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Abstract. We consider the behavior of the stationary reflection property

RP(κ ∩ cof(ℵn)) across the class of all cardinals and prove that it has only

trivial ZFC constraints.

In this paper we will examine the global behavior of stationary reflection. A
stationary subset S ⊆ δ reflects if there is some ordinal α < δ of uncountable
cofinality such that S∩α is a stationary subset of α. Stationary reflection is a basic
notion of compactness that is studied widely in the set-theoretic literature because
it serves to distinguish inner models like Gödel’s Constructible Universe L from
models containing very large cardinals. The question of whether a given cardinal
δ has a stationary subset is known to be independent of ZFC. For example, if κ is
weakly compact, then every statioanry subuset of κ reflects, but if κ is a successor
cardinal in L, then every stationary subset of κ has a non-reflecting stationary
subset.

Our project here is to prove an Easton-style result for stationary reflection across
the class of all cardinals: we show that, given a fixed cofinality λ, the existence of
a non-reflecting stationary subset of κ ∩ cof(λ) does not depend on the existence
of non-reflecting stationary subsets of µ ∩ cof(λ) for µ < κ as long as κ is regular.
In other words, there is no Silver’s Theorem for stationary reflection at a fixed
cofinality. For the sake of exposition we prove our result for the fixed cofinalities
ℵn for n < ω because a result of Shelah allows us to handle the approachability
ideal in a convenient manner. However, we believe that our methods will generalize
to any fixed cofinality.

The naive approach of simply forcing non-reflecting stationary sets wherever de-
sired does not work, because we risk adding unintended non-reflecting sets. Hence,
our work here will be of interest in part because of the methods we use in order to
surmount this obstacle. First, the class forcing that we employ is a hybrid between
iterated forcing and product forcing in the sense that the forcing at a particu-
lar stage depends on the prior stages, while at the same time the forcing can be
factored as a product of successors of regular cardinals. Second, we make use of
PCF-theoretic ideas by introducing Easton-supported scales on wide products and
exploiting the good points of these scales. (The hybrid notion resembles a tech-
nique of Cummings and Shelah, but our presentation is quite different because of
the scales that we use [5].) The good points allow us to restore stationary reflec-
tion when necessary. The techniques that we introduce with these scales should be
applicable to further results.

Set theorists have long been interested in the global phenomena. The most
notable example is Easton’s result that He proved that the continuum function
κ 7→ 2κ is constrained only by monotonicity and König’s Theorem (which states
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that 2cf κ > κ) when restricted to regular cardinals [6]. At first it was expected that
this result would be extended to include singular cardinals, but singular cardinals
turn out to be much more complicated: Silver proved that GCH cannot fail for the
first time at a singular of uncountable cofinality [13]. Generally, singular cardinals
present a challenge to global results.

Here we consider RP(S) where S is stationary in some κ, which states every
stationary subset T ⊆ S reflects. More precisely, we examine RP(κ∩cof(ℵn)). This
property winds up being compelling precisely because we can precisely determine
the ZFC constraints on its behavior. The constraints are:

• RP(κ ∩ cof(ℵn)) holds vacuously if κ ≤ ℵn;
• ℵn+1 ∩ cof(ℵn) has a non-reflecting stationary subset;
• If λ is a singular cardinal, then λ has a non-reflecting stationary subset if

and only if cf λ has a non-reflecting stationary subset.

One might object that the third bullet point makes singulars uninteresting, but
in our case it is the successors of singulars that are difficult to handle—so the
difficult case nonetheless pertains to singular cardinals.

Our main theorem, which takes up the whole paper, is the following:

Theorem 1. Suppose χ is a supercompact cardinal in V such that GCH holds
above χ. Let F be a definable 2-valued function on the class of regular cardinals
≥ χ. Then there is a forcing extension W ⊃ V in which χ = ℵn+2, cofinalities
≥ χ are preserved, GCH is preserved above χ, and for all regular κ ∈ W such that
κ ≥ ℵn+2, there is a non-reflecting stationary subset of κ ∩ cof(ℵn) if and only if
F (κ) = 1.

It follows that there is a lot of flexibility around when RP(κ∩ cof(ℵn)) holds for
different κ:

Corollary 2. Relative to the consistency of a supercompact cardinal, it is consis-
tent that there is a model in which a given regular κ ≥ ℵn+2 has a non-reflecting
stationary subset of κ ∩ cof(ℵn) precisely when:

• κ is a successor of a regular cardinal;
• κ is the successor of a singular cardinal;
• κ is inaccessible;
• κ is not inaccessible.

We assume familiarity with basics of forcing and large cardinals [8].

1. Methods

1.1. Large Cardinal Notions. We need large cardinals to obtain stationary re-
flection. In fact, stationary reflection at a successor of a singular cardinal λ+ implies
the failure of �λ, which has strong inner model-theoretic consequences [11]. Hence,
some large cardinal hypothesis is necessary for our result.

Definition 1. A cardinal κ is λ-supercompact for λ ≥ κ if there is an elementary
embedding j : V →M ⊆ V from the class of all sets to a proper subclass such that
j � Vκ = id � Vκ, j(κ) > λ, and Mλ ⊆ M . A cardinal κ is supercompact if κ is
λ-supercompact for all λ ≥ κ.

We plan to force over a model with a supercompact cardinal and then lift the
supercompact embedding to recover reflection. Our ability to lift this embedding
without destroying stationarity subsets is the technical core of this paper.
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We will need weakly compact cardinals for approachability, but their definition
can be a black box [8]. And if we have a supercompact cardinal, then we have many
weakly compact cardinals.

Fact 1. If κ is supercompact, then there are κ-many weakly compact cardinals below
κ.

This is because a supercompact κ is measurable, and under the measurable
embedding j : V →M , M |= “κ is weakly compact”.

1.2. Forcing Techniques. We will consider partial orders that are not quite closed,
so we will define a weakening of closure that appears frequently in the literature.

Definition 2. Fix a poset P and consider the following game played by two play-
ers. The play of the game is a decreasing sequence of conditions 〈pξ : ξ < τ〉 in
which Player II chooses conditions pξ at limits ξ as well as even successor ordinals
(successors of the form ξ+n where ξ is a limit and n is even), and Player I chooses
conditions at odd successor ordinals. Player II wins a play 〈pξ : ξ ≤ η〉 of length η
if it is possible for the players to make a move at every step of the play, i.e. there
is a lower bound of the sequence 〈pξ : ξ < ξ′〉 for all ξ′ ≤ η.

We say that P is η-weakly strategically closed, or simply that P is η-strategically
closed, if Player II has a winning strategy for all games of length η. In other words,
P is η-strategically closed if the there is a function σ : <ηP → P such that for all
ξ ≤ η, if pξ = σ(〈pζ : ζ < ξ〉) for all ξ < η such that ξ is either a limit or an even
successor, then 〈pζ : ζ < ξ〉 has a lower bound.

Now consider a similar game on P between Player I and Player II where instead
Player II only plays at even successors while Player I plays at all other ordinals.
If Player II still has a winning strategy for this game, we say that P is κ-strongly
strategically closed.

We need strategic closure because we will use it to get preservation of cardinals
in our forcing extension.

Fact 2. If κ is regular and P is η-strategically closed for all η < κ, then P is
κ-distributive, meaning that it does not add new sequences of ordinals of length
< κ.

Now we introduce a poset that for adding a non-reflecting stationary subset of
κ∩ cof(λ). The poset that we will use in our construction will be akin to a product
of instances of this poset—with some additional details.

Definition 3. If κ and λ are regular uncountable cardinals with λ < κ, then S(κ, λ)
is the poset consisting of conditions p such that:

• p is a function from α+ 1 to {0, 1} for some α < κ;
• if p(β) = 1 for some β ≤ α, then cf(β) = λ;
• for all β ≤ max dom p such that cf β > ω, there is a closed unbounded

subset c ⊆ β such that c ∩ {γ ∈ dom p : p(γ) = 1} = ∅.
If p, q ∈ S(κ, λ) then p ≤ q precisely when q ⊆ p.

The notation we are using in terms of the symbols S, the parentheses, and so
forth, is not strictly standard. The non-reflecting stationary set added by S(κ, λ)
is the function defined by the generic.
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Fact 3. If G is S(κ, λ)-generic, then {α < κ : ∃p ∈ G, p(α) = 1} is a non-reflecting
stationary subset if κ ∩ cof(λ).

The poset S(κ, λ) has several reasonable properties.

Facts 4.

(1) S(κ, λ) is λ-closed.
(2) S(κ, λ) is η-strategically closed for all η < κ, and hence κ-distributive.
(3) If GCH holds, then |S(κ)| = κ and therefore S(κ) satisfies the κ+-chain

condition.

Hence, under GCH, the poset S(κ, λ) preserves cardinals and cofinalities. How-
ever, it will take more work to show that one can add non-reflecting sets at class-
many cardinals without affecting cardinals and cofinalities.

Because S(κ, λ) is not κ-closed, we need to define a poset that will represent the
quotient of S(κ, λ) with a κ-closed poset. This will help us lift the supercompact
embedding at the end of our construction.

Definition 4. If G is S(κ, λ)-generic and S = {α < κ : ∃p ∈ G, p(α) = 1}, then in
the extension by G we can define T(κ, λ) to be the set of closed bounded sets t ⊆ κ
such that t ∩ S = ∅. The conditions are ordered by end-extension, i.e. t ≤ s if and
only if t ∩ (max s+ 1) = s.

Fact 5. S(κ, λ)∗T(κ, λ) has a κ-directed closed dense subset, and therefore T(κ, λ)
is κ-distributive.

Again, it will take more work to show that we can utilize this stationary-killing
forcing for class-many cardinals. However, we will make use of the limited closure
properties of this poset.

Fact 6. T(κ, λ) is λ-closed (and T(κ,ℵ0) is not closed).

