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INTERNAL CONSISTENCY AND GLOBAL CO-STATIONARITY OF

THE GROUND MODEL

NATASHA DOBRINEN AND SY-DAVID FRIEDMAN

Abstract. Global co-stationarity of the ground model from an ℵ2-c.c. forcing which adds a new subset

ofℵ1 is internally consistent relative to anù1-Erdős hyperstrong cardinal and a sufficiently largemeasurable

above.

§1. Introduction. Suppose P is a notion of forcing, κ is regular and uncountable
in V P, and ë is a cardinal > κ in V P. We say that the ground model is co-stationary

or that (Pκ(ë))V is co-stationary in V P if (Pκ(ë))V
P

\ (Pκ(ë))V is stationary in

(Pκ(ë))V
P

. Note that (Pκ(ë))V = (Pκ(ë))V
P

∩V ; hence, (Pκ(ë))V
P

\ (Pκ(ë))V =

(Pκ(ë))V
P

\ V .
We say that a forcing P achieves global co-stationarity of the ground model if

(Pκ(ë))V
P

\V is stationary in V P for all cardinals ℵ2 ≤ κ < ë in V P with κ regular
in V P. In [3], we showed that it is relatively consistent (from a proper class of ù1-
Erdős cardinals) that every ℵ2-c.c. forcing which adds a new subset of ℵ1 achieves
global co-stationarity of the ground model.

Theorem 1.1 (Dobrinen/Friedman [3]). The following are equiconsistent:

1. There is a proper class of ù1-Erdős cardinals.

2. If P is ℵ1-Cohen forcing, then (Pκ(ë))
V P

\ V is stationary in V P for all regular
κ ≥ ℵ2 and all ë > κ.

3. If P adds a new subset of ℵ1 and is ℵ2-c.c. (or just satisfies the (κ+, κ+, < κ)-
distributive law for all successor cardinals κ ≥ ℵ2 and is è-c.c. for the least

strongly inaccessible cardinal è, if it exists), then (Pκ(ë))V
P

\V is stationary in
V P for all regular κ ≥ ℵ2 and all ë > κ.

In this paper, we address some questions left open by Theorem 1.1. Can we
get a model with large cardinals of global co-stationarity for ℵ2-c.c. forcings which
add a new subset of ℵ1? The model we used to prove the consistency of Theo-
rem 1.1 (3) does not necessarily even have measurable cardinals, although it can
have inaccessibles.
The second question we investigate is the following. What is the internal consis-
tency strength of global co-stationarity for ℵ2-c.c. forcings which add a new subset
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of ℵ1? Recall that as defined in [4], a statement is internally consistent iff it holds
in an inner model, assuming the existence of inner models with large cardinals.
Internal consistency strength refers to the large cardinals required. There is reason
to believe that the internal consistency strength of our global co-stationarity prop-
erty is at least that of a Woodin cardinal. Indeed, our strategy to obtain global
co-stationarity internally requires collapsing the successor of each regular cardinal
below some measurable cardinal, a property whose (ordinary) consistency strength
is at the level of a Woodin cardinal.
Our main results are Theorems 3.1 and 3.2. Integral to our results are the
following large cardinals.

Definition 1.2. Given a model M and an ordinal α, we let Mα denote the Vα
of M . κ is superstrong if there exists an elementary embedding j : V → M such
that crit(j) = κ and Vj(κ) = Mj(κ). κ is hyperstrong if there exists an elementary
embedding j : V → M such that crit(j) = κ and Vj(κ)+1 = Mj(κ)+1. κ is ù1-
Erdős hyperstrong if there exists an elementary embedding j : V → M such that
crit(j) = κ and Vë =Më, where ë is an ù1-Erdős cardinal of V above j(κ).

Theorem 3.1. Let V be a model of ZFC with a proper class ofù1-Erdős cardinals.
Then there is a class forcing extensionW of V such that every ℵ2-c.c. forcing which
adds a new subset of ℵ1 achieves global co-stationarity of W . Moreover, every ù1-
Erdős hyperstrong cardinal in V is superstrong inW .

Theorem 3.2. Assume V is a model of ZFC with an ù1-Erdős hyperstrong car-
dinal κ and a measurable cardinal above j(κ), where j is an elementary embedding
witnessing the ù1-Erdős hyperstrength of κ. Then there is an inner model W ⊆ V
with a proper class of Woodin cardinals such that every ℵ2-c.c. forcing which adds a
new subset of ℵ1 achieves global co-stationarity ofW . If moreover κ is an ù1-Erdős
hyperstrong cardinal which is a limit of ù1-Erdős hyperstrong cardinals, thenW has a
proper class of superstrong cardinals.

Remark. In Theorems 3.1 and 3.2, ℵ2-c.c. can be weakened to (ñ+, ñ+, < ñ)-
distributivity for all ñ less than the least regular limit cardinal plus the è-c.c. where
è is the least regular limit cardinal (if it exists).

