Two observations regarding infinite time Turing machines

Sy-David Friedman (KGRC, Vienna)* Philip D. Welch (Bristol)

February 16, 2007

Abstract

We observe: (I) There is a "Theory Machine" that can write down the Σ_2 -Theories of the levels of the *J*-hierarchy up to Σ (the least Σ such that some smaller L_{ζ} is Σ_2 elementary in L_{Σ}) in a uniform way. Moreover, below Σ these theories are all distinct. This yields information about the halting times of ITTM's. (II) The ITTM degrees of the semi-recursive singletons are well-ordered in order type the least stable, i.e., the least σ such that L_{σ} is Σ_1 elementary in L.

The *Theory Machine* generates theories of initial segments of the *J*-hierarchy. This machine can be used to prove the " ζ - Σ theorem" and analyse the halting times of ITTM's.

The idea of the Theory Machine is to write down the theory of (J_{α}, \in) (appropriately Gödel-numbered) on the output tape at computation stage $\omega^2 \cdot (\alpha + 1)$, for as long as possible. This will be easy to arrange for successor α , as long as a code for the structure (J_{α}, \in) can be read off from its theory. For limit α , the machine performs a limit operation, resulting in a theory T_{α} ; we show that the Σ_2 theory of (J_{α}, \in) is recursive in the Turing jump of T_{α} , uniformly in α . Provided a code for the structure (J_{α}, \in) can be read off from its Σ_2 theory, this will enable the machine to write down the theory of (J_{α}, \in) at stage $\omega^2 \cdot \alpha + \omega^2$. A fine-structural analysis shows that as long as α is less than the least Σ such that J_{ζ} is Σ_2 elementary in J_{Σ} for some $\zeta < \Sigma$, a code for (J_{α}, \in) can indeed be read off from its Σ_2 theory, uniformly. Therefore the machine will produce distinct theories of structures

^{*}The first author was supported by FWF Grants P16334-NO5 and P16790-NO4.

 (J_{α}, \in) for $\alpha < \Sigma$, and then at stage Σ repeat what it wrote on the output tape at stage ζ .

A corollary is that, up to a "small" error, the halting times of ITTM's are exactly the ordinals $\alpha < \Sigma$ where sentences become true for the first time in the *J*-hierarchy, i.e., such that some sentence φ of set theory holds in (J_{α}, \in) but not in (J_{β}, \in) for any $\beta < \alpha$.

The following two claims are crucial to verifying properties of the theory machine.

Lemma 1 For a limit λ , let T denote the set of Σ_2 sentences that are true in (J_{α}, \in) for sufficiently large $\alpha < \lambda$. Then the Σ_2 theory of (J_{λ}, \in) is RE in T. Moreover an index for this RE reduction is uniform in λ .

Proof. Let φ be a Σ_2 sentence and write φ as $\exists x \psi(x)$ where $\psi(x)$ is Π_1 . Also let $h_1(n, x)$ denote the canonical Σ_1 Skolem function; h_1 has a parameterfree Σ_1 definition and for any α , h_1 interpreted in J_{α} is a partial function from $\omega \times J_{\alpha}$ into J_{α} whose range on $\omega \times [A]^{<\omega}$ is the Σ_1 Skolem hull of Ain (J_{α}, \in) (i.e., the universe of the least Σ_1 elementary submodel of (J_{α}, \in) containing A), for any $A \subseteq J_{\alpha}$. We say that an ordinal α is Σ_1 stable (in the universe) iff every true Σ_1 sentence with parameters from J_{α} is true in (J_{α}, \in) .

We have the following equivalence:

 (J_{λ}, \in) satisfies φ iff

For some n, the following holds in (J_{α}, \in) for large enough $\alpha < \lambda$: There is a β which is either 0 or Σ_1 stable such that either φ holds in (J_{β}, \in) or $h_1(n, \beta)$ is defined and $\psi(h_1(n, \beta))$ holds.

This equivalence is verified as follows:

Suppose that (J_{λ}, \in) satisfies φ . If (J_{β}, \in) satisfies φ for some β which is Σ_1 stable in λ (i.e., $\beta < \lambda$ and (J_{β}, \in) is Σ_1 elementary in (J_{λ}, \in)), then for all α between β and λ , φ will also hold in (J_{α}, \in) , as β is also Σ_1 stable in α . So the right half of the equivalence holds in this case. Otherwise let β be the largest β which is Σ_1 stable in λ (or 0 is there is no β which is Σ_1 stable in λ). Then every element of J_{λ} is of the form $h_1(n, \beta)$ for some n (as the Σ_1 Skolem hull of $\{\beta\}$ in (J_{λ}, \in) is all of J_{λ}). Choose n so that $\psi(h_1(n, \beta))$ holds in J_{λ} . Then for sufficiently large $\alpha < \lambda$, $h_1(n, \beta)$ is defined

in (J_{α}, \in) , and $\psi(h_1(n, \beta))$ holds in (J_{α}, \in) as ψ is Π_1 . So the right half of the equivalence also holds in this case.