The last forcing concept that we will crucially use pertains to the support of the
(ersatz) product that we employ for our construction.

Definition 5. Suppose I is a set of cardinals, and consider the product of posets
P =

∏
κ∈I Pκ. Given p ∈ P, the support of p, denoted sprt(p), is the set of κ ∈ I

such that p(κ) 6= 1Pκ . We say that a subset Q of the full-support product P is an
Easton product—or has Easton support—if Q consists of those p ∈ P such that for
all regular µ, | sprt(p)∩µ| < µ. This definition also applies when I is a proper class.

1.3. Approachability and the HΘ Technique. In this paper we will make ample
use of a technique developed by Shelah. The general idea begins by listing the
parameters a1, . . . , ak relevant to an argument and to choose a regular cardinal Θ
which is “large enough” in the sense that Θ > | tc(a1)|, . . . , | tc(ak)|, and moreover
Θ is large enough that the set HΘ of all sets x with | tc(x)| < Θ witnesses the result
of a statement that needs to be proved. Then we choose a well-order <Θ on HΘ,
and we consider the model H := HΘ(∈, <Θ, a1, . . . , ak), and run an argument in
the model H. The point of this technique is usually that we want to use a club
〈M ∩ µ : M ≺ H〉 for some cardinal µ, but writing down the actual definition of
such a club in terms of its closure properties is infeasible. There are several good
sources for further reading [7] [1].

Occasionally the HΘ technique requires the notion of approachability. When we
consider models M ≺ HΘ, the models are not necessarily closed, so approachability
is a way for these models to be in some sense closed enough.
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Definition 6. Suppose µ is regular with µ<µ = µ and ~a = 〈aα : α < µ〉 is an
enumeration of [µ]<µ. Then a point α < µ is approachable with respect to ~a if and
only if there is an unbounded set A ⊂ α with otA = cf α such that for all β < α
there is some γ < α such that A ∩ β = aγ . We write S ∈ I[µ] if there is a club
C ⊂ µ such that every point in S ∩ C is approachable with respect to ~a.

When we prove our theorem, we will not have full approachability—this is the
case if µ ∈ I[µ]. However, it is important to point out that the extent of approach-
ability that we will have is well-defined:

Fact 7. If µ<µ = µ, then I[µ] is well-defined modulo a club regardless of a specific
enumeration of [µ]<µ.

1.4. PCF Theory on Wide Products. The purpose of this section is to define
Easton-supported scales and to give conditions by which these scales have good
points. These good points will in turn be used for the interleaving argument that
will be the crux of our strategic closure and stationary preservation arguments.

Definitions 7.

(1) If λ is a singular cardinal and L ⊆ λ is a set of regular cardinals unbounded
in λ, let f ∈

∏
L mean that dom f is an Easton subset of L, i.e. |dom f ∩

κ| < κ for every regular κ < λ, and that for all κ ∈ dom f , f(κ) < κ. We
say that

∏
L is a product of width λ.

(2) If
∏
L is a product of width λ and D,E ⊆ L are Easton sets (for all regular

κ < λ, |D ∩ κ|, |E ∩ κ| < κ), then we write D ⊆∗ E if there is some τ < λ
such that D∩(τ, λ) ⊂ E, and we say that this relation is witnessed by τ . We
write that f <∗ g if there is some τ < λ witnessing that dom f ⊆∗ dom g
and such that for all κ ∈ dom f ∩ (τ, λ), f(κ) < g(κ). The corresponding
notions for equality and for non-strict inequality are denoted f =∗ g and
f ≤∗ g respectively.

(3) If
∏
L is a product of length λ, then we say that two <∗-increasing se-

quences ~f = 〈fβ : β < α〉 and ~g = 〈gβ : γ < δ〉 cofinally interleave each
other if for all β0 < α, there is some δ0 < γ such that fβ0

<∗ gδ0 , and for
all δ0 < γ, there is β0 < α such that gδ0 <

∗ fβ0
.

(4) Given a product L, a wide scale is a sequence 〈fα : α < λ+〉 of functions
such that:
(a) ∀α < λ+, fα ∈

∏
L;

(b) ∀α < β < λ+, fα <
∗ fβ ;

(c) ∀g ∈
∏
L, there is some α < λ+ such that g <∗ fα.

Note that these resemble the definitions of products and scales as used in stan-
dard PCF theory, but we are generally considering more than cf λ-many points
below each singular λ.

Proposition 3. If 2λ = λ+, and L is a product of width λ, then there is a wide
scale on L.

Proof. Using the fact that |
∏
L| = 2λ = λ+, let 〈gα : α < λ+〉 be an enumeration

of
∏
L. Build a sequence 〈fα : α < λ+〉 ⊆

∏
L by induction. If α = β + 1,

let dom fα = dom fβ ∪ dom gβ and let fα(κ) = max{fβ(κ), gβ(κ)} + 1 for all κ ∈
dom fα. If α is a limit, pick A ⊆ α unbounded of order-type cf α. Then let
dom fα = (cf α, λ) ∩

⋃
β∈A dom fβ , noting in particular that if κ is regular and
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κ ∈ (cf α, λ), then
⋃
β∈A dom fβ∩κ has cardinality less than κ. And for κ ∈ dom fα,

let fα(κ) = supβ∈A fβ(κ), so fα(κ) < κ for the same reason. Then fγ <
∗ fα for

all γ < α because <∗ is transitive: if γ < α and β ∈ A ∩ (γ, α), then by induction
fγ <

∗ fβ <
∗ fα. �

So that we do not repeat ourselves, we fix a product
∏
L of width λ and a wide

scale ~f on this product for the remainder of the section.

Definition 8. A point α < λ+ such that cf α 6= λ is good if there is some unbounded
A ⊂ α of order-type cf α and some τ < λ such that for all β, γ ∈ A with β < γ, τ
witnesses that dom fβ ⊆∗ dom fγ and for all κ ∈ dom fβ ∩ (τ, λ), fβ(κ) < fγ(κ).

Observe that every point α such that cf α < cf λ is good. Again, this resembles
the definition of goodness from standard PCF theory. However, one of the standard
equivalent definitions of goodness—the one regarding exact upper bounds—breaks
down when we consider wide products. Hence, we have two useful equivalent defi-
nitions of goodness.

Proposition 4. The following are equivalent for α such that cf α > cf λ:

(1) α is a good point for ~f .
(2) There exists a sequence 〈hξ : ξ < cf α〉 ⊂

∏
L such that:

(a) for some τ < λ and every ξ, η < cf α with ξ < η, τ witnesses that
domhξ ⊆∗ domhη, and for all κ ∈ domhξ ∩ (τ, λ), hξ(κ) < hη(κ);

(b) 〈hξ : ξ < cf α〉 and 〈fβ : β < α〉 cofinally interleave each other.

Proof. First suppose α is a good point for ~f . If A := 〈βξ : ξ < cf α〉 and τ witness
goodness at α, then let hξ := fβξ .

Now we prove the converse. Let 〈λi : i < cf λ〉 ⊂ L converge to λ. We use the
so-called Sandwich Argument. Pick A := 〈βξ : ξ < cf α〉 such that for all ξ < cf α,
hξ <

∗ fβξ ≤∗ hξ+1 (by thinning out the enumeration of hξ’s if necessary). For each
ξ ∈ A, let i(ξ) be such that λi(ξ) ≥ τ witnesses both hξ <

∗ fβξ and fβξ ≤∗ hξ+1.
By the Pigeonhole Principle, there is some unbounded X ⊆ cf α and some j < cf λ
such that i(ξ) = j for all ξ ∈ X. Let A′ = 〈βξ : ξ ∈ X〉. Then if ξ, η ∈ A′ and
ξ < η, then λi witnesses that

dom fβξ ⊆∗ domhξ+1 ⊆∗ domhη ⊆∗ dom fβη ,

and moreover if κ ∈ dom fβξ ∩ (λj , λ), then it follows that,

fβξ(κ) ≤ hξ+1(κ) ≤ hη(κ) < fβη (κ).

This shows that A′ and λj witness goodness of α. �

Using Proposition 4 we can show that approachable sets give us good points.

Lemma 5. If S ∈ I[λ+], then there is some club C ⊂ λ+ such that every α ∈ S∩C
of cofinality greater than cf λ is a good point for ~f .

Proof. Work consider HΘ, the set of hereditarily < Θ-sized sets where Θ is large
enough that HΘ correctly witnesses statements in the following proof. Let D be the
club such that all points inD∩S are approachable with respect to some enumeration

~a = 〈aα : α < λ+〉. We work with H := HΘ(ε,<Θ, D, ~f,
∏
L,~a).

Let 〈Mξ : ξ < λ+〉 be a continuous and strictly-increasing sequence of elementary
submodels of H of cardinality λ. Then if δξ := Mξ ∩ λ+ for ξ < λ+, it follows that
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~δ := 〈δξ : ξ < λ+〉 is a club in λ+. In particular, ~δ ⊆ D. We will argue that ~δ

consists of good points for ~f .
Let δ = δξ and M = Mξ for some ξ < λ+. We will use the second definition

of good points from Proposition 4. By approachability, there is some unbounded
A ⊂ δ with otA = cf δ such that for all β < δ, A ∩ β = aγ for some γ < δ.
In particular, this means that all initial segments of A are in the model M by
elementarity because M ∩ λ+ = δ.

Now we can work in M . Let 〈βi : i < cf δ〉 enumerate A. We will define a
sequence 〈hi : i < cf δ〉 of functions in

∏
L and we will ensure that for all κ > cf δ,

〈hi(κ) : i ∈ X〉 is strictly increasing. Namely, within M , let domhi =
⋃
j<i domhj ,

and for κ ∈ domhi ∩ (cf δ, λ), let hi(κ) := max{fβi(κ), supj<i hj(κ)}+ 1. We know
that hi is definable in M for limits i because 〈βj : j < i〉 ∈ M . Furthermore, by
elementarity and the fact that M ∩ λ+ = δ, for every hi there is some βk < δ such
that hi <

∗ fβk . �

Then we use good points to show that certain interleaving arguments define
unique (up to =∗) functions in

∏
L.