§2. Definitions and background. Throughout this paper, standard set-theoretic
notation is used. α, â, ã are used to denote ordinals, while κ, ë, ì, í, ñ, è are used to
denote cardinals. Pκ(X ) = [X ]<κ = {x ⊆ X : |x| < κ}. Usually we use [X ]<ù

instead of Pù(X ) to denote the collection of finite subsets of X . X<κ and (X )<κ

denote the collection of all functions from an ordinal less than κ into X ; i.e., the
collection of all sequences of length less than κ of elements of X . We will hold to
the convention that ifV ⊆W are models of ZFC with the same ordinals and κ < ë
are cardinals inW , then Pκ(ë) denotes (Pκ(ë))W .
Certain generalised distributive laws imply preservation of the stationarity of the
Pκ(ë) of the groundmodel. In addition, theywill aid us in obtaining extensionmod-
els in which the ground model is co-stationary. We present the forcing-equivalent
definitions of distributivity, referring the reader to [5] for the Boolean algebraic
versions.
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Definition 2.1. Let κ, ë, ì be cardinals with ì ≤ ë. A partial ordering P is
(κ, ë,< ì)-distributive if for any function ḟ : κ̌ → ë̌, there is a function g : κ →

[ë]<ì in V such that for each α < κ, ḟ(α) ∈ g(α) in V P. We will say that P is
(κ, ë, ì)-distributive if it is (κ, ë,< ì+)-distributive.

One can think of (ñ, ë, κ)-distributivity as a weakening of the κ+-c.c.

Fact 2.2.

1. If P is κ+-c.c., then P is (ñ, ë, κ)-distributive for all ñ and for all ë > κ.
2. The (κ, ë, κ)-d.l. holds iff every subset of ë of size κ in V P can be covered by a
subset of ë of size κ in V .

3. If ë > κ and P is (ë, ë, κ)-distributive, then P preserves all cardinals ñ with
κ+ ≤ ñ ≤ ë. Moreover, every stationary subset of (Pκ+(ë))V in V is a
stationary subset ofPκ+(ë) in V

P. Hence, (Pκ+(ë))
V is stationary in V P.

The following theorem due to Kueker will be employed throughout this paper.

Theorem 2.3 (Kueker [6]). Suppose κ < ë and κ is regular. For each club C ⊆
Pκ(ë) there exists a function f : [ë]<ù → Pκ(ë) such that Cf ⊆ C , where

Cf = {x ∈ Pκ(ë) : ∀y ∈ [x]<ù f(y) ∈ x}. (1)

Moreover, Cf is club.

Next we state a well-known result of Menas.

Theorem 2.4 (Menas [7]). Let A ⊆ B with |A| ≥ κ. For X ⊆ Pκ(A), let X ∗ =
{x ∈ Pκ(B) : x ∩ A ∈ X}. If C ⊆ Pκ(A) is club then C ∗ is club in Pκ(B). For
Y ⊆ Pκ(B), let Y ↾ A = {y ∩ A : y ∈ Y}. If C ⊆ Pκ(B) is club, then C ↾ A

contains a club set in Pκ(A).

Two special facts follow from this theorem.

Fact 2.5. Let V ⊆W be models of ZFC with the same ordinals and κ be regular
and ë > κ inW .

1. If (Pκ(ë))V is co-stationary in W , then for all ì ≥ ë, (Pκ(ì))V is also co-
stationary inW .

2. If (Pκ(ë))
V is stationary inW and κ ≤ ì < ë, then (Pκ(ì))

V is also stationary
inW .

Thus, to show that (Pκ(ë))V is co-stationary in W for all ë ≥ κ+, κ regular in
W , it suffices to show that (Pκ(κ+))V is co-stationary inW .

Definition 2.6. [2] Let α ≤ ë, α a limit ordinal. ë is α-Erdős if whenever
C is club in ë and f : [C ]<ù → ë is regressive (f(a) < min(a)), then f has a
homogeneous set of order type α; that is, a set X ⊆ C such that for each n ∈ ù,
|f′′[X ]n | = 1.

The following is a model-theoretic equivalent of being α-Erdős: ë is α-Erdős
iff for any structure A with universe ë (for a countable language) endowed with
Skolem functions, for any club C ⊆ ë, there is an I ⊆ C of order type α such
that I is a set of indiscernibles for A and in addition I is remarkable; i.e., whenever
é0, . . . , én and ç0, . . . , çn are increasing sequences from I with éi−1 < çi , ô is a term
and ôA(é0, . . . , én) < éi , then ô

A(é0, . . . , én) = ô
A(é0, . . . , éi−1, çi , . . . , çn). (See [1].)

In [3], we proved the following lemma, which is a generalisation of part of the
proof of Theorem 5.9 of Baumgartner in [1].
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Lemma 2.7. [3] Suppose that in V , |2ù| < κ < ë, κ is regular, and ë is ù1-Erdős.
Let Q = Col(κ,< ë) and G be Q-generic over V . Then in V [G ], given a function
g : [κ+]<ù → Pκ(κ+), there is a tree T ⊆ (κ+)<ù1 isomorphic to 2<ù1 such that for
any two branches b, c in T , b ∩

⋃
g ′′[c]<ù ⊆ b ∩ c.