Conversely, suppose that the right half of the equivalence holds and choose *n* to witness that. First suppose that the Σ_1 stables in λ are cofinal in λ . Then apply the right half of the equivalence to some α which is Σ_1 stable in λ . Then either φ holds in (J_{β}, \in) for some β which is Σ_1 stable in α or $\psi(h_1(n,\beta))$ holds in (J_{α},\in) for some β ; in the former case φ holds in (J_{λ}, \in) as β is Σ_1 stable in λ and in the latter case this holds as α is Σ_1 stable in λ . Now suppose that the Σ_1 stables in λ are bounded in λ and let β be the largest Σ_1 stable in λ (or 0 is there is no β which is Σ_1 stable in λ). Choose α to be sufficiently large in the sense of the right hand side of the equivalence and also such that there are no α -stables greater than β . (For example, choose n so that $h_1(n,\beta)$ is large enough and let α be least so that $h_1(n,\beta)$ is defined in (J_{α},\in) .) Then applying the right hand side of the equivalence to α , there is a β' which is either 0 or Σ_1 stable in α such that either φ holds in $(J_{\beta'}, \in)$ or $\psi(h_1(n, \beta'))$ holds in (J_{α}, \in) . In the former case, β' is at most β and therefore is Σ_1 stable in λ ; it follows that φ holds in (J_{λ}, \in) . In the latter case, argue as follows: If β' is less than β , then $h_1(n,\beta')$ in fact belongs to J_β and $\psi(h_1(n,\beta'))$ holds in (J_β,\in) , implying that φ holds in (J_{λ}, \in) . If β' equals β then $\psi(h_1(n, \beta))$ holds in J_{α} , and as α can be chosen arbitrarily large, $\psi(h_1(n,\beta))$ holds in (J_{λ},\in) ; it follows that φ holds in (J_{λ}, \in) , as desired.

The equivalence shows that the Σ_2 theory of (J_{λ}, \in) is RE in T. And this RE definition is independent of λ . \Box

Lemma 2 Let Σ be least so that some $\zeta < \Sigma$ is Σ_2 stable in Σ (i.e., (J_{ζ}, \in) is Σ_2 elementary in (J_{Σ}, \in)). Let T^{α} be the Σ_2 theory of the structure (J_{α}, \in) . Then there is a real code for this structure which is recursive in T^{α} . Moreover, the reduction of this code to T^{α} is uniform in α .

Proof. It suffices to show that there is a partial function f from ω onto J_{α} which is Σ_2 definable over (J_{α}, \in) without parameter (uniformly in $\alpha < \Sigma$). For given this, consider the set of n such that f(n) is defined, modulo the equivalence relation $n \sim m$ iff f(n) = f(m), together with the binary relation n Em iff $f(n) \in f(m)$. This yields an isomorphic copy of (J_{α}, \in) .

Let $\psi_n(x)$ be the *n*-th Π_1 formula with free variable *x*. Define:

 $f'(n) = (m, \beta)$ iff the following hold in (J_{α}, \in) : i. β is 0 or Σ_1 stable. ii. $h_1(m, \beta) = x$ is defined. iii. $\psi_n(x)$ holds. iv. $\psi_n(x')$ fails for any x' of the form $h_1(m', \beta'), \beta' < \beta, m' < \omega$. v. $m' < m \to h_1(m', \beta)$ is undefined or $\psi_n(h_1(m', \beta))$ fails.

Clauses i-iii are easily seen to be either Σ_1 or Π_1 . Clause v is equivalent to a disjunction of a Σ_1 formula and a Π_1 formula. Clause iv is vacuous if β is 0 and otherwise holds in (J_{α}, \in) iff it holds in (J_{β}, \in) ; it follows that clause iv is Σ_1 . And f' is single-valued and therefore a partial function from ω into J_{α} which is Σ_2 definable over (J_{α}, \in) without parameter.

Now define $f(n) = h_1(f'(n))$ and let A be the Σ_1 Skolem hull of the range of f. Then A is the range of a partial function g from ω into J_{α} which is Σ_2 definable over (J_{α}, \in) without parameter. (Define $g(n) = h_1(n_0, \langle f(n_1), \ldots, f(n_k) \rangle)$, if n codes the sequence (n_0, \ldots, n_k) .)