Lemma 6. Suppose α is a good point and cf α 6= cf λ. Suppose also that A ⊂ α
is unbounded in α and otA = cf α, and that 〈gξ : ξ < cf α〉 cofinally interleaves
〈fβ : β < α〉. Define dom f̄ = (cf α, λ) ∩

⋃
β∈A dom fβ, and for κ ∈ dom f̄ , define

f̄(κ) = supβ∈A fβ(κ). Similarly, define dom ḡ = (cf α, λ) ∩
⋃
ξ<cf α dom gξ and for

κ ∈ dom ḡ define g(κ) = supξ<cf α gξ(κ).

Then f̄ =∗ ḡ. In particular, this works if gξ := fγξ where 〈γξ : ξ < cf α〉
enumerates an arbitrary cofinal sequence in α.

Proof. Enumerate A as 〈βξ : ξ < cf α〉.
Suppose first that cf α < cf λ. For each {ξ, η} ∈ [cf α]2, let τξ,η witness that fξ <

∗

fη or vice versa, depending on whether ξ or η is bigger. Let τ := sup{τξ,η : {ξ, η} ∈
[cf α]2} < λ. Then τ witnesses dom f̄ =∗ dom ḡ and for all κ ∈ dom f̄ ∩ (τ, λ), we
have f̄(κ) = ḡ(κ).

Now suppose that cf α > cf λ. This uses the same idea as the Sandwich Argu-
ment. By picking subsequences, we can assume without loss of generality that for
all ξ < cf α, gξ <

∗ fβξ+1
and fβξ <

∗ gξ+1. Furthermore, let τ be large enough to
witness goodness of α with respect to A. Pick a sequence 〈λi : i < cf λ〉 converging
to λ. Let λξ(i) ≥ τ witness both gξ <

∗ fβξ+1
and fβξ <

∗ gξ+1. Then there is some
unbounded X ⊂ cf α and some j < cf λ such that for all ξ ∈ X, i(ξ) = j. It follows
that for all ξ, η ∈ X with ξ < η, λj witnesses that

dom gξ ⊆∗ dom fβξ+1
⊆∗ dom fβη ⊆∗ dom gη+1,

so it follows that λi witnesses dom f̄ =∗ dom ḡ. Furthermore, for any ξ, η ∈ X
with ξ < η and any κ ∈ dom ḡ ∩ (λi, λ),

gξ(κ) < fβξ+1
(κ) ≤ fβη (κ) < gη+1(κ).

It follows that for such κ, f̄(κ) = ḡ(κ). Hence f̄ =∗ ḡ. �

Definition 9. If α is a good point for ~f , we say that ~f is continuous at α if there
is some unbounded A ⊂ α of order-type cf α and some τ < λ such that dom fα ∩
(τ, λ) =

⋃
β∈A dom fβ , and such that for all κ ∈ (τ, λ), fα(κ) = supβ∈A fβ(κ).
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Hence, Lemma 5 gives us:

Corollary 7. If S ∈ I[λ+], then for any wide product
∏
L on λ, there is a club

C ⊂ λ+ and a scale ~f = 〈fα : α < λ+〉 that is continuous at all points in S ∩ C.

As a restatement of Lemma 6, we have the proposition that will later on (in
subsection 2.3, subsection 2.5, and subsection 2.7) vindicate our discussion of good
points:

Proposition 8. Suppose α is a good point and ~f is continuous at α. Suppose also
that 〈gξ : ξ < cf α〉 cofinally interleaves 〈fβ : β < α〉, and that the function g is
defined such that dom g = (cf α, λ)∩

⋃
ξ<cf α dom gξ, and such that for all κ ∈ dom g,

g(κ) = supξ<cf α gξ(κ). Then g =∗ fα.

2. Constructing the Model

Now we will commence with the proof of Theorem 1.

2.1. Preparation of the Ground Model. Let χ be a supercompact cardinal. We
can obtain a model in which GCH holds above χ—just take a Laver-indestructible
supercompact χ and force GCH above it using a product of Cohen forcings—and
then call this model V [10]. Our present goal is to define a suitable forcing extension
V [G] in which χ = ℵn+2. We will let W := V [G] and work in W in subsection 2.2
through subsection 2.7 below. Then in subsection 2.8, we will refer back to V .

There are two cases that we consider. If we are trying to prove the result about
stationary subsets of κ ∩ cof(ℵ0), then we do not actually need to deal with ap-
proachability, so we may simply take the Lévy Collapse C = Col(ℵ1, < χ) and let
G be C-generic, so that V [G] |= χ = ℵ2.

If we are trying to prove the result for ℵn, n > 0, then we need to make arrange-
ments so that we will have enough approachability when we need it. We require
the following result of Shelah (which appears in a stronger form as Fact 2.10 in the
paper about forcing approachability with set-sized forcing [12]):

Fact 8. If λ is a singular strong limit and ν = λ+ in V , and W is a forcing
extension of V in which λ is still a singular strong limit and ν is still its successor,
then:

W |= {α < ν : V |= “ cf α is weakly compact”} ∈ I[ν].

Because χ is supercompact, there are χ-many weakly compact cardinals below it.
We pick any weakly compact ψ < χ. Let C1 = Col(ℵn−1, < ψ), let C2 = Col(ψ+, <
χ), and let C = C1 × C2. Then V [G] will be our W , where W |= χ = ℵn+2. The
point is that enough approachability will persist in mild forcing extensions of W .

Proposition 9. If λ is a singular strong limit and ν is the successor of λ in V [G]
and n > 0, then ν∩cof(ℵn) ∈ I[ν] in any ℵn-distributive forcing extension of V [G].

Proof. If (cf α)V [G] = ℵn, then the cofinality of α is preserved in any ℵn-distributive
forcing extension of V [G]. Moreover, any such extension will preserve the conditions
of Fact 8. �

Observe that we cannot use the Lévy Collapse to get ψ equal to ℵω+1 (or any
successor of a singular). This is precisely why the results of this paper cover RP(κ∩
cof(ℵn)) for fixed n.
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2.2. Defining the Forcing. Now we work in W . For ease of use, we classify
regular cardinals as follows:

(A) If F (κ) = 1, then κ ∈ CA.
(B) If F (κ) = 0 and κ is inaccessible, a successor of a regular cardinal, a

successor of a singular cardinal of cofinality equal to ℵn, or a successor of a
singular cardinal λ of cofinality not equal to ℵn such that {κ < λ : F (κ) =
1} is bounded in λ, then κ ∈ CB .

(C) If F (λ+) = 0 and λ is a singular of cofinality not equal to ℵn such that CB
is unbounded in λ, then λ+ ∈ CC .

So CA is the class of cardinals κ that will have non-reflecting subsets of κ∩cof(ℵn),
CB is the class of cardinals κ where RP(κ ∩ cof(ℵn)) will hold but where nothing
special needs to be done with the forcing, and CC will be those cardinals where in
order to make RP(κ∩ cof(ℵn)) hold, we will need to force an extra club through κ.

We define a class partial order S for adding nonreflecting stationary subsets to
cardinals κ where F (κ) = 1. Since we have committed to ℵn, let S(κ) = S(κ,ℵn)
to simplify the notation.

Definition 10. For every λ+ ∈ CC , we fix a wide scale ~fλ := 〈fλα : α < λ+〉 on∏
(CA∩λ) that is continuous at every α ∈ limD∗λ∩cof(ℵn) for some club D∗λ ⊆ λ+.

We can do this because of Corollary 7.
We define S to consist of conditions p such that:

(1) p has Easton support: sprt p is a set of regular cardinals ≥ χ such that if κ
is inaccessible, then | sprt(p) ∩ κ| < κ.

(2) If κ ∈ CA, then p(κ) is a condition in S(κ).
(3) If κ ∈ CB , then p(κ) is the trivial forcing.
(4) If λ+ ∈ CC , then p(λ+) is a closed bounded subset c ⊆ λ+ such that if

α ∈ lim c ∩ cof(ℵn) ∩D∗λ, then the following condition holds:

There is some τ < λ such that dom fλα ∩ (τ, λ) ⊆ sprt p and
such that for all κ ∈ dom fλα ∩ (τ, λ), fλα(κ) ∈ dom p(κ) and
p(κ)(fλα(κ)) = 0.

If this condition holds for α, we say that α has the Annulment Property.

If p, q ∈ S, then p ≤ q if:

(a) sprt q ⊆ sprt p;
(b) for all κ ∈ sprt q ∩ CA, p(κ) � (max dom q(κ) + 1) = q(κ);
(c) for all λ+ ∈ sprt q ∩ CC , p(λ+) ∩ (max q(λ+) + 1) = q(λ+).

We have considerable freedom to extend conditions.

Proposition 10. Suppose:

• p ∈ S, X is a set of regular cardinals ≥ χ and is such that |κ ∩X| < κ for
all inaccessible κ and sprt p ∩X = ∅;

• γκ ∈ (max dom p(κ), κ) for all κ ∈ sprt p ∩ CA, and δλ+ ∈ (max p(λ+), λ+)
for all λ+ ∈ sprt p ∩ CC ;

• For γκ ∈ κ for all κ ∈ X ∩ CA and δλ+ < λ+ for all λ+ ∈ X ∩ CC .

Consider the function q with support sprt p ∪X defined such that:

• q(κ) is any extension of p(κ) such that max dom q(κ) = γκ for κ ∈ sprt p∩
CA;

• q(λ+) = p(λ+) ∪ {δλ+} for λ+ ∈ sprt p ∩ CC ;
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• q(κ) is any condition in S(κ) such that max dom q(κ) = γκ for κ ∈ X ∩CA;
• q(λ+) = {δλ+} for λ+ ∈ X ∩ CC .