Notation. Let W be a model of ZFC and let κ be regular in W . We will say
∗(W,κ) holds if the following is true: Given a function g : [κ+]<ù → Pκ(κ+) inW ,
there is a tree T ⊆ (κ+)<ù1 inW isomorphic to 2<ù1 such that for any two branches
b, c in T , b ∩

⋃
g ′′[c]<ù ⊆ b ∩ c.

The next theorem is a distillation of what we will need from the proof of Theo-
rem 3.5 in [3].

Theorem 2.8. [3] Suppose κ is regular in W and ∗(W,κ) holds. In W , let C be
ℵ1-Cohen forcing (or any partial ordering which adds a new subset of ℵ1 and satisfies
the (κ+, κ+, < κ)-d.l. if κ is a successor cardinal, or the κ-c.c. if κ is a regular limit
cardinal ). ThenPκ(ì) \W is stationary inW C for all ì ≥ κ+.

To prove Theorem 3.1 it suffices, by Theorem 2.8, to obtain a modelW in which
∗(W,κ) holds for all regularκ. To create this, wewill iterate Lévy collapses, applying
Lemma 2.7 to obtain ∗(W ′, κ) for a given κ in some intermediate model W ′. It
will then be incumbent on us to preserve this property through later stages of the
forcing construction. The next two Lemmas are designed to do just that.

Lemma 2.9. Let W be a model of ZFC and κ ≥ ℵ2 be regular in W . If ∗(W,κ)
holds and F is a κ-c.c., ℵ2-closed forcing, then ∗(W F, κ) holds.

Proof. Let h : [κ+]<ù → (Pκ(κ+))W
F

in W F be given. Since F is κ-c.c., there
is a g : [κ+]<ù → (Pκ(κ+))W inW such that for each x ∈ [κ+]<ù , h(x) ⊆ g(x).
By ∗(W,κ), there exists a tree T ⊆ (κ+)<ù1 in W such that T ∼= 2<ù1 and for
all branches b, c through T , b ∩

⋃
g ′′[c]<ù ⊆ b ∩ c. Since F is ℵ2-closed, T

has the same branches in W and W F. For each x ∈ [κ+]<ù , h(x) ⊆ g(x); so
b ∩

⋃
h′′[c]<ù ⊆ b ∩

⋃
g ′′[c]<ù . Therefore, ∗(W F, κ) holds. ⊣

The next lemma is a slight generalisation of Lemma 3.7 in [3].

Lemma 2.10. Suppose in W that κ ≥ ℵ2, κ is regular, ∗(W,κ) holds, and F is a
κ+-closed forcing. Then ∗(W F, κ) holds.

Proof. In W , suppose p 
 (ḣ : [κ+]<ù → Pκ(κ+)), where p ∈ F and ḣ is an
F-name. Fix an enumeration 〈xæ : æ < κ

+〉 of [κ+]<ù inW with the property that
for each â < κ+, 〈xæ : æ < κ · â〉 enumerates [κ · â]

<ù . In W , form a decreasing
sequence 〈pæ : æ < κ

+〉 of elements of F with p0 ≤ p such that for each æ < κ+, pæ
decides ḣ(xæ). 〈pæ : æ < κ

+〉 is in W , so it evaluates ḣ to be some function inW ,
call it g. By the hypothesis, there is a tree T ⊆ (κ+)<ù1 inW with T ∼= 2<ù1 such
that for all branches b, c in T , b ∩

⋃
g ′′[c]<ù ⊆ b ∩ c. T has the same branches in

W andW F since F is ℵ2-closed.
Let â = sup(T ) and ä = κ · â . Then pä 
 (ḣ ↾ [ä]<ù = g ↾ [ä]<ù). So given
branches b, c inT , b∩

⋃
g ′′[c]<ù ⊆ b∩c, andpä 
 (b∩

⋃
g ′′[c]<ù = b∩

⋃
ḣ′′[c]<ù).

Thus, for eachp ∈ F there exist a q ≤ p and a treeT ∈W such that q 
 (∀ branches
b, c in T , b ∩

⋃
ḣ′′[c]<ù ⊆ b ∩ c). Therefore, ∗(W F, κ) holds. ⊣

The following lemma is a standard way of lifting elementary embeddings to
generic extensions.
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Lemma 2.11. Suppose j : V → M is an elementary embedding with κ = crit(j).
Let P be a definable forcing in V (P may be a class forcing), and let P∗ denote
the version of P in M . Let G be P-generic over V and G∗ be P∗-generic over M .
If j[G ] ⊆ G∗, then the elementary embedding j lifts to an elementary embedding
j∗ : V [G ]→M [G∗] with crit(j∗) = κ and j∗(κ) = j(κ).

