ,U,ψ has only maximal uncountable models, note that any extension of the receptive piece
must, because of the projection, also extend the model of θ but θ has only maximal models in ℵ1. We can
also get examples of sentences with no models in ℵ2 which have long strictly increasing sequences of models
in ℵ1; see Corollary 2.10

We discuss now a notion which plays a central role in [9] but has been replaced by model theoretic
arguments in our account.

Definition 1.14. S∞ divides the topological group H if there is a continuous homomorphism from a closed
subgroup of H onto S∞.
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RecallM denotes the structure (V,U) with the projection function from V onto U .

Corollary 1.15. 1. If X is a set of absolute indiscernibles in a modelM, then S∞ divides aut(M̂).

2. LetM be the structure built as in Theorem 1.5 and where M̂ is the relativized reduct ofM to M(M)

(so a τ -structure). Then, aut(M) projects onto S∞ and also S∞ divides aut(M̂).

Proof. 1. Each permutation ofX (thus S∞) extends to a member of aut(M) by the definition of absolute
indiscernibility and restriction maps aut(M) onto S∞.

2. Now, A1 = aut(M � M) is a closed subgroup of aut(M̂) and A1 projects onto S∞ by mapping
α̂ ∈ M̂ to α � N for any α ∈ aut(M) with α � N(M) = α̂. (The choice of α does not matter as α̂ respects
the equivalence relation induced by the projection p.) 1.15

Remark 1.16. Clearly, Knight’s example 2.4 does not have an infinite set of absolute indiscernibles since
the example is linearly ordered and so the automorphism group of any infinite subset is a proper subset of
S∞. This does not tell us that S∞ does not divide the automorphism group of Knight’s example. Hjorth [7]
shows the latter result by considering the topological Vaught conjecture.

The material Hjorth quotes from Becker-Kechris to justify the existence of absolute indiscernibles ap-
pears to imply: If S∞ divides aut(N) for some countable τ -structure N then it is possible to expand N to
a receptive τ2 structure. Is there a model theoretic proof of this proposition?

2 Red Herring II: ℵ1 or ℵ2?
In Subsection 1.1 and 1.2, we presented an abstract method to transfer from a counterexample to Vaught’s
conjecture to one with no model in ℵ2. In this section, we show the model theoretic methods of these
sections also allow the construction of receptive sentences characterizing ℵ1. Indeed all models in ℵ1 of
these sentences are maximal.

In fact, all known complete sentences of Lω1,ω that characterize ℵ1 are composed by trivial means from
three ur-examples (Knight, Laskowski-Shelah, Hjorth) which have no extendible model in ℵ1. In the ex-
amples non-extendibility will be much stronger. There will be no proper atomic Σ0

1-extension of M which
satisfies Tφ. We next establish the combinatorics behind this phenomena. This section has minimal connec-
tion with Vaught’s conjecture; rather, we give a fine analysis of how a complete sentence can characterize
ℵ1 and analyze the connections among the three examples.

As a side-note, we get:

Remark 2.1. A trivial trick shows: If there is a counterexample to Vaught’s conjecture σ and ψκ is a com-
plete sentence which characterizes κ, there is a counterexample to Vaught’s conjecture which characterizes
κ. Just take a disjoint union of a model of φκ and a model of the sentence χθ,φ,σ where (θ, φ) is receptive
and θ characterizes ℵ1.

We first identify a combinatorial principle that accounts for the maximality of the models in ℵ1 of the
Knight and Laskowski-Shelah examples. We write Pκ(X) for the collection of all subsets of X which have
cardinality < κ.

Definition 2.2. Let f : Pω(X) 7→ P(X). We say A ∈ Pω(X) is f -independent if for every A′ ⊆ A and
a ∈ A′, a 6∈ f(A′ − {a}).
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Lemma 2.3. For every k ∈ ω and for every ordinal α, if |X| = ℵα+k and f : Pω(X) → Pℵα+k
(X) then

X contains an f -independent set of size k + 1.

Proof. We prove this by induction on k. For k = 0 and |X| = ℵα, any element of X \ f(∅) suffices.
Suppose the result holds for k and consider a set X1 with |X1| = ℵα+k+1. Choose any subset Y0 of X1

with cardinality ℵα+k and close it under f (via ω-iterations) getting a set Y with |Y | = ℵα+k. Fix any
element a ∈ X1 \ Y . Define g on Pω(Y ): for A ∈ Pω(Y ), g(A) = f({a} ∪ A) ∩ Y . By induction, there
is a g-independent set B ⊂ Y of size k + 1 and thus B ∪ {a} is an f -independent set of size k + 2. (Note
f(a) = g(∅) which contains no element of the g-independent set B). 2.3

Our Lemma 2.3 just abstracts from the proof in [16] by weakening the requirement that f be a closure
operator. The proof of the lemma actually shows that if we know that for some X with |X| = ℵα+k and
f : Pω(X) → Pℵα(X), X does not contain an f -independent set of size k + 2, then no Y ⊂ X with
|Y | = |X| can be closed under f . In particular under these assumptions, if X is a model of an Lω1,ω-
sentence and f has the property that any submodel of X is closed under f , X can have no proper submodel
with the same cardinality.

