
Hypermachines

Sy-David Friedman (KGRC, Vienna)
Philip Welch (Bristol)

13.xi.2009

Abstract

The Infinite Time Turing Machine model [8] of Hamkins and Kidder is, in an essen-
tial sense, a “Σ2-machine” in that it uses a Σ2 Liminf Rule to determine cell values
at limit stages of time. We give a generalisation of these machines with an appro-
priate Σn rule. Such machines either halt or enter an infinite loop by stage
ζ(n) =df µζ(n) [∃Σ(n) > ζ(n) Lζ(n) ≺Σn

LΣ(n)], again generalising precisely the
ITTM case.1

1 Introduction

The Infinite Time Turing Machine (ITTM) model described in [8] is an attractive model
of transfinite time computation based on the standard Turing machine with an infinite
one way tape, and a finite transition table or instruction set. The latter specifies how
the machine behaves at successor steps as is usual, and one needs really only to specify
precisely how such a machine behaves at limit steps in time to give a complete descrip-
tion. The model in [8] resets the read/write head position on the first cell (or rather
triplet of first cells on each of three parallel tapes for input, output, and scratch work)
and assigns 0/1 values to a cell contents by means of a limsup rule: the value at time λ
is the limsup of the previous values. The use of limsup as opposed to liminf is immate-
rial in terms of computational functionality, and we tend to use liminf (as in this
paper). The basic properties of these machines were explored in [8]; in [11] the halting
problem and correspondingly, the decidable, and semi-decidable sets of integers were
characterised. The companion structure to this notion of computation turned out to be
the least level of the Gödel L-hierarchy, Lζ, which has a proper Σ2-elementary end
extension. The decidable sets of integers are those ∆1 definable (without parameters)
over 〈Lζ , ∈ 〉. (In the terminology of an earlier age, the ITTM decidable sets of integers
are the “abstract 1-section” of the admissible set 〈Lζ , ∈ 〉, and thus, by a theorem of
Sacks [10], form the 1-section of some type-2 functional G: 1-sc(G). It is therefore pos-
sible to view this form of computation as a particular example of higher type recursion
in the manner of generalised recursion theory).

With hindsight this is perhaps not unsurprising: either of the rules mentioned
exhibits the essential Σ2-nature of the machines: e.g. under liminf , the value of a cell at
a limit time λ is 1 if and only if “∃β < λ∀γ ∈ (β, λ)[� .]”. It is therefore apparent that if
Lζ ≺Σ2 LΣ, then thinking of the machines running inside L (which we may, as their con-
struction and operation is absolute to L), we should have that the machine has either
halted or is entering an infinite loop at time ζ.

1. The first author would like to thank the FWF (Austrian Science Fund) for its generous support through

Grant # P19375-N18. The second author would similarly like to acknowledge the generous support of the Tem-

pleton Foundation and the EPSRC of the UK (for Grant No. EP/G020841/1), and the Kurt Gödel Research

Centre, Vienna for its hospitality.

1

This naturally leads to the question: “Is there a notion of computation, presumably
based on a Σ3 style rule, that has as corresponding companion structure the level of the
L-hierarchy at the least ζ(3) with some Σ(3)> ζ(3) and Lζ(3)≺Σ3LΣ(3)?” Such a notion

would then have its “Σ3-ITTM-decidable sets” as those of the abstract 1-section of 〈Lζ(3),

∈ 〉, i.e. those that are ∆1(〈Lζ(3),∈ 〉), and would then presumably either be halted or be

entering an infinite loop by time ζ(3).

It is the purpose of this note to provide such a notion. We further indicate how to
generalise this to give a positive answer to the question for larger n with Σn-limit rules.
We only assume some familiarity with [8], with the basic facts of the constructible hier-
archy Lα and the Jensen version, the Jα-hierarchy (see [2], [5] or Jensen’s original paper
[9]). For H any class of ordinals we let H∗ be the class of limit points of H . We remark
that all of these arguments could be formulated within second order number theory.

In a concluding section we mention some open problems, but also connections with
other notions of quasi-induction in the literature, and connections with determinacy
questions.

2 The Σ3-Machine construction

The Σ3-machine has four tapes: besides the three parallel tapes of [8] for input, scratch
and output , there is an additional parallel rule tape that the Read/Write head surveys,
and reads and writes to, just as for the other three. (This is a convenience only: we
could imagine the rule tape as being absorbed as a simple infinite recursive subtape of
the official scratch tape, and stipulations about the rule tape which we are about to for-
mulate could be made in terms of some priorly fixed recursive function F : ω2� ω2
applied to the scratch tape cells 〈C3i+1 J i < ω〉.) A computation is defined much as
before: if Pe(x) is the e’th program acting on input x, the successor stages are governed
by the program instructions just as for a standard Turing machine. If we enumerate the
cells’ values (for all the tapes) at time ν by 〈Ci(ν) J i < ω〉 then at limit stages λ the
value of Ci(λ) is given by a generalised limit rule controlled dynamically by the rule
tape. (This is not the only method one can envisage for developing a new limit rule: one
could by exterior fiat describe a rule in an absolute manner independent of which com-
putation is being run - as is the case for n= 2. However this would result in a somewhat
arbitrary action for programs not computing universal computations. We therefore
prefer the dynamic approach to be given below.)

Before describing this action we make some preliminary definitions.

Definition 2.1. An ordinal α is called good if ωα = α. We write α ∈ G for α good or
α= 1.

Remark 2.2. α is good iff it is a multiple of ωω; if γ ∈ On, we write γ+ for the least
limit of good ordinals greater than γ. This is γ+ωω ·ω.

Instead of taking liminf ’s over all ordinals ν < λ for Lim(λ) in order to determine
Ci(λ) we do this for a restricted set of ordinals below λ which correctly reflect certain
patterns of occurrence on the rule tape. These ordinals we shall call 1-correct in λ. This
we shall define in a moment, but we state the limit rule now:

Definition 2.3. Given a Turing machine program Pe(y) with input y, Ci(ν) is defined
as follows:

2 Section 2

If ν= ν̄ +1 then Ci(ν) is determined by the usual program action from Ci
K (ν̄).

