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Abstract

We observe: (I) There is a “Theory Machine” that can write down the Σ2-

Theories of the levels of the J-hierarchy up to Σ (the least Σ such that some smaller

Lζ is Σ2 elementary in LΣ) in a uniform way. Moreover, below Σ these theories are

all distinct. This yields information about the halting times of ITTM’s. (II) The

ITTM degrees of the semi-recursive singletons are well-ordered in order type the

least stable, i.e., the least σ such that Lσ is Σ1 elementary in L.

The Theory Machine generates theories of initial segments of the J-
hierarchy. This machine can be used to prove the “ζ-Σ theorem” and analyse
the halting times of ITTM’s.

The idea of the Theory Machine is to write down the theory of (Jα,∈)
(appropriately Gödel-numbered) on the output tape at computation stage
ω2 · (α+1), for as long as possible. This will be easy to arrange for successor
α, as long as a code for the structure (Jα,∈) can be read off from its theory.
For limit α, the machine performs a liminf operation, resulting in a theory
Tα; we show that the Σ2 theory of (Jα,∈) is recursive in the Turing jump
of Tα, uniformly in α. Provided a code for the structure (Jα,∈) can be
read off from its Σ2 theory, this will enable the machine to write down the
theory of (Jα,∈) at stage ω2 · α+ ω2. A fine-structural analysis shows that
as long as α is less than the least Σ such that Jζ is Σ2 elementary in JΣ for
some ζ < Σ, a code for (Jα,∈) can indeed be read off from its Σ2 theory,
uniformly. Therefore the machine will produce distinct theories of structures
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(Jα,∈) for α < Σ, and then at stage Σ repeat what it wrote on the output
tape at stage ζ.

A corollary is that, up to a “small” error, the halting times of ITTM’s
are exactly the ordinals α < Σ where sentences become true for the first
time in the J-hierarchy, i.e., such that some sentence ϕ of set theory holds
in (Jα,∈) but not in (Jβ ,∈) for any β < α.

The following two claims are crucial to verifying properties of the theory
machine.

Lemma 1 For a limit λ, let T denote the set of Σ2 sentences that are true
in (Jα,∈) for sufficiently large α < λ. Then the Σ2 theory of (Jλ,∈) is RE
in T . Moreover an index for this RE reduction is uniform in λ.

Proof. Let ϕ be a Σ2 sentence and write ϕ as ∃xψ(x) where ψ(x) is Π1. Also
let h1(n, x) denote the canonical Σ1 Skolem function; h1 has a parameter-
free Σ1 definition and for any α, h1 interpreted in Jα is a partial function
from ω × Jα into Jα whose range on ω × [A]<ω is the Σ1 Skolem hull of A
in (Jα,∈) (i.e., the universe of the least Σ1 elementary submodel of (Jα,∈)
containing A), for any A ⊆ Jα. We say that an ordinal α is Σ1 stable (in
the universe) iff every true Σ1 sentence with parameters from Jα is true in
(Jα,∈).

We have the following equivalence:

(Jλ,∈) satisfies ϕ iff
For some n, the following holds in (Jα,∈) for large enough α < λ: There
is a β which is either 0 or Σ1 stable such that either ϕ holds in (Jβ ,∈) or
h1(n, β) is defined and ψ(h1(n, β)) holds.

This equivalence is verified as follows:

Suppose that (Jλ,∈) satisfies ϕ. If (Jβ ,∈) satisfies ϕ for some β which is
Σ1 stable in λ (i.e., β < λ and (Jβ ,∈) is Σ1 elementary in (Jλ,∈)), then
for all α between β and λ, ϕ will also hold in (Jα,∈), as β is also Σ1 stable
in α. So the right half of the equivalence holds in this case. Otherwise let
β be the largest β which is Σ1 stable in λ (or 0 is there is no β which is
Σ1 stable in λ). Then every element of Jλ is of the form h1(n, β) for some
n (as the Σ1 Skolem hull of {β} in (Jλ,∈) is all of Jλ). Choose n so that
ψ(h1(n, β)) holds in Jλ. Then for sufficiently large α < λ, h1(n, β) is defined
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in (Jα,∈), and ψ(h1(n, β)) holds in (Jα,∈) as ψ is Π1. So the right half of
the equivalence also holds in this case.