Then q ∈ S.

Proof. We need to show that we have not violated that Annulment Property for
points in p(λ+), λ+ ∈ sprt p ∩ CC . To this end, there are two observations to be
made. The δλ+ ’s that we chose are not limit points of q(λ+), so the Annulment
Property is dealt with vacuously. As for the old limit points α ∈ D∗λ of cofinality
ℵn from p(λ+), the Annulment Property is already verified from some τ < λ and
cardinals from dom fλα ∩ (τ, λ) ⊆ sprt p, so expanding the domain of p does not
violate the Annulment Property for these points. �

As we pointed out in the introduction, the question of whether RP(κ ∩ cof(ℵn)
is trivially settled for κ ≤ ℵn+1, so we only concern ourselves with cardinals κ ≥
(ℵn+1)W . Hence χ (which is supercompact in V but is equal to ℵn+2 in W ) is the
smallest cardinal where S can possibly be nontrivial.

We adopt the convention whereby S[µ, ν] and S[µ, ν) refer to S restricted to
intervals.

Proposition 11. For all regular µ, S ∼= S[χ, µ] × S[µ+,ON), and more generally,
S[κ, ν) ∼= S[κ, µ]× S[µ+, ν) for regular µ.

Proof. The map p 7→ (p � [χ, µ], p � [µ+,ON)) maps S into the product S[χ, µ] ×
S[µ+,ON). Moreover, if µ is regular. The Annulment Property is the only nontrivial
point, and initial segments of cardinals do not affect whether it holds. �

It is important to note that the above proposition fails if µ+ ∈ CC . For this
reason, when we write S[µ+, λ), we will assume that µ is regular.

2.3. Preservation Properties of the Forcing. Because of the use of Easton
support, a simple counting argument yields an upper bound on the cardinality of
S[χ, µ] for regular µ:

Proposition 12. For all regular µ, S[χ, µ] has size ≤ µ. Hence S[χ, µ] has the
µ+-chain condition.

The effective analysis of p ∈ S requires us to take careful consideration of func-
tions on sprt p ∩ λ for singular cardinals λ such that λ+ ∈ CC . This requires us to
commit to some notation.

Definition 11. Given p ∈ S and λ+ ∈ CC ∩ dom p,

• let fλp be fλα where α = max p(λ+);

• and let gλp be the function on sprt p∩CA∩λ such that gλp (κ) = max dom p(κ)

if κ ∈ dom gλp .

Lemma 13. Given q ∈ S, there is some r ≤ q such that for all λ+ ∈ sprt q ∩ CC ,
fλq ≤∗ gλr . This also applies to the restrictions S[µ+, ν), S[µ+,ON).

Notice the crucial use of Easton support in the proof.

Proof. We will argue for S because the argument for its restrictions is the same.
Let q ∈ S and assume without loss of generality that sprt q ∩ CC has maximal
element Λ+. We will define a sequence of functions hλ ∈

∏
(CA ∩ λ) by induction

on λ+ ∈ sprt q∩CC such that hµ ≤∗ hλ � µ for all µ < λ and such that fλq ≤∗ hλ for
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all λ ≤ Λ such that λ+ ∈ sprt q ∩ CC . The base case λ+ = min{sprt q ∩ CC} works
easily by letting hλ = fλq . For the successor case, there is a greatest element µ of

sprt q∩CC below λ, so we let hλ(κ) = hµ(κ) for κ ∈ (sprt q)∩µ and hλ(κ) = fλq (κ)
for κ ∈ sprt q ∩ (µ, λ).

For the limit case, suppose we have defined hµ for all elements of sprt q ∩ CC
below λ. Let δ := sup(sprt q ∩ CC ∩ λ), noting that δ ≤ λ, possibly strictly. We
know that δ is singular because otherwise it would be inaccessible (we are working
in a model of GCH) and we would have sprt q unbounded in an inaccessible cardinal,
but we chose to define S with Easton support. Hence, we let 〈λi : i < cf δ〉 be a
sequence in sprt q ∩ CC converging to δ such that cf δ < λ0. Let hλ be a function
with the domain domhλ0

∪
(
[λ0, δ) ∩

⋃
i<cf δ domhλi

)
∪
(
[δ, λ) ∩ dom fλq

)
such that:

hλ(κ) =


hλ0

(κ) κ < λ0

max{supi<cf λ hλi(κ), fλq (κ)} κ ∈ [λ0, δ)

fq(κ) κ ∈ [δ, λ)

It is immediately apparent that fλq ≤∗ hλ. If µ < λ and µ+ ∈ sprt q ∩ CC , then
there is some i such that µ < λi, and so fµq ≤∗ hλi � µ ≤∗ hλ � µ.

At the end of this process, we obtain hΛ. Let r ≤ q be a condition such that
domhΛ ⊆ sprt r and such that max dom r(κ) ≥ max{max dom q(κ), hΛ(κ)} for all
κ ∈ sprt r ∩ CA. �

Now we are in a position to get distributivity through strategic closure.

Lemma 14. For all regular µ, S[µ+,ON) is η-strategically closed for all η < µ+.
The same holds for S[µ+, ν) for any ν > µ+.

Proof. We will do the proof for S[µ+,ON) because the argument for S[µ+, ν) is the
same. Suppose Players I and II are constructing a descending sequence 〈pξ : ξ < µ+〉
in S[µ+,ON). We will demonstrate a strategy for Player II such that the play can
continue at any ξ < µ+.

For even successors ξ = η+1, let pξ be a condition such that for all κ ∈ dom pη∩
CA, γκξ := max dom pξ(κ) > max dom pη(κ) and pξ(γ

κ
ξ ) = 0, and furthermore, that

for all λ+ ∈ dom pη ∩ CC , max pξ(λ
+) > max pη(λ+). We also want to employ an

interleaving argument, we so consider two sub-cases. If ξ is of the form ξ′+4k where
ξ′ is a limit and k < ω, then Player II will in addition make sure that max pξ(λ

+) is
large enough so that gλpη ≤

∗ fλpξ using Proposition 10. If ξ is of the form ξ′+ 4k+ 2

where ξ′ is a limit and k < ω, Player II will apply Lemma 13 to find pξ such that
for all λ+ ∈ sprt pη ∩ CC , fλpη ≤

∗ gλpξ .

At limits ξ, Player II will choose pξ as follows: First, let sprt pξ =
⋃
η<ξ sprt pη.

If λ+ ∈ dom pξ ∩ CC , then pξ(λ
+) =

⋃
η′≤η<ξ pη(λ+) ∪ {supη′≤η<ξ max pη(λ+)} for

big enough η′. If κ ∈ dom pη ∩ CA, then let pξ(κ) have a domain with maximum
γκξ := supη<ξ max dom pη(κ) such that pξ(κ) � dom pη(κ) = pη(κ) for η < ξ and

pξ(κ)(γκξ ) = 0.

This produces a valid condition: If κ ∈ sprt pξ ∩ CA, then 〈γκη : η < ξ〉 is a club

avoiding {α < κ : pξ(α) = 1}. If λ+ ∈ sprt pξ ∩ CC , then consider δ := max pξ(λ
+).

If ξ has cofinality not equal to ℵn then the same is true of δ, and so the Annulment
Property is satisfied vacuously. The Annulment Property is also vacuously satisfied
if max pξ(λ

+) is not in D∗λ, the club such that points of cofinality ℵn are continuity
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points of ~fλ. The serious case is if ξ, and hence δ, has cofinality equal to ℵn and
δ ∈ D∗λ. Then for all λ+ ∈ sprt pξ ∩ CC , 〈fλγ : γ < δ〉 and 〈gλpη : η < ξ〉 cofinally

interleave each other (because of Player II’s choices at successor steps), so it follows
from Proposition 8 that fλδ =∗ gλpξ . Because we have guaranteed that p(κ)(γκξ ) = 0

for all κ ∈ sprt pξ ∩ CA, the Annulment Property is satisfied. �

We can use a weak version of Easton’s Lemma:

Fact 9. If P and Q are forcing posets where |P| < µ and Q is µ-distributive, then
P “Q is µ-distributive.

Fact 9 works because Easton’s Lemma is proved in two basic steps: First, we
show that Q “P has the µ-chain condition”, which follows immediately from the hy-
potheses of Fact 9. The second step, in which we prove that P “Q is µ-distributive,
proceeds the same way as the original version of Easton’s Lemma.

In turn, Fact 9 is used to prove that S preserves cardinals and cofinalities in the
same manner as the original Easton construction.

Proposition 15. S preserves cardinals, cofinalities, and GCH. In particular, it
preserves inaccessible cardinals.

The acute reader may observe that we have not guaranteed that the wide scales
~fλ are still wide scales in W S. In other words, we do not know that in W S, that ~fλ
is still cofinal in CA ∩ λ. This is one preservation property that we lack. However,
it will turn out in the key moment that this does not matter.

2.4. Adding Non-Reflecting Stationary Sets. Most of this construction will
focus on showing that RP(κ ∩ cof(ℵn)) holds for κ such that F (κ) = 0, but let us
show that we add the non-reflecting sets that we intended to add. An important
point to keep in mind is that S is (ℵn + 1)-strategically closed.

Lemma 16. For all κ ∈ CA, S “κ ∩ cof(ℵn) has a non-reflecting stationary set”.