If ν=λ a limit, then

Ci(λ)=df liminf ν→λ
ν1−correct at λ

Ci(ν). As shorthand we shall write:

Ci(λ)= liminfν→λ
∗ Ci(ν).

To put this another way:
Ci(λ) = 1� ∃ν0< λ∀ν ∈ (ν0, λ)[ν 1-correct at λ� Ci(ν) = 1]. Otherwise Ci(λ) =

0.
To make sense of this we need to define “1-correct in λ”. Very broadly, a computa-

tion may work with snapshots, or reals x, that appear on a scratch tape (or a recursive
sub-tape) and may produce certain information about x. Below λ there may be stages,
some sort of stable point, at which the computation has said all it is going to say about
x (before stage λ). We might then define a stable point (below λ) as some α, where any
snapshot/scratch tape real x, if it appears before stage α, also has that all information
about x has also appeared before stage α: that is, nothing new is said about such x in
the interval (α, λ). Such points are those then of stable informational content . A first
approximation to our new liminfν→λ

∗ rule is that we could take liminf’s along these points
of stable content. In fact we do something slightly more refined, and also more generous
in terms of points: we shall take liminf’s along those points α where α sees the same
stable points (in the above sense) below it, that λ sees are below α. Such an α will be
called “1-correct in λ.”

We use the following notation: for y ∈ 2N let 1ay ∈ ω2 be defined by: 1ay(k + 1) =
y(k) and 1ay(0) = 1. Then 1ay is the sequence y prefixed by a ‘1’. Let n ∗ y ∈ ω2 be
similarly y prefixed by n zeroes. We assume the rule tape values are listed as: 〈Ri(ν) J
i < ω〉=df 〈C4i(ν) J i < ω〉. We abbreviate 〈Ri(ν) J i < ω〉 by R(ν) etc. In the following λ
will always denote a limit ordinal.

Definition 2.4. Sλ
1 (the 1-stable in λ ordinals) Set:

α∈Sλ
1� α∈G∩ λ∧

∀x∈ ω2∀ν <α∀n∀β <λ[(1ax=R(ν)∧R(β) =n ∗ 1ax)� ∃β ′<α(R(β) =R(β ′))].

Thus: any pattern of the form n ∗ 1ax (where 1ax itself occurred before α) which
occurs before λ must also have occurred before α. The following may be established.
• If β ∈Sλ

1∩α then β ∈Sα
1.

• If α∈Sλ
1 then Sλ

1∩α=Sα
1.

• Sλ
1⊆λ and is closed below λ.

Definition 2.5. Eλ
1 (the 1-correct in λ ordinals)

If λ � G∗ then Eλ
1 =λ;

If λ∈G∗ then Eλ
1 =df {α<λ J Sλ

1∩α=Sα
1}.

We also note:

• α∈Sλ
1� α∈Eλ

1; if λ∈G∗ then Eλ
1⊆G;

• Eλ
1 is closed and unbounded in λ.

(Proof of this latter remark: closure is clear; assume λ ∈ G∗ but the unboundedness
failed. Then α0 = max Sλ

1 < λ. Thus on a tail of α ∈ λ there is a least β(α) ∈ Sα
1\Sλ

1.

Such a β(α) is greater than α0. However if α′ > α is least with β(α) � Sα′

1 (and such

must exist as β(α) � Sλ
1). one can see that max (Sα′

1) =α0. Thus α
′∈Eλ

1.)

The Σ3-Machine construction 3

Notice that this definition means that for ordinals λ � G∗, the modified liminf ∗ rule
is just the previous standard liminf rule. It is only for the limits of good ordinals (the
ones we are principally interested in) that the rule may be different. This gives some
substance to our previously described motivation that we take liminf ’s at limits of good
ordinals by considering only those earlier stages which are “correctly reflecting of stable
informational content .” This finishes the description of the general Σ3-ITTM acting for a
general program Pe. We next perform the more difficult task of demonstrating that
there is a program that first commences a loop at stage ζ(3).

3 The Σ3-Theory Program

We now describe an algorithm programmable as some Pe on a Σ3-ITTM-machine, and
demonstrate that it first enters an infinite loop at the lexicographically least pair (ζ(3),
Σ(3)) where Σ(3)> ζ(3) ∧ Lζ(3)≺Σ3 LΣ(3). During its run it will produce codes l(α) for

levels of the hierarchy 〈Jα, ∈ 〉 for α < Σ(3) in parallel with their complete theories. The
reader may have noticed the similarity between the above definitions of “1-stability” to
those obtained in the L-hierarchy. This of course is no accident. We now define the L-
counterparts to the above definitions. We recall also that in the definition of the Jensen
J -hierarchy, that On∩Jα =ω.α (and thus J1 =HF=Lω), and that Lα = Jα if and only if
α is good. We let the language of set theory be L

∈̇
and we assume for any 0 < n ≤ ω

that we have a recursive enumeration of the following Σn-formulae of that language
〈ϕi

n(v0, v1) J i < ω〉 with the two variables displayed. For α ≤ β Jα ≺Σn Jβ has its usual
meaning: given ϕi

n(v0, v1) and x1∈Jα, if Jβ �∃v0ϕi
n(v0, , x1,) then Jα �∃v0ϕi

n(v0, x1,).

Definition 3.1. SL λ
n (the Σn-stable in λ ordinals) We set:

α∈SL λ
n� α<λ∧Jα≺ΣnJλ.

• “α∈SL λ
n ” is uniformly Πn

Jλ-definable. For any δ, SL δ
1⊆ (G∗)∗.

• SL λ
n is a closed subset of λ.

We remark the following: suppose β0 is the least ordinal so that Lβ0 � ZF−. Then
every ordinal β < β0 satisfies Jβ � “V =HC” (that is, every set is hereditarily countable).
Moreover for such β if γ < β is Σ1-definable in Jβ by some parameter free formula, then

since there is a ∆1
Jβ definable map (in the parameter γ) of ω onto γ, every ordinal γ ′ ≤

γ is also so definable. This ensures that if X ≺Σ1 Jβ then X ∩ ω.β ∈ ω.β +1. Moreover,
if γ < β is additionally closed under the Gödel pairing function then standard methods

show there is a uniform parameter free map ω.γ ↔ Jγ which is also ∆1
Jγ. In particular

any finite tuple xK from Jγ is enumerated by some ordinal ξ < γ under this map. It fol-
lows that for such γ, an X as above containing γ, also contains Jγ as a subset.