In the two following examples, f will be closure under certain functions in the vocabulary of the sen-
tences, and the described combinatorics will imply that every proper submodel of a model in ℵ1 has to be
countable, or equivalently that no uncountable model will be extendible. This implies that, provably in ZFC,
the sentences characterize ℵ1.

Example 2.4 (Knight). In [11] Julia Knight constructed by an inspired ad hoc procedure a complete sentence
φK in Lω1,ω in the vocabulary containing < and unary functions gn (n < ω) such that if M |= φK , M is
linearly ordered by < and all predecessors of any a ∈ M are definable from a by some gn. So the order
is ℵ1-like. While, of course, it is evident that φK has no model in ℵ2, note that the result follows from
Lemma 2.3: f assigns to a finite set its closure under the gn (which is the smallest initial segment containing
it). The assigned sets are countable and there are no independent sets of size 2.

Example 2.5 (Laskowski-Shelah). In [16] Laskowski-Shelah constructed by a generalized Fraı̈ssé construc-
tion, that is easily seen to satisfy disjoint amalgamation, a complete sentence φLS in Lω1,ω whose countable
model is receptive. In this case, the function f for Lemma 2.3 is closure under certain functions which is
locally finite on models of φLS and the sentence implies that there is no f -independent set of cardinality 3.
Thus also this example has no proper pair of models in ℵ1.

Now we examine Hjorth’s example, which uses a different combinatorial principle. The following def-
inition is a special case of a notion introduced by Souldatos [24] in a detailed study of characterization of
cardinals.

Definition 2.6. A complete Lω1,ω sentence φ homogeneously characterizes ℵ1 if φ characterizes ℵ1 and the
countable model of φ contains an infinite set of absolute indiscernibles.

Example 2.7 (Hjorth). In [8] Hjorth constructed by a Fraı̈ssé construction two complete sentences, φH′ , φH
that each characterize ℵ1, but only the second provides a homogeneous characterization. Unlike Exam-
ples 2.4 and 2.5, one cannot explain the maximality by Lemma 2.3. There is no clearly identifiable closure
relation which has finite dimension.

We sketch this construction in the framework of Section 1.1. The vocabulary τ for H contains binary
relations Sn (n < ω) and k + 2-ary relations Tk(x0, x1, y0, . . . yk−1) (k < ω). The Sn are thought of as
colored edges (so disjoint).

We require that for any model M there is a function f : M2 7→ ω (which is not in the vocabulary) such
that
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1. for every pair a, b M |= Sf(a,b)(a, b) and

2. M |= Tk(a, b, c0, . . . , ck−1), exactly if {c0, . . . ck−1} is the set of points on which f(a, ∗) = f(b, ∗).

The class K is the class of finite structures F satisfying the conditions described and for any distinct
a, b ∈ F , the ci from condition 2. also belong to F . It is easy to check that this K has disjoint amalgamation
and joint embedding and so a generic model by Theorem 1.5. (In fact, one can disjointly amalgamate on the
union of the models in the amalgamation diagram.) There are only countably many elements in K because
the quantifier-free type of any element of K is determined by a finite subvocabulary.

Let H ′ be the generic model with Scott sentence φH′ . Clearly H ′ does not admit a set of indiscernibles.
(Any such set would have to be a complete graph for one Sn. But then, the local finiteness imposed by Tk
would be contradicted.)

To remedy this, we construct φH . Apply the construction of Theorem 1.10, adding the projection P and
the predicatesM andN . Since K forH ′ has disjoint amalgamation, Theorem 1.10 yields a generic receptive
model H with Scott-sentence φH . φH homogeneously characterizes ℵ1 and the proof of Theorem 1.15
shows that S∞ divides Aut(H ′) as well as Aut(H).

It is easy to see that φH does not satisfy amalgamation (for Σ0
1-extensions) in ℵ0. Fix ai (i < ω) in

a model M and note that there are consistent types over M of elements c, c′ such that for infinitely many
distinct ni we have Sni(ai, c), Sni(ai, c

′) but for some d ∈M the types and new m 6= m′ the types require
Sm(d, c), Sm′(d, c

′). This implies that the algebraic closure of c, c′ is infinite if they are distinct and lie in a
common model; but the closure of any pair of distinct elements is finite. So any amalgamation must identify
c and c′; the second condition forbids this identification.

Theorem 2.8. No uncountable model of either Hjorth example is extendible.

Suppose for contradiction that there were a pair of models of φH in ℵ1 withM1 a strict submodel ofM2.
Then fixing any c in M2−M1, note that for each n ∈ ω , there is at most one a ∈M1 such that f(a, c) = n.
But then M1 must be countable. 2.8

Recall Definition 1.9 of the two cardinal models in this context.

Lemma 2.9. Hjorth’s example φH has both (ℵ1,ℵ0) models and (ℵ1,ℵ1) models. No model of the first type
can be embedded in a model of the second type. Every extension of a countable model must extend each
fiber.