Conversely, suppose that the right half of the equivalence holds and choose
n to witness that. First suppose that the Σ1 stables in λ are cofinal in λ.
Then apply the right half of the equivalence to some α which is Σ1 stable
in λ. Then either ϕ holds in (Jβ ,∈) for some β which is Σ1 stable in α

or ψ(h1(n, β)) holds in (Jα,∈) for some β; in the former case ϕ holds in
(Jλ,∈) as β is Σ1 stable in λ and in the latter case this holds as α is Σ1

stable in λ. Now suppose that the Σ1 stables in λ are bounded in λ and
let β be the largest Σ1 stable in λ (or 0 is there is no β which is Σ1 stable
in λ). Choose α to be sufficiently large in the sense of the right hand side
of the equivalence and also such that there are no α-stables greater than β.
(For example, choose n so that h1(n, β) is large enough and let α be least
so that h1(n, β) is defined in (Jα,∈).) Then applying the right hand side of
the equivalence to α, there is a β′ which is either 0 or Σ1 stable in α such
that either ϕ holds in (Jβ′ ,∈) or ψ(h1(n, β

′)) holds in (Jα,∈). In the former
case, β′ is at most β and therefore is Σ1 stable in λ; it follows that ϕ holds
in (Jλ,∈). In the latter case, argue as follows: If β′ is less than β, then
h1(n, β

′) in fact belongs to Jβ and ψ(h1(n, β
′)) holds in (Jβ,∈), implying

that ϕ holds in (Jλ,∈). If β′ equals β then ψ(h1(n, β)) holds in Jα, and as α
can be chosen arbitrarily large, ψ(h1(n, β)) holds in (Jλ,∈); it follows that
ϕ holds in (Jλ,∈), as desired.

The equivalence shows that the Σ2 theory of (Jλ,∈) is RE in T . And
this RE definition is independent of λ. �

Lemma 2 Let Σ be least so that some ζ < Σ is Σ2 stable in Σ (i.e., (Jζ ,∈)
is Σ2 elementary in (JΣ,∈)). Let Tα be the Σ2 theory of the structure
(Jα,∈). Then there is a real code for this structure which is recursive in Tα.
Moreover, the reduction of this code to Tα is uniform in α.

Proof. It suffices to show that there is a partial function f from ω

onto Jα which is Σ2 definable over (Jα,∈) without parameter (uniformly
in α < Σ). For given this, consider the set of n such that f(n) is defined,
modulo the equivalence relation n ∼ m iff f(n) = f(m), together with the
binary relation nEm iff f(n) ∈ f(m). This yields an isomorphic copy of
(Jα,∈).

Let ψn(x) be the n-th Π1 formula with free variable x. Define:
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f ′(n) = (m,β) iff the following hold in (Jα,∈):
i. β is 0 or Σ1 stable.
ii. h1(m,β) = x is defined.
iii. ψn(x) holds.
iv. ψn(x′) fails for any x′ of the form h1(m

′, β′), β′ < β, m′ < ω.
v. m′ < m→ h1(m

′, β) is undefined or ψn(h1(m
′, β)) fails.

Clauses i-iii are easily seen to be either Σ1 or Π1. Clause v is equivalent to
a disjunction of a Σ1 formula and a Π1 formula. Clause iv is vacuous if β is
0 and otherwise holds in (Jα,∈) iff it holds in (Jβ ,∈); it follows that clause
iv is Σ1. And f ′ is single-valued and therefore a partial function from ω into
Jα which is Σ2 definable over (Jα,∈) without parameter.

Now define f(n) = h1(f
′(n)) and let A be the Σ1 Skolem hull of the

range of f . Then A is the range of a partial function g from ω into Jα

which is Σ2 definable over (Jα,∈) without parameter. (Define g(n) =
h1(n0, 〈f(n1), . . . , f(nk)〉), if n codes the sequence (n0, . . . , nk).)