We claim that (A, \in) is Σ_2 elementary in (J_{α}, \in) : Clearly (A, \in) is Σ_1 elementary in (J_{α}, \in) , as it is the Σ_1 Skolem hull of the range of f. Write g(n) = x iff $(J_{\alpha}, \in) \models \exists y \psi(n, x, y)$, where ψ is Π_1 . Now suppose that there exists x in J_{α} such that $(J_{\alpha}, \in) \models \gamma(x, g(n_1), \ldots, g(n_k))$, where γ is Π_1 . Then there exists $\langle x, x_1, y_1, \ldots, x_k, y_k \rangle$ in J_{α} such that the following Π_1 formula holds in (J_{α}, \in) :

$$\gamma(x, x_1, \ldots, x_k) \land \psi(n_1, x_1, y_1) \land \ldots \land \psi(n_k, x_k, y_k)$$

By the definition of f, there exists such a sequence $\langle \bar{x}, \bar{x}_1, \bar{y}_1, \ldots, \bar{x}_k, \bar{y}_k \rangle$ in the range of f. Also \bar{x} belongs to A and \bar{x}_i equals $g(n_i)$ for each i, $1 \leq i \leq k$, and therefore $\gamma(\bar{x}, g(n_1), \ldots, g(n_k))$ holds in (J_α, \in) . As (A, \in) is Σ_0 elementary in (J_α, \in) , it follows that $\gamma(\bar{x}, g(n_1), \ldots, g(n_k))$ holds in (A, \in) for some \bar{x} , proving that (A, \in) is Σ_2 elementary in (J_α, \in) .

Finally, every element of J_{α} is countable in (J_{α}, \in) , as otherwise there would be a Σ less than α such that some $\zeta < \Sigma$ is Σ_2 stable in Σ . It follows that A is transitive, as by Σ_1 elementarity, A contains an injection of any of its elements into ω . We have assumed that α is less than Σ , so in fact Aequals all of J_{α} , and therefore there is a partial function g from ω onto J_{α} which is Σ_2 definable over (J_{α}, \in) without parameter, as desired. \Box

Now we are ready to describe the Theory Machine. When we say that the machine writes a theory T on its output tape at stage α , we mean that at stage α , the *n*-th cell of the output tape has a 1 written in it iff the *n*-th sentence (via a fixed Gödel numbering) belongs to *T*. Now the Theory Machine runs as follows: On input 0, the machine uses the first ω^2 stages to ensure that the theory of (J_0, \in) is written on the output tape at stage ω^2 . (In fact the machine could arrange this in fewer stages, but we prefer for this to occur at stage ω^2). Inductively, suppose that the theory of (J_α, \in) is written on the output tape at stage $\omega^2 \times (\alpha + 1)$. If α is less than Σ , then by Lemma 2, the machine can compute a code for (J_α, \in) by stage $\omega^2 \times (\alpha + 1) + \omega$. Then the machine uses the theory of (J_α, \in) to compute a code for $(J_{\alpha+1}, \in)$ by stage $\omega^2 \times (\alpha + 1) + \omega + \omega$ and the next ω^2 steps to write the theory of $(J_{\alpha+1}, \in)$ on its output tape at stage $\omega^2 \times (\alpha + 1) + \omega + \omega + \omega^2 = \omega^2 \times (\alpha + 2)$. The machine must however never write a 0 in the *n*-th cell of its output tape (at a stage between $\omega^2 \times (\alpha + 1)$ and $\omega^2 \times (\alpha + 2)$) if the *n*-th sentence is true in both (J_α, \in) and $(J_{\alpha+1}, \in)$.

The last requirement ensures that at a stage $\omega^2 \times \lambda$, λ limit, what is written on the output tape is the limit of the theories of the (J_{α}, \in) , $\alpha < \lambda$, i.e. the theory $T = \{\varphi \mid \varphi \text{ is true in } (J_{\alpha}, \in) \text{ for sufficiently large } \alpha < \lambda\}$. By Lemma 1, the machine can compute the Σ_2 theory of (J_{λ}, \in) by stage $(\omega^2 \times \lambda) + \omega$ and by Lemma 2 it can compute a code for (J_{λ}, \in) by stage $(\omega^2 \times \lambda) + \omega + \omega$, if λ is less than Σ . Then the machine uses the next ω^2 stages to write the theory of (J_{λ}, \in) on its output tape, again never writing a 0 in the *n*-th cell of its output tape if the *n*-th sentence belongs both to Tand to the theory of (J_{λ}, \in) .