Proof. Let M0 be the countable model of φH . We obtain an (ℵ1,ℵ0) model by iterating the construction
in Theorem 1.10.2. For an (ℵ1,ℵ1) model, iterate Theorem 1.10.3 ℵ1 times, noting that the generic extension
of M0 both extends each fiber and adds fibers. The second assertion follows from our main result that no
model in ℵ1 can be a Σ0

1-extension of another. For the third, note that φH implies that for any three fibers
and any n there exist elements a, b, c in distinct fibers such that Sn(a, c) and Sn(b, c). This is impossible if
a, b are in a proper elementary submodel of a structure with c in a new fiber. Thus the extension we obtained
first in this proof must extend each fiber. 2.9

We can now provide the examples of sentences with no model in ℵ2 but for any β < ℵ2, chains of length
β of models in ℵ1. The construction in the example does not involve the Fraissé ideas except as input for
the model N . Thus the same argument shows abstractly that if there a sentence φ such that every model of
φ with cardinality κ is maximal then there is a sentence θφ such that for every ordinal β < κ+ there is an
increasing chain of models of θφ of length β whose last element is maximal.
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Example 2.10. Consider the vocabulary τ of any of the examples φ of Lω1,ω-sentences such that all un-
countable models are maximal, and form τ1 as in Notation 1.9. Let θ1 be the complete sentence that says

• θ0 (as defined in Notation 1.9), which expresses that P is a projection of V onto U

• U is a model of φ

• every P -fiber in V is a model of φ, and there are no τ -relations between fibers or between V and U

θ1 is a complete sentence that obviously characterizes ℵ1. For every β < ω2, there is an increasing, con-
tinuous chain of models of θ1 of length β: start with a model where U has size ℵ1 (which means U is
non-extendible), and where every P -fiber is countable. Now enumerate the fibers in order-type β and define
a chain (Mα|α < β) as follows. In limits take unions. Given some Mα, define Mα+1 from it such that
all fibers are unchanged, except for the α-th fiber which is properly extended (it does not even matter if it
stays countable or is made uncountable). Note that if we always extend to an uncountable model the final
structure is maximal.

Now we get a stronger conclusion about models in ℵ1 that holds for all three examples. Namely, there
are 2ℵ1 models in ℵ1. We show this follows from the fact all models are maximal. We need a definition and
theorem. The results are originally due to Shelah [21] but this proof is from [23] and our direct references
are to [2] where the results are formulated for abstract elementary classes. For simplicity we work with
atomic models of a first order theory and ≺ means elementary submodel. We want to identify two different
kinds of proper pairs of countable models.

Definition 2.11. Fix a first order theory T . (M,a,N) is a maximal triple if M ≺ N are atomic models of
T , a ∈ N \M and if for every pair of atomic models M ′ ≺ N ′ with M ≺ M ′, N ≺ N ′, if M 6= M ′ then
a ∈M ′.

Definition 2.12. M ≺ N is a cut-pair in λ if |M | = |N | = λ are atomic models and there exist atomic
models Ni for i < ω such that M ≺K Ni+1 ≺ Ni ≺ N with Ni+1 a proper elementary submodel of Ni
and

⋂
i<ω Ni = M .

The following is proved as Lemma 7.8 of [2].

Lemma 2.13. Suppose the class of atomic models of T is λ-categorical. If T has a cut-pair in cardinality λ
and it has a maximal triple in λ, then I(λ+,K) = 2λ

+

.

Theorem 7.4 of [2] implies that if a theory has no maximal triples in ℵ0, it has an extendible model in ℵ1.
This means that if every model in ℵ1 is maximal (as is the case in the three examples give above), a maximal
triple exists and since generally every complete sentence in Lω1,ω has a countable cut-pair, Lemma 2.13
implies:

Theorem 2.14. If a complete sentence φ of Lω1,ω has uncountable models but no uncountable model of φ
is extendible then φ has 2ℵ1 models in ℵ1.

Question 2.15. Is there a modelM′ in ℵ1 such that N(M′) is absolutely indiscernible inM?

Note that if N(M′) is absolutely indiscernible then the fibers must be isomorphic.
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Remark 2.16. Looking at these examples from a first order perspective leads to some misleading ideas of
how to distinguish them. Note that the first order theory of Knight’s example has the strict order property and
each of the Hjorth and Laskowski-Shelah examples has the independence property. But this is misleading.
In the latter cases, it is clear that the formula Sn(x, y) can arbitrarily partition an arbitrarily large finite set
of indiscernibles. But suppose there were an infinite set of points I such that for each X ⊂ I , there is an ax
such that for c ∈ I , Sn(ax, c) iff c ∈ X . Then each ax is in the (traditional) algebraic closure of I in the
model of the first order theory. But only countably many of the ax can appear in an atomic model.

3 Unbounded Scott Rank in ω2

In this section, we provide an account of Harrington’s result that a counterexample to Vaught’s conjecture
has models of size ℵ1 with Scott rank unbounded in ℵ2. Other accounts of the result are in [18], [17] and
[15], and we understand that very recently, Antonio Montalbán, Julia Knight and Noah Schweber have done
some still unpublished work implying it as well. Let us start with a reminder about some classical notions
and facts. For background see [10, 5, 4].

3.1 Scott rank and Morley analysis
We need to consider the notion of Scott rank in L∞,ω .

Definition 3.1. Let M be an L-structure and let a, b be n-tuples in M . By induction over the ordinal α, we
define the notion of α-equivalence of a and b, denoted by a ≡α b:

• a ≡0 b if a and b satisfy the same quantifier-free L-formulas.

• For limit α, a ≡α b if a ≡β b for all β < α

• a ≡α+1 b if

– for all c ∈M there exists some d ∈M such that ac ≡α bd and

– for all d ∈M there exists some c ∈M such that ac ≡α bd

The Scott rank of M is the minimal α such that α-equivalence implies (α+ 1)-equivalence for all tuples in
M .