We claim that (A,∈) is Σ2 elementary in (Jα,∈): Clearly (A,∈) is Σ1 el-
ementary in (Jα,∈), as it is the Σ1 Skolem hull of the range of f . Write
g(n) = x iff (Jα,∈) � ∃yψ(n, x, y), where ψ is Π1. Now suppose that there
exists x in Jα such that (Jα,∈) � γ(x, g(n1), . . . , g(nk)), where γ is Π1. Then
there exists 〈x, x1, y1, . . . , xk, yk〉 in Jα such that the following Π1 formula
holds in (Jα,∈):

γ(x, x1, . . . , xk) ∧ ψ(n1, x1, y1) ∧ . . . ∧ ψ(nk, xk, yk).

By the definition of f , there exists such a sequence 〈x̄, x̄1, ȳ1, . . . , x̄k, ȳk〉
in the range of f . Also x̄ belongs to A and x̄i equals g(ni) for each i,
1 ≤ i ≤ k, and therefore γ(x̄, g(n1), . . . , g(nk)) holds in (Jα,∈). As (A,∈)
is Σ0 elementary in (Jα,∈), it follows that γ(x̄, g(n1), . . . , g(nk)) holds in
(A,∈) for some x̄, proving that (A,∈) is Σ2 elementary in (Jα,∈).

Finally, every element of Jα is countable in (Jα,∈), as otherwise there
would be a Σ less than α such that some ζ < Σ is Σ2 stable in Σ. It follows
that A is transitive, as by Σ1 elementarity, A contains an injection of any
of its elements into ω. We have assumed that α is less than Σ, so in fact A
equals all of Jα, and therefore there is a partial function g from ω onto Jα

which is Σ2 definable over (Jα,∈) without parameter, as desired. �

Now we are ready to describe the Theory Machine. When we say that
the machine writes a theory T on its output tape at stage α, we mean
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that at stage α, the n-th cell of the output tape has a 1 written in it iff
the n-th sentence (via a fixed Gödel numbering) belongs to T . Now the
Theory Machine runs as follows: On input 0, the machine uses the first ω2

stages to ensure that the theory of (J0,∈) is written on the output tape at
stage ω2. (In fact the machine could arrange this in fewer stages, but we
prefer for this to occur at stage ω2). Inductively, suppose that the theory
of (Jα,∈) is written on the output tape at stage ω2 × (α + 1). If α is less
than Σ, then by Lemma 2, the machine can compute a code for (Jα,∈)
by stage ω2 × (α + 1) + ω. Then the machine uses the theory of (Jα,∈)
to compute a code for (Jα+1,∈) by stage ω2 × (α + 1) + ω + ω and the
next ω2 steps to write the theory of (Jα+1,∈) on its output tape at stage
ω2 × (α+ 1) +ω+ω+ω2 = ω2 × (α+ 2). The machine must however never
write a 0 in the n-th cell of its output tape (at a stage between ω2 × (α+ 1)
and ω2 × (α+ 2)) if the n-th sentence is true in both (Jα,∈) and (Jα+1,∈).

The last requirement ensures that at a stage ω2 × λ, λ limit, what is
written on the output tape is the liminf of the theories of the (Jα,∈), α < λ,
i.e. the theory T = {ϕ | ϕ is true in (Jα,∈) for sufficiently large α < λ}.
By Lemma 1, the machine can compute the Σ2 theory of (Jλ,∈) by stage
(ω2 × λ) + ω and by Lemma 2 it can compute a code for (Jλ,∈) by stage
(ω2 × λ) + ω + ω, if λ is less than Σ. Then the machine uses the next ω2

stages to write the theory of (Jλ,∈) on its output tape, again never writing
a 0 in the n-th cell of its output tape if the n-th sentence belongs both to T
and to the theory of (Jλ,∈).