Proof. Let j∗ denote the mapping from V [G ] toM [G∗] induced by j given by
j∗(óG) = (j(ó))G

∗

, where ó is a P-name in V . Let ϕ be a formula and suppose
V [G ] |= ϕ[óG1 , . . . , ó

G
n ], where ó1, . . . , ón are P-names. Then there is some p ∈ G

which decides ó1, . . . , ón and V |= (p 
 ϕ[ó1, . . . , ón]). Therefore, M |= (j(p) 


ϕ[j(ó1), . . . , j(ón)]). j(p) ∈ G∗, soM [G∗] |= ϕ[(j(ó1))G
∗

, . . . , (j(ón))G
∗

]. There-
fore,M [G∗] |= ϕ[j∗(óG1 ), . . . , j

∗(óGn )]. It follows that j
∗ is well-defined. For each

x ∈ V , j∗(x) = j∗(x̂G) = (j(x̂))G
∗

= (ĵ(x))G
∗

= j(x). ⊣

§3. Internal consistency of global co-stationarity. In this section, we show the
internal consistency of global co-stationarity from an ù1-Erdős hyperstrong cardi-
nal and a measurable (far enough) above it, and the internal consistency of global
co-stationarity with a proper class of superstrong cardinals from a proper class of
ù1-Erdős hyperstrong cardinals.
Recall: if the superstrength of κ is witnessed by j : V → M , then M can be
given as {j(f)(a) : f ∈ V , f : Vκ → V , a ∈ Vj(κ)}. If κ is hyperstrong, thenM
can be given as {j(f)(a) : f ∈ V , f : Vκ+1 → V , a ∈ Vj(κ)+1}. If κ is ù1-Erdős
hyperstrong, then M can be given as {j(f)(a) : f ∈ V , f : Vë̄ → V , a ∈ Vë},

where ë̄ is the least ù1-Erdős cardinal above κ in V and ë is the least ù1-Erdős
above j(κ) in V .
Theorem 3.1 is the main ingredient in our internal consistency result.

Theorem 3.1. Let V be a model of ZFC with a proper class ofù1-Erdős cardinals.
Then there is a class forcing extensionW of V such that every ℵ2-c.c. forcing which
adds a new subset of ℵ1 achieves global co-stationarity of W . Moreover, every ù1-
Erdős hyperstrong cardinal in V remains at least superstrong inW .

Proof. We may assume that V satisfies CH, else work in V F, where F is the
forcing which collapses the continuum to ℵ1, i.e., the collection of all functions
from an ordinal less than ℵ1 into 2ù. This preserves ù1-Erdős cardinals as well as
ù1-Erdős hyperstrong cardinals.
The goal is to Lévy collapseù1-Erdős cardinals to successors of regular cardinals,
thereby obtaining global co-stationarity as in the proof of Theorem 1.1 (3). How-
ever, the method used in that proof, namely the reverse Easton iteration of Lévy
collapses, does not necessarily preserve large cardinals, for instance measurables. In
order to preserve large cardinals, we will do two phases of Lévy collapse iteration,
skipping some cardinals in the first phase in order to preserve some large cardinal
strength. We must check that the second phase did not destroy the co-stationarity
of the ground model in the places obtained by the first phase.
We begin with some useful notation. Let 〈εα : α ∈ Ord〉 enumerate theù1-Erdős
cardinals inV . Without loss of generality, we can assume that there is a proper class
of cardinals which are both inaccessible and also a limit of ù1-Erdős cardinals. (If
not, then there is a least cardinal, say è, above which there is no inaccessible limit of
ù1-Erdős cardinals in V . Then above è, just do a reverse Easton iteration of Lévy
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collapses of the ù1-Erdős cardinals to successors of regular cardinals exactly as in
the proof of Theorem 1.1 (3).) Let 〈äâ : â ∈ Ord〉 enumerate the cardinals in V
which are both inaccessible and a limit of ù1-Erdős cardinals. The äâ ’s will be fixed
points of our forcing.
Phase 1: Construction of P. We define a reverse Easton iterated forcing P in
V which collapses ù1-Erdős cardinals to successors of regular cardinals except at
successors of successors of inaccessible limits of ù1-Erdős cardinals. Precisely, we
mean the following.
At limit ordinals α, let Pα be the direct limit of 〈Pâ : â < α〉 if α is regular
in V , and let Pα be the inverse limit of 〈Pâ : â < α〉 if α is singular in V . Let
ìα = supâ<α ìâ in V

Pα . Note: The äα ’s will be fixed points under forcing with P.

Let P0 = P1 = P2 be the trivial forcing. Let P3 = Col(ℵ2, < ε3). ε3 becomes ℵ3 in

V P3 . Let ì3 denote (ℵ3)V
P3 . In V P3 , let Q3 = Col(ℵ3, < ε4), and let P4 = P3 ∗ Q3.