Note that the relations ≡α are a refining sequence of equivalence relations and the Scott rank of a struc-
ture M is an ordinal of cardinality at most the cardinality of M .

Using the standard proof of Scott’s theorem one defines Θ(M,b,α)(x) (in L|α|+,ω) for any tuple b ∈ M
that are true of some a ∈M if and only if a ≡α b.

Consider the special case where b is the empty tuple and thus Θ(M,∅,α) is a sentence. This sentence
is unique up to the ordering of the conjunctions. In particular, it has a well-defined quantifier rank. An
L-structure N satisfies it if and only if we can realize back-and-forths of length α between M and N . A
simple induction shows that this is equivalent to M and N satisfying the same L∞,ω-sentences of quantifier
rank at most α. In this case, we say that M and N are α-equivalent and write M ≡α N .
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Definition 3.2. Let M be a countable L-structure of Scott rank α. The canonical Scott sentence σM of M
is the Lω1,ω-sentence:

Θ(M,∅,α) ∧
∧

a∈M<ω

∀x(φM,a,α(x)→ φM,a,α+1(x))

The sentence σM is true of exactly those structures that are back-and-forth equivalent toM . Since count-
able structures are back-and-forth equivalent if and only if they are isomorphic, σM describes completely
the isomorphism type of M and so axiomatizes a complete ℵ0-categorical L∞,ω theory.

Recall the definition of a scattered sentence given in the introduction. There is a more concrete and
useful way of defining that notion in terms of α-equivalence and Scott ranks.

Theorem 3.3. The following are equivalent:
(a) ϕ is scattered.
(b) For each countable α, there are only countably many α-equivalence classes of models of ϕ.
(c) For any countable α, there are only countably many models of ϕ of Scott rank less than α.

Proof sketch. By Silver’s theorem concerning Borel (even coanalytic) equivalence relations, for each α
the equivalence relation of α-equivalence (which is Borel for countable α) has either countably many or a
perfect set of equivalence classes. In the latter case we get a perfect set of non-isomorphic countable models
of T . So (a) implies (b). And (b) implies (c), as models of Scott rank less than α are isomorphic iff they
are α-equivalent. Now assume (c) and suppose that there were a perfect set of countable models of ϕ, given
by a perfectly splitting tree T . Let A be a countable transitive model of ZFC− (ZFC without the power
set axiom) containing codes for ϕ and T . Then we can form a perfectly splitting subtree T ∗ of T such that
every branch through T ∗ is Cohen-generic overA. But each branch x through T ∗ codes a model of ϕ whose
Scott sentence belongs to M [x] and therefore has Scott rank less than Ord(M [x]) = Ord(M), contradicting
(c). �

As there are only ω1 possible Scott ranks, it follows from (c) of the previous theorem that a scattered
theory has at most ω1 many countable models.

A countable fragment F ofLω1ω is a countable set of formulas inLω1ω containing all first-order formulas
and closed under subformulas, finite Boolean combinations, quantification and change of free variables. Of
course any countable set of formulas in Lω1ω is contained in a least countable fragment. An F -type is a set
of the form p(x) = {ψ(x) | ψ(x) ∈ F and M � ψ(m)}, for some model M and finite tuple m from M . We
say that p(x) is realized in M .

Lemma 3.4. Suppose that ϕ is scattered. Then for every countable fragment F containing ϕ, there are only
countably many F -types realized in models of ϕ.

Proof. Note that if p(x) is an F -type then the sentence that says that p(x) is realized has quantifier rank
at most the sup of the ranks of the formulas in F plus one. Let α bound the ranks of these sentences.
Then α-equivalent models realize the same F -types and therefore by 3.3(b), as ϕ is scattered, there are only
countably many F -types realized in models of ϕ. �

We now review the standard Morley analysis and explicitly constructing the tree of all theories appearing
in that analysis. Suppose that ϕ is scattered and choose a countable fragment F0 containing ϕ. Level 0 of
the Morley tree, denoted by T0, consists of all complete F0-theories containing ϕ, i.e., all sets of the form
{ψ | ψ is a sentence of F0 and M � ψ} for some model M of ϕ. There are only countably many such
theories as there are only countably many F0-types realized in models of ϕ.
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Now for each F0-type p(x) realized in a model of ϕ consider the formula ∧ψ(x)∈p(x)ψ(x) and let F1 be
the least fragment containing F0 as well as all of these formulas. As there are only countably many F0-types
realized in models of ϕ, F1 is a countable fragment. Now for each theory T in T0 we define the extensions
of T in T1, level 1 of T : If T is ℵ0-categorical, i.e., all of its countable models are isomorphic, then T is a
dead node and has no extensions in T1. Otherwise the extensions of T in T1 are the complete F1-theories
containing T . Again by scatteredness, there are only countably many such F1-theories.

Now suppose for some α < ω1, Fα and Tα has been constructed. Define level α + 1 of T by enlarging
the fragment Fα to the least fragment Fα+1 containing Fα and the conjunctions of the Fα-types realized
in models of ϕ and extend each theory T in Tα which is not ℵ0-categorical to the complete Fα+1 theories
containing T . For limits δ we let Fδ be the union of the fragments Fα, α < δ and let Tδ , the δ-th level of T
be the unions along paths cofinal through T<δ .