For β < β0 arguments from [6] can be used to establish that for each n > 0 Jβ has a
uniform parameter free Σn-Skolem function hβ

n(v0, v1). (In general this fails for levels Jγ

and n > 1.) The function hβ
n is itself Σn

Jβ-definable without parameters, with (as an

inspection of the argument of [6] shows) the same definition uniformly for any β < β0.

The Skolem function uniformises the Σn
Jβ relations: given an x ∈ Jβ if there is a y ∈ Jβ

such that Jβ � ϕi
n[x, y], then hβ

n[i, x] is a witness such that Jβ � ϕi
n[x, hβ

n[i, x]]. These

Skolem functions readily yield Σn-Skolem hulls: if A ⊆ Jβ then hβ
n “ ω × [A]<ω is the

smallest Σn-elementary submodel of Jβ containing A and is thus the Σn-Skolem hull of
A in Jβ.

4 Section 3

For such β < β0 this has the ready consequence, for example, that if γ0 = sup SL β
n< β

then the Σn-Skolem hull of {γ0} in Jβ is all of Jβ. (For, as remarked above, every γ < γ0

must be in the Σ1-Skolem hull of {γ0}, and hence hβ
n “ ω × {γ0} is a transitive Σn-ele-

mentary submodel of Jβ of the form Jδ ≺Σn Jβ; as γ0 ∈ Jδ then we conclude δ = β.) In
particular if γ0 = 0 (because Jβ has no proper Σn-elementary submodels) hβ

n is then a

partial Σn
Jβ-definable function of ω onto Jβ, a fact we shall use in the sequel. More par-

ticularly still we shall use this if β < Σ(n) where (ζ(n), Σ(n)) are the lexicographically
least pair (ζ ′,Σ′) so that ζ ′<Σ′ and Lζ ′≺ΣnLΣ′.

We particularise the discussion now to n = 3. Our machine will be a “theory
machine” writing out now the Σ3-theory of levels of the Jα-hierarchy, for α < Σ(3), just
as the “Σ2-Theory Machine” of [7] did, as a standard ITTM.

We shall assume that our scratch tape is divided recursively into infinite sub–tapes
D0, D1, � . We set aside the first cell on the D0 tape as a “flag cell” - and designate
it “F ”.

We shall describe a process that, inter alia, allows a code, l(α) for 〈Jα, ∈ 〉, written
out as a characteristic function of a subset of ω, to be uniformly obtainable from
S(α′) =df 〈Ci(α′) J i <ω〉, the snapshot at stage α′, where α′=df ω

3.(α+1).

To do this we need some further nomenclature. We let L
∈̇, ṗ be the language aug-

mented by an extra constant symbol ṗ and again assume a recursive enumeration of the
Σn-sentences of this language. We use these enumerations in the following definitions.

Definition 3.2. For α∈On, n≤ω (i) let Tα
n⊆L

∈̇
be the Σn-Th(〈Jα,∈ 〉);

(ii) for p∈ Jα we let Tα
n(p)⊆L

∈̇, ṗ be the theory Σn-Th(〈Jα,∈ , p〉).

As the base case for an induction, we shall assume that for the least α0 ∈ G (i.e.
α0 = 1), our program has written Tα0

ω on D3 and a code l(α0) for 〈J1, ∈ 〉 on D2 by stage
ω3.(α0 + 1) =ω3.2.

We shall now describe the process that at the point in time ω3.(α + 1): (I) has
written a code l(α) for Jα to D2 using (II) the complete Σω-theory Tα

ω which has been
written on D3. The above is the base case for the least good ordinal α0. In the sequel
we may refer to stages of the process. Each single stage may require infinitely many
machine steps (each of the latter takes a single unit of ‘time’). We do not wish to give
all the details of the machine steps, but shall try and describe the stages that are trans-
latable into steps, and shall endeavour to apply these two words in this way. However
note that for λ good it will take λ steps to perform λ stages, so at such points the
numerations have caught up.

Suppose inductively that for α ∈G we have derived (I) and (II) on the tape. We use
the following notation:

ᾱ= sup (SL α
1); α′=α′(α) is the largest α′≤α with α′∈G∗.

• Between α and α+(= α + ωω.ω), the next limit of good ordinals after α, the
machine behaves as follows:

(A) (i) It computes a code for ᾱ and writes this to D1. We make the proviso that if
at any time the value on D1 is changed, then it is first preceded by a ‘wipe clean’ action
that resets all the cells of D1 first to zero, before overwriting the new value. We also, for
convenience’s sake, represent the ordinal ‘0’ as ‘1000� ’ (or some such) to distinguish it
from the ‘empty’ tape ‘0000� ’.

The Σ3-Theory Program 5

Given Tα
ω, and l(α), as SL α

1 is Π1
Jα definable, it takes only ω + ω steps to identify

ᾱ and write out a code for it.

(ii) From Tα
ω it looks for α′=α′(α)∈G∗, and sets

F to 0 if α′∈SL α
1 ;

1 otherwise.

This takes only <ω steps.

Note for (iii) and (iv) to come, that given any set x∈Jα and any n≤ω, Tα
n(x)≤T Tα

ω

since Tα
n(x) is the set of Σn-sentences true of fα(k) for some k, where fα: ω ։ Jα is a

canonical onto map defined from Tα
ω and fα(k) = x. As our induction proceeds for all

ordinals β < Σ(3) we may assume that fβ is always a Σ3
Jβ parameter free map (uni-

formly defined for all β). We set f̄α = fα∩ (ω× ω2).

(iii) From ᾱ (which was identified at (i)) and using Tα
ω it computes Tᾱ

ω and writes it
to D0 (once ᾱ is identifed, as just remarked, we may easily find the recursive function
for the reduction Tᾱ

ω≤TTα
ω; this takes ω many steps).

(iv) We also require that Tα
1(ᾱ) be written out to D4. Again a further ω steps, given

Tα
ω and ᾱ.