Proof. We claim that for all κ such that F (κ) = 1, if H is S-generic over W , then
the set Sκ =

⋃
p∈H p(κ) is a non-reflecting stationary set. This set is non-reflecting

at any given γ < κ as witnessed by any p ∈ H with max dom p(κ) ≥ γ, so we must

give a reason why it is stationary. Work in W and suppose S “Ċ is club in κ”.
Use strategic closure to build a decreasing sequence 〈pξ : ξ < ℵn〉 of conditions

in S (we will suppress the distinction of even successors for the sake of readability)
and a continuous and increasing sequence 〈αξ : ξ < ℵn〉 in κ as follows: Given

pξ, αξ, let αξ+1 ∈ (αξ, κ) be such that there is some q ≤ pξ with q  αξ+1 ∈ Ċ.
Then let pξ+1 ≤ q be such that max dom pξ+1(κ) > αξ+1. If ξ is a limit, let pη be

a lower bound of 〈pξ : ξ < η〉 and let αξ = supη<ξ αη, noting that pη  αξ ∈ Ċ.
Then supξ<ℵn αξ = supξ<ℵn max dom pξ(κ), and we can denote this ordinal by

γ. Let p̄ be a condition below each of the pξ’s such that p̄(κ)(γ) = 1. Then

p̄  γ ∈ Ċ ∩ Ṡκ. �

2.5. Defining the Quotient Poset. The purpose of this section is to define a
poset that will be used to lift supercompact embeddings, and to prove that it has
some reasonable properties.

Recall that T(κ, λ) is the poset that shoots a club of order-type κ through the
stationary set added by S(κ, λ). Hence we let T(κ) = T(κ,ℵn).
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Definition 12. Let p ∈ S[µ+, ν).

• We say that T ∈ E(p) if T is function with domain sprt p ∩ CA such that
p(κ) S(κ) T (κ) ∈ T(κ).
• If T ∈ E(p), p_T is a condition such that sprt(p_T ) = sprt p, (p_T )(κ) =

(p(κ), T (κ)) if κ ∈ CA, and (p_T )(κ) = p(κ) if κ ∈ CC .
• D[µ+, ν) is the poset of conditions of the form p_T for p ∈ S[µ+, ν), T ∈
E(p). If p, q ∈ D[µ+, ν), then p ≤ q if sprt q ⊆ sprt p and p(κ) is coordinate-
wise stronger than q, i.e. p(κ) ≤ q(κ) for all κ ∈ sprt q.

Lemma 17. D[µ+, ν) is η-strongly strategically closed for every η < µ+.

Proof. We describe a decreasing sequence of conditions 〈rξ : ξ < µ+〉 in Q[µ+, ν)
and describe a strategy for Player II that allows play to continue at any ξ < µ+.
To do this, we will describe conditions 〈pξ : ξ < µ+〉 in S[µ+, ν) and extensions
〈Tξ : ξ < µ+〉 such that rξ = p_ξ Tξ. We will also use a sequence 〈dκξ : ηκ ≤ ξ <

µ+, ξ an even successor〉 where ηκ is such that ξ ≥ ηκ implies κ ∈ sprt rξ and dκξ is
a closed bounded subset of κ that is an element of W .

Player II only plays at even successors ξ = η+ 1. Then let s ≤ pη be a condition
such that for all κ ∈ sprt pη ∩ CA, there is some closed bounded cκ ⊆ κ such
that p(κ)  Tη(κ) = cκ. Choose s′ ≤ s such that max dom s′(κ) > cκ for all
κ ∈ sprt pη ∩ CA and max s′(λ+) > max pη(λ+) for all λ+ ∈ sprt pη ∩ CC . Then let
pξ = s′, and let dκξ be defined for all κ ∈ sprt pξ such that dκξ = cκ∪{max dom qξ(κ)}.
As in the (weak) strategic closure of S[µ+,ON), we consider two sub-cases for the
purpose of an interleaving argument: If ξ is of the form ξ′+4k where ξ′ is a limit and
k < ω, then Player II will additionally guarantee that max pξ(λ

+) is large enough
so that gλpη ≤

∗ fλpξ , and if ξ is of the form ξ′+ 4k+ 2 where ξ′ is a limit and k < ω,

then Player II will use Lemma 13 to guarantee that fλpη ≤
∗ gλpξ .

It remains to argue that play can continue at any limit stage ξ. Specifically,
we claim that if 〈rη : η < ξ〉 have already been defined—and hence 〈pξ : ξ < µ+〉
and 〈Tξ : ξ < µ+〉 has already been defined—then we can found a lower bound
regardless of whether Player I chooses to play that specific lower bound. Let pξ
be defined so that sprt pξ =

⋃
η<ξ sprt pη, such that pξ(κ) :=

⋃
η′≤η<ξ pη(κ) ∪〈

supη′≤η<ξ max dom pη(κ), 0
〉

for large enough η′ and κ ∈ sprt pξ ∩ CA, and such

that pξ(λ
+) :=

⋃
η′≤η<ξ pη(λ+) ∪

{
supη′≤η<ξ max pη(λ+)

}
for λ+ ∈ sprt pξ(λ

+).

Then pξ is a lower bound for 〈pη : η < ξ〉. First,
⋃
η<ξ d

κ
η is a club avoiding pξ(κ)

for all κ ∈ sprt pξ ∩ CA. Furthermore, we can argue that all points of cofinality ℵn
from pξ(λ

+) for λ+ ∈ sprt pξ ∩ CC satisfy the Annulment Property, in which case
the discussion proceeds exactly as in the proof of strategic closure of S[µ+,ON),
the key point being Proposition 8. Finally, for κ ∈ sprt rξ ∩ CA, let T (κ) :=⋃
η′≤η<ξ,η ev. succ. d

κ
η ∪ {supη′≤η<ξ,η ev. succ. max dκη}. Then we can see that rξ :=

p_ξ T is a lower bound for 〈rη : η < ξ〉. �

Proposition 18. There is a complete embedding ι from S[µ+, ν) to D[µ+, ν).

Proof. The map ι sends p to p_T where T (κ) = 1T(κ) for each κ ∈ sprt p ∩ CB .
This map evidently preserves ≤ and ⊥, and it is a complete embedding because
given r ∈ D[µ+, ν), if p ∈ S[µ+, ν) is the version of r without the “T -part,” then p
is the reduction of r modulo the embedding. �
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Definition 13. Let Q[χ, ν) be D[χ, ν)/ι(H) where H is S[χ, ν)-generic. More
generally, Q[µ+, ν) is defined as D[µ+, ν)/ι(H ′) where H ′ is S[µ+, ν)-generic.

In particular, S[χ, ν) ∗Q[χ, ν) is forcing-equivalent to D[χ, ν).

Proposition 19. The poset Q[χ, ν) is a subset of W .

Proof. Working in W , suppose that p ∈ S[χ, ν) and p  “q̇ ∈ Q̇[χ, ν)”. This means
that if p ∈ H, then ι(p)‖q. Extend p to p′ such that sprt q̇ ⊆ sprt p′. Then extend
p′ to p” such that for each κ ∈ CA ∩ [χ, ν) and some dκ ∈W , p”(κ)  q̇(κ) = dκ. It
follows that p”  q̇ ∈W . �

Proposition 20. For regular µ:

• S “Q[χ, µ] has size ≤ µ”.
• S “Q[µ+, ν) is µ+-distributive”.

Proof. The first point follows from a counting argument. The second follows from
the fact that Q[µ+, ν) is a factor of the < µ+-strongly strategically closed, and
hence µ+-distributive, poset D[µ+, ν). �

Proposition 21. If µ is a regular cardinal, then Q[χ, µ] = Q[χ, µ+) preserves
stationary subsets of µ+.

Despite these ostensibly nice properties, Q[χ, µ] is not ℵn+1-closed, which means
that we need to be innovative to prove stationary preservation.

2.6. Freezing Arguments for Stationary Preservation. Our immediate goal
is to prove that Q[χ, ν] preserves stationary subsets of ν∩cof(ℵn) for ν ∈ CB . First
we establish a general lemma:

Lemma 22. (Freezing Lemma) Let µ be a regular cardinal, and P1 and P2 be posets
such that P2

“µ is regular” and P2
“P1 is µ-c.c.”. (In particular, we can suppose

that P1 is a poset of size < µ and P2 is µ-distributive.) If (p, q) ∈ P1 × P2 and

(p, q)  “Ċ ⊆ µ is a club”, then for all β < µ, there is some q′ ≤ q and some

α ∈ (β, µ) such that (p, q′)  “α ∈ Ċ”.

Proof. Let G2 be P2-generic over V . In V [G2] there is a P1-name C̈ such that for

any P1-generic G1 over V [G2], ĊG1×G2
= C̈G1

. This is because, without loss of

generality, Ċ is a nice name. Hence we let 〈α̌, r〉 ∈ C̈ if and only if 〈α̌, (r, s)〉 ∈ Ċ
for some s ∈ G2 (bearing in mind that there is an abuse of notation when referring

to α̌ because the definition of α̌ depends on the poset being used). So if (p, q)  “Ċ

is a club in µ”, then p  “C̈ is a club in µ”.
Working in V [G2], the µ-c.c. of P1 implies that 〈α < µ : p  α ∈ C̈〉 is a club

in µ. Hence there is some α ∈ (β, µ) such that p  “α ∈ C̈”. Let q′ ≤ q, q′ ∈ G2

witness this. Then (p, q′)  “α ∈ Ċ”. �

There are two notable sub-cases for cardinals in CB . First we consider certain
inaccessible cardinals.

Lemma 23. Suppose H is S[χ, µ)-generic over W . If µ is an inaccessible cardinal
and S ⊆ µ ∩ cof(ℵn) is stationary in W [H], then the stationarity of S is preserved
by Q[χ, µ).
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Proof. Work in W [H] and fix a stationary set S ⊆ µ ∩ cof(ℵn). Let q0 ∈ Q[χ, µ),

q0  “Ċ ⊆ µ” is a club. Let Θ be large enough for the following discussion, and
consider the structure H := HΘ(∈, <Θ,Q[χ, µ), q0, Ċ, µ). Using the stationarity of
S, we can find an elementary submodelM ≺ H such that δ := M∩µ = sup(M∩µ) ∈
S. Moreover, since µ is inaccessible (and we are working with GCH), we can find
such an M that is closed under sequences of length less than ℵn. Fix a sequence
〈δξ : ξ < ℵn〉 converging to δ.