Now we connect the rank of the canonical Scott sentence of a model with height assigned by Morley’s
analysis.

Lemma 3.5. Let M |= ϕ be countable of Scott rank β. Then there is a sentence in the fragment Fβ+3 which
is equivalent to the canonical Scott sentence of M .

Proof. Fix some a ∈M and for any α, let ΨM,a,α(x) the conjunction of all Fα-formulas true of a in M . By
definition, ΨM,a,α(x) belongs to Fα+1. We show that ΨM,a,α(x) |= ΘM,a,α(x) by induction over α (for all
possible countable models M simultaneously). For α = 0 and α a limit ordinal, this follows immediately
from the definitions. Now suppose we know that ΨM,a,α(x) |= ΘM,a,α(x). Let N be any countable model
and let b ∈ N satisfy ΨM,a,α+1(x). We want to verify N |= ΘM,a,α+1(b). By definition,

ΘM,a,α+1(x) ≡ ∀y
∨
c∈M

ΘM,ac,α(x, y) ∧
∧
c∈M
∃yΘM,ac,α(x, y)

and by induction, it will be enough to show that b satisfies both conjuncts with the occurrences of Θ replaced
with Ψ.

To see that N |= ∀y
∨
c∈M

ΨM,ac,α(b, y), take any d ∈ N (for y) and find a corresponding c ∈ M which

makes this statement true. If pα(x, y) is the Fα-type of (b, d) in N , the formula ψ(x) ≡ ∃ypα(x, y) belongs
to the Fα+1-type of b in N and thus also to the Fα+1-type of a in M (since we assume N |= ΨM,a,α+1(b)).
Any witness c ∈ M for y in of ψ(a) will be such that N |= ΨM,ac,α(b, d). The argument for the second
conjunct is similar. This finishes the induction.

Recall that if α is at least the Scott rank of M , the formula ΘM,a,α(x) expresses back-and-forth equivalence
with (M,a) and thus isolates the complete L∞,ω-type of a in M . Thus for α at least that large, the formulas
ΘM,a,α(x) and ΨM,a,α(x) are in fact equivalent. Therefore, using Ψ in place of Θ gives a sentence equiv-
alent to the canonical Scott sentence of M . By carefully examining the definition of the canonical Scott
sentence, we will find an equivalent of it in Fβ+3, where β is the Scott rank of M . �3.5

Note that the bound β+ 3, where β is the Scott rank of M is not optimal. For example, any countable model
of the first order theory of a successor function (using a single binary relation) has Scott rank ω but is already
ℵ0-categorical in its F1-theory.

Proposition 3.6. (a) For each limit δ < ω1, each node T of Tδ is a satisfiable (Fδ-complete) theory.
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(b) Each theory appearing in the Morley tree is an atomic theory, i.e. if T lies in the fragment F then each
F -formula which is T -consistent is implied by a formula which is T -complete. Equivalently, T has a
model which realizes only principal types of the theory T .

(c) Suppose that T lies on level α of the Morley tree and α is a limit ordinal. Then any model of T has Scott
rank at least α.

(d) Every countable model M of ϕ is the unique model of some theory on a terminal node of the Morley
tree of ϕ.

(e) ϕ is a counterexample to the (absolute) Vaught conjecture iff T has uncountable height.

Proof. (a) A model of it can be constructed as the union of a chain (Mαi |i < ω), where (αi|i < ω) is cofinal
in δ, Mαi is the prime model of T � Fαi , and Mαi is Fαi -elementary embedded into Mαi+1 for all i < ω.
(b) This is simply because T has only countably many types. If some T -consistent formula were not implied
by any T -complete formula then we could build a perfect tree of distinct types for T .
(c) Let M be a countable model of T and suppose it has Scott rank β < α. By Lemma 3.5, the theory of M
in the fragment Fβ+3 is ℵ0-categorical, so there can be no successor of it on level β + 4, and even less on
level α, contradicting our assumption that T is on level α
(d) Given a countable model M and α < ω1, let Thα(M) be the complete Fα-theory ofM . With increasing
α, the Thα(M) form a path through the Morley tree which terminates at a countable level by (c), ending
with a node at some level α that makes Thα(M) ℵ0-categorical.
(e) Since all levels of the Morley-tree are countable, this follows immediately from (d). �3.6

Remark 3.7. We make essential use of the countability of δ in proving part (a). If we take the union of
theories along an uncountable path, we cannot guarantee satifiability by the above argument because we
would have to pass countable limit stages δ where we cannot be sure that the union would be the prime-model
at level δ.

3.2 The generic and extended Morley trees
Is it possible to extend the construction of the Morley tree beyond ω1? We can form the union Tω1

of an
ω1-branch (Ti|i < ω1) through the Morley tree, but it is no longer clear that this theory has a model. But
let’s use a bit of set theory.

Definition 3.8 (The Generic Morley tree). Enlarge the universe V by making the ω1 of V countable, with a
standard Lévy collapse to a forcing extension V ∗ = V [G]. Now as the scatteredness of ϕ is absolute (it is
Π1

2) we can build T ∗ for ϕ in V ∗.
This tree will have height ωV

∗

1 , the ω2 of V , again by absoluteness (the statement that T has uncountable
height is again Π1

2). We will call this tree the generic Morley tree.