ε4 becomes ℵ4 in V P4 . Let ì4 denote (ℵ4)V
P4 . Let 4 ≤ α < ä0. If α is a successor

ordinal, let Qα = Col(ìα , < εα+1), Pα+1 = Pα ∗ Qα , and ìα+1 = (ℵα+1)V
Pα+1 .

If α is a limit ordinal, let Qα be the trivial forcing, Pα+1 = Pα ∗ Qα ∼= Pα , and

ìα+1 = (ℵα+1)V
Pα+1 .

In general, let α ≥ ä0 be an ordinal and suppose we have constructed Pα and ìα
in V Pα . We constructQα and let Pα+1 = Pα ∗Qα. Let ã be such that äã ≤ α < äã+1.

1. If α = äã , then ìα = α = ℵα = äã = ã in V Pα , since Pα is α-c.c. So ìα
is regular in V Pα . Let Qα = Col(ìα , < εα+1). εα+1 is collapsed to (ìα)+ in

V Pα+1 , which is ℵα+1 = (äã)+ in V Pα+1. Let ìα+1 = ((äã)+)V
Pα+1 .

2. If α = äã +1, let Qα be the trivial forcing. Then Pα+1 is equivalent to Pα . Let
ìα+1 = εäã+2.

3. If α = äã + 2, let Qα = Col(ìα , < εα+1). Let ìα+1 = ((ìα)
+)V

Pα+1 , which is

((εäã+2)
+)V

Pα+1 .
4. If äã + 3 ≤ α < äã+1 and α is a successor ordinal, then let Qα = Col(ìα , <

εα+1). Let ìα+1 = ((ìα)+)V
Pα+1 , which is what εα+1 gets collapsed to by Qα .

5. If α is a limit ordinal and ìα is singular in V Pα , then let Qα be the trivial

forcing, and let ìα+1 = ((ìα)+)V
Pα+1 .

6. If α is a limit ordinal and ìα is regular in V Pα , then letQα = Col(ìα , < εα+1)

and let ìα+1 = ((ìα)+)V
Pα+1 .

LetG ⊆ P be generic overV . Supposeκ isù1-Erdős hyperstrong and j : V →M
witnesses this.

Claim 1. κ remains hyperstrong in V [G ].

Proof. Let ë be the least ù1-Erdős inM above j(κ). Më = Vë. Let P
∗ denote

the forcing P defined in M . In order to show that P preserves the hyperstrength
of κ, we need to create a generic G∗ ⊆ P∗ over M such that j[G ] ⊆ G∗ and
V [G ]j(κ)+1 =M [G

∗]j(κ)+1.

Construction of G∗. Let G∗

j(κ) = Gj(κ). Let ë̄ denote εκ+1, the least ù1-Erdős

cardinal above κ in V . Note that j(ë̄) = ë. We need to ensure that j[Gκ+1] ⊆
G∗

j(κ)+1
. Pκ+1 = Pκ ∗ Qκ, where Qκ is Col(κ,< ë̄) in V [Gκ]. Let j∗κ denote the

lifting of j to V [Gκ]. That is, j∗κ : V [Gκ] → M [G
∗

j(κ)
] by j∗κ (ó

Gκ) = (j(ó))Gj(κ) ,

where ó is a Pκ-name in V .
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Let gκ denote the Qκ-generic over V [Gκ]. gκ ∈ Vë[Gj(κ)] and gκ ⊆ Vë̄[Gκ].
j ↾ Vë̄ ∈ Vë, so j

∗

κ ↾ Vë̄[Gκ] ∈ Vë[Gj(κ)]. Thus, j
∗

κ [gκ] ∈ Vë[Gj(κ)] =Më[G
∗

j(κ)
], so

there is a lower bound of j∗κ [gκ] in Col(j(κ), < ë) in M [G
∗

j(κ)
]. Call it q. Choose

the generic g∗
j(κ)
forQ∗

j(κ)
overM [G∗

j(κ)
] inside V [Gj(κ)+1] such that q ∈ g

∗

j(κ)
. This

is possible using the homogeneity of Q∗

j(κ)
. Then j∗κ [gκ] ⊆ g

∗

j(κ)
.

Now we constructG∗,j(κ)+1, the generic for P∗,j(κ)+1 where P∗ factors as P∗

j(κ)+1 ∗

P∗,j(κ)+1. Assume j : V → M is given as an ultrapower embedding, i.e., M =
{j(f)(a) : f ∈ V , f : Vë̄ → V , a ∈ Vë}. Let D be a set-sized maximal

antichain of P∗,j(κ)+1 inM [G∗

j(κ)+1]. Then there is a P∗

j(κ)+1-name ô inM such that

D = ôG
∗

j(κ)+1 . Fix f ∈ V and a ∈ Vë such that f : Vë̄ → V and ô = j(f)(a).
We seek a condition p ∈ Gκ+1 which extends an element of (f(ā))Gκ+1 whenever
ā ∈ Vë̄ and (f(ā))

Gκ+1 is predense in Pκ+1. This is possible if the upper part of the
forcing has enough closure. (It will not work if we letQκ+1 beCol(ìκ+1, < εκ+2), for
then the upper part does not have enough closure to find such a p. This is precisely
why we break our forcing into two parts, P and R.) Conditions (2) and (3) in the
construction of P ensure that Pκ+1 is εκ+2-closed inV [Gκ+1]. This is enough closure
to find a condition p ∈ Gκ+1 which extends an element of (f(ā ))Gκ+1 whenever
ā ∈ Vë̄ and (f(ā))

Gκ+1 is predense in Pκ+1.