This completes the description of the Theory Machine. The machine is capable of writing the theory of (J_{α}, \in) on its output tape at stage $\omega^2 \times (\alpha+1)$ provided α is less than Σ . The following corollaries easily follow, where λ is the least Σ_1 stable in Σ and ζ is the least Σ_2 stable in Σ :

On input 0:

Every ITTM either halts or repeats itself by stage Σ .

There is a machine that first repeats itself at stage Σ .

The supremum of the halting times of ITTM's is λ .

The reals that appear on the output tape of an ITTM are the reals in $J_{\Sigma} = L_{\Sigma}$.

The reals that appear on the output tape of a halting ITTM are the reals in $J_{\lambda} = L_{\lambda}$.

The reals that appear on the output tape of an ITTM from some stage onwards are the reals in $J_{\zeta} = L_{\zeta}$.

Also, if Σ^x , ζ^x , λ^x are the relativisations of Σ , ζ , λ to the real x:

A is an ITTM-semirecursive set of reals iff for some Σ_1 formula φ , we have: x belongs to A iff $L_{\lambda^x}[x] \models \varphi(x)$.

One can say a bit more about the halting times of ITTM's. Say that α is an *infinite power of* ω iff it is of the form ω^{β} , where β is infinite. An *infinite power of* ω *interval* is an interval $[\alpha, \beta)$ where $\alpha < \beta$ are adjacent infinite powers of ω . For any sentence φ of set theory let $\alpha(\varphi)$ denote the least α , if any, such that (J_{α}, \in) satisfies φ .

Corollary 3 Let I be an infinite power of ω interval. Then the following are equivalent.

i. I contains the halting time of an ITTM.

ii. I is below Σ and contains $\alpha(\varphi)$ for some sentence φ .

Proof. Suppose that α is the halting time of an ITTM. Then this can be expressed in $(J_{\alpha+1}, \in)$ and therefore $\alpha + 1 = \alpha(\varphi)$ for some φ . Conversely, suppose that $\alpha = \alpha(\varphi)$ for some φ and α is less than Σ . Then there is an ITTM that imitates the Theory Machine but halts when it sees that φ is true in (J_{α}, \in) , at a stage less than $\omega^2 \times (\alpha + 1) + \omega^2 = \omega^2 \times (\alpha + 2)$. As the latter is less than the least infinite power of ω greater than α , it follows that $\alpha(\varphi)$ and α belong to the same infinite power of ω interval. \Box

The previous corollary easily yields results about gaps in the set of halting times of ITTM's.

Our second observation concerns Γ -singletons, where Γ is the lightface pointclass of semirecursive sets of reals.

Theorem 4 Suppose that x is a Γ -singleton, i.e., $\{x\}$ belongs to Γ . Then x is an element of L_{λ^x} .

Proof. Let x be the unique x such that $L_{\lambda^x}[x] \models \varphi(x)$, where φ is Σ_1 . Let c be a real which is generic over L_{Σ^x} for the Lévy collapse of λ^x to ω . By absoluteness, there is a real y in $L_{\Sigma^x}[c]$ such that $\varphi(y)$ holds in $L_{\lambda^x}[y]$ and λ^x is less than Σ^y . It follows that $\varphi(y)$ holds in $L_{\Sigma^y}[y]$, therefore in $L_{\lambda^y}[y]$ and therefore y equals x. As c is an arbitrary generic code for λ^x , x belongs to L_{Σ^x} and therefore to L_{λ^x} . \Box

Corollary 5 The ITTM-degrees of Γ -singletons are wellordered in ordertype δ_2^1 , the supremum of the lengths of Δ_2^1 wellorderings of ω , with successor given by ITTM-jump. Proof. If $\lambda^x \leq \lambda^y$ and x is a Γ -singleton then x belongs to L_{λ^y} and therefore is recursive in y. If $\lambda^x < \lambda^y$ then as the ITTM-jump of x is definable over $L_{\lambda^x}[x] = L_{\lambda^x}$, it follows that the ITTM-jump of x is recursive in y. The Γ singletons include the Π_1^1 -singletons, which are cofinal in $L_{\delta_2^1}$, and therefore the length of the wellordering of the ITTM-degrees of Γ -singletons is also δ_2^1 . \Box

Remarks. i. In fact the ITTM-degrees of Δ -singletons are cofinal in those of the Γ -singletons, where Δ is the lightface pointclass of recursive sets of reals. This is because each Π_1^1 -singleton is a Δ -singleton.

ii. There are reals with ITTM-degree incomparable with 0' = the ITTMjump of 0; for example, consider a real Cohen generic over L_{Σ} . But this cannot happen for reals in L_{Σ} , as such a real x belongs to L_{λ^x} and therefore is either ITTM-recursive or ITTM above 0'. By using Sacks forcing one obtain a continuum of minimal ITTM-degrees over 0.