(v) From l(α) and Tα
ω (on D3) it can assemble a code for l(α + 1) and replace l(α)

with this on D2 (ω.2 steps).

(vi) Using l(α+1) it writes the Σω-theory Tα+1
ω to D3. (ω2 steps).

(vii) On our rule tape, we may successively list

(a)f̄α(0), (if defined) in ω steps, then wipe clean all cells by resetting all Ri values to

0; we then successively list all those n ∗ 1af̄α(0), for which Jα � ϕn
1 [f̄α(0)/ṗ] (where ϕn

1

is our prior fixed recursive enumeration of the Σ1-sentences of L∈̇,ṗ) again resetting all
Ri values to zero between each listing. When this is done we return to (a) looking in
turn at those of f̄α(1), f̄α(2),� f̄α(k),� etc. which are defined, in a similar fashion.

This process will take care of our rule requirements. Note that it takes ω3 steps, and
this in fact is the totality of all steps taken at this stage, which is now finished.

We now have l(α + 1) and Tα+1
ω correctly written out and are at step ω3.(α + 1) +

ω3 =ω3.(α+ 2). So now the machine may return to (A). To help summarise, we produce

in the next ω3 steps:

α+1 ≃ sup (SL α+1
1) on D1 ;

α′(α+ 1)(=α′(α)), setting F appropriately;

Tα+1
ω on D0 ;

Tα+1
1 (α+1) on D4 ;

l(α+2) on D2 ;

Tα+2
ω on D3 ;

1 ∗x and listings of Tα+1
1 (x) on R as above, for all x∈ ω2∩ Jα+1 in turn.

This fully describes the “successor” stage action relating the transitions from Jα to
Jα+1 to Jα+2. Note that after the last stage the time clock is at ω3.(α+3).

At limit stages λ ∈ (α, α+) the liminf∗ rule is to be used. As λ � G∗, the rule is
merely the former ITTM rule of straight liminf . This thus has the following effects at
this stage:

6 Section 3

(1) On D1: as β� λ β̄ is eventually constant, with eventual value λ̄ < λ say, with

λ̄=supSL λ
1. This implies that F is eventually constant, but moreover:

(2) On D0: we have Tλ̄
ω;

(3) On D4: we have Tλ
1(λ̄) (as both these are the simple union of earlier Σ1-theo-

ries.)

(4) On D3, D2: we have the liminfβ→λ
∗ Tβ

ω ; and liminfβ→λ
∗ l(β).

(5) On R: every cell is zero, due to the resetting of all cells to zero between listings
and the liminf rule.

• If D1 is not empty, this is because λ̄ < λ. (This will always happen if λ � G∗.) In

this case there is a Σ1
Jλ({λ̄}) map uniform in λ and the parameter λ̄, gλ: ω ։ Jλ

(meaning uniform for those λ with λ̄ < λ - note λ̄ = 0 is included as a possibility). Using
D4 this allows us to compute a code l(λ) for 〈Jλ, ∈ 〉 to be written to D2 in ω many
steps. From l(λ) we may compute Tλ

ω and write this to D3 (this takes ω2 time). Rather
superfluously at this stage we run the Rule tape writing algorithm solely in order to
keep the enumeration of steps in line.

We are now at time ω3.(λ + 1). The machine then returns to (A) and continues as
before. We now consider what to do when we arrive at a λ∈G∗.

Definition 3.3. For λ∈G∗ let EL λ
1 =df {α<λ J SL α

1 =SL λ
1 ∩α}.

The point of listing Σ1-theories of the form 〈Jγ ,∈ , x〉 on the Rule tape R is precisely
to establish (6) below. This will have the consequence that if γ ∈G ∩ λ then γ is 1-cor-
rect in λ in the sense of computation if and only if γ is similarly ‘Σ1-correct’ about
which ordinals are Σ1-stables in the set-theoretic context:

γ̄ < γ ∈G∩Eλ
1� (Jγ̄ ≺Σ1 Jγ↔ Jγ̄ ≺Σ1 Jλ).

We thus show:

(6) λ∈G� SL λ
1 =Sλ

1. Hence λ∈G∗� Eλ
1∩G=EL λ

1 ∩G.

Proof: We show by induction on α < λ that SL λ
1 ∩ α= Sλ

1 ∩ α. Suppose this shown for

α. Let γ = min ((SL λ
1 ∪ Sλ

1)\α). Suppose γ ∈ SL λ
1. Then Jγ ≺Σ1 Jλ and γ is highly closed,

indeed admissible. However by our rule tape construction we have continually for any
β <λ, listed Tβ

1(p) for any p∈ Jβ of the form p= x∈ ω2. But any Σ1 sentence ϕn[x] with
x∈ ω2∩ Jγ in this theory, is also in such a theory for a δ ∈G∩ γ, as Jγ ≺Σ1 Jλ. Thus n ∗

1 ax appears on R before time γ. Hence γ ∈Sλ
1.

Now suppose γ ∈Sλ
1. Then γ ∈G. We should like to have Jγ≺Σ1 Jλ. Note that it suf-

fices to require Σ1 elementarity for formulae ϕn(ξ/v0) for ordinals ξ < γ, and moreover
as there is a real xξ ∈

ω2 ∩ Jξ+1 coding ξ, it thus suffices to consider this for formulae
ϕn(x/v0) with x ∈ ω2 ∩ Jα′. By our construction for any 1 ∗ x listed on the rule tape by

stage γ, as γ ∈ Sλ
1 then Tλ

1(x) is recursive in 〈R(ν) |ν < γ 〉. Running the machine inside

Jγ this would make Tλ
1(x) Σ1-definable over Jγ for any x ∈ ω2 ∩ Jγ. Hence Tλ

1(x) =

Tγ
1(x) for all such x. This suffices to imply that Jγ≺Σ1Jλ. Q.E.D. (6)

The Σ3-Theory Program 7

Suppose now λ equals α+. Note that Eλ
1 even in this case is simply a tail of G ∩ λ.

As β� λ λ̄ will settle down in value below λ, from some point on. (Recall that λ̄ = λ

would imply that λ is in fact strongly admissible, and thus cannot be of the form α+.)
The liminf∗ rule now comes into play in full, but we still have (1)-(5) holding just as for
a limit which is a non-limit of good ordinals, as above, and the actions are the same.
One point to note is:

• If β=α+ + 1 then F must then by the end of the operations at stage β be set to 1:
this is because α+ � SL β

1 (an element of any SL δ
1 is always in (G∗)∗).