We will define a decreasing sequence of conditions 〈qξ : ξ < ℵn〉 ⊆M in Q[χ, µ),
an increasing sequence of ordinals 〈αξ : ξ < ℵn〉, and an increasing sequence of
cardinals 〈κξ : ξ < ℵn〉 such that κ0 = χ, if ξ is a successor then κξ is regular,
and sprt qξ ⊆ κξ. For successor stages, we are given qξ, αξ, and we view Q[χ, µ) as
Q[χ, κξ] × Q[κ+

ξ , µ) and use the Freezing Lemma to find αξ+1 ∈ (max{αξ, δξ}, δ)
and qξ+1 ≤ qξ such that qξ+1 � [χ, κξ] = qξ and qξ+1  αξ+1 ∈ Ċ. And of course,
κξ+1 is a regular cardinal large enough that sprt qξ+1 ⊆ κξ+1. If ξ is a limit,
then let αξ = supη<ξ αη and let κξ = supη<ξ κη. And let qξ be defined so that
sprt qξ = supη<ξ sprt qη and such that qξ � [κη, κη+1] = qη for η < ξ. Then qξ will

be an element of Q[χ, µ) and it will be the case that qξ  αξ ∈ Ċ. Furthermore,
we can see that αξ, κξ, qξ are in M because they are defined with regard to the
parameters from H and the sequence 〈δη : η < ξ〉, which is in M .

Once we have 〈qξ : ξ < ℵn〉, let q be defined such sprt q =
⋃
ξ<ℵn sprt qξ (note

that sprt q ⊆ supξ<ℵn κξ < µ) and such that for all ξ < ℵn, q � [χ, κξ] = qξ.

Then q is a lower bound of 〈qξ : ξ < ℵn〉, so q  δ = supξ<ℵn αξ ∈ Ċ, and thus

q  Ċ ∩ S 6= ∅. �

Now we consider the non-trivial case for singular cardinals in CB .

Lemma 24. Suppose H is S[χ, λ)-generic over W . If λ is singular cardinal of
cofinality ℵn and S ⊆ λ+ ∩ cof(ℵn) is stationary in W [H], then the stationarity of
S is preserved by Q[χ, λ).

Proof. Work in W [H] and fix a stationary set S ⊆ µ ∩ cof(ℵn). Let q0 ∈ Q[χ, λ),

q0  “Ċ ⊆ λ+” is a club. Fix a sequence of regular cardinals ~λ = 〈λn : n < ω〉
converging to λ, let Θ be a large enough regular cardinal, and consider the structure

H := HΘ(∈, <Θ,Q[χ, λ), q0, Ċ, λ
+, ~λ). Using the stationarity of S, we can find an

elementary submodel M ≺ H of size λ such that if δ = M∩λ+, then δ ∈ S. If n = 0,
then we pick any sequence 〈δn : n < ω〉 converging to δ. If n > 0, then we will
appeal to the fact that λ+ ∩ cof(ℵn) ∈ I[λ+] (i.e. there is enough approachability)
to choose M (and hence δ) so that there is a sequence 〈δξ : ξ < ℵn〉 converging to
δ such that 〈δξ : ξ < η〉 ∈M for all η < ℵn.

Fix an increasing and continuous sequence of cardinals 〈λξ : ξ < ℵn〉 converging
to λ such that λ0 = χ, and such that if ξ is a successor ordinal then λξ is regular.
We will define a decreasing sequence 〈qξ : ξ < ℵn〉 ⊆M of conditions from Q[χ, λ)
and an increasing sequence of ordinals 〈αξ : ξ < ℵn〉 as follows: If qξ and αξ have
been defined, view Q[χ, λ) as the product Q[χ, λξ]×Q[λ+

ξ , λ) and use the Freezing

Lemma to find qξ+1 and αξ+1 ∈ (max{αξ, δξ}, δ) such that qξ+1  “αξ+1 ∈ Ċ” and
qξ+1(κ) = qξ(κ) for all κ < λξ. If ξ is a limit, then let αξ = supη<ξ αη and let qξ
be a condition such that qξ � [λη, λη+1] = qη � [λη, λη+1] for all η < ξ, and such
that if κ ∈ [λξ, λ), then then qξ(κ) is a lower bound of 〈qη(κ) : η < ξ〉 using the
ℵn-closure of T(κ,ℵn). So qξ is an actual condition in Q[χ, λ) and qξ forces that
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αξ ∈ C. Furthermore, qξ is in M because it was defined from parameters in H and
the sequence 〈δη : η < ξ〉 ∈M .

Finally, define q̄ such that q � [λξ, λξ+1] = qξ ∩ [λξ, λξ+1] for all ξ < ℵn. Then q̄

is a lower bound of 〈qξ : ξ < ℵn〉, so q forces that supξ<ℵn αξ, i.e. δ, is in Ċ. Thus

q̄  “Ċ ∩ S 6= ∅”. �

2.7. The Interleaving Argument for Stationary Preservation. Now we turn
our attention to stationary preservation for the cardinals in CC . We make use of
the following very important property:

Proposition 25. Fix λ+ ∈ CC and let H̄ be S[χ, λ+]-generic over W . There is a
club Dλ ⊆ λ+ in W [H̄] such that for all α ∈ Dλ ∩ cof(ℵn), there is some τ < λ
such that for all κ ∈ dom fλα ∩ (τ, λ), fλα(κ) /∈ Sκ.

Proof. The club Dλ is defined to be D∗λ ∩
⋃
p∈H p(λ

+) (recall that D∗λ was defined

as a club such that all α ∈ limD∗λ ∩ cof(ℵn) are points of continuity for ~fλ). The
fact that it is closed follows immediately from the definition, and the fact that it is
unbounded follows from our ability, given any β < λ+ to extend any p ∈ S[χ, λ+]
to q ≤ p such that max q(λ+) > β. And if q ∈ H̄ is such that α < max dom q(λ+),
then the Annulment Property of α witnesses the fact that there is some τ < λ such
that fλα(κ) /∈ Sκ for all κ ∈ dom fλα ∩ (τ, λ). �

The crux of this construction uses the fact that continuous points of the wide

scales ~fλ are defined uniquely up to interleaving for large κ < λ. We need a lemma
that shows that we can decide elements of a club added in the extension in such a
way that allows us to throw away initial segments of the domains of the conditions
while assuring that we are still making the correct decisions about the club.

We need to introduce some notation for the following discussion. Recall that
elements of Q[χ, ν] formally belong to D[χ, ν] and so we can refer to their support.

Definition 14. If q ∈ Q[χ, ν], then q[µ, ν] is a condition such that q[µ, ν](κ) is the
trivial condition for κ /∈ [µ, ν] and q[µ, ν](κ) = q(κ) for κ ∈ [µ, ν].

Lemma 26. Suppose λ is a singular cardinal such that λ+ ∈ CC and let 〈λξ : ξ <
cf λ〉 be a sequence of regular cardinals converging to λ. Suppose that Q[χ,λ+]

“Ċ ⊆ λ+ is a club” (i.e. this is forced by the empty condition). Then for all
β < λ+ and q ∈ Q[χ, λ+], there is some α ∈ (β, λ+) and some q′ ≤ q such that for

all ξ < cf λ, q′[λ+
ξ , λ

+]  α ∈ Ċ.

Of course, Q[χ, λ+] is trivial at λ+, but this is the interval we will be considering
when we apply this lemma.

Proof. Starting by working in W , considering conditions in D[χ, λ+]. Let q = T and
consider p_T ∈ D[χ, λ+]. Let K be a D[χ, cf λ]-generic containing (p_T )[χ, cf λ].
Note that the cofinality of λ+ is preserved in W [K].

Now we work in W [K]. For each i < ω we will define a decreasing sequence
〈pi,ξ_Ti,ξ : ξ < cf λ〉 of conditions in D[(cf λ)+, λ+] below (p_T )[(cf λ)+, λ+] and
a (not necessarily increasing) sequence 〈αi,ξ : i < ω, ξ < cf λ〉 of ordinals in the
interval (β, λ+). Furthermore, we will define α∗i := supξ<λ αi as we proceed. We

will use strong strategic closure of D[(cf λ)+, λ+] to keep the construction going,
but we will suppress the distinction between even and odd successor ordinals, and
we will not repeat the specifics of the strategy.
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At successor stages we are given pi,ξ
_Ti,ξ ∈ D[(cf λ)+, λ+] for some ξ < λ and

i < ω. Since (pi,ξ
_Ti,ξ)[λ

+
ξ , λ

+]  “Ċ ⊂ λ+ is a club”, we can use the Freezing

Lemma to find r ≤ pi,ξ
_Ti,ξ and αi,ξ ∈ (α∗i , λ

+) such that r[λ+
ξ , λ

+]  αi,ξ ∈ Ċ.
Then let pi,ξ+1

_Ti,ξ+1 ≤ r be chosen according to the strategy. Lower bounds can
be chosen at limit stages as in the proof of strong strategic closure of D[(cf λ)+, λ+]
and αi,ξ for a limit ξ can be chosen as in the successor stage of this argument. The
case we were have defined pi,ξ

_Ti,ξ for all ξ < λ and need to define pi+1,0
_Ti+1,0

is another limit case.
Let p_T be a lower bound for the whole sequence. Let α = supi<ω αi and let q

be the “T -part” of p̄_T̄ . Then for any S[(cf λ)+, λ+]-generic K ′ containing p, we

have arranged so that q[λ+
ξ , λ

+] forces that Ċ ∩ [αi, αi+1) 6= ∅ for all i < ω, and

hence q[λ+
ξ , λ

+] forces that α ∈ Ċ. Hence s_(p_T ) witnesses the lemma. �

Lemma 27. If λ is a singular cardinal such that λ+ ∈ CC , then Q[χ, λ+] preserves
stationary subsets of λ+ ∩ cof(ℵn).