Let j∗κ+1 : V [Gκ+1] → M [G
∗

j(κ)+1
] be given given by j∗κ+1(ó

Gκ+1) = (j(ó))G
∗

j(κ)+1 ,

for ó any Pκ+1-name. V [Gκ+1] |= (∀ā ∈ Vë̄, if (f(ā))
Gκ+1 is predense in Pκ+1,

then ∃r ∈ (f(ā))Gκ+1 such that p ≤ r). Hence, there is an s ∈ Gκ+1 such that
V |= (s 
 (∀ā ∈ Vë̄, if f(ā) is predense in Pκ+1, then ∃r ∈ f(ā) such that ṗ ≤ r)).
(Here ṗ is a Pκ+1-name for p.) By elementarity, M |= (j(s) 
 (∀b ∈ j(Vë̄), if
j(f)(b) is predense in j(Pκ+1), then ∃r ∈ j(f)(b) such that j(ṗ) ≤ r)). Since
j(s) ∈ j[Gκ+1] ⊆ G∗

j(κ)+1
, M [G∗

j(κ)+1
] |= (∃r ∈ D such that j∗κ+1(p) ≤ r)). The

same proof works for arbitrary definable maximal antichains. By elementarity,
j∗κ+1[G

κ+1] is pairwise compatible. InM [G∗

j(κ)+1], let G
∗,j(κ)+1 = {q ∈ P∗,j(κ)+1 :

∃r ∈ Gκ+1 (j∗κ+1(r) ≤ q)}, the upward closure in P∗,j(κ)+1 of j∗κ+1[G
κ+1].

Thus, j[G ] ⊆ G∗. Let j∗ : V [G ] → M [G∗] be given by j∗(óG) = (j(ó))G
∗

,
where ó is any P-name inV . Pj(κ)+1 is εj(κ)+2-closed inV [Gj(κ)+1], and εj(κ)+2 > ë.
Hence, V [G ]j(κ)+1 = V [Gj(κ)+1]j(κ)+1. V [Gj(κ)+1]j(κ)+1 = Vë[Gj(κ)+1], since ë

is inaccessible in V , and since Pj(κ)+1 is εj(κ)+2-closed. Likewise, M [G
∗]j(κ)+1 =

Më[G
∗

j(κ)+1
]. SinceVë[Gj(κ)+1] =Më[G

∗

j(κ)+1
] andPj(κ)+1 andP∗

j(κ)+1
both collapse

ë to j(κ)+, V [G ]j(κ)+1 =M [G
∗]j(κ)+1. Therefore, κ is hyperstrong in V [G ]. ⊣

Phase 2: Construction of R. The second stage of the forcing takes care of the
cases which were untouched by P. In Phase 1, we could not let Qα be a collapsing
forcing when α was the successor of an inaccessible limit of ù1-Erdős cardinals,
because it was precisely at those points that we needed enough closure to lift the
embedding. In Phase 2 we correct what was left undone in Phase 1 in order that all
successors of regulars were ù1-Erdős cardinals in V . We must be careful that what
we obtained in regard to co-stationaity of the ground model after Phase 1 remains
valid after Phase 2.
Recall that 〈äα : α ∈ Ord〉 enumerates all the cardinals in V which are both
inaccessible and limits of ù1-Erdős cardinals in V . The stages äα +1 of the Phase 1
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forcing P were where we did not collapse anything; Qäα+1 was the trivial forcing.
These are the stages where we will now do a Lévy collapse.
For each α ∈ Ord, recall that äα is fixed by P, and in V [G ], ìäα+1 = (äα)

+

and ìäα+2 = εäα+2. For each ordinal α, we take Sα = Col(ìäα+1, < ìäα+2). Let
Rα+1 = Rα ∗Sα , whereR0 is the trivial forcing. LetR be the reverse Easton iteration
of the Rα , α ∈ Ord. R is going to collapse the ìäα+2’s down so that ìäα+2 becomes
(äα)++, which is the same as ℵα+2 in the final extension by P ∗ R. Let V ′ = V [G ].
Let H be V ′-generic for R, and letW = V ′[H ].

Claim 2. κ remains superstrong inW .