However for a general λ ∈ G∗ λ̄ may equal λ. Our Flag F is designed to alert the
machine when we are at such a point:

(7) (λ∈ (G∗)∗∧F (λ) = 0)� λ̄=λ.

Proof: (←) Suppose λ̄ = sup SL λ
1 = λ. Then for unboundedly many β < λ we have

β ∈SL λ
1 and thus λ∈ (G∗)∗. Further for β ∈SL λ

1, we have that the Flag F at stage β+ 1 is
set to 0, as β= (β+ 1)′∧ β ∈SL β+1

1 . This value of 0 persists for any of the steps η ∈ (β+
ω3, β + ωω]. Thus at the next good ordinal β + ωω the Flag is zero. Moreover β + ωω ∈

Eλ
1.

However by step β+ + ω3 F has been set to 1. But β+ � SL
δ

1 for any δ ∈ (β+, β+ +

ωω]. Hence the Flag stays set at 1 in this interval (and beyond). But both β + ωω and

β+ + ωω are in G and are 1-correct in λ. This happens for unboundedly many β < λ.
Hence liminfν→λ

∗ F (ν) = 0.

(→) Suppose λ̄ < λ. Let γ be the least element of G∗ greater than λ̄. Then F is at

stage γ + 1 set to value 1. It will only be 0 at any stage δ > γ if λ̄ < δ ′ ∈ SL δ
1. But such a

δ is not in Eλ
1! Hence {ν ∈ (λ̄ , λ) |F (ν) = 0} ∩ Eλ

1 = ∅. Hence F (λ) = 1 by the liminf∗

rule. QED (7)

(8) If λ∈G and λ̄ < λ then Tλ̄
ω is on D0(λ).

Proof: By induction on λ̄ < β ≤ λ, for β ∈Eλ
1 show that Tλ̄

ω is on D0(β), noting that
β̄ = λ̄ for such β. Q.E.D. (8)

(9) ∀λ<Σ(3)(a code for l(λ) can be extracted from S(λ))

Proof: We’ve seen how to do this using Tλ
1(λ̄) which is on D4, when λ̄ < λ (by using

the method of an onto map explained just after (5)). So assume λ̄=λ (and a fortiori λ ∈
(G∗)∗). Then the Flag F (λ) = 0 (see (7)) and hence the machine knows this fact. We

show first how to determine Tλ
3 from D3(λ) = liminfα→λ

∗ Tα
ω which is written on D3.

Suppose ϕ≡∃uψ(u) is Σ3 with ψ ∈Π2 in L∈̇. We use the following equivalence.

(10) Assume λ̄=λ. ϕ∈ Tλ
3� ∃n∈ω [∃γ0∀γ > γ0(γ ∈SL λ

1� Jγ �σn)]

where σn is the following sentence: “∃β[(β ∈SL γ
2 ∪{0}∧ ∃k(k=hγ

2(n, β)∧ ψ(k)))]”.

Proof of (10): (→). Suppose ϕ ∈ Tλ
3 and is of the form illustrated, with some x ∈ Jλ

witnessing Jλ � ψ[x]. Then for some β ∈ SL λ
2 ∪ {0}, x = hλ

2(n, β). Choose γ ∈ SL λ
1 suffi-

ciently large with x ∈ Jγ � x = hγ
2(n, β). This is possible by our assumption on λ. How-

ever for any γ ′≥ γ with γ ′ ∈ SL λ
1 we also have that x= hγ ′

2 (n, β) and β ∈ SL γ ′

2 . Moreover
(ψ[x])Jλ

is Π2 and so goes down to such γ ′: (ψ[x])Jγ ′
. Hence the right hand side holds.

8 Section 3

(←): Suppose the RHS holds for some n, but the LHS failed for a contradiction.
Then we first claim that SL λ

2 must be bounded in λ: for if it were unbounded then we
could always take a γ on the RHS to be from SL λ

2. However then the Π2 statement ψ[k]

about k, included in σn, would go up to λ and the LHS would hold. Hence sup(SL λ
2) =

β0< λ. Now there are unboundedly many γ < λ with γ ∈ SL λ
1, γ > β0, SL γ

2 = SL λ
2 ∩ γ, and

with Jγ � σn. Let β = βγ be the least ordinal witnessing the existential quantifier of the

quoted statement σn. By what we may call the “2-correctness” of γ, β ∈ SL λ
2 ∪ {0}. If for

some such γ satisfying these clauses, we had βγ < β0, we should have that “k = hγ
2(n,

βγ)∧ ψ(k))” which is true in Jγ, would be absolute to Jβ0. But β0∈SL λ
2 ∪ {0} so it is also

true in Jλ thus verifying ψ. On the other hand if for all such γ satisfying the clauses we

had βγ = β0, then hγ
2(n, βγ) has constant value some k for all such γ on a tail of SL λ

1.

Moreover as (ψ[k])Jγ in all sufficiently large γ ∈ SL λ
1 and as ψ ∈Π2, we conclude (ψ[k])Jλ

,

another contradiction. Q.E.D. (10)

(11) There is a (1-1) recursive F :N� N so that for any λ<Σ(3), if λ̄=λ then

ϕ∈ Tλ
3� ∃n∈ωF (≺n, pϕq≻)∈D0(λ).

Hence for such λ, Tλ
3 is unformly r.e. in S(λ)=Ci

K (λ).

Proof: Assume λ̄=λ , then we recast (10) as:

ϕ∈Tλ
3� ∃n∈ω [∃γ0∀γ > γ0(γ ∈Eλ

1� σn∈D0(γ))]

(→) This follows from (6) and (10).

(←) As Sλ
1 is unbounded in λ, and is contained in Eλ

1 this follows from the argu-
ment of (10).