Theorem 3.10 implies that the generic Morley tree is independent of the choice of the generic G used to
define V ∗.

One crucial point is that T ∗ does in fact belong to V . We will now construct in V a sequence of Lω2,ω-
fragments F̃α of size at most ℵ1 and a tree T̃ of height ℵ2 of theories in these fragments and later show that
this tree coincides with T ∗.
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Definition 3.9 (Extended Morley Tree). Let P be the set of all finite partial functions from ω to ω1, ordered
by reverse inclusion. We define simultaneously fragments F̃α ⊂ Lω2,ω and collections T̃α of F̃α-theories by
induction over α < ω2:

• Let F̃0 = F0, the same countable fragment containing φ that we used for the standard Morley tree at
level zero.

• Given F̃α, let T̃α be the collection of all sets A ⊂ F̃α such that

– φ ∈ A
– there is some p ∈ P with p 
 “A is a satisfiable, F̃α-complete theory and no A � F̃β is ℵ0-

categorical for β < α”

• Given T̃α, define F̃α+1 as the smallest Lω1,ω-fragment containing F̃α and all formulas of the form
∧
t

where for some p ∈ P, p 
 “t is a complete F̃α-type (over the empty set) realized in a model of φ”.

• if α is a limit ordinal, let F̃α be the union of all F̃β for β < α.

Finally we set T̃ =
⋃

α<ω2

T̃α and call it the extended Morley tree.

Recall that the generic Morley tree T ∗ is defined as the (standard) Morley tree in a generic extension V ∗ of
the universe V obtained by forcing with P. We will write F ∗α for the α-th fragment of the standard Morley
tree from the point of view of V ∗.

Theorem 3.10. T̃ equals the generic Morley tree T ∗. In particular, T ∗ is an element of V . Moreover, T̃
contains T (the standard Morley tree in V ) as an initial segment.

Proof. First we show that if F ∗α belongs to V then any T ∈ T ∗ on level α does too. Suppose not and let
T ∈ T ∗ be a counterexample and Ṫ be a name for it in V . In particular, no element of P decides exactly what
formulas belong to Ṫ and which do not, which will allow us to build a perfect tree of forcing-conditions,
whose paths each force a different interpretation of Ṫ . For that, letB be a countable elementary submodel of
some transitive A |= ZFC− such that B contains P, φ, Ṫ and F ∗α as elements. We construct the tree inside
the (Mostowski-) collapse B of B in such a way that those perfectly many paths f are each contained in a
filter Gf ∈ V which is P-generic over B, where P is the image of P under collapse (i.e. we make sure each
path hits the countably many P-dense sets of B). Since B knows that Ṫ is forced to be satisfiable (due to its
belonging to T ∗), it follows that Ṫ (the image of Ṫ under collapse) is forced to be satisfiable and we find a
model Mf of Tf , the interpretation of Ṫ given by Gf , in B[Gf ] ⊂ V . Also, the sentence φ belongs to Tf as
it is not moved under collapse (due to its countability). But by the absoluteness of the satisfaction-relation,
all those models (from B[Gf ]’s point of view) are also models from V ’s point of view. So we have found a
perfect set of models of φ in V , contradicting scatteredness.

Now we show by induction over α that T̃α and T ∗α , as well as the corresponding fragments, and F̃α and F ∗α ,
coincide. The limit stages are immediate by taking unions.

We begin by showing that if the fragments F̃α and F ∗α at some level α = β+1 < ω2 coincide, then T̃α = T ∗α .
Let T ∈ T̃α. By definition, there is some p ∈ P that forces that T is a complete (for F̃α), satisfiable theory,
not categorical in any preceding fragment. Now using homogeneity of P (see e.g. [14], exercise (E1), pp.
244, 245), there is also some q in the generic filter used to define V ∗ that forces these properties, so they
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are true in V ∗, which means that T satisfies in V ∗ the properties required to belong to T ∗α . Conversely, if
T ∈ T ∗α , this means that it is complete (for F ∗α) and satisfiable and not categorical in any earlier fragment.
Thus there must be some forcing-condition p ∈ P forcing these properties. By the first argument in this
proof, T is known to be an object in V , and p witnesses that it belongs to T̃α.

To complete the induction step, we have to show that the fragments at level α + 1 coincide, now knowing
that T̃α = T ∗α . This follows from the fact that all (fragment-) types realized in V ∗ in models of theories in
T ∗ belong already to V , which is true by the same argument as in the beginning of this proof, applied to
names of types ṗ rather than names of theories Ṫ .

For the moreover-part, we simply observe that the fragments and theories in question are already countable
in V , and thus we have absoluteness of satisfiability of the theories, as well as prime-models in V , which
gives us, for α < ωV1 , precisely the same theories we have on the standard Morley-tree in V . �3.10

From the construction of the generic Morley tree, we use the following property of any T in the generic
Morley tree.

Definition 3.11. Let F be an Lω2,ω-fragment of size at most ℵ1 and T a collection of F -sentences. T is
generically F -atomic if in V ∗, T is a satisfiable F -atomic Lω1,ω-theory

Immediately from Theorem 3.10 we have:

Lemma 3.12. In V , for any α < ω2, any theory T ∈ T̃α is generically Fα-atomic.

As in the proof of Theorem 3.10, this means there is some p ∈ P that forces “Ṫ is a complete (for Ḟα),
satisfiable, theory that is Ḟα-atomic”. This fact is key in the proof of Lemma 3.23.