This completes the description of the Theory Machine. The machine is
capable of writing the theory of (Jα,∈) on its output tape at stage ω2×(α+1)
provided α is less than Σ. The following corollaries easily follow, where λ is
the least Σ1 stable in Σ and ζ is the least Σ2 stable in Σ:

On input 0:

Every ITTM either halts or repeats itself by stage Σ.
There is a machine that first repeats itself at stage Σ.
The supremum of the halting times of ITTM’s is λ.
The reals that appear on the output tape of an ITTM are the reals in
JΣ = LΣ.
The reals that appear on the output tape of a halting ITTM are the reals
in Jλ = Lλ.
The reals that appear on the output tape of an ITTM from some stage
onwards are the reals in Jζ = Lζ .
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Also, if Σx, ζx, λx are the relativisations of Σ, ζ, λ to the real x:

A is an ITTM-semirecursive set of reals iff for some Σ1 formula ϕ, we have:
x belongs to A iff Lλx [x] � ϕ(x).

One can say a bit more about the halting times of ITTM’s. Say that
α is an infinite power of ω iff it is of the form ωβ, where β is infinite. An
infinite power of ω interval is an interval [α, β) where α < β are adjacent
infinite powers of ω. For any sentence ϕ of set theory let α(ϕ) denote the
least α, if any, such that (Jα,∈) satisfies ϕ.

Corollary 3 Let I be an infinite power of ω interval. Then the following
are equivalent.
i. I contains the halting time of an ITTM.
ii. I is below Σ and contains α(ϕ) for some sentence ϕ.

Proof. Suppose that α is the halting time of an ITTM. Then this can be
expressed in (Jα+1,∈) and therefore α + 1 = α(ϕ) for some ϕ. Conversely,
suppose that α = α(ϕ) for some ϕ and α is less than Σ. Then there is an
ITTM that imitates the Theory Machine but halts when it sees that ϕ is
true in (Jα,∈), at a stage less than ω2 × (α + 1) + ω2 = ω2 × (α + 2). As
the latter is less than the least infinite power of ω greater than α, it follows
that α(ϕ) and α belong to the same infinite power of ω interval. �

The previous corollary easily yields results about gaps in the set of halt-
ing times of ITTM’s.

Our second observation concerns Γ-singletons, where Γ is the lightface
pointclass of semirecursive sets of reals.

Theorem 4 Suppose that x is a Γ-singleton, i.e., {x} belongs to Γ. Then
x is an element of Lλx.

Proof. Let x be the unique x such that Lλx [x] � ϕ(x), where ϕ is Σ1. Let
c be a real which is generic over LΣx for the Lévy collapse of λx to ω. By
absoluteness, there is a real y in LΣx [c] such that ϕ(y) holds in Lλx [y] and
λx is less than Σy. It follows that ϕ(y) holds in LΣy [y], therefore in Lλy [y]
and therefore y equals x. As c is an arbitrary generic code for λx, x belongs
to LΣx and therefore to Lλx . �

Corollary 5 The ITTM-degrees of Γ-singletons are wellordered in order-
type δ12, the supremum of the lengths of ∆1

2 wellorderings of ω, with successor
given by ITTM-jump.
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Proof. If λx ≤ λy and x is a Γ-singleton then x belongs to Lλy and therefore
is recursive in y. If λx < λy then as the ITTM-jump of x is definable over
Lλx [x] = Lλx , it follows that the ITTM-jump of x is recursive in y. The Γ-
singletons include the Π1

1-singletons, which are cofinal in Lδ1

2

, and therefore
the length of the wellordering of the ITTM-degrees of Γ-singletons is also
δ12 . �

Remarks. i. In fact the ITTM-degrees of ∆-singletons are cofinal in those
of the Γ-singletons, where ∆ is the lightface pointclass of recursive sets of
reals. This is because each Π1

1-singleton is a ∆-singleton.
ii. There are reals with ITTM-degree incomparable with 0′ = the ITTM-
jump of 0; for example, consider a real Cohen generic over LΣ. But this
cannot happen for reals in LΣ, as such a real x belongs to Lλx and therefore
is either ITTM-recursive or ITTM above 0′. By using Sacks forcing one
obtain a continuum of minimal ITTM-degrees over 0.
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