From this our liminf∗ rule then shows D0(λ) has the correct information. Q.E.D. (11)

For λ < Σ(3) we shall thus be able, by the comments before Definition 3.2, to use a
Σ3

Jλ map h of ω onto Jλ (which by the above is at worst uniformly r.e in S(λ) in the case

that λ̄ = λ) to define a code l(λ) for Jλ: if h(k) is defined, we may form the equivalence

class of k ′ such that h(k) = h(k ′), and define the binary relation kEm� h(k) ∈ h(m).
This yields a code l(λ) for 〈Jλ,∈ 〉 which may be written to D2 in, say a further ω steps.
Q.E.D. (9)

The above process lasts for as long as differing Σ3 theories are produced for the dif-
ferent levels λ < Σ(3). However, (ζ(3),Σ(3)) is also the lexicographic least pair (π, χ) of

ordinals with Tπ
3 = Tχ

3. (Assume for a contradiction that (π, χ)<lex (ζ(3),Σ(3)) have the
same Σ3-theories. Firstly if χ <Σ(3), using the onto Σ3 function h, we have that the Σ3

sentences σn,m ≡ “h(n) < h(m) ∈ On” are in Tχ
3 and yield a wellorder of type χ (as hχ is

onto χ). But it is impossible that such σn,m are all in Tπ
3 as the latter there yield a

wellorder only of type π! Hence we must have χ= Σ(3) ∧ π < ζ(3). But clearly TΣ(3)
3 =

Tζ(3)
3 , and the same argument shows that the sentences σn,m in Tζ(3)

3 are in Tπ
3 for the

same contradiction.)

Hence the machine before stage Σ(3) produces different theories, and at stage Σ(3)
produces only Tζ(3)

3 and then l(ζ(3)) on D2, and so commences to cycle.

The Σ3-Theory Program 9

Remark 3.4. Since it is (reasonably) clear that any machine with this limit rule will
either halt before ζ(3) or enter a loop at this point (by considering such machines as
running inside LΣ(3)) we thus have a complete description of the semi-decidable, decid-

able predicates, halting problem and so on, just as the calculation determining the role of
the ordinals (ζ(2), Σ(2)) did for the original ITTM model. (See [12] for a somewhat
cleaner development of this Σ2-theory.) For example, the halting problem set will be
recursively isomorphic to the Σ1 truth set of 〈Lλ(3), ∈ 〉 where λ(3) is least such that

Lλ(3) ≺Σ1 Lζ(3). The other assertions concerning abstract 1-sections etc. from the Intro-

duction then also follow.

10 Section 3

4 Σn-Machines

We now consider machines related to levels of the L-hierarchy at the least ζ(n) with
some Σ(n)> ζ(n) and Lζ(n)≺ΣnLΣ(n) for larger n<ω.

In developing the next level, Σ4-machines, which halt or loop by ζ(4), we accordingly

make use of the appropriate notions Eλ
2, EL λ

2 , Sλ
2, SL λ

3,SL λ
4, etc. We assume now the rule

tape R is now recursively split into two infinite pieces, Q, R. (We keep the letter R as
we intend to expand on what the machine of the last Section does,) There is no differ-
ence between what is written to the R tape in the current machine and that of the last

section; we use R to define Sλ
1 and Eλ

1 just as before. The Q-part will be used to define
Sλ

2 etc. We further recursively split Q into 2 × ω2 many infinite pieces Q(i, k, m) with
i < 2, k,m∈ω. As before Q(β, i, k,m) will denote that piece viewed at time β.

We adopt the notation that αi =df supSα
i for i=1, 2.

Definition 4.1.

α∈Sλ
2� α=α1∧α∈Sλ

1∧

∀x∈ ω2∀ν <α∀n[(1ax=R(ν)∧∃β ′∈Eλ
1Q(β ′, i, k,m) = 1ax)�� ∃β ′∈Eα
1(Q(β ′, i, k,m) = 1ax)].

Definition 4.2. Eλ
2 (the 2-correct in λ ordinals)

Eλ
2 = {α∈Eλ

1 J α1,2 (=df supSα1

2)∈Sλ
2} if λ1 =λ;

= Eλ
1 otherwise.

Our definitions imply:

Remark 4.3. Sβ
2 ⊆Eβ

2 ; β= β1� Sβ
1 ∩Eβ

2 is closed and cofinal in β.

We now adopt:

Limit Rule: Ci(λ) = 1� ∃ν0<λ∀ν ∈ (ν0, λ)[ν 2-correct at λ� Ci(ν) = 1];
Ci(λ) = 0 Otherwise.

The above then completes the description of the Σ4-machine architecture. We turn
now to a program that computes theories and codes for all levels of the constructible
hierarchy below Σ(4).

Σ4-theory machine description. Let 〈ϕn(v0)〉 effectively enumerate all formulae
and 〈ψn(v0)〉 all Σ1 formulae in the free variable v0. We continue to use the notation:

ᾱ =df sup SL α
1 ; and further adopt α2 =df sup SL α

2 . (Later we shall see that for the machine
description to be specified we shall have α1 = ᾱ and α2 =α2 i.e. with the notions of com-
putable stability coinciding with set theoretical Σn-stability.) As in the previous section
we have set fα: ω ։ Jα to be a canonical onto map defined from Tα

ω. As our induction

proceeds for all ordinals β <Σ(4) we may assume that fβ is always a Σ4
Jβ parameter free

map (uniformly defined for all β). Again set f̄α = fα∩ (ω× ω2). To specify the operation
we simply augment the previous Σ3-theory machine with an extra task at (6).

Let α∈G and let β >α be least with β ∈G. Then at stage β we shall now addition-
ally require:

Σn-Machines 11

(6) Let β̄ be as above and as already defined, with β̄ 2 = sup SL β̄
2 . Then the complete

theories of Jβ̄ and Jβ̄2 are written in the following way at stage β: if y = f̄β̄(k) is the

k’th real in Jβ (resp. Jβ̄2 where then y = f̄β̄2(k)) and Jβ̄ � ϕn[y] (resp. Jβ̄2 � ϕn[y])

then it is required that 1ay is on the the second rule Q(β, 0, k, n)(Q(β, 1, k, n) resp.)
tape segment at stage β; otherwise Q(β, 0, k, n)(0)= 0 (Q(β, 1, k, n)(0)= 0 resp.).