3.3 Direct limits of fragments, theories and models
Our goal in this section is to show:

Theorem 3.13 (Model Existence theorem). If T is a theory on T̃ = T ∗ then T has a model.

The proof of this theorem will be immediate from Lemmas 3.21 and 3.23.
To prove these lemmas we need some further machinery. We begin with some standard notions.
We consider here directed systems indexed by ordinals. Recall that a directed system of sets, indexed by

an ordinal α consists of (Xi, fij) where for each i < j < k < α, the Xi’s are sets, fij : Xi → Xj , and
satisfy fii = id and fik = fjk ◦ fij .

Given any directed system (Xi, fij), we denote the direct limit by X∗. Additionally, for each i < α, we
let fi : Xi → X∗ denote the canonical map.

Definition 3.14. We say that a directed system (Xi, fij) indexed by α is continuous if, for all non-zero, limit
ordinals β < α, we have Xβ equal to the direct limit of (Xi, fij)i<β and, for each i < β, the canonical map
fi is equal to fiβ .

Consider the theory T ∗α in the fragment F ∗α . This proof is uniform in α so we write T for T ∗α and F for
F ∗α . We will construct the model of T using the following directed system.
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Definition 3.15. Let A be a transitive model of ZFC− of size ω1 which contains T , F , each τ -symbol, and
φ as elements. Let (Ai | i < ω1) be a continuous increasing chain of countable elementary submodels of A
such that T , F , each τ -symbol and φ are elements ofA0. For each i < ω1 let pi : Ai → Ai be the Mostowski
collapse of Ai. If i < j, we have an elementary embedding πij : Ai → Aj given by πij = pj ◦ p−1i .

To motivate the next set of definitions and arguments let us examine what happens to an F -formula∧
x∈X χx where each χx ∈ F and |X| = ℵ1. First note that each χx is in some Ai. But some χx

may themselves be uncountable conjunctions and then some of the conjuncts will be missing from Ai (and
so from Ai). So while each πij is the identity on Lω,ω(τ) an infinite conjunction (disjunction) will gain
elements as we pass from Ai to Aj . This is the case of clause 3 in Definition 3.16.

In the following we consider fragments Fα in vocabularies τα. In the first order application of the
construction, the Fα will always Lω,ω and the vocabularies will vary. In the application to Harrington’s
theorem, the vocabulary is fixed but the fragments grow.

Definition 3.16. A directed system of fragments is a continuous directed system (Fi, πij) where for i < ω1

each Fi is a countable fragment of L∞,ω(τi) and the maps πij satisfy the following for each i < j < ω1:

• πij is the identity on atomic formulas;

• πij commutes with each of ¬,∧,∨,∃; and

• for each θ(x) ∈ Fi,

– θ and πij(θ) have the same free variables;

– θ is a disjunction (conjunction) if and only if πij(θ) is a disjunction (conjunction); and

– φ is a disjunct (conjunct) of θ if and only if πij(φ) is a disjunct (conjunct) of πij(θ).

Fact 3.17. Any continuous directed system (Fi, πij) for i, j < β has a limit which is a fragment F ∗ of
L∞,ω(τ∗) (where τ∗ is the union of the τα).

That is, for each i < β there is an πi : Fi → F ∗ such that for any i < j and φ ∈ Fi, πi(ψ) = πj(πij(φ).

Definition 3.18. Suppose that (Fi, πij : i < β) is a continuous directed system of countable fragments of
length ω1 and that for each i, Mi is an τi-structure.

1. A mapping σij : Mi →Mj is πij-elementary if, for all θ(x) ∈ Fi and all a ∈M lg(x)
i ,

Mi |= θ(a) if and only if Mj |= πij(θ)(σij(a)).

2. (Fi, πij ,Mi, σij) is directed system of fragments and models is a pair of a directed system of fragments
(Fi, πij) and a directed system of τi-structures (σij) such that for each i < j, σij is πij-elementary.

The following is evident from the definition of direct limit.

Lemma 3.19. Suppose (Fi, πij ,Mi, σij) is directed system of fragments and models. There is a direct limit
(F ∗, πi,M

∗, σi), where σi is a τi embedding such that:

1. σi = σjσij for i < j < β.

2. Every element of M∗ is in the image of σi for all sufficiently large i < β.
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3. For ψ ∈ Fi and a ∈Mi,

Mi |= ψ(a)⇔M∗ |= πi(ψ)(σi(a))

Definition 3.20. The directed system (Fi, πij ,Mi, σij : i < β) is atomic if each Mi is an Fi atomic model
and a formula θ(v) ∈ Fi is Fi-complete if and only if πij(θ(v)) ∈ Fj is Fj-complete.

We check a crucial point.

Lemma 3.21. Suppose (Fi, πij ,Mi, σij : i < β) is an atomic directed system. Then M∗ is atomic and
θ(v) ∈ Fi is Fi-complete if and only if πi(θ(v)) ∈ F ∗ is F ∗-complete.

Proof. If θ(v) ∈ Fi is not Fi-complete then since πi preserves finite boolean operations πi(θ(v)) ∈ F ∗
is not F ∗-complete by taking the image of the witness to incompleteness. Conversely, suppose θ(v) ∈ Fi is
Fi-complete, and χ ∈ F ∗. For some j > i and some ψ ∈ Fj , πj(ψ) = χ. Since πij(θ) is complete,

Mj |= (∀v)πij(θ)(v)→ ψ(v) or Mj |= (∀v)πij(θ)(v)→ ¬ψ(v).