Proof. Let k : V ′ → N be an elementary embedding witnessing the super-
strength of κ in V ′. Let R∗ denote the version of R in N . Again, our goal is to
create a generic H ∗ for R∗ over N such that k[H ] ⊆ H ∗ andWk(κ) = N [H

∗]k(κ).
R∗

k(κ)
= Rk(κ), since V

′

k(κ)
= Nk(κ), so let H

∗

k(κ)
= Hk(κ).

Next, construct the generic for R∗,k(κ) over N [H ∗

k(κ)
]. Let k∗κ denote the lifting

of k to V ′[Hκ], so that k∗κ : V
′[Hκ]→ N [Hk(κ)] by k

∗

κ(ó
Hκ ) = (k(ó))Hk(κ) , where ó

is an Rκ-name in V ′. We assume that k is given by an ultrapower embedding, i.e.,
N = {k(g)(b) : g ∈ V ′, g : V ′

κ → V
′, and b ∈ V ′

k(κ)
}. LetD be a set-sizedmaximal

antichain of R∗,k(κ) in N [H ∗

k(κ)
]. Let ô be an R∗

k(κ)
-name in N such thatD = ôH

∗

k(κ) ,

and let g ∈ V ′ and b ∈ V ′

k(κ) such that ô = k(g)(b). In V
′[Hκ], ìκ+1 = κ

+, so

Sκ = Col(κ+, < εκ+2). Hence, Rκ is κ+-closed. So in V ′[Hκ], there is a p ∈ H κ

which extends an element of (g(b̄))Hκ whenever b̄ ∈ V ′
κ and (g(b̄))

Hκ is predense
in Rκ. It follows that N [H ∗

k(κ)
] |= (∃r ∈ D such that k∗κ(p) ≤ r). By elementarity,

k∗κ [H
κ] is pairwise compatible. Let H ∗,k(κ) = {q ∈ R∗,j(κ) : ∃r ∈ Gκ (k∗κ(r) ≤ q)},

the upward closure in R∗,j(κ) of k∗κ [H
κ].

Thus, k[H ] ⊆ H ∗. Hence, k lifts to an elementary embedding k∗ : W →
N [H ∗] with k∗(κ) = k(κ). It remains to show thatWk(κ) = N [H

∗]k(κ). Rk(κ) =

Col(k(κ)+, < ìk(κ)+2) ∗ Rk(κ)+1, hence is k(κ)+-closed. SoWk(κ) = V
′[Hk(κ)]k(κ).

V ′[Hk(κ)]k(κ) = V
′

k(κ)
[Hk(κ)], since k(κ) is inaccessible. Likewise, N [H

∗]k(κ) =

Nk(κ)[H
∗

k(κ)
]. Hk(κ) = H

∗

k(κ)
, and Nk(κ) = V

′

k(κ)
. So we haveWk(κ) = N [H

∗]k(κ).

Thus, κ is superstrong inW . ⊣

As the last step, we check that every ℵ2-c.c. forcing inW which adds a new subset
of ℵ1 achieves global co-stationarity ofW .

Subclaim A. Let α ∈ Ord. If ìα is regular in V ′ and α 6= äã +1 for any ã ∈ Ord,
then ∗(V ′, ìα) holds.

Proof. By Lemma 2.7, ∗(V [Gα+1], ìα) holds. Since Pα+1 is (ìα)+-closed,
∗(V ′, ìα) holds, by Lemma 2.10. ⊣

Subclaim B. For each regular ñ inW , ∗(W,ñ) holds.

Proof. Case 1. α ∈ Ord, and inW , (äα)+ < ñ ≤ äα+1. Then ∗(V ′, ñ) holds, by
SubclaimA.Rα+1 = Rα ∗Col((äα)+, < εäα+2), soRα+1 is εäα+2-c.c. ñ ≥ εäα+2 inV

′,
so ∗(V ′[Hα+1], ñ) holds, by Lemma 2.9. Rα+1 = Col((äα+1)+, < εäα+1+2) ∗ Rα+2 is
(äα+1)+-closed. So by Lemma 2.10, ∗(W,ñ) holds.
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Case 2. α ∈ Ord and ñ = (äα)+. Sα = Col((äα)+, < εäα+2), so ∗(V
′[Hα+1], ñ)

holds, by Lemma 2.7. Rα+1 is (äα+1)+-closed in V ′[Hα+1], so ∗(W,ñ) holds, by
Lemma 2.10.
Case 3. α is a limit ordinal and ñ = äα . ∗(V ′, ñ) holds, by Subclaim A, and äα is
still strongly inaccessible in V ′. If α < ñ, then |Rα| < ñ. If α = ñ, then Rα is ñ-c.c.
Either way, ∗(V ′[Hα], ñ) holds, by Lemma 2.9. Rα = Col(ñ+, < εα+2) ∗ Rα+1 is
ñ+-closed; so by Lemma 2.10, ∗(W,ñ) holds. ⊣