Starting from a code l(α) for Jα the machine writes codes for Jγ for γ ∈ [α, β)
writing, just as in the last section (i) - (vii). We further ensure:

(viii) Using Tγ̄
ω which is written onD0 and, Tγ̄2

ω (which is recursive Tγ̄
ω), we may com-

pute values of f̄γ̄(k) and f̄γ̄2(k)) and write out the theories in the real parameters

f̄γ̄(k) = y and f̄γ̄2(k) = y. Thus we set Q(γ, 0, k, m) = 1af̄γ̄(k) iff Jγ̄ � ϕm[f̄γ̄(k)] and

similarly Q(γ, 1, k, m) = 1af̄γ̄2(k) iff Jγ̄2 � ϕm[f̄γ̄2(k)]. Mirroring the writing of Tβ
1(β̄)

before on D1, we use an additional piece of scratch tape D5 and record here Tγ̄
2(γ2).

This can also be obtained from Tγ̄
ω on D0. All this can be done in < ω2 many steps.

Recall that the previous R-writing process (vii) required ω3 many steps. So by dove-
tailing this process with that of (vii) we can still stick to the same ordinal arithmetic
and have both R- and Q- writing done in ω3 steps.

Recall that (ii) ensures that the machine may start with a 0 on F at stage α but will

change it to a 1 as soon as it sees γ ′=α′ � SL γ
1.

(6’) λ∈G� SL λ
1 =Sλ

1. (Thus λ̄=λ1.) Hence λ∈G
∗� Eλ

1∩G=EL λ
1 ∩G.

(7’) (λ∈ (G∗)∗∧F (λ)= 0)� supSL λ
1 =λ).

We additionally have here the new:

(6”) β̄ = β � (α∈Sβ
2� α∈SL β

2). Thus β2 = β2.

For (6’) note that the Σ4-theory machine extends the action of the Σ3-theory
machine, with SL λ

1 , Sλ
1, defined from before, so there is nothing to prove.

For (7’): (←) The argument is the same but here the only difference is that we are

taking a liminf∗ along Eλ
2: but there are unboundedly many τ ∈ Eλ

2 taking each of the

values 0 and 1. For (→) if we assume, using (6’), λ̄ < λ then in this case Eλ
2 =Eλ

1 so the
previous reasoning holds.

Proof of (6”). Suppose α ∈ Sβ
2. Suppose Jβ � ϕn[y] with ϕ expressing a Σ2 property

about y where y ∈ Jα, then we want Jα � ϕn[y]. However ‘Jβ � ϕn[y]’ is equivalent to J δ

modelling the truth of ϕn[y] for some sufficiently large δ ∈ Eβ
1. Further this is recorded

on the Q(δ, 0, k, n) part of the second rule tape at a sufficiently large stage δ ∈ Eβ
1 with

y ∈ Jδ̄ and y = f̄δ̄(k). (Note that δ̄ ∈ Sβ
1). Then α ∈ Sβ

2 guarantees that this Σ2 property

about y has been recorded as holding for some sufficiently large δ0∈Eα
1 by Q(δ0, 0, k, n),

and thus ϕn[y] holds in Jδ0̄
with δ0 ∈ Sα

1. By upwards Π1 elementarity then, ϕn[y] holds
in Jα. For the converse one may imagine the machine running in Jβ and then apply Σ2-
elementarity. Q.E.D.

We have the following addition to (8). Here we have assumed that k0 has been
chosen so that f

β
¯ (k0) = 0 for any β.

(8’) For any λ, if λ̄=λ and λ2<λ then Tλ2
ω is recursive in Q(λ, 1, k0, n).

12 Section 4

Proof (8’): Recall that on the 〈1, k, n〉 parts of the Q-tape were recorded the com-
plete theories Tβ̄2

ω (y) in real parameters y = f̄β̄2(k). S(λ) is given by the liminf∗ taken

over 2-correct ordinals β < λ. Suppose λ2<λ. Then for β ∈Eλ
2\λ2 by definition we have

that β̄2 = sup Sβ̄
2 = λ2, and in particular as β tends to λ through Eλ

2, eventually β̄2 = λ2.

Hence the pure part of the theory Tλ2
ω is eventually constant on the tape.

(9’) ∀λ<Σ(4)(a code for l(λ) can be extracted from S(λ)).

Proof: Using (7’) the Flag F tells the machine if λ̄ = λ. If λ̄ < λ the construction of
a code l(λ) is just as for the Σ3-theory machine. So assume λ̄ = λ. Suppose λ2 = sup
SL λ

2
<λ. Just as in the proof of (8’) as β tends to λ through Eλ

2, eventually β̄2 =λ2. Con-

sequently at stages for a tail of β ∈Eλ
2, on D5 we have either the theory Tβ̄

2(λ2) itself, or

a liminf of such theories Tβ̄
2(λ2) for an increasing chain of β̄. However such β̄ are in SL λ

1.

By the upwards persistence of Σ2 theories, these liminf’s are simple unions and hence at

stage λ D5 contains Tλ
2(λ2).

Our assumption is that there is a Σ2
Jλ({λ2}) onto function f : ω� Jλ. Moreover the

machine does know that λ2< λ: λ2 = λ if and only if for arbitrarily large δ ∈Eλ
2 we have

both that Jδ̄ � “max Sδ̄
2 = max Sδ̄

1” and also its negation. Consequently neither this sen-

tence nor its negation is in liminfβ�λ
∗ Tβ̄

ω on D0. Hence the machine knows to construct

a code for l(λ) with that theory Tλ
2(λ2).

If λ2 =λ then the direct generalisation of the argument of (10) one level up yields:

(10’) Assume λ2=λ. ϕ≡∃v0ψ(v0)∈Tλ
4� ∃n∈ω [∃γ0∀γ > γ0(γ ∈SL λ

2� Jγ �σn)]

where σn is the following sentence: “∃β[(β ∈SL γ
3 ∪{0}∧ ∃k(k=hγ

3(n, β)∧ ψ(k)))]”.

And in turn now with some minor adjustments to some F0(≺ n, pϕq ≻): = pσnq for
the latter σn:

(11’) There is a (1-1) recursive F :N� N so that for any λ<Σ(4), if λ2 =λ then

ϕ∈ Tλ
4� ∃n∈ω Q(λ, 1, k0, F (≺n, pϕq≻))(0) =1).