Recall that given p ∈ S, we defined gλp , which has domain sprt p ∩ CA ∩ λ and
maps κ to max dom p(κ).

Proof. As in the freezing arguments, we work in W [H]. By the Mixing Principle,

it is enough to consider a Q[χ, λ+]-name Ċ where Q[χ,λ+] “Ċ ⊆ λ+” is a club. Let
Θ be a large enough regular cardinal and consider the structure H := HΘ(∈, <Θ

,Q[χ, λ+], Ċ, λ+). Using the stationarity of S, we can find an elementary submodel
M ≺ H of size λ such that if δ = M ∩ λ+ = sup(M ∩ λ+), then—and this is
the crux of the whole construction—we have δ ∈ S ∩ Dλ. If n > 0, we can use
approachability to select M and δ such that there is a sequence 〈δξ : ξ < ℵn〉 such
that 〈δξ : ξ < η〉 ∈ M for all η < ξ. Otherwise, if n = 0, let 〈δξ : ξ < ℵ0〉 be any
sequence converging to δ

We will define a decreasing sequence 〈qξ : ξ < ℵn〉 ⊆M of conditions in Q[χ, λ+]
and an increasing and continuous sequence of ordinals 〈αξ : ξ < ℵn〉. We will also
make use of the function gλqξ where dom g = sprt qξ ∩ λ and g(κ) = max qξ(κ). For
the successor case, suppose qξ is already defined. We can choose qξ+1 ≤ qξ such
that fλδξ <

∗ gλqξ+1
, and moreover by Lemma 26 we can choose qξ+1 such that there

is some αξ ∈ (δξ, δ) such that qξ+1[τ, λ+]  αξ ∈ Ċ for cofinally many τ < λ. If ξ
is a limit, let qξ be a lower bound of 〈qη : η < ξ〉 using the ℵn-closure of T(κ,ℵn)
for each κ, and let αξ = supη<ξ αη. These are contained in M because they are
defined with the parameters from H and the sequence 〈δη : η < ξ〉 ∈M .

We claim that 〈gλqξ : ξ < ℵn〉 and 〈fλδξ : ξ < ℵn〉 cofinally interleave each other.

By the construction, we know that fλδξ <
∗ gλqξ+1

. By elementarity of M , and the

fact that qξ ∈ W for any ξ < ℵn (and so ~fλ is cofinal in
∏

(CA ∩ λ)) there is
some η < ℵn such that gλqξ <∗ fλδη . Hence, if we define g such that dom g =

(ℵn, λ) ∩
⋃
ξ<ℵn dom gλqξ , and g(κ) = supξ<ℵn g

λ
qξ

(κ), then we see that g =∗ fλδ
by Proposition 8. In other words, there is some τ be such that dom g ∩ (τ, λ) =
dom fδ ∩ (τ, λ) and such that κ ∈ dom g ∩ (τ, λ) implies g(κ) = fλδ (κ), and thus
g(κ) /∈ Sκ. It follows that there is a lower bound q of 〈qξ[τ+, λ+] : ξ < ℵn〉 and

that q  δ ∈ Ċ ∩ S. �
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2.8. Lifting the Embeddings. Since subsection 2.2 we have been working in the
model W . Recall that χ is supercompact in V . Recall also that W = V [G] where
G is C-generic over V and C is defined in one of two ways. Either n = 0 and
C = Col(ℵ1, < χ) or else n > 0 and C = Col(ℵn−1, < ψ) × Col(ψ+, < χ) where
ψ is a weakly compact cardinal below χ. In this section we will finally use the
supercompactness of χ. In particular, V [G] |= “χ = ℵn+2”. We will also continue
referring to cardinals ≥ χ as belonging to one of CA,CB , or CC .

Our main tool will be a lifting argument that is due to Silver.

Fact 10. [2] If j : V → M is an embedding, G is P-generic, H is j(P)-generic,
and j[G] ⊆ H, then j can be lifted to j′ : V [G]→M [j(G)].

Another key fact is in its original form due to Solovay, and it will allow us to
set up more stationary preservation. Its purpose it to make ugly quotients behave
nicely.

Fact 11. (Absorption Theorem) Suppose that P is a separative and (κ+1)-strongly
strategically closed poset such that |P| < λ. Then there is a complete embedding
ι : P → Col(κ+, < λ) such that if G is P-generic over V , the Col(κ+, < λ) is
forcing-equivalent to Col(κ+, < λ)/ι(G). Moreover, this works if Col(κ+, < λ) is
replaced by Col(κ+, A) where supA = λ.

We have two remarks on this version of the Absorption Theorem, which appears
in a few other guises (the best source is James Cummings’ chapter in the Handbook
[2]). First, the statement occasionally includes the hypothesis that λ is inaccessible,
but this is not necessary—it implies that Col(κ+, < λ) has the λ-chain condition,
which is circumstantially helpful but not required. Second, the statement of the
Absorption Theorem usually includes a hypotheses about the closure of P, but here
was are using strong strategic closure. This is in fact enough: the core of the proof
of the Absorption Theorem is the fact that, P is forcing-equivalent to Col(κ, λ) if
it is separative, κ-closed, has cardinality λ, and collapses λ to have size κ [8]. The
reader can verify that it is enough to assume that P is η-strongly strategically closed
for all η < κ. Also, it is worth noting that the strongly strategically closed version
of the Absorption Theorem has been used elsewhere [9].

We need another stationary-preservation fact for another component of our lift-
ing argument.

Fact 12. If P is (ℵn+1)-strategically closed, µ∩cof(ℵn) ∈ I[µ], and S ⊆ µ∩cof(ℵn)
is stationary, then forcing with P preserves the stationarity of S.

The proof of this fact is very similar to the proof of the fact that ℵn+1-closed
posets preserve stationary subsets of µ ∩ cof(ℵn) if µ ∩ cof(ℵn) ∈ I[µ], which can
be found in several good sources [7] [1].

Finally, we will need to apply Fact 12 to a two-step iteration, so we need one
more item.

Proposition 28. If P is κ+-closed and P “Q̇ is κ + 1-strategically closed, then
P ∗ Q̇ is κ+ 1-strategically closed.

We include the proof for skeptical readers:

Proof. Consider a play 〈(pξ, q̇ξ) : ξ ≤ κ〉 and let σ̇ be a P-name such that P “σ̇ is

a strategy for Q̇”. We describe the strategy of Player II as follows: If ξ = η + 1 is
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an even successor, choose pξ ≤ pη and q̇ξ such that pξ  “q̇ξ = σ̇(〈q̇ζ : ζ ≤ η〉)”. If
ξ is a limit, then let p∗ be a lower bound of 〈pη : η < ξ〉. Then p∗ forces that for all
η < ξ where Player II chooses conditions, q̇η = σ̇(〈qζ : ζ < η〉), hence there is some
pξ ≤ p∗ and some q̇ξ such that pξ  “∀η < ξ, q̇ξ ≤ q̇η”. And it is evident that this
strategy works. �

Now we can do the main work of this section.

Lemma 29. Suppose that one of the following holds:

(1) µ ∈ CB, H̄ is S[χ, µ]-generic, and S ∈ V [G ∗ H̄] is a stationary subset of
µ ∩ cof(ℵn).

(2) λ+ ∈ CC , H̄ is S[χ, λ+]-generic, and S ∈ V [G ∗ H̄] is a stationary subset
of µ ∩ cof(ℵn).

Then S reflects in V [G ∗ H̄].

Proof. Let ν = µ or ν = λ+, depending on the case we are considering. Most of
this lemma consists in proving the following:

Claim. If j : V → M is a ν-supercompact embedding with critical point χ and
suppose one of the following holds:

(1) ν = µ ∈ CB, G is C-generic over V , H̄ is S[χ, ν)-generic over V [G], and
S ⊆ µ ∩ cof(ℵn) is stationary and is in V [G ∗ H̄].

(2) ν = λ+ ∈ CC , G is C-generic over V , H̄ is S[χ, ν]-generic over V [G], and
S ⊆ ν ∩ cof(ℵn) is stationary and is in V [G ∗ H̄].

Then there is an extension V [G ∗ H̄ ∗L] in which S is still stationary and j can be
lifted to j+ : V [G ∗ H̄]→M [j+(G ∗ H̄)].

Proof of Claim. We will perform the lift in several stages. We will also do the
proof for the case where n > 0, and C = Col(ℵn−1, < ψ)×Col(ψ+, < χ) = C0×C1,
because this is strictly more difficult than the n = 0 case.

If n > 0 then we let G factor as G0×G1 where G0 is Col(ℵn−1, < ψ)-generic. The
first step of the lift comes from the fact that Col(ℵn−1, < ψ): Because Col(ℵn−1, <
ψ) ∈ Vχ, j(Col(ℵn−1, < ψ)) = Col(ℵn−1, < ψ), and so we can apply Fact 10 to
show that j lifts to j0 : V [G0] → M [j0(G0)] = M [G0]. The stationarity of S is
preserved because |Col(ℵn−1, < ψ)| < ν.

The next task is to lift the embedding through the forcing Col(ℵn+1, < χ), which
is the interpretation of Col(ψ+, < χ) in V [G0] because if n > 0 then ψV [G0] = ℵn.
We observe that j0(C1) = j0(Col(ℵn+1, < χ)) = Col(ℵn+1, < χ) × R = C1 × R
where R :=

∏
α∈[χ,j0(χ)) Col(ℵn+1, α).

Next we use the quotient forcing.