These three cases cover all regular cardinals ñ ∈ W , so ∗(W,ñ) holds for all
regular ñ inW . By Theorem 2.8, we finally obtain global co-stationarity ofW for
any partial ordering which adds a new subset of ℵ1 and is ℵ2-c.c. (or adds a new
subset of ℵ1 and satisfies the (ñ+, ñ+, < ñ)-d.l. if ñ is less than the least regular limit
cardinal, and the è-c.c. if è is the least regular limit cardinal). ⊣

Theorem 3.2. Assume V is a model of ZFC with an ù1-Erdős hyperstrong car-
dinal κ and a measurable cardinal above j(κ), where j is an elementary embedding
witnessing the ù1-Erdős hyperstrength of κ. Then there is an inner model W ⊆ V
with a proper class of Woodin cardinals such that every ℵ2-c.c. forcing which adds a
new subset of ℵ1 achieves global co-stationarity ofW . If moreover κ is an ù1-Erdős
hyperstrong cardinal which is a limit of ù1-Erdős hyperstrong cardinals, thenW has a
proper class of superstrong cardinals.

Proof. Let ϕ be the sentence “There exists an ù1-Erdős hyperstrong cardinal
κ, a witnessing embedding j : V → N , and a measurable cardinal above j(κ)”.
Let V be model of ZFC satisfying ϕ, and let è be a regular cardinal large enough
that Hè |= ϕ. Let T ′′ be a countable elementary submodel of Hè and T

′ be the
transitive collapse of T ′′. Since T ′ is countable we can force CH over T ′ by forcing
with the collection of functions from ordinals α < ù1 into 2ù. Let T denote the
extension model. Then T is still countable and T |= ϕ.
In T , let κ denote an ù1-Erdős hyperstrong cardinal, j : V → N be a witnessing
embedding, and ì denote a measurable cardinal above j(κ). Define Pj(κ)+1 in T
as in Phase 1 in the proof of Theorem 3.1. Let G ∈ V be Pj(κ)+1-generic over T .
Define Rj(κ) as in Phase 2 in the proof of Theorem 3.1. LetH ∈ V be Rj(κ)-generic
over T [G ]. Let M = T [G ][H ]. M ∈ V . By the same arguments, κ remains
superstrong in M . Moreover, ∗(M,ñ) holds for all regular cardinals ñ ∈ M with
ℵ2 ≤ ñ ≤ j(κ).
Since the forcing Pj(κ)+1 ∗ Rj(κ) has cardinality in T much smaller than ì, ì is
still measurable in M and carries a measure in M which is iterable in V . Iterate
out ì to obtain an inner model W ′ ⊆ V which agrees with M up to sets of rank
less than ì. That is, letting è be a regular cardinal in V above ì, form (in V ) the
ultrapower of H (è) with respect to a measure on ì. Then there is an elementary
embedding j1 : H (è) → Ult1, where Ult1 denotes Ult(H (è),U0), where U0 is a
measure on ì. j1(ì) > ì and j1(ì) is measurable with measure ji(U0) in Ult1; so
there is an elementary embedding j2 : Ult1 → Ult2, where Ult2 = Ult(Ult1,U1),
where U1 = j1(U0) is a measure on j1(ì). In this way, form the directed limit W ′

of ultrapowers iterating through all the ordinals in V . This gives us an inner model
W ′ of V such that W ′ and V are the same everywhere below rank ì. κ is still
superstrong in W ′, so let U be a measure on κ in W ′. Let H ′ denote the Hκ+ of
W ′. As before, iterateU out to obtain an inner modelW satisfying ∗(W,ñ) for each
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regular ñ ∈W with ñ ≥ ℵ2, and as κ is superstrong inW ′,W has a proper class of
Woodin cardinals. That is, starting with the model H (κ) inW ′, use a measure on
κ and form the directed limit (over all ordinals inW ′) of iterations of ultrapowers.
This gives an inner modelW ofW ′ which is elementarily equivalent toH (κ).
If in addition, V has an ù1-Erdős hyperstrong cardinal which is also a limit of
ù1-Erdős hyperstrong cardinals, then by the proof of Theorem 3.1, κ is a limit of
superstrong cardinals in W ′. It follows that there is a proper class of superstrong
cardinals inW . ⊣

We conclude with the following open problems.

Problem 3.3. What is the internal consistency strength of global co-stationarity
for ℵ2-c.c. forcings which add a new subset of ℵ1? Does the existence of an inner
model for this property follow from the existence of an inner model with a large
cardinal property weaker than superstrength?

Problem 3.4. What is the consistency strength of global co-stationarity for ℵ2-
c.c. forcingswhich add a new subset ofℵ1 togetherwith the existence of ameasurable
cardinal?

Our final open problem refers to [3], where we showed that “Pℵ3(ℵù2) \ V is
stationary in V C where C is ℵ2-Cohen forcing” is equiconsistent with ℵ2 many
measurable cardinals.

Problem 3.5. Is global co-stationarity for ℵ2-Cohen forcing consistent?
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UNIVERSITÄT WIEN, KURTGÖDEL RESEARCH CENTER FORMATHEMATICAL LOGIC
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