Without loss of generality assume the first holds. Then

M∗ |= (∀v)πi(θ)(v)→ χ(v)

as required. 3.21

This method gives a new proof of a result obtained independently by Knight [12], Kueker [13] and
Shelah [22] (in “Various results”, chapter IV).

Corollary 3.22. Suppose T is a complete first order theory in a vocabulary τ of cardinality ℵ1. Then T has
an atomic model in ℵ1.

First, well order the symbols of τ as a sequence with order type ω1. For each i < ω1, let τi contain those
symbols that appear within the first i on the list. And let Fi be Lω,ω(τi). Since the isolated types are dense,
for every τ -formula φ that is consistent with T , there is a complete formula ψ such that T + ψ ` φ. It is
easily seen that the set

C = {i < ω1 : for every consistent Fi-formula, there is a complete ψ ∈ Fi}

is club in ω1. Thus, by reindexing, we may assume that our original listing has this feature. Now take
πi,j = id for all i < j < ω1. Put Ti := T ∩ Fi. Because of our reindexing, each Ti is a countable theory
for which the isolated types are dense, so we can choose a countable, atomic Mi |= Ti. The existence of an
atomic model M∗ of T with cardinality ℵ1 follows immediately from Theorem 3.21. 3.22

And now we show this machinery can be applied to theories on the extended Morley tree.

Lemma 3.23. Let F be a fragment of Lω2,ω with cardinality ℵ1 and suppose the F -complete theory T is
generically atomic. Then there is a directed system (Fi, Ti, πij) : i < ω1) where Ti is a theory in the
fragment Fi such that the direct limit of (Fi, Ti, πij) : i < ω1) is (F, T ).

Further, for each i, Ti is an atomic theory so has an atomic model Mi and an embedding σij into Mj so
(Fi, πij ,Mi, σij : i < β) is an atomic directed system and the limit of (Mi, σij : i < ω1) is a model of T of
cardinality ℵ1.
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Proof. Recall from Definition 3.15 that we have constructed a filtration (Ai | i < ω1) of a transitive
model of ZFC− of size ω1. Each of T , F and each τ -symbol, and φ are elements of the initial modelA0. For
each i < ω1, let pi : Ai → Ai be the Mostowski collapse of Ai. If i < j, we have an elementary embedding
πij : Ai → Aj given by πij = pj ◦ p−1i .

The verification that (Fi, πij : i, j < ω1) is a direct limit of fragments is routine. Suppose for example
that θ =

∧
x∈X χx ∈ Fi. The assertion that θ is a conjunction is clearly preserved by elementary embedding.

Now Ai |= χx ∈ X for each x ∈ pi(X ∩ Ai) so since πi,j is an elementary embedding Aj |= πi,j(χx) ∈
πi,j(X) (i.e. πi,j(χx) is conjunct of πi,j(θ) for each x ∈ pi(X ∩Ai).

Let Ti = pi(T ) ∈ Ai. We have assumed that T is a generically atomic F -theory; by the definability of
forcing this property is preserved by elementary equivalence (in set theory) so for each i, Ti is generically
atomic in Ai. Since Ai is countable we can build (in V) an Ai-generic G for PAi . In Ai[G], Ti is an atomic
theory with an atomic model Mi. But Mi was built in V . Let σij : Mi →Mj . (σij exists as Tj extends the
complete atomic Fi-theory Ti.) Since πij is elementary

Mi |= θ(a) if and only if Mj |= πij(θ)(σij(a)).

Similarly, for any ψ ∈ Fi, ψ ∈ Ti if and only πij(ψ) ∈ Tj . Crucially, since being an atom is elementary,
if θ ∈ Fi is an Fi-atom in Ti, then πij(θ) is not only an Fi atom but an Fj-atom in Tj . (This is because
F ∈ A0 is coextensive with Fi in Ai and Fj in Aj .) Thus (Fi, πij ,Mi, σij) is an atomic directed system. By
Lemma 3.21, there is a direct limit M∗ which is an atomic model of T ∗ = T . 3.23

3.4 Conclusion: Harrington’s theorem
Theorem 3.24 (Harrington). If φ is counterexample to Vaught’s conjecture then φ has models of Scott rank
α for arbitrarily large α < ω2.

Proof. For any α < ω2, choose a theory Tα of height α on the generic Morley tree. By Lemma 3.12, Tα
is generically atomic. By Lemma 3.23, T has a model of cardinality ℵ1. And Lemma 3.5 shows that every
model of Tα has Scott rank at least α. 3.24

We conclude with two questions.
The first is highly unlikely. Can the proof of Theorem 3.24 be modified to construct two models in ℵ1,

one properly contained in the other? We say unlikely because by the the results of the first two sections this
would imply Vaught’s conjecture.

The second is more plausible. Baldwin [3] observed that deep results of Shelah yield that any first order
counterexample to Vaught’s conjecture has 2ℵ1 models in ℵ1. We have just shown anyLω1,ω counterexample
to Vaught’s conjecture has ℵ2 models in ℵ1. Can this be extended to 2ℵ1?
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