Case 1: ν = µ ∈ CB . Then we let I be Q[χ, µ]-generic over V [G ∗ H̄]. Then
Q[χ, µ] ∼= Q[χ, µ) since F (µ) = 0. Hence the stationarity of S is preserved
by: Proposition 21 if µ is a successor of a regular, Lemma 23 if µ is in-
accessible, Lemma 24 if µ is the successor of a singular of cofinality ℵn,
and by the fact that |Q[χ, µ)| < µ if µ is the successor of a singular λ and
{κ < λ : F (κ) = 1} is bounded in µ.

Case 2: ν = λ+ ∈ CC . We let I be Q[χ, λ+]-generic over V [G ∗ H̄]. Then the
stationarity of S is preserved by Lemma 27.

We proceed to work in V [G ∗ H̄ ∗ I] where H̄ is S[χ, ν]-generic and I is Q[χ, ν]-
generic.
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Since S[χ, ν] ∗ Q[χ, ν] is forcing-equivalent to the ℵn+1-strongly strategically
closed poset D[χ, ν], we can apply the Absorption Theorem to find a complete
embedding ι : S[χ, ν] ∗Q[χ, ν]→ R such that R/ι(H̄ ∗ I) is forcing-equivalent to R.
Then let J be R-generic over V [G ∗ H̄ ∗ I]. Now the embedding j0 can be lifted to
j′ in this model because j0[G1] ⊆ G1 ∗ H̄ ∗ I ∗ J (where conditions in G1 are sent
to themselves in the first coordinate). Hence we get a lift j′ : V [G]→M [j′(G)].

Now we are working in V [G∗H̄∗I∗J ]. Recall that V [G] |= “χ = ℵn+2”. We claim
that j′(S[χ, ν]) is (ℵn+1)-strategically closed in V [j′(G)]: We have established that
S[χ, ν] is (ℵn+1)-strategically closed in V [G], and so M [j′(G)] = M [G∗H̄ ∗I ∗J ] |=
“j′(S[χ, ν]) is (ℵn + 1)-strategically closed” by elementarity. Because Mν ⊆M and
because j(C1) is ℵn+1-closed (using the fact that ℵn is below the critical point of
the embedding), we have that M [j′(G)] is closed under sequences of length ℵn, and
so V [G ∗ H̄ ∗ I ∗ J ] believes that j′(S[χ, ν]) is (ℵn + 1)-strategically closed.

The iteration of R∗j′(S[χ, ν]) preserves the stationarity of S over V [G∗H̄ ∗I ∗J ]:
The iteration is (ℵn+1)-strategicially closed by Proposition 28, ν∩cof(ℵn) ∈ I[ν] in
the model V [G∗H̄∗I] by Proposition 9 and the fact that D[χ, ν] is ℵn+1-distributive
over V [G]. If ν is the successor of a singular cardinal, we can apply Fact 12, and if ν
is inaccessible then we can use an argument in the vein of Lemma 23. Either way we
conclude that S remains stationary in V [G∗ H̄ ∗ I ∗J ∗K] if K is j′(S[χ, ν])-generic
over V [G ∗ H̄ ∗ I ∗ J ].

But it remains to prove that we can find a generic for j′(S) that allows us to
apply Fact 10. For this we use a master condition argument. Define p as follows:

• sprt p = {j′(κ) : κ ∈ [χ, ν] \ CB};
• for all κ ∈ CA, dom p(j′(κ)) = sup j′[κ] + 1 and for all α ≤ sup j′[Sκ],
p(j′(κ))(α) = 1 if and only if α ∈ j′[Sκ];

• for all λ+ ∈ CC , p(j′(λ+)) is the closure of j[Dλ] where Dλ comes from
Proposition 25.

Claim. p is a condition in j′(S).

Proof of Claim. The domain of p has Easton support from the point of view of
M [j(G)] because for all regulars κ ∈ [χ, ν], the fact that Mκ ⊆ M implies that
sup j[κ] < j(κ), and hence sup j′[κ] < j′(κ). For each κ ∈ sprt p ∩ CA, let Tκ be
the club added by Q[χ, ν] that avoids Sκ. Since j′ is continuous for sequences of
ordinals of length ≤ ℵn, and Tκ avoids Sκ, it follows that j[Tκ] avoids j(Sκ).

We are left to verify the Annulment Property for points of cofinality ℵn in the
closure C of j[Dλ] for λ+ ∈ CC . Observe that if δ := sup j′[Dλ] = sup j′[λ+], then

(cf δ)V = λ+ and (cf δ)M [j′(G)] > ℵn by the ℵn+1-distributivity of C ∗ R. Hence,
if α ∈ j′(Dλ) has cofinality ℵn, then α = j′(β) where β ∈ Dλ ∩ cof(ℵn), again by
continuity of j′ for sequences of length ≤ ℵn.

Let p̄ ∈ H̄ be a condition such that β ∈ p(λ+). Then by elementarity, the
following is true in M [j(G)]:

There is some τ < j′(λ) such that dom(j′f)
j′(λ)
α ∩ (τ, j′(λ)) ⊆

sprt j′(p̄) and such that for all κ ∈ dom(j′f)
j′(λ)
α ∩(τ, j′(λ)), (j′f)

j′(λ)
α (κ) ∈

dom j′(p̄)(κ) and j′(p̄)(κ)((j′f)
j′(λ)
α (κ)) = 0.

Since j′(p̄) satisfies the Annulment Property, the master condition p satisfies
the Annulment Property for α because it extends p̄ as a function as in Proposi-
tion 10. That is, since the Annulment Property was verified with respect to j′(p̄)
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as witnessed by the interval dom(j′f)
j′(λ)
α ∩ (τ, j′(λ)), it is does not matter that the

support of p̄ is larger. �

Now that we have a master condition, force with a j′(S[χ, ν))-generic K that
contains p and let L = I ∗ J ∗K. This allows us to extend j′ to j+ : V [G ∗ H̄] →
M [j+(G ∗ H̄)], and so we have proved the claim. �

We work in V [G ∗ H̄ ∗ L] in which our stationary set S ⊆ ν ∩ cof(ℵn) remains
stationary. We consider j(S) and ρ := sup j+[ν], noting that ρ < j+(ν). We can
argue that M+[j(G ∗ H̄)] |= “j+(S) ∩ ρ is stationary in ρ” as follows: Suppose
C ⊆ ρ is a club belonging to M [j+(G ∗ H̄)].

Claim. C̄ := {α < ν : j+(α) ∈ C} is unbounded in ρ and ℵn+1-closed.

Proof of Claim. The facts that C is a club and that j+ is continuous for sequences
of length < ℵn+1 imply that C̄ is ℵn+1-closed. For unboundedness, we define
〈αn : n < ω〉 ⊂ C and 〈βn : n < ω〉 ⊂ ν as follows: Given αn, find βn+1 < ν such
that j+(βn+1) > αn, and given βn, find αn+1 ∈ C such that j+(βn) < αn+1. Let
γ̄ := supn<ω βn. Then j+(γ̄) = supn<ω αn by interleaving, so j+(γ̄) ∈ C and thus
γ̄ ∈ C̄. �

Therefore, C̄ intersects S, C intersects j+(S) ∩ ρ and M [j+(G ∗ H̄)] |= “∃ρ <
j+(ν), j+(S) ∩ ρ is stationary”. By elementarity, V [G ∗ H̄] |= “S reflects”. �

2.9. Finishing the Theorem. Now we can tie everything together, keeping in
mind that V [G] |= “χ = ℵn+1”.

Proof of Theorem 1. We have demonstrated that S adds non-reflecting stationary
sets where directed by F—that is, κ ∈ [ℵn+2,ON) such that F (κ) = 1. If F (µ) = 0,
then we consider the factoring S[ℵn+2,ON) = S[ℵn+2, µ] × S[µ+,ON). For any
stationary subset S of µ∩ cof(ℵn), the distributivity of S[µ+,ON) implies that S is
already contained in V [G ∗ H̄] where H̄ is S[ℵn+2, µ]-generic. And since F (µ) = 0,
the previous section shows that S reflects. �

3. Further Questions

There are more interesting questions around global compactness properties.

Question 1. Can the results of this paper be generalized to an Easton result for
RP(κ ∩ cof(ℵω+1)), or more generally to an Easton result for RP(κ ∩ cof(λ)) given
any fixed cofinality λ?

We believe that the answer to this question is positive, and that it is possible
to force approachability at all successors of singulars without using the result of
Shelah. The idea would be to shoot clubs through the set of approachable points
at successors of singulars λ+ where reflection should be preserved. However, the
proof would necessarily be more involved.

The following is a harder question:

Question 2. Can the results of this paper be extended to stationary sets concen-
trating on points of arbitrary (or un-fixed) cofinality? In other words, suppose that
F is a function on the class of regular cardinals to itself. Is it possible to obtain a
model such that RP(κ ∩ cof(λ)) holds precisely when F (κ) = λ?
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We conjecture that the answer to this question is negative, and that there is a
Silver’s Theorem for stationary reflection that is waiting to be discovered.

Lastly, we have:

Question 3. Does ZFC put any restrictions on the global behavior of �κ? Suppose
F is two-valued function on the class of all cardinals. Is it possible to obtain a
model such that �κ holds precisely if F (κ) = 1? And if there are ZFC restrictions,
what exactly are they?

Some progress has been made for this question. Cummings, Foreman, and Magi-
dor constructed a model in which �ℵn holds for all n < ω, but where �ℵω fails [3].
However, it appears difficult to generalize this result to singulars of uncountable
cofinality. Cummings et al. also showed that the existence of square sequences be-
low a singular cardinal κ implies the existence of something resembling but distinct
from a �κ-sequence [4]. It may be possible to take their argument further.

Acknowledgements: We would like to thank Yair Hayut for advising us to use
the theorem of Shelah from “Reflecting Stationary Sets and Successors of Singular
Cardinals.”
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