Hence for such λ, Tλ
4 is unformly r.e. in S(λ)=Ci

K (λ).

Consequently in this case we may obtain the Σ4 theory of Jλ in a r.e. manner from
S(λ). Just as in the previous section this allows the machine to construct a code l(λ).
Hence as long as we are below Σ(4), we obtain new theories, and so codes l(α). Q.E.D.

We hope that the reader, having seen how to obtain Σ3- and Σ4-machines will be
convinced as to how one can generalise the constructions to any Σn+2 by extending the

above. The definitions of the higher Sβ
n and Eβ

n should reflect those of Eβ
2 and Sβ

2; the
Q-rule tape should be further subdivided to write down the corresponding theories
obtained from the last case, merely by raising complexities by 1. The specifications of
the Σn+2-machine follows the same template. Additional slices of the worktape D6,

D7, �Dn+3 will record theories up to those of the form Tβn−2
n (βn) with βn−2 =df sup

SL β

n−2
etc. The proof of (10’) is generalisable over n verbatim. This leads to appropriate

statements and proofs of (9’) and (11’).

Σn-Machines 13

5 Conclusions

The above shows that the notion of ITTM machine can be generalised in a satisfactory
way to allow for limit rules that correspond to Σn descriptions, and the resulting notions
of eventually decidable, eventually semi-decidable and so on correspond to the appro-
priate levels of the constructible hierarchy, namely the first Σn-extendible ordinals ζ(n).
As one of us a has observed elsewhere the output tape of the original ITTM running a
standard program is an example of what Burgess ([1]) would call an arithmetical quasi-
inductive (AQI) set. (In fact the conents of an eventually stable output tape of a
Hamkins-Kidder ITTM is an example of a recursive quasi-inductive set (and indeed any
AQI process can be simulated onan ITTM, thus showing that AQI processes can all be
reduced to recursive ones). A number of questions could now be formulated:

Question 1 Can there be a perspicuous or sensible notion of n-quasi-inductive
(where n=2 corresponds to AQI)?

In stating this we are of course conscious of the fact that the limit rules for hyperma-
chines we have proposed are explicitly designed to tie up with the L-hierarchy. Whether
there are pleasing notions at levels above n= 2 remains to be seen.

Question 2 Are there sensible notions of “machine” that transcend those of this
paper?

In the above one could think very speculatively of machines that go beyond the first
model of second order number theory, or even have some form of in-built extra function
allowing them to go outside of L into say K the core model?

More concretely arguments from [13] can be used to show that eventually stable

output tapes of ITTM’s are all a-Σ3
0 (but not a-Σ2

0) definable. Recent work of Mon-
talban and Shore will show that those of the Σn+1-machines are in a-(n-Σ3

0) (where (n-
Σ3

0) represents the n-th level of the difference hierarchy on Σ3
0). One can define quite

naturally either using the machines here, or the L-hierarchy directly, Spector point-
classes of sets of reals corresponding to these machines. Let Γn denote the those classes
of sets A ⊆R so that for some Σn-machine program P , some real parameter y, that x ∈
A iff P (〈x, y〉) eventually has a 1 on its output tape. (Thus Γ2 is a boldface pointclass
corresponding to AQI sets of reals.) One can ask:

Question 3 How strong is Det(Γn)?

The second author has shown that Det(Γ2) implies the existence of inner models
with a proper class of strong cardinals; and assuming Det(Γ3) that there are, in the
nomenclature of Feng and Jensen [3], type-2 premice.

Lastly we mention a direct application of the limit rules here to a define a class of
models generalising one constructed by H. Field in his attempt to define a theory of
truth with a conditional operator. The latter’s G-model in [4] is defined using an n = 2
quasi-induction (somewhat beyond arithmetic). By using limit rules at higher levels one
can obtain all the desired effects of his G-solutions but with longer hierarchies of
his ‘determinateness operators’. We leave the interested reader to consult Field’s book.

14 Section 5

Bibliography

[1] J.P. Burgess. The truth is never simple. Journal for Symbolic Logic, 51(3):663–681, 1986.

[2] K. Devlin. Constructibility . Perspectives in Mathematical Logic. Springer Verlag, Berlin, Hei-
delberg, 1984.

[3] Q. Feng and R.B. Jensen. Supercomplete extenders and type-1 mice. Annals of Pure and
Applied Logic, 126(1-3):1–73, 2004.

[4] H. Field. Saving Truth from Paradox . Oxford University Press, 2008.

[5] S. D. Friedman. Fine Structure and Class Forcing , volume 3 of Series in Logic and its Applica-
tions . de Gruyter, Berlin, New York, 2000.

[6] S. D. Friedman. Parameter free uniformisation. Proceedings of the American Mathematical
Society , 136:3327–3330, 2008.

[7] S. D. Friedman and P. D. Welch. Two observations concerning infinite time Turing machines.
In I. Dimitriou, editor, BIWOC 2007 Report , pages 44–47, Bonn, January 2007. Hausdorff Centre
for Mathematics. also at http://www.logic.univie.ac.at/sdf/papers/joint.philip.ps.

[8] J. D. Hamkins and A. Lewis. Infinite time Turing machines. Journal of Symbolic Logic,
65(2):567–604, 2000.

[9] R. B. Jensen. The fine structure of the constructible hierarchy. Annals of Mathematical Logic,
4:229–308, 1972.

[10] G.E. Sacks. The 1-section of a type-k object. In J.E. Fenstad and P.G. Hinman, editors, Pro-
ceedings of the 1972 Oslo Symposium , Studies in Logic, pages 81–93, Amsterdam, 1974. North-
Holland.

[11] P. D. Welch. Eventually infinite time Turing degrees: infinite time decidable reals. Journal for

Symbolic Logic, 65(3):1193–1203, 2000.

[12] P. D. Welch. Characteristics of discrete transfinite Turing machine models: halting times, sta-
bilization times, and normal form theorems. Theoretical Computer Science , 410:426–442, January
2009.

[13] P. D. Welch. Weak systems of determinacy and arithmetical quasi-inductive definitions. arXiv:

0905.4412 , submitted.

Bibliography 15

